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Effect of stochastic forcing on the dynamic behavior of a self-sustained oscillator
coupled to a non-linear energy sink

Baptiste Bergeota,∗
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Abstract

In this paper the influence of stochasticity (i.e. a Gaussian white noise forcing) on the dynamic behavior of a self-
sustained oscillator coupled to a non-linear energy sink is investigated. To this end, the standard stochastic averaging is
used to compute the slow flow dynamics of the system. Preliminary results show that the reasoning which allows to predict
the system behavior in the deterministic case can be contradicted in presence of stochasticity. Then, by means of the
Monte Carlo method, the stochastic averaging procedure is validated. Finally, two quantities are introduced to highlight
more precisely the special features of the stochastic system behavior compared to that of the deterministic system.
These are the probability of being in a harmless regime and the First-Passage Time to reach a harmful regime which
are computed and investigated combining again the Monte Carlo approach with numerical integrations of the slow flow
dynamics. The results obtained show afresh that the stochastic forcing can modify significantly the dynamic behavior of
the corresponding deterministic system. Indeed, when they are computed on the latter, the two quantities aforementioned
have a discontinuity at the mitigation limit (i.e. the value of the bifurcation parameter under consideration below which
the NES acts and above which it no longer acts) revealing an abrupt change of behavior of the coupled system. The paper
shows that this typical characteristic of the deterministic system is lost in the presence of stochasticity, the stochastic
system becoming smooth at the mitigation limit.

Keywords: Passive vibration control, Non-linear energy sink, Self-sustained oscillations, Stochastic averaging,
Stochastic forcing

1. Introduction

The non-linear vibration absorbers known as non-linear
energy sinks (NESs) are these days well-known devices
used for passive mitigation of unwanted oscillations caused
by either external, parametric or self-excitations of a me-
chanical or acoustical primary structure. In general an
NES is defined as a non-linear attachment consisting of
a light mass (compared to the total mass of the primary
structure), an essentially non-linear spring (most of the
time purely cubic) and a viscous linear damper. The de-
pendence between the vibratory amplitude and the oscil-
lating frequency of the NES (because of its strongly non-
linear nature) makes it able to resonate at any frequency.
After tuning to the primary structure and having absorbed
and then dissipated its energy, the NES can detune from
the primary structure to avoid the return of energy. This
irreversible transfer of vibrational energy from the pri-
mary system to the NES is called targeted energy transfert
(TET) or energy pumping. In their seminal papers [1, 2]
Gendelman, Vakakis and al. explain the TET phenomenon
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by the interaction between two non-linear modes of vibra-
tions of the system producing a 1:1 resonance capture.
Reviews of these concepts can be found in [3] and more
recently in [4].

Using an NES to alleviate or even suppress limit cy-
cle oscillations (LCOs) resulting from dynamic instabil-
ities has been extensively studied in the literature in a
deterministic framework. Mitigation of LCOs of the Van
der Pol oscillator has been studied numerically by Lee and
al. in their seminal paper [5] and then theoretically by
Gendelman and Bar [6]. This latter work has been ex-
tended to a Van der Pol-Duffing oscillator coupled to one
NES by Domany and Gendelman [7]. A number of works
focused on the problem of mitigation, using one or sev-
eral NESs, of LCOs due to flutter instabilities in aircraft
wings. This problem has been first studied both numeri-
cally and experimentally, again by Lee. and al. [8, 9, 10].
The theoretical prediction of observed operating regimes
has been performed by means of multiple time scales ap-
proaches [11, 12] and improved more recently using the
center manifold reduction technique [13]. Also in the con-
text of self-oscillations induced by fluid-structure interac-
tions, the mitigation of vortex-induced vibrations caused
by the non-linear interaction of a laminar flow and a rigid
circular cylinder has been first investigated by Tumkur
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and al. [14] constructing a two-DOFs reduced-order model
and validating it by means of a comparison with a finite-
element model. An improved and experimentally validated
reduced-order model has been proposed by Dai and al. [15].
On the same issue, a recent theoretical work [16] (i) ex-
plains the global dynamics of the system by means a three-
DOFs reduced-order model coupling fluid-structure inter-
action framework with the NES attachment and (ii) iden-
tifies, through a parametric study, the optimal operational
parameter ranges for an efficient NES design. Concerning
aeronautics, the use of NESs to control helicopter ground
resonance instability has been studied in [17, 18]. The use
of several NESs to alleviate self-sustained oscillations has
been analytically studied by Bergeot and Bellizzi in two
papers. First, the use of several parallel NESs attached to
a Van der Pol oscillator has been analyzed in [19]. Then,
the prediction of the dynamic behavior of a multi-DOFs
mechanical system with only one unstable mode and cou-
pled to a set of NESs has been proposed in [20] with an
application to flutter instability of an airplane wing model.
Finally, the possibility of mitigating self-sustained oscilla-
tions of a linear friction system having two unstable modes
has been studied by Bergeot and al. [21] by means of a so-
phisticated multiple time scales analysis allowing the un-
derstanding of the phenomena underlying the appearance
of the many possible regimes of the system.

Many engineering applications, especially in the con-
text of fluid-structure interaction and aeronautics, involve
stochasticity which can have an important influence on
the deterministic dynamics. Although that often leads to
a better understanding of the dynamics of a mechanical
system under more realistic conditions, there are very few
papers that study the TET mechanisms taking into ac-
count stochasticity. The polynomial chaos approach has
been used by Gourdon and Lamarque [22] to analyze the
NESs behavior during instationary regimes in a two-DOFs
academic system. The goal was to verify the robustness
of the TET mechanism when the model has uncertain pa-
rameters. In the same vein, Cataldo and al. [23] used the
Monte Carlo method to study the energy pumping robust-
ness considering the uncertainties of the parameters of a
linear primary structure coupled to an NES. The design
optimization of parallel NESs taking into account uncer-
tainties has been performed in [24]. In the context of limit
cycles mitigation, Pidaparthi and Missoum [25] performed
optimization under uncertainties of an NES used to alle-
viate limit cycles created by aeroelastic instability in an
aircraft wing. Snoun and al. [26] used a multi-element
generalized polynomial chaos based method to predict the
dynamic behavior of an uncertain friction system coupled
to two non-linear energy sinks. A robust method was pro-
posed to optimize non-linear energy sinks (NES) in the
same model in [27].

In the previous cited works, the stochasticity comes
from parametric uncertainties considering that parame-
ters values cannot be known exactly. This approach, how-
ever, assumes that for a given realization of the process

the parameters are constant. Each realization is there-
fore deterministic. Another approach consists in inves-
tigating the TET taking into account a stochastic time
dependent forcing. Even fewer works consider this ap-
proach. Schmidt and Lamarque [28] studied a linear one-
DOF primary structure coupled to one NES in presence
of a white noise forcing by solving numerically the Fokker-
Planck equation associated with the stochastic equations
of motion of the system. Starosvetsky and Gendelman [29]
showed, using numerical simulations, that an NES can
produce complete elimination of undesired response of a
linear one-DOF system subject to a randomly modulated
and narrow-band excitation. A TET problem from a lin-
ear medium to a non-linear attachment is studied in the
presence of stochasticity by Sapsis and al. [30]. Using a
stochastic averaging method, the authors determine the
equation of the stochastic slow flow dynamics of the sys-
tem. Numerical integration of the associated Fokker-Planck
equation reveals that the optimal TET regimes, predicted
in the deterministic case, are preserved and even enhanced
because of the interaction between non-linearity and stochas-
ticity.

In the present paper we consider the problem of miti-
gation of self-sustained oscillations by means of an NES in
presence of stochasticity (in the form of a Gaussian white
noise forcing) which, to the knowledge of the author, has
not been treated in the literature. The problem is studied
using the standard stochastic averaging method [31, 32, 33]
to compute the slow flow dynamics of a Van der Pol oscilla-
tor undergoing a Gaussian white noise forcing and coupled
to an NES. Then two quantities are introduced to highlight
the special features of the stochastic system, in compari-
son with the behavior of the deterministic system. These
are the probability of being in a harmless regime and the
First-Passage Time to reach a harmful regime which are
studied using the Monte Carlo method [34] combined with
numerical simulations of the stochastic slow flow.

The paper is organized as follows. In Section 2 the
equations of motion of the full-order system under study -
i.e. a Van der Pol oscillator forced by a stochastic forcing
(Gaussian white noise) and coupled to a purely cubic non-
linear energy sink - are derived. The standard stochastic
averaging method is used in Section 3 to compute the slow
flow dynamics of the full-order system. Section 4 recalls
the typical behavior of the deterministic system (in Sec-
tion 4.1) with the aim of highlighting some special features
caused by stochasticity (in Section 4.2). The probability of
being in a harmless regime and the First-Passage Time to
reach a harmful regime are defined and then investigated
by means of the Monte Carlo method in Sections 5 and 6
respectively. Finally, concluding remarks and perspectives
are formulated in Section 7.

2. Equations of the model

In this section we derive the equations of motion of the
full-order system under study, i.e. a Van der Pol (VdP)
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Figure 1: A Van der Pol oscillator (primary system) with stochastic
forcing (Gaussian white noise) ν̂ξ and coupled to an NES.

oscillator - used as an archetypal self-sustained oscillator
- forced by a Gaussian white noise and coupled to an un-
grounded purely cubic non-linear energy sink (NES). A
schematic representation of this system is depicted in Fig. 1.
The equations of motion of this system are as follows

m1
d2y1
dt2

+ cNL
1

dy1
dt

(
ry21 −R2

)
+ k1y1+

c2

(
dy1
dt

− dy2
dt

)
+ kNL

2 (y1 − y2)
3
= ν̂ξ(t)

(1a)

m2
d2y2
dt2

+ c2

(
dy2
dt

− dy1
dt

)
+ kNL

2 (y2 − y1)
3 = 0 (1b)

where m1 and m2 are the masses of the primary VdP os-
cillator and of the NES respectively. The parameter k1 is
the linear stiffness of the VdP oscillator and cNL

1 and rcNL
1

characterize its negative and non-linear dampings respec-
tively. The NES is a purely cubic oscillator characterized
by its linear damping coefficient c2 and non-linear stiff-
ness kNL

2 . The term ξ(t) is a unitary idealized white noise
process with zero mean, i.e.

E [ξ(t)] = 0 and E [ξ(t)ξ(t+ τ)] = δ(τ) (2)

where ν̂ is the noise level.
For convenience Eq. (2) is rescaled leading to the fol-

lowing dimensionless system of differential equations

ẍ1 + ϵρẋ
(
rx2

1 − 1
)
+ x1+

ϵµ (ẋ1 − ẋ2) + ϵα(x1 − x2)
3 = ϵνξ(t′) (3a)

ϵẍ2 + ϵµ (ẋ2 − ẋ1) + ϵα(x2 − x1)
3 = 0 (3b)

where xi = yi/R (i = 1, 2), ω1 =
√
k1/m1, t

′ = ω1t, {̇} =
d{}/dt′, ϵ = m2/m1 is the mass ratio between the NES and
the VdP oscillator, ρ = cNL

1 R2/(m2ω1), µ = c2/(m2ω1),

α = kNL
2 R2/(m2ω

2
1) and ν = ν̂/(m2Rω

3/2
1 ). In the latter,

the exponent 3/2 is obtained recalling that a normalized
white noise ξ(t) is defined as the time derivative of the
normalized Wiener process W (t′) and using the scaling

property of Wiener process (see [35], Chap. 2) which states
that W (t′/ω1) and 1/

√
ω1W (t′) are the same stochastic

processes. Therefore, we have

ξ(t) =
dW (t)

dt
∼ ω1

dW ( t′

ω1
)

dt′
∼ √

ω1
dW (t′)

dt′

=
√
ω1ξ(t

′) (4)

that explains the expression of parameter ν.
Finally, using the change of variable u1 = x1+ ϵx2 and

u2 = x1 − x2 the equations of motion (3) become

ü1 + u1 − ϵ
[
ρu̇1(ru

2
1 − 1) + u1 − u2

]
= ϵνξ(t′) (5a)

ü2 + µu̇2 + αu3
2−

ϵ
[
ρu̇1(ru

2
1 − 1) + u1 − µu̇2 − u2 − αu3

2

]
= ϵνξ(t′) (5b)

in which a first order Taylor expansion around ϵ = 0 has
been performed assuming a small mass ratio between the
NES and the primary oscillator (i.e. 0 < ϵ ≪ 1).

In the next sections, the time t′ is denoted by t for the
sake of conciseness.

3. The stochastic slow flow dynamics

The standard stochastic averaging method [31, 33], whose
general formulation is recalled in Appendix B, is used in
this section to obtain the equations governing the stochas-
tic slow flow dynamics of Eq. (5).

TET is due to the interaction between two non-linear
modes of the coupled structure [1, 2]. This phenomenon,
called a 1:1 resonance capture, occurs at a frequency close
to the natural frequency of the primary structure, here
the VdP oscillator. It is customary to study the dynamic
behavior of the system in the neighborhood of this 1:1 res-
onance capture. Then, the system is simplified by averag-
ing it over a natural period of the primary structure using
the Krylov-Bogolyubov averaged approximation (see e.g.
[36]). The resulting averaged dynamics is called slow flow.
In general, in the context of NES studies, the complexification-
averaging method [37, 3] is used. Here a real amplitude-
angle representation (completely equivalent to the latter)
is preferred by stating

u1 = a1 cos (t+ φ1) (6a)

u̇1 = −a1 sin (t+ φ1) (6b)

and

u2 = a2 cos (t+ φ2) (7a)

u̇2 = −a2 sin (t+ φ2) . (7b)

The imposed forms of Eqs. (6b) and (7b) require that

ȧ1 cosϕ1 − a1φ̇1 sinϕ1 = 0, (8)

and
ȧ2 cosϕ2 − a2φ̇2 sinϕ2 = 0, (9)
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with
ϕ1 = t+ φ1 and ϕ2 = t+ φ2 (10)

that leads to

φ̇1 =
ȧ1
a1

cosϕ1

sinϕ1
, ȧ1 = a1φ̇1

sinϕ1

cosϕ1
, (11a)

φ̇2 =
ȧ2
a2

cosϕ2

sinϕ2
and ȧ2 = a2φ̇2

sinϕ2

cosϕ2
. (11b)

Then differentiation of Eqs. (6b) and (7b) yields

ü1 = −a1 cosϕ1 − ȧ1 sinϕ1 − a1φ̇1 cosϕ1. (12)

and
ü2 = −a2 cosϕ2 − ȧ2 sinϕ2 − a2φ̇2 cosϕ2. (13)

The substitution of Eqs. (6), (7), (12) and (13) into Eq. (5)
and the use of Eq. (11) leads to the following (2, 2)-fast-
slow non-autonomous system of stochastic differential equa-
tions

ȧ1 = ϵf1(a1, φ1, a2, φ2, t)− ϵνξ sinϕ1 (14a)

φ̇1 = ϵf2(a1, φ1, a2, φ2, t)− ϵνξ
cosϕ1

a1
(14b)

ȧ2 = f3(a1, φ1, a2, φ2, t, ϵ)− ϵνξ sinϕ2 (14c)

φ̇2 = f4(a1, φ1, a2, φ2, t, ϵ)− ϵνξ
cosϕ2

a2
(14d)

where the expressions of the functions f1, f2, f3 and f4
are given in Appendix A.

The terms of order O(ϵ) are neglected in the equations
of the fast variables (i.e. Eqs. (14c) and (14d)), that leads
to

ȧ1 = ϵf1(a1, φ1, a2, φ2, t)− ϵνξ sinϕ1 (15a)

φ̇1 = ϵf2(a1, φ1, a2, φ2, t)− ϵνξ
cosϕ1

a1
(15b)

ȧ2 = f3(a1, φ1, a2, φ2, t, 0) (15c)

φ̇2 = f4(a1, φ1, a2, φ2, t, 0) (15d)

which has a similar form as (B.1) with

x = (a1, φ1, a2, φ2)
T

f(x, t) =


ϵf1(a1, φ1, a2, φ2, t)
ϵf2(a1, φ1, a2, φ2, t)
f3(a1, φ1, a2, φ2, t, 0)
f4(a1, φ1, a2, φ2, t, 0)

 ,

g(x, t) = ϵν

− sinϕ1 0

0 −cosϕ1

a1

 ,

η = (ξ, ξ, ξ, ξ)
T

(16)

where ()T denotes the transpose operator.
Following the standard stochastic averaging method

described in Appendix B, the drift vectorm (see Eq. (B.3))
is first computed. The first term corresponds to classical

(deterministic) Krylov-Bogolyubov averaging of the vector
function f , here over one period equal to 2π. This term is
written as follows

Mav {f} =


ϵf̂1(a1, a2, φ)

ϵf̂2(a1, a2, φ)

f̂3(a1, a2, φ)

f̂4(a1, a2, φ)

 (17)

where φ = φ1 − φ2 and

f̂1(a1, a2, φ) =
1

8

(
4a2 sin(φ)− a1

(
ra21 − 4

)
ρ
)

(18)

f̂2(a1, a2, φ) =
1

2

(
a2 cos(φ)

a1
− 1

)
(19)

f̂3(a1, a2, φ) =
1

8
(−4a2µ− 4a1 sin(φ)) (20)

f̂4(a1, a2, φ) =
3αa32 + 4a1 cos(φ)− 4a2

8a2
(21)

Then the second part of the drift vector m (see again
Eq. (B.3)) is determined as

Mav

{∫ 0

−∞
E
[(

∂(gη)

∂x

)
t

(gη)t+s

]
ds

}
=

1

2π

∫ t0+2π

t0

∫ 0

−∞
E
[(

∂(gη)

∂x

)
t

(gη)t+s

]
dsdt

=


ϵ2ν2

2a1

∫ 0

−∞ δ(s) cos(s)ds

0
0
0

 (22)

in which the symbol E [] has been removed by means of
Eq. (2). Because∫ 0

−∞
δ(s) cos(s)ds =

1

2

∫ +∞

−∞
δ(s) cos(s)ds =

1

2
(23)

the final expression of the drift vector is obtained as

m =


ϵf̂1(a1, a2, φ) +

ϵ2ν2

4a1
ϵf̂2(a1, a2, φ)

f̂3(a1, a2, φ)

f̂4(a1, a2, φ)

 . (24)

The expression of the diffusion matrix σ is now deter-
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mined from (B.4). First, σσT is computed as follows

σσT = Mav

{∫ +∞

−∞
E
[
(gη)t(gη)

T
t+s

]
ds

}
=

1

2π

∫ t0+2π

t0

∫ +∞

−∞
E
[
(gη)t(gη)

T
t+s

]
dsdt

= ϵ2ν2
∫ +∞

−∞

(
δ(s) cos(s)

2 − δ(s) sin(s)
2a1

δ(s) sin(s)
2a1

δ(s) cos(s)
2a2

1

)
ds

= ϵ2ν2


1

2
0 0 0

0
1

2a21
0 0

0 0 0 0
0 0 0 0

 . (25)

Therefore, from (25) a possible solution of (B.4) is

σ = ϵν


1√
2

0 0 0

0
1

a1
√
2

0 0

0 0 0 0
0 0 0 0

 . (26)

According to (B.2) the equations governing the stochas-
tic slow dynamics of (5) are

ȧ1 = ϵf̂1(a1, a2, φ) +
ϵ2ν2

4a1
+

ϵν√
2
ξ(t) (27a)

φ̇1 = ϵf̂2(a1, a2, φ) +
ϵν

a1
√
2
ξ(t) (27b)

ȧ2 = f̂3(a1, a2, φ) (27c)

φ̇2 = f̂4(a1, a2, φ) (27d)

The final form of the stochastic slow flow is obtained by
combining Eqs. (27b) and (27d), that leads to

ȧ1 = ϵf(a1, a2, φ) + ϵσξ(t) (28a)

ȧ2 = g1(a1, a2, φ) (28b)

φ̇ = g2(a1, a2, φ) (28c)

where f = f̂1, g1 = f̂3, σ = ν√
2
and the term ϵ2ν2

4a1
(of order

O(ϵ2)) has been neglected in Eq. (28a). The difference

between Eqs. (27b) and (27d) should yield ϵf̂2(a1, a2, φ)+
ϵν

a1

√
2
ξ − f̂4(a1, a2, φ) as the right-hand side of Eq. (28c).

However, the terms of order O(ϵ) are neglected, one has

therefore only g2 = −f̂4(a1, a2, φ) remains. Equation (28)
appears as a stochastic (2, 1)-fast-slow system where a2
and φ are the fast variables and a1 is the slow variable on
which the noise acts.

A key mathematical tool for the description of a fast-
slow system such as Eq. (28) is its critical manifold. The
latter is defined in this section. First, the slow flow (28) is

written with respect to the slow time τ = ϵt as follows

a′1 = f(a1, a2, φ) +
√
ϵσξ(τ) (29a)

ϵa′2 = g1(a1, a2, φ) (29b)

ϵφ′ = g2(a1, a2, φ) (29c)

where (.)′ denotes the derivative with respect to the slow
time τ . Again the scaling property of the Wiener process
has been used, i.e. ξ(t) =

√
ϵξ(τ). Considering ϵ = 0

respectively in Eqs. (28) and (29) yields the slow subsystem

a′1 = f(a1, a2, φ) (30a)

0 = g1(a1, a2, φ) (30b)

0 = g2(a1, a2, φ), (30c)

which is a differential-algebraic equation, and the fast sub-
system

ȧ1 = 0 (31a)

ȧ2 = g1(a1, a2, φ) (31b)

φ̇ = g2(a1, a2, φ). (31c)

The critical manifold of the slow flow is the solution of
the algebraic part of Eq. (30) and it is expressed as follows

M0 =
{
(a1, a2, φ) ∈ R+2 × [−π, π]

∣∣∣
g1(a1, a2, φ) = 0 and g2(a1, a2, φ) = 0

}
. (32)

Note that because of the assumptions made (i.e. a noise
which acts only on the primary structure with a level of
the order O(ϵ)), the effect of the noise on the fast vari-
ables a2 and φ has been neglected. Consequently both
slow and fast subsystems are deterministic. This has two
major consequences. First, the critical manifold is deter-
ministic too ans it can therefore be obtained with the usual
approach (the classical analysis of the deterministic slow
flow including the computation of the critical manifold is
recalled in Appendix C). Then, it means that the role of
the noise cannot be investigated within the zeroth-order
approximation, i.e. within the limit case in which the per-
turbation parameter ϵ is equal to zero, as it is usually done
in the context of NES studies.

4. Problem statement and preliminary results

In this section we first recall in Section 4.1 how the
deterministic system behaves using both numerical simu-
lations of the deterministic slow flow (i.e. Eq. (29) with
σ = 0) and the classical analytical results presented in Ap-
pendix C. Then, in Section 4.2, the comparison with nu-
merical integration of the stochastic slow flow (29) (using
the function ItoProcess of Mathematica software [38]) al-
lows us to highlight the influence of noise on the system
behavior.
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4.1. Reminder of the deterministic behavior of the system

The slow-fast nature of the slow flow implies that it
evolves at two time scales: the slow time scale τ in which
the slow flow is on the critical manifold and approxima-
tively described by the slow subsystem (30) and the fast
time scale t in which the slow flow is outside the critical
manifold and described by the fast subsystem (31). The
particular S-shape of the critical manifold (see Fig. C.9)
together with the stability analysis of the fixed points of
the slow flow allows to explain and predict its different re-
sponses and consequently those of the full-order system.
Four scenarios are possible and in previous works by the
authors [19, 20] these responses are classified into two cat-
egories called harmless situations and harmful situations.
In harmless situations, the NES acts, resulting in three
possible responses. The first scenario is called Complete
suppression. In this case the trivial fixed point of the slow
flow is stable and then reached. This is a linear effect of the
NES and, in the context of non-linear vibrations absorp-
tion, the complete suppression is not the desired effect.
The second possible regime is called mitigation through
periodic responses (PRs). This corresponds to the situa-
tion in which a nontrivial stable fixed point of the slow
flow is reached leading to a periodic regime for the ini-
tial full-order system. The last harmless situations corre-
spond to mitigation through Strongly Modulated Responses
(SMRs). SMRs are quasi-periodic regimes (amplitude and
phase modulated) of the full-order system corresponding
to relaxations oscillations of the slow flow. There is only
one type of harmful situations for which the NES is not
able to produce small amplitude responses. In this case, a
limit cycle with an amplitude close to that of the Van der
Pol oscillator alone is observed.

In general, the transition from harmless to harmful sit-
uations corresponds to the transition from an SMR to a no
mitigation regime. This transition is illustrated in Fig. 2:
Figs. 2(a) and 2(c) show a relaxations oscillation scenario
and Figs. 2(b) and 2(d) show a no mitigation scenario.
The top figures depict the times series of the amplitude
a1 and a2 at the slow time scale τ and the bottom figures
depict the comparison between the trajectory of the slow
flow and the critical manifold (32) in the (a2, a1)-plane.
In the latter (see Figs. 2(c) and 2(d)), in both relaxation
oscillations and no mitigation scenarios, from an initial
condition near zero and outside the critical manifold, the
trajectory of the slow flow evolves rapidly and almost hor-
izontally to the left attracting branch of M0. During this
fast epoch the slow flow dynamics is approximatively de-
scribed by the fast subsystem (31). Then, the slow flow
evolves slowly close to this branch. During this slow epoch
the slow flow dynamics is now approximatively described
by the slow subsystem (30). If the trajectory does not
meet a stable fixed point1, the trajectory goes toward the

1If this is the case the trajectory stops and a mitigation through
a PR is observed.

left fold point (aLF2 , aLF1 ) at which M0 becomes repelling
(see Eqs. (C.2), (C.4) and (C.5)).

Remark. When the full-order system passes from a PR to
an SMR (i.e. when the slow flow passes from a reached
stable fixed point to stable relaxation oscillations) folded
singularities can appear. The latter are points for which
fold and fixed points of the slow flow coincide and are
hints of particular solutions of fast-slow systems, called
canards (see e.g. [39] for rigorous mathematical definitions
of these concepts). In general, canard solutions appear for
a very small range of the bifurcation parameter and are
not investigated in this paper.

The zeroth-order approximation assumes that the left
fold point is actually reached. However numerical sim-
ulations show that when approaching the left fold point
the trajectory deviates slightly from the critical manifold
(this behavior is analytically described in [13]). Then the
slow flow undergoes a fast and nearly horizontal jump to
the right attracting part of M0 on a point called arrival
point2. This is where the two scenarios differ. In the case
of relaxation oscillations the largest unstable fixed point
of the slow flow (depicted by a green bullet on the fig-
ures) is above the arrival point and prevents the trajec-
tory from reaching the stable fixed point located higher
on the critical manifold. This fixed point is not depicted
on Figs. 2(c) and 2(d), its coordinates in the (a2, a1)-plane
are (1.51, 6.28). If this fixed point is reached the system
undergoes a no mitigation regime. This is what happens
when the largest unstable fixed point of the slow flow is
below the arrival point (see Fig. 2(d)). The end of the sce-
nario of relaxation oscillations is as follows (see Fig. 2(c)):
from the arrival point a second slow epoch occurs in which
the trajectory goes toward the right fold point (aRF

2 , aRF
1 ).

A second nearly horizontal jump occurs and the trajec-
tory returns to the left attracting part of M0. A third
slow epoch on M0 towards (aLF2 , aLF1 ) is observed, and so
on.

Then the mitigation limit, defined below, is intro-
duced to quantify the NES efficiency.

Definition 4.1 (Mitigation limit). Considering a set of
initial conditions (for the slow flow) as a small perturbation
of the trivial solution, the mitigation limit is defined as
the value of the bifurcation parameter ρ which separates
harmless situations from the harmful situation.

For the set of parameters used in Fig. 2, using numer-
ical simulations of the slow flow we find a mitigation limit
equal to ρml = 1.9. The numerical simulations of the de-
terministic full-order system (i.e. Eq. (5) with ν = 0) give
ρml = 1.86.

In the deterministic case the mitigation limit can be
predicted analytically by means of a slow-fast partition of
the slow flow dynamics [6, 13].

2The zeroth-order approximation supposes that the arrival point
is (aU2 , aLF

1 ) (see Eq. (C.6) and Fig. C.9). In fact, the arrival point
is slightly higher on the critical manifold [13].

6



0 5 10 15 20

0.2

0.4

0.6

0.8
A
m
pl
itu
de
s

(a)

0 5 10 15 20
0

1

2

3

4

5

6

A
m
pl
itu
de
s

(b)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(c)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(d)

Figure 2: Transition from relaxation oscillations scenario (Figs. 2(a) and 2(c)) to no mitigation scenario (Figs. 2(b) and 2(d)). The top figures
show the times series (obtained from numerical integration of the deterministic slow flow, i.e. Eq. (29) with σ = 0) of the amplitudes a1 (solid
black lines) and a2 (solid gray lines) at the slow time scale τ and the bottom figures show the comparison between the trajectory of the slow
flow (solid red lines) and the critical manifold (32) in the (a2, a1)-plane. The following set of parameters is used: r = 0.1, ϵ = 0.01, µ = 0.4,
α = 3 and ρ = 1.8 in (a) and (c) and ρ = 2 in (b) and (d).

4.2. Influence of noise on the system behavior

In this section we highlight how noise affects the system
behavior and more precisely how it influences the mitiga-
tion limit. For this purpose, we show in Fig. 3 the result
of the numerical simulations of the stochastic slow flow
(29) using the same parameters as in Section 4.1 with, in
addition, σ = 0.5.

In Figs. 3(a), 3(b), 3(e) and 3(f), two samples are
shown for ρ = 1.8, a value of the bifurcation parameter
smaller than the mitigation limit ρml = 1.9. Therefore,
in the deterministic case, we observe persistent relaxation
oscillations (see Figs. 2(a) and 2(c)). In the determinis-
tic case all cycles of relaxation oscillations are equivalent,
whereas in the stochastic case the trajectory of the slow
flow is, due to the presence of noise, slightly different at
each cycle. The two samples depicted in the figures show
that persistent relaxation oscillations can still occur. We
can see in Fig. 3(e) that over the 8 cycles observed (see
Fig. 3(a)), 7 correspond to a scenario similar to the deter-
ministic case (i.e. the arrival point on the right attracting
part of of M0 is below the largest fixed point of the deter-
ministic slow flow). There is however one cycle where the
arrival point is above the fixed point and where the trajec-

tory still descends towards the right fold point instead of
ascending towards the stable fixed point. For the second
sample (see Figs. 3(b) and 3(f)) it is the contrary. Indeed,
we observe one and a half cycle, and halfway through the
second we see that even if the arrival point is below the un-
stable fixed point the trajectory ascends towards the stable
fixed point and a no mitigation regime finally occurs.

In Figs. 3(c), 3(d), 3(g) and 3(h) two samples are de-
picted for ρ = 2, a value of the bifurcation parameter larger
than the mitigation limit ρml = 1.9. Consequently, in
the deterministic case, we observe a no mitigation regime
(see Figs. 2(b) and 2(d)). The first sample (see Figs. 3(c)
and 3(g)) shows that during the first cycle, the noise pre-
vents the trajectory from reaching the stable fixed point
corresponding to the no mitigation regime, which is finally
reached in the second cycle. In this example, at each cycle
the regime actually reached can be deduced in a similar
way as in deterministic case comparing the relative po-
sition of the arrival point and the largest unstable fixed
point. However, as in the previous example for ρ = 1.8,
this reasoning can be contradicted in a positive way (favor-
ing the relaxation oscillations) or in a negative way (favor-
ing the no mitigation regimes). For example, in the second
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Figure 3: Numerical simulations of the stochastic slow flow (29) using the same parameters as in Section 4.1 with, in addition, σ = 0.5. In
Figs. 3(a), 3(b), 3(e) and 3(f) (resp. Figs. 3(c), 3(d), 3(g) and 3(h)) two samples are shown for ρ = 1.8 (resp. ρ = 2). Figures 3(a) to 3(d)
show the time series of a1 (black lines) and a2 (gray lines) and Figs. 3(e) to 3(h) show the trajectory (red lines) of the slow flow and the
critical manifold M0 (gray and black lines) in the (a1, a2)-plane.

sample (see Figs. 3(d) and 3(h)) we can see that during
the first cycle, the arrival point is above the largest fixed
point but the trajectory still descends towards the right
fold point.

The previous preliminary results confirm that the effect
of the noise cannot be only studied with the zeroth-order
approximation. Indeed, as in the deterministic case the
trajectory of the slow flow dynamics moves away from the
critical manifold when it passes near the left fold point [13,
40]. The zeroth-order approximation [6] assumed that the
trajectory goes along the critical manifold and reaches the
left jump before jumping to the right attractive part of
the critical manifold. However, in the deterministic case
the zeroth-order approximation is sufficient to describe the
slow epochs of the slow flow except in the neighborhood
of the left fold points. Combining the center manifold re-
duction technique to describe the the slow flow dynamics
near the left fold point and the zeroth-order approxima-
tion elsewhere, and following the reasoning described in
Section 4.1, allows an accurate prediction of the mitigation
limit [13]. Here, in the stochastic case, the latter reasoning
can be wrong to predict the actual regime and therefore
the mitigation limit. That means that the noise acts at
the slow time scale in contradiction with the zeroth-order
approximation (see Eqs. (30) and (31) and the comments
below).

In the next sections the Monte Carlo method is used
to study the effect of the noise on the dynamic behavior
of the system in a more systematic way. To achieve that,

two quantities are introduced: (i) the probability of being
in a harmless regime and (ii) the First-Passage Time to
reach a harmful regimes.

5. Probability of being in a harmless regime

Definition 5.1 (The probability of being in a harmless
regime). The probability of being in a harmless regime
(PBHR), denoted by ph,n, is, as its name suggests, the
probability for the system of being in a harmless regime
after a given number n of full cycles of relaxation oscilla-
tions.

For instance, in the case shown in Figs. 3(b) and 3(f),
the trajectory of the slow flow ascends towards the sta-
ble fixed point (to reach a no mitigation regime) halfway
through the second cycle of relaxation oscillations, there-
fore after one full cycle. In practice, ph,n is computed as
the proportion of samples for which we observe at least
n+1 consecutive full cycles of relaxation oscillations from
the beginning of the sample. For example, if 4 samples are
computed and we observe: 1 full cycle in the first sample
(as in Figs. 3(b) to 3(d)), 0 full cycle in the second sample
(as in the deterministic case shown in Fig. 2(b)) and 3 and
2 full cycles in the third and fourth samples respectively,
then the corresponding PBHR are ph,0 = 3

4 , ph,1 = 2
4 ,

ph,2 = 1
4 and ph,n = 0 for n ≥ 3.

Figure 4 shows the PBHR ph,0 obtained from 1000 sam-
ples of the slow flow (29) and 1000 samples of the full-order
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Figure 4: Probabilities ph,0 as functions of ρ obtained from 1000
samples of the slow flow (29) (blue squares) and 1000 samples of
the full order system (14) (red bullets) and for several values of the
bifurcation parameter ρ. The deterministic cases (green dashed line
for the slow flow and black line for the full-order system) are also
represented. The same parameters as in Section 4.1 are used with,
in addition, σ = 0.5.
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Figure 5: Probabilities ph,0 as functions of ρ for three different values
of the noise level, i.e. σ = 0.2 (blue bullets), σ = 0.5 (red squares)
and σ = 0.8 (green diamonds) and for the same parameters as in
Section 4.1.

system (14) and for several values of the bifurcation pa-
rameter ρ. The deterministic cases for which ph,0 = 1
if ρ < ρml and ph,0 = 0 if ρ > ρml are also represented
(remember that ρml = 1.86 for the full order system and
ρml = 1.9 for the slow flow). The same parameters as in
Section 4.1 are used with, in addition, σ = 0.5.

First, the figure validates the stochastic averaging pro-
cedure. Therefore, in the remaining of the paper, only
the slow flow will be used, which allows us to perform
the Monte Carlo method with a reasonable computational
cost. Indeed with the full-order system, the convergence
of the numerical results is obtained with a very small time
step, which is highly expensive in terms of computing time.

Then we can see that the step shape observed in the
deterministic case, turns into an error function shape in
the stochastic case, with ph,0 tending to 1 when ρ ≪ ρml

and to 0 when ρ ≫ ρml.
Figure 5 plots ph,0 for three different values of the noise

level, i.e. σ = 0.2, σ = 0.5 and σ = 0.8. As expected, the
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Figure 6: (a) Comparison between ph,0 (blue bullets), ph,1 (red
squares) and ph,2 (green diamonds) as functions of the bifurcation
parameter ρ. (b) Comparison between p2h,0 (blue bullets), ph,1 (red

squares), and comparison between p3h,0 (green diamonds) and ph,2
(orange triangles). In each figure the deterministic cases (black line)
is also represented. The same parameters as in Section 4.1 are used
with, in addition, σ = 0.5.

lower the noise level is, the closer of the deterministic case
the system behavior is.

Finally, in Figure 6 we can see the comparison be-
tween ph,0, ph,1 and ph,2. First, as expected, we have
ph,2 < ph,1 < ph,0 (see Fig. 6(a)). Then, we observe that
ph,1 ≈ p2h,0 and ph,2 ≈ p3h,0 ≈ ph,0ph,1 (see Fig. 6(b)).
From these numerical results (and others not shown here)
the following generalization is proposed:

ph,n ≈
n−1∏
i=0

ph,i ≈ pn+1
h,0 . (33)

This result highlights that at each cycle of relaxation
oscillations the probability of being in a harmless regime
is independent of the past trajectory of the system (we
verified that this also true for the full-order system) and
it is equal to ph,0.

The PBHR quantifies, in terms of probability, one of
the results previously obtained in Section 4.2, namely the
fact that no mitigation (resp. mitigation) regimes may oc-
cur even if the ρ < ρml (resp. ρ > ρml). It is interesting
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to know the probability to be in a harmless regime after
a given number of cycles of relaxation oscillations as the
value of ph,n tells us. However, the time spent in a harm-
less regime, i.e. the time the system is safe, is also interest-
ing from an engineering point of view. This is quantified
in the next section by computing the First-Passage Time
Density to reach a harmful regime.

6. First-Passage Time to reach a harmful regime

Let us denote by (ae1, a
e
2, φ

e) the coordinates of the
largest stable fixed point of the deterministic slow flow.
Remember that if the trajectory of the slow flow reaches
the fixed point the system is in a no mitigation (i.e. harm-
ful) regime (see Section 4.1). Then, we choose that the
system is safe as long as a1 < ath1 = 0.5ae1. This choice
is arbitrary, it may change depending of the unstable pri-
mary structure studied. Next, the First-Passage Time to
reach a harmful regime is defined below.

Definition 6.1 (First-Passage Time to reach a harmful
regime). If the process starts at a1(0) = a1,0, the first
time it reaches the value of the threshold ath1 is called the
First-Passage Time to reach a Harmful Regime (FPTHR)
and it is denoted by T .

At the slow time scale τ and from the previous defini-
tion, the probability Pr (τ < T ) that τ < T is the prob-
ability Pr

(
a1 < ath1

)
that a1 < ath1 . Therefore, one also

has
Pr (T < τ) = Pr

(
a1 > ath1

)
:= P (τ). (34)

Consequently, the probability that the FPTHR T is be-
tween the actuel time τ and τ + dτ is R(τ)dτ where

R(τ) =
dP (τ)

dτ
(35)

is the First-Passage Time to reach a Harmful Regime Den-
sity (FPTHRD).

The Mean First-Passage Time to reach a Harmful Regime
(MFPTHR) denoted by E [T ] is also defined as

E [T ] =

∫ ∞

0

τR(τ)dτ. (36)

In practice, 2000 samples of Eq. (29) are computed. On
each sample, the FPTHR is measured as the first value of
the time τ for which a1(τ) > ath1 . We obtain therefore a
list of 2000 values the FPTHR and from it R(τ), P (τ) (as
histograms) and E [T ] are evaluated.

The Deterministic Passage Time to reach a Harmful
Regime (DPTHR), denoted by Tdet, is defined as the first
time a1(τ), obtained from the numerical integration of
Eq. (29) for σ = 0 and a1(0) = a1,0, reaches the threshold
ath1 . For given initial conditions, Tdet has a unique finite
value if ρ > ρml and tends to infinity if ρ < ρml (i.e. the
deterministic system never reaches the threshold ath1 ).

Finally, for comparison purposes, a characteristic time
is needed. We choose the time, denoted by TLF, at which
the deterministic system reaches the neighborhood of the
left fold point of the critical manifold (i.e. when a1(τ) =
aLF1 , obtained from the numerical integration of Eq. (29)
for σ = 0 and a1(0) = a1,0, reaches a

LF
1 ).

Examples of histograms representing R(τ) and P (τ)
are shown in Fig. 8 (on the left and the right respec-
tively). The same parameters are used as in Section 4.2
with ρ = 1.8 < ρml (see Figs. 7(a) and 7(b)) and ρ = 2 >
ρml (see Figs. 7(c) and 7(d)). Vertical lines of equations
τ = Tdet, τ = TLF and τ = E [T ] are also represented. In
Figs. 7(a) and 7(b) the deterministic system is in a miti-
gation regime and in theory Tdet → +∞. In practice it is
equal to the final time of the numerical simulation, here
the final time is τ = 140 which outside the frame of the
figures. The numerical values of the important times are
Tdet = 60, TLF = 3.85 and E [T ] = 12 for ρ = 1.8 and
Tdet = 7.86, TLF = 3.37 and E [T ] = 8.11 for ρ = 2.

We can see in Figs. 7(a) and 7(b) that even if ρ < ρml

(i.e. the corresponding deterministic system undergoes a
harmless regime), it is almost certain that if we wait for
a sufficiently long time the threshold ath1 will be reached.
Even for relatively short times (approximately 2 to 4 times
TLF) the probability of reaching the threshold is not neg-
ligible. To complete the information given in Fig. 7, the
values of P (6), P (10) and P (14) for ρ = 1.7, 1.6, . . . , 2.4
are given in Table 1. For example (see Fig. 7(b) and Ta-
ble 1), we have P (10) = 0.433, i.e. if τ = 10 we have a
43.3% chance that the threshold has already been reached.
Not surprisingly, for a given value of ρ, the larger the time
τ is, the larger P (τ) becomes; for a given value of τ , the
larger ρ is, the larger P (τ) becomes again. Moreover, these
results (those shown in Figs. 7(a) and 7(c)) show that the
most likely value is not the deterministic value τ = Tdet

which is very close to the mean time E [T ] (see Fig. 7(c)).
Contrary to the deterministic case, in the stochastic case
we do not see any qualitative difference between the results
obtained for ρ = 1.8 and those obtained for ρ = 2.

The latter observation is even more highlighted in Fig. 8
which compares Tdet, E [T ] and E [T ]±

√
V [T ] where

√
V [T ]

is the standard deviation of the FPTHR with

V [T ] = E
[
T 2
]
− E [T ]

2
(37)

the variance. Indeed, we can see a discontinuity in the
graph of Tdet at ρ = ρml which does not appear in the
graphs of E [T ] and E [T ] ±

√
V [T ]. Again, note that the

constant value of the DPTHR, i.e. Tdet = 140 for ρ < ρml,
is a numerical artefact. Indeed, when the deterministic
system is in a mitigation regimes (here relaxation oscilla-
tions of the slow flow) we have Tdet → +∞ in theory. In
practice, Tdet is detected as the final time of the numerical
integration which is here τ = 140. Both mean and stan-
dard deviation increase when ρ decreases, moving away
from the deterministic mitigation limit ρml. Finally, we
can see again that when ρ > ρml one has E [T ] ≈ Tdet.
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Figure 7: Histograms representing R(τ) (Figs. 7(a) and 7(c)) and P (τ) (Figs. 7(b) and 7(d)). Vertical lines of equations τ = Tdet (blue lines),
τ = TLF (red lines) and τ = E [T ] (green lines) are also represented. The same parameters as in Section 4.2 are used with ρ = 1.8 < ρml

(Figs. 7(a) and 7(b)) and ρ = 2 > ρml (Figs. 7(c) and 7(d)).

Table 1: Values of P (6), P (10) and P (14) for ρ = 1.7, 1.6, . . . , 2.4. The same parameters are used as in Fig. 7.

ρ 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4

P (6) 0.003 0.013 0.051 0.144 0.276 0.425 0.563 0.706
P (10) 0.219 0.433 0.652 0.828 0.932 0.973 0.985 0.997
P (14) 0.5 0.745 0.913 0.977 0.998 1 1 1

In my opinion, what should be retained from the results
of this section is the fact that even if the system is supposed
to be in an mitigation regime from a deterministic point
of view, the amplitude of the self-sustained oscillator can
reach a harmful value in a relatively short time with a
non-negligible probability.

7. Conclusion

In this paper a Van der Pol oscillator (used as an
archetypal self-sustained oscillator) undergoing a white noise
forcing and coupled to a non-linear energy sink (NES) has
been studied. It was highlighted that the stochastic forcing
can modify significantly the dynamic behavior of the cor-
responding deterministic system. Indeed we showed first,
by means of numerical integration of the slow flow dynam-
ics of the system - derived using the standard stochastic
averaging method - that the reasoning which allows the
theoretical prediction of the system behavior in the deter-
ministic case can be contradicted in presence of stochas-
ticity.

Then the system behavior has been studied in a more
systematic way by introducing two quantities: (i) the prob-
ability of being in a harmless regime (PBHR), i.e. the
probability of obtaining a regime of small amplitude com-
pared to the case without NES; and (ii) the first-passage
time to reach a harmful regime (FPTHR), i.e. the time
for the system to reach an arbitrary amplitude thresh-
old considered as dangerous if reached by the primary
structure. Both quantities have been investigated com-
bining the Monte Carlo approach with numerical integra-
tion of the stochastic slow flow dynamics. When they are
computed on the corresponding deterministic regime, the
PBHR and FPTHR reveal themselves to be discontinuous
functions of the bifurcation parameter under considera-
tion. Indeed, at the mitigation limit (i.e. the value of
the bifurcation parameter below which the NES acts and
above which it no longer acts) the PBHR goes abruptly
from 1 (we are sure to be in a mitigation regime) to 0 (we
are sure to be in a no mitigation regime), and the FPTHR
from infinity (i.e. the deterministic system never reaches
the no mitigation regime) to a finite value. We showed
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Figure 8: Comparison between Tdet (blue line), E [T ] (green dashed

line), E [T ] −
√

V [T ] (red line) and E [T ] +
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function of the bifurcation parameter ρ. The same parameters as in
Section 4.2 are used.

that in the stochastic case, both PBHR and FPTHR be-
come smooth at the mitigation limit. This work highlights
that taking into account stochasticity allows a better un-
derstanding of targeted energy transfer mechanisms in the
context of limit cycles mitigation by means of an NES un-
der more realistic conditions than in a deterministic study.

An interesting sequel to this research would be the the-
oretical analysis of stochastic slow flow inspired by method-
ologies dedicated to the analysis of noisy slow-fast systems
as developed by Berglund and Gentz [41, 42]. This would
help to understand the mechanisms underlying the phe-
nomena highlighted in this article.

Appendix A. Expressions of functions

The expressions of the functions f1, f2, f3 and f4 which
appear in Eq. (14) are

f1(a1, φ1, a2, φ2, t) =

1

2

(
a1 − a1ρ cos (2t+ 2φ1)− a1 sin (2t+ 2φ1)

+ a2 sin (2t+ φ1 + φ2) + a2 sin (φ1 − φ2)

− a31ρr + a31ρr cos (4t+ 4φ1)
)
, (A.1)

f2(a1, φ1, a2, φ2, t) =

1

2a1

(
− a1 + 4a1ρ sin (2t+ 2φ1)− a1 cos (2t+ 2φ1)

+ a2 cos (2t+ φ1 + φ2) + a2 cos (φ1 − φ2)

− 2a31ρr sin (2t+ 2φ1) + a31ρr sin (4t+ 4φ1)
)
, (A.2)

f3(a1, φ1, a2, φ2, t, ϵ) =

1

8

(
− 4a2µ+ 4a1 sin (2t+ φ1 + φ2)− 4a1 sin (φ1 − φ2)

+ 4a2µ cos (2t+ 2φ2)− 4a2 sin (2t+ 2φ2)

+ 2αa32 sin (2t+ 2φ2) + αa32 sin (4t+ 4φ2)
)

+
ϵ

8

[
4a1ρ cos (φ1 − φ2)− 4a1ρ cos (2t+ φ1 + φ2)

+ 4a1 sin (φ1 − φ2)− 4a1 sin (2t+ φ1 + φ2)

− 4a2µ+ 4a2µ cos (2t+ 2φ2) + 4a2 sin (2t+ 2φ2)

+ 2αa32 sin (2t+ 2φ2) + αa32 sin (4t+ 4φ2)

− a31ρr cos (φ1 − φ2)− a31ρr cos (2t+ 3ϕ1 − ϕ2)

+ a31ρr cos (2t+ ϕ1 + ϕ2) + a31ρr cos (4t+ 3ϕ1 + ϕ2)
]

(A.3)

and

f4(a1, φ1, a2, φ2, t, ϵ) =

1

8a2

(
− 4a2 + 3αa32

+ 4αa32 cos (2t+ 2φ2) + αa32 cos (4t+ 4φ2)

+ 4a1 cos (2t+ φ1 + φ2) + 4a1 cos (φ1 − φ2)

− 4a2µ sin (2t+ 2φ2)− 4a2 cos (2t+ 2φ2)
)

+
ϵ

8a2

[
4a2 + 3αa32

− 4a1 cos (2t+ φ1 + φ2)− 4a1 cos (φ1 − φ2)

+ 4a1ρ sin (φ1 − φ2) + 4a1ρ sin (2t+ φ1 + φ2)

+ 4a2 cos (2t+ 2φ2)− 4a2µ sin (2t+ 2φ2)

+ 4αa32 cos (2t+ 2φ2) + αa32 cos (4t+ 4φ2)

− a31ρr sin (φ1 − φ2)− a31ρr sin (2t+ 3ϕ1 − ϕ2)

a31ρr sin (2t+ ϕ1 + ϕ2) a
3
1ρr sin (4t+ 3ϕ1 + ϕ2)

]
.

(A.4)

Appendix B. General formulation of the standard
stochastic averaging method

In this appendix the stochastic averaging method [31,
32] is briefly described. For that we consider the following
system of differential equations in standard form

ẋ = f(x, t) + g(x, t)η (B.1)

where x ∈ Rn. If the deterministic vector function f(x, t) ∈
Rn and matrix function g(x, t) ∈ Rn × Rn satisfy certain

12



requirements [32] and if the elements of the vector η are
broadband processes, with zero means, then the slow (or
averaged) dynamics of Eq. (B.1) may be approximated by
the following stochastic differential equations

ẋ = m(x, t) + σ(x, t)ξ, (B.2)

where ξ ∈ Rn is a vector of n white noise processes with
zero means. The vectorm and the matrix σ are called drift
vector and diffusion matrix respectively and are defined by

m = Mav

{
f +

∫ 0

−∞
E
[(

∂(gη)

∂x

)
t

(gη)t+s

]
ds

}
, (B.3)

where ∂(gη)
∂x is the Jacobian matrix of gη, and

σσT = Mav

{∫ +∞

−∞
E
[
(gη)t(gη)

T
t+s

]
ds

}
, (B.4)

where {.}T and E [{.}] denote respectively the transpose
and the expected value of {.}. Mav is an averaging oper-
ator defined as follows

Mav {.} = lim
T→+∞

1

T

∫ t0+T

t0

{.} dt. (B.5)

It should be noted that in the case of periodic variables
with period T0 (which is the case in this paper), the op-
erator Mav becomes a classical Krylov–Bogolyubov time
averaging over one period T0, i.e.

Mav {.} =
1

T0

∫ t0+T0

t0

{.} dt (B.6)

and the result is independent of t0.

Appendix C. Elements of the classical determin-
istic analysis of the slow flow dy-
namics

Combining Eqs. (30b) and (30c) leads to the following
amplitude and angle equations

a1 = a2

√
µ2 +

(
1− 3αa22

4

)2

= H(a2) (C.1a)

tanφ =
4µ

4− 3αa22
. (C.1b)

As usual, the stability of the critical manifold is car-
ried out studying the fast subsystem (31). A fixed point
of Eq. (31) is shown to be stable if da2

H(a2) > 0 and un-
stable if da2

H(a2) < 0. Exploiting the polynomial prop-
erties of H, it can be shown that the local extrema of H
(i.e da2H(a2) = 0) occur at

aLF2 =
2

3
√
α

√
2−

√
1− 3µ2

aRF
2 =

2

3
√
α

√
2 +

√
1− 3µ2

(C.2)

if the following relation holds

µ <
1√
3
. (C.3)

If the condition (C.3) is not satisfied, the H function
no longer has local extrema. In the rest of the paper, one
considers that (C.3) always holds.

In Eq. (C.2), aLF2 and aRF
2 are the abscissa values in the

(a2, a1)-plane of the maximum and the minimum of the H
function respectively. The superscripts ()LF and ()RF refer
to left fold point and right fold point respectively. Indeed,
in the (a2, a1, φ)-space, the two points (a

RF
2 , aRF

1 , φRF) and
(aLF2 , aLF1 , φLF) (where aLF1 , aRF

1 , φLF and φRF are ob-
tained from aLF2 and aRF

2 using Eq. (C.1)) are generally
called fold points.

Each point of the critical manifold is a fixed point of
the fast subsystem (31). It can be shown that the stability
of these fixed points changes at the fold points: they are
stable (resp. unstable) for a2 < aLF2 and a2 > aRF

2 (resp.
aLF2 < a2 < aRF

2 ).
Given the previous results, the critical manifold M0 is

hyperbolic3 except at the fold points and it consists of an
attracting branch

M0,a =
{
(a1, a2, φ) ∈ R+2 × [−π, π]

∣∣∣
a2 < aLF2 and a2 > aRF

2

}
(C.4)

and a repelling branch

M0,r =
{
(a1, a2, φ) ∈ R+2 × [−π, π]

∣∣∣
aLF2 < a2 < aRF

2

}
. (C.5)

A typical amplitude part of the critical manifold (see
Eq. (C.1a)) is shown in Fig. C.9. One can see that the fold
points connect attracting parts to the repelling part of the
critical manifold M0.

Solving H
(
aRF
2

)
= H

(
aD2
)
and H

(
aLF2

)
= H

(
aU2
)
the

two following scalars aD2 and aU2 are obtained

aD2 =
2
√
2

3
√
α

√
1−

√
1− 3µ2

aU2 =
2
√
2

3
√
α

√
1 +

√
1− 3µ2

(C.6)

which are the horizontal projection of the fold points on
the critical manifold.
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