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WEAKLY ASYMMETRIC FACILITATED EXCLUSION PROCESS

GUILLAUME BARRAQUAND, ORIANE BLONDEL, AND MARIELLE SIMON

Abstract. We consider the facilitated exclusion process, an interacting particle system on the
integer line where particles hop to one of their left or right neighbouring site only when the other
neighbouring site is occupied by a particle. A peculiarity of this system is that, starting from
the step initial condition, the density profile develops a downward jump discontinuity around
the position of the first particle, unlike other exclusion processes such as the asymmetric simple
exclusion process (ASEP). In the weakly asymmetric regime, we show that the field of particle
positions around the jump discontinuity converges to the solution of the multiplicative noise
stochastic heat equation (i.e. the exponential of a solution to the KPZ equation) on a half-line
subject to Dirichlet boundary condition, with initial condition given by the derivative of a Dirac
delta function. We prove this result by reformulating the problem in terms of ASEP on a half-
line with a boundary reservoir, for which we extend known proofs of convergence to deal with
Dirichlet boundary condition and the very singular type of initial condition that arises in our
case.

1. Introduction

1.1. Facilitated exclusion process. The facilitated exclusion process (FEP) was introduced
in the physics literature [RPSV00] as a representative of a universality class for absorbing phase
transitions. It is an interacting particle system on a lattice in which particles can jump to
empty neighbors provided there is a particle in their neighborhood. So far our understanding
of this model is restricted to dimension 1, where it has been studied under different lights. Its
main feature is the absorbing transition mentioned above, at the critical particle density 1/2:
for particle densities below 1/2 (subcritical regime), the system fixates on a configuration with
isolated particles which cannot move, while for densities above 1/2 (supercritical regime) it
remains active forever and holes become eventually isolated.

The totally asymmetric version of this process (where particles only jump to the right) has
been studied in [BM09] (approach to the phase transition) and [CZ18,GLS19,GLS21] (identifica-
tion of the stationary states). Starting from a step initial condition, contrary to the well-studied
totally asymmetric simple exclusion process (TASEP), a downstep leads to a rarefaction fan
with a discontinuity [GKR10]. For the same initial condition, at large time t, particle posi-
tions fluctuate on the t1/3 scale with Tracy-Widom GUE statistics, while the fluctuations of the
rightmost particle, i.e. at the discontinuity, have Tracy-Widom GSE statistics [BBCS18a]. The
symmetric FEP has been studied as well, on the periodic lattice. It was found [BESS20,BES21]
that in the diffusive space-time scaling, and under the hydrodynamic limit, the macroscopic
density ρ evolves according to a Stefan problem written as ∂tρ = ∂uu

(2ρ−1
ρ 1ρ>1/2

)
, with the

space variable u belonging to the one-dimensional torus of size 1. In other words, starting the
microscopic dynamics from a density profile with both supercritical and subcritical regions, the
diffusive supercritical phase progressively invades the subcritical phase via moving interfaces,
until one or the other phase disappears. For the partially asymmetric version, where particles
jump to the right at rate p < 1 and to the left at rate q < p, invariant measures have been
characterized on the torus [GKR10] and on the line [AGLS22]. Recently, [ESZ22] showed that
the hydrodynamic limit (in the hyperbolic scaling) is given by the unique entropy solution of
∂tρ+ (2p− 1)∂x

(
(1−ρ)(2ρ−1)

ρ 1ρ>1/2
)
, with x ∈ R.

The next natural question concerns the fluctuations of the FEP in the asymmetric case
(FASEP). As it has been noted for the totally asymmetric case in [BBCS18a], the problem
can be reformulated in terms of the asymmetric simple exclusion process (ASEP) on the half-
line with jump rates p > q, and with a specific boundary condition, where particles enter the
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WEAKLY ASYMMETRIC FACILITATED EXCLUSION PROCESS 2

system at a rate p and can never exit (see Figure 1). For fixed p and q, we expect that, up to
scaling constants, the fluctuations should be similar as for the totally asymmetric FEP1.

In the present paper, we study the fluctuations of particle positions in the FASEP in a weakly
asymmetric asymptotic regime. In the bulk (that is, far from the jump discontinuity of the
density profile), we do not expect that the facilitation rule will have any effect on the scaling
limit of fluctuations. In particular, we expect that if the asymmetry is properly scaled with
time, the field of particle positions, appropriately rescaled, should converge to the solution of
the Kardar-Parisi-Zhang (KPZ) equation on the real line with narrow wedge initial condition.
This is consistent with the Tracy-Widom GUE asymptotics observed in the totally asymmetric
setting. However, for the step initial condition, if we consider the field of particle positions in
the FASEP around the first particle, the situation is more interesting and the facilitation rule
plays a role. The limit should be described by a stochastic PDE on a semi-infinite interval with
a specific boundary condition. The main goal of the present paper is to describe this stochastic
PDE.

1.2. KPZ equation and Hopf-Cole transform. In order to state our main result, let us first
recall how to solve the KPZ equation on the full one-dimensional line, which reads as

∂th = 1
2
∂uuh+ 1

2
(∂uh)2 + ξ, (1)

with ξ the standard space-time white noise on R+ × R. One usually considers the Hopf-Cole
transform of a putative solution h, namely Z(t, u) = eh(t,u). If we apply the chain rule in (1),
ignoring all issues of regularity, the function Z solves the Stochastic Heat Equation (SHE) with
multiplicative noise

∂tZ = 1
2
∂uuZ + Zξ. (2)

The latter equation can be solved through standard SPDE techniques, and whenever it can be
shown that Z > 0 [Mue91], this procedure yields a Hopf-Cole solution to (1). In their seminal
paper [BG97], Bertini and Giacomin noticed that the discrete Hopf-Cole transform (introduced
by Gärtner [Ga87])

Zt(x) := e−λht(x)+νt (3)
of ASEP height function ht(x) (x ∈ Z), satisfies, for well-chosen parameters λ, ν, a martingale
problem that is a discrete analogue of the martingale problem satisfied by Z. In the weakly
asymmetric regime, say p = 1

2e
ε, q = 1

2e
−ε with 0 < ε ≪ 1, as assumed in this paper, it can

then be showed that solutions of the discrete martingale problem converge to solutions of the
continuous one. Given uniqueness of the solution to the continuous martingale problem, this is
enough to conclude that ASEP height function, suitably rescaled, converges to a solution of the
KPZ equation. Further, [DT16] identifies a whole class of models to which this method may
apply, in the sense that a generalization of the discrete Hopf-Cole transform can be found and
convergence to the SHE can be proved.

Other approaches to solving (1) that do not require a detour through the SHE were also looked
for in the last decades, and can be useful in cases where there is no applicable discrete Hopf-
Cole transform (unlike the present paper). Let us mention regularity structures [Hai13,Hai14];
energy solutions [GJ14,GP18], which have been applied e.g. in [BGS16,GJS17,GPS20,Yan18];
and paracontrolled distributions [GIP15,GP17].

1.3. KPZ equation on the positive half-line. A half-space analogue of the result from
[BG97] was proved in [CS18]. More precisely, under some condition on injection and ejection
rates at the origin of ASEP on the half-line, and assuming that the effective density at the origin
imposed by those rates scales as ρ ≈ 1

2(1 + (A + 1
2)ε), [CS18] shows that the height function

of ASEP on the half-line converges to the KPZ equation on R+ with Neumann type boundary

1Proving this would however require an analogous statement for ASEP on a half-line, and this has so far remained
out of reach. Indeed, some exact formulas characterizing the distribution of particles have been proved in [TW13b,
TW13a], and more recently in [BC22a], but these formulas are not amenable for asymptotic analysis. There exists
one exception where the fluctuations of half-line ASEP have been analyzed asymptotically, in [BBCW18], but
the boundary condition considered in that paper is different from the one which is relevant for the study of the
FASEP, and the methods used there crucially depend on this specific boundary condition.
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condition ∂xh(t, 0) = A. As in [BG97], this result is proved via the discrete Hopf-Cole transform
(3) of ASEP height function ht(x) (x ∈ N), which is shown to converge to the SHE on R+ with
Robin type boundary condition {

∂tZ = 1
2∂uuZ + Zξ,

∂uZ(t, 0) = AZ(t, 0).
(4)

Since Z(t, ·) is not differentiable, the boundary condition should rather be imposed on the half-
space heat kernel which is used to define the solution, we refer to [CS18] for details. The result
of [CS18] was restricted to A ⩾ 0 and near equilibrium initial conditions (see Definition 3.8
below). It was then extended to all A ∈ R and the empty initial condition in [Par19]. Let
us note that on the full-line, the extension of the convergence result of [BG97] to step initial
condition was first discussed in [ACQ11], with considerably less details than in [Par19]. Some of
these results were further extended in [Yan22] to generalizations of ASEP, in the spirit of [DT16].
An alternative way to make sense of the KPZ equation on a half-line via regularity structures
was also considered in [GH19].

In the physics literature, the solution Z to the SHE is understood as the partition function for
a continuous Brownian directed polymer in a white noise potential ξ. The boundary parameter
A can then be understood as controlling an extra energy collected by polymer paths, given by
reflected Brownian motions, along the boundary [BBC16]. Alternatively, we may assume that
there is no extra potential on the boundary, but the Brownian paths in the polymer partition
function have elastic reflection on the boundary controlled by the parameter A. Discrete directed
polymers are another family of models, with exclusion processes, which converge to the KPZ
equation in full-space [AKQ14] or half-space [Wu20,Par22,BC22b].

Remark 1.1. The KPZ equation (and the associated SHE via Hopf-Cole transform) has also
been considered on an interval with Neumann type boundary conditions. The discrete Hopf-Cole
transform of open ASEP height function satisfies Robin type boundary conditions [GLM17] and
converges to the KPZ equation on an interval [CS18,Par19,GPS20,Yan22].

1.4. Main results. As previously mentioned, the problem of fluctuations of the FASEP reduces
to the fluctuations of ASEP on the half-line with, at the origin, injections of particles at the
right-jump rate p and no ejection of particles. This translates into a microscopic boundary
condition for the discrete Hopf-Cole transform (3) given by

Zt(−1) = µZt(0), with µ ≈ 1 − ε,

as stated more precisely in (11) below. In contrast, in the setting of [CS18,Par19], the boundary
parameter µ is scaled as µ ≈ 1 − ε2A. We will prove below that in our case, the appropriate
scaling of the solution is different from [CS18, Par19]: we will set Zε

t (u) = ε−2Zε−4t(ε−2u) for
any macroscopic point u, and prove that starting from the step initial condition for the FASEP
(i.e. empty initial condition for the half-line ASEP), Zε

t (u) weakly converges as a continuous
process (see Theorem 3.7 for a precise statement) to the solution of the SHE

∂tZ = 1
2∂uuZ + Zξ,

Z(t, 0) = 0,
Z(0, u) = −2δ′

0(u).
(5)

We also prove a similar statement for near-equilibrium initial conditions (Theorem 3.9), under
the same scaling as in [CS18]. The SHE with Dirichlet boundary condition (Z(t, 0) = 0) was
already considered in [Par22] in the context of directed polymer models, but only for another
type of initial condition. Here the initial condition that we consider is very singular, this is the
derivative of a delta function at 0. We provide a more precise definition of this stochastic PDE
in Definition 3.3 and prove existence and uniqueness of the solution in Proposition 3.5 below.
Dealing with this very singular initial condition is one of the main novelties of this paper.
Eventually, our main result is therefore the following: the macroscopic fluctuations of the field
of the first particles’ positions in the weakly asymmetric FASEP are given (via the Hopf-Cole
transform) by the solution to the KPZ equation on the half-line R+, with initial condition being
the derivative of a Dirac distribution, and with Dirichlet boundary condition at the origin.
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1.5. Comparison with previous literature on half-space KPZ equation. In a sense, the
microscopic boundary condition Zt(−1) = µZt(0) with µ ≈ 1 − ε that we are considering is the
A → ∞ limit of the setting in [CS18, Par19] which considered µ ≈ 1 − Aε2, and it poses no
additional difficulty in terms of handling the boundary condition. However, as already said, our
initial condition is much more singular than the ones in [CS18,Par19,Par22]. Proving tightness
requires us to develop precise estimates about the Dirichlet heat kernel and its discrete analogue.
Further, the rigorous identification of the initial condition requires some control on the second
moment of Zε

t (u), and the estimate that we need turned out to be surprisingly difficult to prove.
Eventually, we use an explicit second moment integral formula for half-line ASEP from the recent
preprint [BC22a], coming from a Markov duality (such use of Markov duality also arises in the
proof of convergence of the stochastic six-vertex model height function to the KPZ equation
in [CGST20]).

The continuous directed polymer model corresponding to the solution of (5) was considered
in the physics paper [GLD12]. The polymer paths are conditioned not to hit the boundary,
and [GLD12] studied the distribution of the partition function of polymers starting and ending
at a location η, after letting η → 0 and appropriately rescaling the partition function by η2.
Restricting on test functions f : R+ → R such that f(0) = 0, the distribution 1

η δ0(· − η), where
δ0 is the delta Dirac distribution, converges to −δ′

0. This explains why the initial condition
that we consider in the present paper is the physically natural one to consider for the SHE with
Dirichlet boundary condition, though the solution was never mathematically constructed before.

Finally, let us mention that the KPZ equation on a half-line with Dirichlet boundary condition
is also considered in [GH19], but there the Dirichlet boundary condition h(t, 0) = 0 is imposed
on the KPZ equation itself and not on the SHE, so that this corresponds to a completely different
stochastic PDE than the one we consider in the present paper.

1.6. Outline of the paper. In Section 2, we define the FASEP and ASEP and construct a
mapping that connects the two. Section 3 is devoted to the presentation of the Hopf-Cole trans-
form, in terms of which we state our main results on the fluctuations of the particle positions in a
weakly asymmetric regime. We then provide several preliminary results: first, the existence and
uniqueness of the macroscopic SHE with δ′

0 initial condition and Dirichlet boundary condition
(Section 4), and second, some explicit estimates on the discrete heat kernel with diverging Robin
boundary condition (Section 5). Finally, the main convergence results cover two types of initial
conditions which require different scalings: the step (resp. derivative of delta) initial condition
(Theorem 3.7) and near-equilibrium initial conditions (Theorem 3.9), which both require new
arguments. We actually need the understanding of the latter as an intermediate step towards
Theorem 3.7, so we start by proving Theorem 3.9 in Section 6. Our main result, Theorem 3.7
is finally proved in Section 7.

Acknowledgments. This project is partially supported by the ANR grant MICMOV (ANR-
19-CE40-0012) of the French National Research Agency (ANR), and by the European Union
with the program FEDER “Fonds européen de développement régional” with the Région Hauts-
de-France. It has also received funding from the European Research Council (ERC) under the
European Unions Horizon 2020 research and innovative program (grant agreement nř 715734),
and from Labex CEMPI (ANR-11-LABX-0007-01). This article is also partially based upon
work supported by the National Science Foundation under Grant No. DMS-1928930 while G.B.
participated in a program hosted by the Mathematical Sciences Research Institute in Berkeley,
California, during the Fall 2021 semester.

2. Microscopic models and mapping

In the following, N denotes the set of non-negative integers, N∗ the set of positive integers.

The facilitated asymmetric exclusion process in dimension one (FASEP) is a Markov process
on the state space Ω := {0, 1}Z which is denoted by {ηt(x) ; x ∈ Z}t⩾0. Each component
ηt(x) ∈ {0, 1} is the occupation variable of the configuration of particles at site x ∈ Z.
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Let p, q ∈ (0, 1) be two asymmetry parameters. The time evolution of the particle configura-
tions is ruled by the Markov generator LF which acts on functions f : Ω → R as follows:

LF f(η) =
∑
x∈Z

pη(x− 1)η(x)(1 − η(x+ 1))
[
f(ηx,x+1) − f(η)

]
+
∑
x∈Z

qη(x+ 1)η(x)(1 − η(x− 1))
[
f(ηx,x−1) − f(η)

]
(6)

where ηx,y is the configuration obtained from η after the exchange of the occupation variables
η(x) ↔ η(y), namely: ηx,y(z) := η(x)1z=y +η(y)1z=x +η(z)1z /∈{x,y}. In other words, as it can be
read on the generator, particles are displayed on the lattice Z and jump to their neighbouring
sites at rates which encode the following rules:

• a jump to the right from site x to site x + 1 occurs with rate p if and only if site x is
occupied by a particle, site x+ 1 is empty and site x− 1 is occupied ;

• a jump to the left from site x to site x − 1 occurs with rate q if and only if site x is
occupied by a particle, site x− 1 is empty and site x+ 1 is occupied.

We say that site x ∈ Z is occupied by an active particle if it can jump either to x − 1 or x + 1
with positive rate, in other words, it is such that

η(x− 1)η(x)(1 − η(x+ 1)) + (1 − η(x− 1))η(x)η(x+ 1) = 1.

Let us now map this process onto another exclusion process. We need to introduce some notation.
Let L < R be two integers, and define:

ΩL,R :=
{
η ∈ Ω ;


η(x) = 0 if x ⩾ R,

η(x) = 1 if x ⩽ L,

η(x) + η(x+ 1) ⩾ 1 if x < R.

}

and
Ω :=

∪
L<R

ΩL,R.

In other words, if η ∈ ΩL,R then the active particles are all contained in the box {L,L +
1, . . . , R − 1}. The set Ω is remarkable because it is preserved along time evolution of the
dynamics generated by LF , as stated in the following (straightforward) lemma:

Lemma 2.1. If η0 ∈ Ω, then, for any t > 0, ηt ∈ Ω.

For any η ∈ Ω, we can label particles from right to left, by the following recursive procedure:
assume that η ∈ ΩL,R for some L < R, and define2

X1(η) := R− 1,
Xi+1(η) := max

{
j < Xi(η) ; η(j) = 1

}
.

We are now ready to construct the mapping: let S : Ω → {0, 1}N∗ be the application such that,

for any η ∈ Ω, σ := S(η) satisfies σ(i) = 1 − η(Xi − 1).

In other words, site i is occupied by a particle in σ (i.e. σ(i) = 1) if and only if the i-th particle
in η has an empty site to its left.

In particular, the step initial condition η0 given by

η0(x) = 1x⩽x0 for some x0 ∈ Z,

belongs to Ω, and it corresponds to an empty configuration σ0 = S(η0), namely

σ0(x) = 0 for any x ∈ N∗. (7)

These initial conditions will be important in what follows. The dynamics of the mapped process
is described in the following lemma. Note that with the step initial condition, for all t ⩾ 0,
Xi(ηt) −Xi+1(ηt) ∈ {1, 2}, and S(ηt) encodes all the information about these spacings.

2Note that R is a function of η since it is the position of the right-most particle, therefore X1 is well defined.
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Figure 1. The top figure represents a configuration η in Ω and the possible
transitions with their respective rates. The bottom figure represents the mapped
configuration S(η) on {0, 1}N∗ and the possible transitions, in the same color as
the corresponding transitions in η.

Lemma 2.2. Assume that the generator of the Markov process {ηt}t⩾0 is LF given in (6),
then {S(ηt)}t⩾0 is an asymmetric simple exclusion process on the infinite half-line N∗ with a
boundary reservoir which injects particles at rate p. More precisely its generator is given as
follows: for any σ ∈ Σ := {0, 1}N∗, for any f : Σ → R,

Lf(σ) =
∞∑

x=1

(
pσ(x)(1 − σ(x+ 1)) + qσ(x+ 1)(1 − σ(x))

)[
f(σx,x+1) − f(σ)

]
+ p(1 − σ(1))

[
f(σ1) − f(σ)

]
,

where σ1 is obtained after the creation of one particle at site 1, namely σ1(x) = 1x=1 +σ(x)1x ̸=1.

Proof. The proof is straightforward by looking at every possible transition, see Figure 1. □

3. Main results and strategy of the proof

From now on we consider the half-line ASEP denoted by {σt}t⩾0, which is a Markov process
on Σ = {0, 1}N∗ generated by L given in (8).

3.1. Hopf-Cole transform. Let us define the height function associated with the particle
system, in the following (standard) way: for any x ∈ N∗,

ht(x) := ht(0) +
x∑

k=1
(2σt(k) − 1), with ht(0) = 2

∞∑
k=1

σ0(k) − 2
∞∑

k=1
σt(k).

This is well-defined when
∑∞

k=1 σ0(k) < ∞. In that case, note that −ht(0) is equal to twice the
number of particles that have entered into the system between times 0 and t (no particle can
exit the system by hypothesis). For any initial condition σ0 ∈ Σ and any t > 0, this number is
bounded by a Poisson random variable with parameter pt, and in particular, it is almost surely
finite. In the case where the initial number of particles in the system is infinite, we can still
define ht(0) as minus twice the number of particles that have entered the system. Thus, starting
from any initial condition σ0 ∈ Σ, the height function satisfies: for any t > 0, any x ∈ N,
ht(x) < ∞ a.s. For ν, λ ∈ R which will be chosen later we then define the Hopf-Cole transform

Zt(x) := e−λht(x)+νt, x ∈ N. (8)

Alternatively, Zt can be defined as a function of the positions of the particles in the FASEP.
It is straightforward to check that, under the coupling described in Section 2, for the FASEP
started from the step initial condition, the position of the j-th particle in the FASEP is related
to the height function with empty initial condition through

Xj(ηt) =
∞∑

k=j

σt(k) − j.
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Consequently, the Hopf-Cole transform can be recast as

Zt(x) = e2λXx+1(ηt)+(3x+2)λ+νt. (9)

We will now mainly work with the Hopf-Cole transform Z and we state our results in terms of
this quantity. In the following, for any function f : Z → R we define its left and right gradients
by

∇+f(x) := f(x+ 1) − f(x), ∇−f(x) := f(x− 1) − f(x)
and its discrete Laplacian by ∆f(x) := f(x+ 1) + f(x− 1) − 2f(x). One knows that Z satisfies

dZt(x) = (νZt(x) + LZt(x))dt+ dMt(x), x ∈ N,

where {Mt(x)}t⩾0 are martingales whose quadratic variations will be computed below. As
in [CS18,Par19] (see also [GLM17]), we look for conditions on ν, λ so that νZt(x) + LZt(x) can
be rewritten as D∆Zt(x) for some diffusion coefficient D. After straightforward computations
(given in Appendix A) we choose

λ = 1
2

log q
p
, ν = q + p− 2√

pq, (10)

which imply: for any x ∈ N∗,

dZt(x) = D∆Zt(x)dt+ dMt(x), with D = √
pq. (11)

It remains to define Zt(−1) in order that (11) remains valid at the boundary point x = 0, which
can be done if we let

Zt(−1) := µZt(0), with µ =
√
q

p
= eλ. (12)

We therefore obtain the following result.

Lemma 3.1. We assume the choice of parameters (10) and define µ =
√
q/p. Let ∆µ be the

discrete Laplacian on N with the following boundary condition:

∆µf(x) :=
{
f(x+ 1) + f(x− 1) − 2f(x) if x > 0
f(1) + µf(0) − 2f(0) if x = 0.

(13)

Then, for any x ̸= y ∈ N, the following three quantities are martingales:

Mt(x) := Zt(x) − Z0(x) −D

∫ t

0
∆µZs(x)dx, Mt(x)2 −

∫ t

0

d

ds
[M(x)]s ds, Mt(x)Mt(y),

and moreover,

d

dt
[M(x)]t =

Zt(x)2
[
ηt(x)(1 − ηt(x+ 1)) (p−q)2

p + ηt(x+ 1)(1 − ηt(x)) (p−q)2

q

]
if x > 0,

Zt(0)2(1 − ηt(1)) (p−q)2

p if x = 0.

Proof. This is straightforward, using the following identity:
Zt(x+ 1)
Zt(x)

=
√
q

p

(
1 − ηt(x+ 1)

)
+
√
p

q
ηt(x+ 1).

□

3.2. Weak asymmetry. From now on, we consider the half-line ASEP in the weak asymmetry
regime where

p = 1
2e

ε and q = 1
2e

−ε, for ε > 0. (14)
Rewriting everything in terms of ε, the Hopf-Cole transform reads as

Zt(x) = eεht(x)+νt, where ν = 1
2e

ε(e−ε − 1)2 = 1
2ε

2 + o(ε2).

The boundary parameter µ appearing in (12) and the diffusion coefficient D are equal to

µ = e−ε, D = 1
2 .

In this weak asymmetry regime, the quadratic variation of the above martingale satisfies:
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Lemma 3.2. As ε → 0 we have
d

dt
[M(x)]t = ε2Zt(x)2 + ∇+Zt(x)∇−Zt(x) + o(ε2)Zt(x)2, for any x > 0 (15)

d

dt
[M(0)]t = ε2Zt(0)2 − εZt(0)∇+Zt(0) + o(ε2)Zt(0)2. (16)

Note that the term εZt(0)∇+Zt(0) at the boundary is new in our case, it did not appear in
the case of [CS18].

Proof. It is straightforward using

∇+Zt(x) = εZt(x)
(
2ηt(x+ 1) − 1 + o(1)

)
and Lemma 3.1 which implies that

d

dt
[M(x)]t = ε2(1

2Zt(x)2 + 1
2Zt(x+ 1)Zt(x− 1)

)
+ ∇+Zt(x)∇−Zt(x) + o(ε2)Zt(x)2.

□

3.3. Main theorems. Before stating our main results, let us start by defining the notion of
solution for the stochastic heat equation which is at the core of the convergence results of this
paper.

Definition 3.3. Let ξ be the standard space-time white noise on R+ × R+, on some probability
space (Ω,F ,P). We say that Zt(u) solves the stochastic heat equation (SHE)

∂tZ = 1
2
∂uuZ + Zξ (17)

on the time interval [0, T ], with Dirichlet boundary condition, and initial condition Zini, if for
any t ∈ (0, T ],

Zt(u) =
∫
R+
dvPDir

t (u, v)Zini(v) +
∫ t

0
ds

∫
R+
dvPDir

t (u, v)Zs(v)ξ(s, v), (18)

where the Dirichlet half-space heat kernel PDir
t is defined by

PDir
t (u, v) = 1√

2πt

(
e−(u−v)2/(2t) − e−(u+v)2/(2t)

)
. (19)

3.3.1. Empty initial condition. We define, for any u ∈ ε2N, the scaled process

Zε
t (u) := ε−2Zε−4t(ε−2u) (20)

and we extend Zε
t (·) to the continuous half-line R+ by linear interpolation.

Remark 3.4. Let us already emphasize here that the scaling in (20) is not the one which will
appear later when the initial condition is supposed to be near-equilibrium (see Section 3.3.2,
(24) and Definition 3.8), nor the one in [Par19], where the macroscopic initial condition is the
delta Dirac function δ0 and the prefactor there is ε−1 instead of ε−2.

Let us consider the space of test functions

H =
{
ϕ ∈ C∞

c (R) : ϕ(0) = 0
}
. (21)

The initial condition (7) implies that Z0(x) = µx, for any x ∈ N, and therefore, for any ϕ ∈ H,(
Zε

0 , ϕ
)

−−−→
ε→0

2ϕ′(0), (22)

where (Z, ϕ) :=
∫
R Zϕ denotes the usual scalar product in L2(R). In other words, the initial

condition of the continuous limit of the rescaled process Zε
t is −2δ′

0 where δ′
0 is the derivative of

the delta Dirac distribution.
Our first result, which will be proved in Section 4, is the existence and uniqueness of solutions

to (17) for the δ′
0 initial condition and Dirichlet boundary condition:
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Proposition 3.5. Let ξ be the standard space-time white noise on R+ ×R+, on some probability
space (Ω,F ,P). There exists a C(R+)–valued process (Zt)t>0, which is adapted to the filtration
Ft = σ ({ξ(s, ·)}s⩽t), and solves the SHE in the sense of Definition 3.3 with initial condition
Zini = −2δ′

0. This solution is unique in the class of adapted continuous processes satisfying

sup
X∈R+
s∈(0,t)

{
s2E

[
Zs(X)2

]}
< ∞. (23)

Remark 3.6. The existence and uniqueness of solutions to (17) are already proved in [Par22,
Theorem 4.1, Prop. 4.2] when Zini is near equilibrium (see Definition 3.8 below). This is not
the case of the δ′

0 initial condition that we consider here, and therefore we need to provide a
new proof. Existence and uniqueness is also proved in [Par19, Proposition 4.3] for Robin type
boundary condition and δ0 initial condition. As we will see below in Section 4, the proof of
Proposition 3.5 involves different estimates than [Par19,Par22].

The main result of this paper is the following convergence:

Theorem 3.7. Fix T > 0. Assume the initial particle configuration is empty as in (7). Then the
rescaled process {Zε

s }s∈(0,T ] converges as ε → 0 to the solution of the stochastic heat equation (17)
on the time interval [0, T ] with Dirichlet boundary condition, and initial condition Zini = −2δ′

0
(as defined in Definition 3.3), in the sense of weak convergence of probability measures on the
path space D((0, T ], C(R+)) endowed with the Skorokhod topology.

3.3.2. Near-equilibrium initial condition. We also study the simpler case of near-equilibrium
initial condition. In this section we consider the scaled process

Z ε
t (u) := ε2Zε

t (u) = Zε−4t(ε−2u), (24)
which differs from Zε

t by a factor ε2, and we allow Z0(x) to be different from µx.

Definition 3.8. We say that a sequence of random functions F ε ∈ C(R+) is near-equilibrium
if it satisfies the following: there exists a > 0 such that, for any n ∈ N, any α ∈ (0, 1

2), there
exists some constant C = C(α, n) > 0 such that, for any u, u′ ∈ R+, any ε > 0,

∥F ε(u)∥n ⩽ Ceau (25)

∥F ε(u) − F ε(u′)∥n ⩽ C|u− u′|αea(u+v), (26)

where ∥G∥n := E[|G|n]1/n denotes the Ln–norm with respect to the probability measure.

An intermediate – although important – result is the following:

Theorem 3.9. Fix T > 0. Assume that the initial condition Z ε
0 ∈ C(R+) is near-equilibrium

(in the sense of Definition 3.8), and that Z ε
0 weakly converges in C(R+) to some initial condition

Zini as ε → 0.
Then the rescaled process (Z ε

s )s∈[0,T ] converges as ε → 0 to the solution of the stochastic
heat equation (17) with initial condition Zini in the time interval [0, T ] (as defined in Definition
3.3), in the sense of weak convergence of probability measures on the path space D([0, T ], C(R+))
endowed with the Skorokhod topology.

3.3.3. An example of near-equilibrium initial condition. Theorem 3.9 may be useful indepen-
dently from its application to the proof of Theorem 3.7. Let us consider the half-line ASEP
generated by L in the weakly asymmetric regime (14), but with initial condition given by prod-
uct Bernoulli, that is, we assume that the variables σ0(k), k ∈ N∗, are independent Bernoulli
variables with parameter ϱ. Let us scale ϱ = (1 − ε(B+ 1

2))/2, so that εh0(ε−2u) converges to a
Brownian motion with drift −(B + 1/2). Then, it can be shown that Z ε

0 is near-equilibrium3,
and thus Theorem 3.9 can be applied, to find that (Z ε

s ) converges to the SHE with Dirichlet
boundary condition, and initial condition given by the exponential of a Brownian motion with
drift −(B + 1/2).

3The term near-equilibrium actually comes from the fact that such initial condition is stationary for ASEP on Z.
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Denoting by Z (t, u) this solution, [Par22] showed that we have the identity in distribution

lim
u→0

Z (t, u)
u

= Z̃ (t, 0) (27)

where Z̃ is the solution of the SHE on R+ with Robin boundary parameter B and delta Dirac
function as initial condition. In the special case B = −1/2, that is ϱ = 1/2, the law of Z̃ (t, 0)
is explicitly known and related to eigenvalue GOE (Gaussian Orthogonal Ensemble) statistics
[BBCW18,Par19]. For other values of B, the law of Z̃ (t, 0) was computed very recently [IMS22]
(see also [KLD20]).
Remark 3.10. Discrete analogues of the identity (27), allowing to exchange the roles of the
boundary and initial condition parameters, also exist for directed polymers [BBC20, Prop. 8.1],
last passage percolation [BBCS18b, Lemma 6.1] or more general models defined through Pfaffian
Schur measures [BR01, Corollary 7.6]. This suggests that the height function at the origin for
ASEP on N∗ may have the same distribution in the following two situations:

(1) The reservoir has injection rate p, ejection rate 0, and the initial condition is i.i.d.
Bernoulli with parameter ϱ;

(2) The reservoir has injection parameter α = pϱ, ejection parameter γ = q(1 − ϱ), and the
initial configuration is empty.

There exists such an identity in distribution when p = 1, q = 0, that is in the case of TASEP4.
In the weakly asymmetric regime ε → 0, such an identity would yield (27) (which is proved
in [Par22] through another route). We leave this as an open question in the case of ASEP.
3.4. Strategy of the proof. As stated in Definition 3.3, a mild solution Zt(x) to the stochastic
heat equation (17) with Dirichlet boundary condition satisfies (18). Solutions can equivalently
be characterized by the following martingale problem. The equivalence of the two notions of
solutions is proved in [Par19, Prop. 4.4] in the case of Neumann type boundary condition. The
argument applies mutatis mutandis in the Dirichlet case.
Definition 3.11. A solution Zt(u) to the martingale problem for the stochastic heat equation
(17) with Dirichlet boundary condition, initial condition Zini and time interval [0, T ], is a random
variable Z with values in C([0, T ], C(R+)), such that for all ϕ ∈ H and 0 < t ⩽ T , the following
quantities are martingales:

Nt(ϕ) := (Zt, ϕ) − (Zini, ϕ) − 1
2

∫ t

0
(Zs, ϕ

′′)ds, (28)

Qt(ϕ) := Nt(ϕ)2 −
∫ t

0
(Z 2

s , ϕ
2)ds. (29)

We divide the proof of Theorem 3.7 (Section 7) and Theorem 3.9 (Section 6) into several
steps, following the strategy of [Par19]:

(1) For a process Z ε
t starting from a near-equilibrium initial condition Z ε

0 , which satisfies
that Z ε

0 ⇒ Zini as ε → 0, we prove its convergence towards the solution to the heat
equation with Dirichlet boundary condition starting from Zini (a.k.a. Theorem 3.9). This
is split in two steps: proof of tightness (Section 6.1), and identification of the limit point
(Section 6.2). The latter step uses the martingale problem above: we show that the
discrete martingale problem gives the continuous one in the limit, and the control of the
error terms is a consequence of the tightness estimates.

(2) We come back to the initial condition Z0(x) = µx of Theorem 3.7. We prove that at
time δ > 0, Zε

δ defined in (20) is near-equilibrium in the sense of Definition 3.8. This is
the purpose of Section 7.1. Similarly to the first point, this property gives us tightness
in D([δ, T ], C(R+)) for any δ ∈ (0, T ), and that any limit point is solution to (17) with
Dirichlet boundary condition.

4More precisely, one needs to consider the TASEP on N∗ with an initial condition such that the site 1 is occupied,
and all other sites are occupied according to Bernoulli i.i.d. random variables. Then, the height function for
this model has the same distribution [PS01] as the height function associated to the last passage percolation
model with boundary considered in [BBCS18b]. The symmetry between the boundary and the initial condition
parameters follows from [BBCS18b, Lemma 6.1] (choosing the parameter α there as α = ϱ).
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(3) The missing point is to push δ to 0. We use consistency, and identify the initial condition.
The structure of the argument is similar to [Par19] but we use a different method in order
to obtain second moment bounds (Lemma 7.5). We rely on the analysis of exact integral
formulas for the moments of Zt(x) obtained using a Markov duality in [BC22a].

4. Existence and uniqueness of the solution

This section is devoted to the proof of existence and uniqueness of the solution to the SHE
(Definition 3.3) with Dirichlet boundary condition and initial condition Zini = −2δ′

0. Although
we follow a standard argument from [Wal86] of Picard iteration (see also [Par19, Section 4]),
the initial condition that we consider is much more singular than initial condition considered in
previous works, and this requires us to use refined estimates.

It will be convenient to introduce the notation

dPDir
t (u, 0) := −PDir

t (u, ·) ∗ 2δ′
0(·) = 2∂vP

Dir
t (u, v)

∣∣
v=0 =

2
√

2
πue

− u2
2t

t3/2 . (30)

We start with an estimate involving the quantity dPDir
t (u, 0), which we will reuse in Sections

7.2 and 7.3.

Lemma 4.1. Define, for any s ∈ (0, t) and u ∈ R+,

Gt(s, u) =
∫
R+
dv
(
PDir

t−s(u, v)
)2 (

dPDir
s (v, 0)

)2
. (31)

There exists a constant C such that for any s ∈ (0, t) and for any u ∈ R+,

Gt(s, u) ⩽ C

√
t√

s(t− s)
dPDir

t (u, 0)2. (32)

Proof. Using the explicit expressions for PDir
t−s(u, v) from (19) and dPDir

s (v, 0) in (30), we can
perform the integral (31) and obtain

Gt(s, u) =
2e

−u2
t

(
t(t−s)

s

(
1 − e

−su2
t(t−s)

)
+ 2u2

)
π3/2t5/2

√
s(t− s)u2 .

Dividing by dPDir
t (u, 0)2, we get

Gt(s, u)
dPDir

t (u, 0)2 =

√
t

(
t(t−s)

s

(
1 − e

−su2
t(t−s)

)
+ 2u2

)
4
√
π
√
s(t− s)u2 .

Using the bound 1 − e−x ⩽ x, and simplifying the resulting expression, we obtain that
Gt(s, u)

dPDir
t (u, 0)2 ⩽ 3

4
√
π

√
t√

s(t− s)
.

□

Let us now turn to the proof of Proposition 3.5.

Proof of Proposition 3.5. Fix a terminal time T > 0 and consider the Banach space B of adapted
processes (Zt) satisfying

∥Z∥2
B := sup

X∈R+
s∈(0,T )

{
s2E

[
Zs(X)2

]}
< ∞.

We define a sequence of processes defined for t ⩽ T, u ∈ R+, by

U0(t, u) := dPDir
t (u, 0).

Un+1(t, u) :=
∫ t

0

∫
R+
PDir

t−s(u, v)Un(s, v)ξ(s, v)dvds.
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This implies that, if Sn =
∑n

k=0 Un, then

Sn+1(t, u) = dPDir
t (u, 0) +

∫ t

0

∫
R+
PDir

t−s(u, v)Sn(s, v)ξ(s, v)dvds.

In order to show the existence of the solution to (108), it suffices to show that the series Sn con-
verges in the space B, and for that we will show that

∑
∥Un∥B converges. Regarding uniqueness,

it follows from the same argument as in [Par19, Proposition 4.2].
In order to estimate ∥Un∥B, we introduce

fn(s) = sup
v∈R+

{
E
[
Un(s, v)2]

dPDir
s (v, 0)2

}
.

By Itô isometry, we have,

E
[
Un+1(t, u)2

]
=
∫ t

0
ds

∫
R+
dv
(
PDir

t−s(u, v)
)2

E
[
Un(s, v)2

]
.

Thus, we may write, recalling the definition of Gt(s, u) in (31),

E
[
Un+1(t, u)2

]
⩽
∫ t

0
ds

∫
R+
dv
(
PDir

t−s(u, v)
)2
dPDir

s (v, 0)2fn(s)

⩽
∫ t

0
dsGt(s, u)fn(s).

Using Lemma 4.1, we obtain that

E
[
Un+1(t, u)2

]
⩽ C

(
dPDir

t (u, 0)
)2

2
√
t

∫ t

0
ds

fn(s)√
s(t− s)

. (33)

Dividing both sides of (33) by (dPDir
t (u, 0))2, we obtain that for t ∈ (0, T ),

fn+1(t) ⩽ C
√
t

∫ t

0
ds

fn(s)√
s(t− s)

.

Iterating this inequality, we get

fn+2(t) ⩽ C
√
t

∫ t

0
dr

√
r

∫ r

0
ds

fn(s)√
r(t− r)

√
s(r − s)

= C
√
t

∫ t

0
ds
fn(s)√

s

∫ t

s

dr√
t− r

√
r − s

= C
√
t

∫ t

0
ds
fn(s)√

s
,

by exchanging the integration order, from which we deduce by induction that fn(t) ⩽ Cntn/2/(⌊n/2⌋)!.
Hence, we have obtained that

∥Un∥2
B ⩽ C sup

u∈R+
s∈(0,T )

{
E
[
Un(s, u)2]

dPDir
s (u, 0)2

}
= fn(T ) ⩽ CnTn/2

(⌊n/2⌋)!
,

where in the first inequality we have simply used that dPDir
s (u, 0) ⩽ Cs−1 (which is easy to

check using the explicit expression (30)). This shows that
∑+∞

n=0 ∥Un∥B < ∞ so that the series∑+∞
n=0 Un exists in the space B, and it concludes the proof. □

5. Heat kernel with diverging Robin boundary conditions

In the proofs of Theorems 3.7 and 3.9, we will need sharp estimates on the heat kernel pR
t

with Robin boundary conditions. We therefore collect in this section all preliminary results on
pR

t , which will be invoked later on. We start with a definition.

Definition 5.1. Let µ < 1. The discrete heat kernel with Robin boundary condition (and
parameter µ), is defined as the solution to: for any x, y ∈ N

∂tpR
t (x, y) = 1

2
∆ypR

t (x, y), pR
0 (x, y) = 1x=y, pR

t (−1, y) = µpR
t (0, y),
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where ∆y denotes the discrete Laplacian acting on functions of the variable y.

Since we assume µ < 1, pR
t (x, y) corresponds to the transition probability for a continuous time

random walk on N which behaves as the symmetric simple random walk on positive integers,
while at 0, after an exponentially distributed waiting time with mean 1, it jumps to 1 with
probability 1

2 , it stays at 0 with probability µ
2 , and it is killed with probability 1−µ

2 . This gives
us a representation of pR in terms of the transition probabilities (pn) of the underlying discrete
random walk (which moves similarly but at integer times):

pR
t (x, y) =

∞∑
n=0

e−t t
n

n!
pn(x, y). (34)

Moreover, we have the following representation for pR
t , in terms of the kernel pt for the continuous

time symmetric simple random walk on Z, see [CS18, Section 4.1]:

pR
t (x, y) = pt(x− y) + µpt(x+ y + 1) + (1 − µ−2)

+∞∑
z=2

µzpt(x+ y + z). (35)

In particular, pR
t (x, y) is increasing in µ.

Definition 5.2. Let {pε
t (x, y)}x,y∈N be the discrete heat kernel with Robin boundary condition

and parameter µ = e−ε.

5.1. First properties.

Lemma 5.3 (Heat kernel bounds). Fix T > 0. We have the following estimates.
(i) For any a > 0, there exists C = C(a, T ) ∈ R+ such that, for all t ⩽ ε−4T , x ∈ N,

∞∑
y=0

pε
t (x, y)eaε2y ⩽ Ceaε2x. (36)

(ii) There exists C = C(T ) ∈ R+ such that, for all t ⩽ ε−4T , x, y, z ∈ N, for all v ∈ [0, 1],
for |x− y| ⩽ ⌈

√
t⌉

|pε
t (x, z) − pε

t (y, z)| ⩽ C

(
1 ∧ 1√

t1+v

)
|x− y|v. (37)

Moreover, for all b > 0, there exists C = C(T, b) ∈ R+ such that for all t ⩽ ε−4T ,
x, z ∈ N, for all v ∈ [0, 1],

|∇±pε
t (x, z)| ⩽ C

(
1 ∧ 1√

t1+v

)
e−b|z−x|(1∧t−1/2), (38)

and consequently, for all a ⩾ 0, there exists C = C(T, a) ∈ R+ such that
∞∑

y=0

∣∣∇±pε
t (x, y)

∣∣ eaε2yea|x−y|(1∧t−1/2) ⩽ Ceaε2xt−1/2. (39)

(iii) For all t ⩾ s ⩾ 0, x, y ∈ N,
pε

s(x, y) ⩽ et−spε
t (x, y). (40)

Proof. A number of these bounds follow from those established for instance in [Par19]. Therein,
the author considers the discrete heat kernel with Robin boundary condition with parameter
µA = 1 −Aε2 (note that ε for us corresponds to

√
ε therein). In particular, the monotonicity in

µ of pR allows us to use directly the bounds established in [Par19]. More precisely:
• (36) follows from Corollary 3.3 in [Par19], where we take a1 = 0 and a2 = a;
• (37) and (38) follow from similar bounds that hold for the standard heat kernel pt on

the whole line Z, and from (35), as in the proof of Proposition 3.2 in [Par19]. In fact,
the monotonicity in µ of (35) implies a monotonicity in the upper bounds used in the
proof of [Par19], so that we can use the estimates therein as an upper bound;

• (40) is an immediate consequence of (34).
□
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Lemma 5.4 (Key cancellation and consequences). We have the following estimates:
(i) For any x, x′ ∈ N,

∞∑
y=0

∫ ∞

0
∇+pε

t (x, y)∇+pε
t (x′, y)dt = 1x=x′ . (41)

(ii) For any a > 0, there exist ε0 = ε0(a, T ) > 0, c = c(a, T ) ∈ (0, 1) such that for all ε < ε0,
x ∈ N∗,

∞∑
y=1

∫ ε−4T

0

∣∣∣∇+pε
r(x, y)∇−pε

r(x, y)
∣∣∣ eaε2|x−y|dr ⩽ c. (42)

(iii) For any a > 0, there exist ε0 = ε0(a, T ) > 0, C = C(a, T ) ∈ R+ such that for all
ε < ε0, x ∈ N∗, t ⩽ T ,

∞∑
y=1

∫ ε−4t

0

∣∣∣∇+pε
r(x, y)∇−pε

r(x, y)
∣∣∣ eaε2|x−y| 1√

ε−4t− r
dr ⩽ Cε2. (43)

Proof. The last two bounds (42) and (43) follow from the first one (41), together with (38) and
(39), by the same arguments as in [CS18, Proof of Corollary 5.4].

Let us show (41), which can be proved in a more elementary way than is done in [CS18]
(where it is Proposition 5.1). Indeed, note that

∑∞
y=0 pε

t (x, y)pε
t (x′, y) = pε

2t(x, x′) by symmetry
of pε

t and the Markov property of the random walk described after Definition 5.1. Moreover,∫∞
0 pε

2t(x, x′)dt = 1
2G(x, x′) is the Green’s function associated with that random walk, i.e. the

expected number of times the random walk started from x goes through x′ before being killed.
Elementary computations therefore yield

∞∑
y=0

∫ ∞

0
∇+pε

t (x, y)∇+pε
t (x′, y)dt = G(x+1, x′ +1)+G(x, x′)−G(x+1, x′)−G(x, x′ +1). (44)

By the interpretation of G in terms of number of visits, it is clear that G(x + 1, x′ + 1) =
G(x, x′ + 1) if x > x′ and G(x + 1, x′) = G(x, x′) if x ⩾ x′. Moreover, by first-step analysis,
G(x + 1, x + 1) = 1 + 1

2 [G(x, x+ 1) +G(x+ 2, x+ 1)] = 1 + 1
2 [G(x, x+ 1) +G(x+ 1, x+ 1)],

and therefore G(x+ 1, x+ 1) = 2 +G(x, x+ 1). Then (41) follows. □

5.2. Moment estimates. In this section, we establish moment estimates on the heat kernel
pR

t and its convolution with the empty initial condition Z0(x) = µx.

Proposition 5.5. There exists a constant C > 0 such that for any ε ∈ (0, 1), t > 0, α ∈ [0, 1
2)

and x, y ∈ N, we have that for any µ ∈ (0, 1),

pR
t (x, y) ⩽ C√

t
, (45)

and for µ = e−ε, we have that

ε−2E [Zt(x)] = ε−2 ∑
y≥0

pε
t (x, y)µy ⩽ Cmin

{
(ε4t)−1, ε−2} (46)

and ∣∣(pε
t ∗ ε−2Z0)(x) − (pε

t ∗ ε−2Z0)(y)
∣∣ =

∣∣∣∣ε−2 ∑
z≥0

pε
t (x, z)µz − ε−2 ∑

z≥0
pε

t (y, z)µz

∣∣∣∣
⩽ C

(
ε2|x− y|

)α
(ε4t)−1−α/2. (47)

Remark 5.6. Note that the constant C in (45) is universal, and does not depend on t nor on
the terminal time T . This estimate is called long-time estimate in [Par19], see Proposition 3.6
therein. Here, we provide a different proof and obtain an even better estimate.
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Proof. Let us first establish explicit formulas for the quantities to bound in (45), (46) and (47).
For t ⩾ 0 and x ∈ Z, we have the integral representation of the heat kernel

pt(x) = 1
2iπ

∮
e

1
2 (ξ+ξ−1−2)tξxdξ

ξ
, (48)

where the contour is a positively oriented circle around 0. From (48) and (35), we deduce

pR
t (x, y) = 1

2iπ

∮
e

1
2 (ξ+ξ−1−2)tξx

(
ξ−y + ξy+1 µ− ξ

1 − µξ

)
dξ

ξ
, (49)

where the contour is a positively oriented circle around 0 with radius smaller than µ−1. Hence,
we have that∑

y≥0
pR

t (x, y)µy = E [Zt(x)] = 1
2iπ

∮
e

1
2 (ξ+ξ−1−2)tξx (1 − µ2)(1 − ξ2)

(1 − µ/ξ)(1 − µξ)2
dξ

ξ
(50)

where the contour is a positively oriented circle around 0 with radius comprised between µ and
µ−1, and∑

z≥0
pR

t (x, z)µz −
∑
z≥0

pR
t (y, z)µz = 1

2iπ

∮
e

1
2 (ξ+ξ−1−2)t(ξx − ξy) (1 − µ2)(1 − ξ2)

(1 − µ/ξ)(1 − µξ)2
dξ

ξ
. (51)

Now we estimate the integrals above. Since µ ∈ (0, 1), we may assume that the contour (in
each formula above) is a circle of radius 1. Now, since ξ has modulus 1, we have that |ξx−y| =
|ξx+y+1| = 1 and for any µ ∈ (0, 1), |µ − ξ| = |µ − ξ| = |µξ − 1| so that

∣∣∣ µ−ξ
1−µξ

∣∣∣ = 1. Using the
change of variables ξ = eiθ in (49), we get

pR
t (x, y) ⩽ 2

2π

∫ π

−π
e

t
2 ℜ[eiθ+e−iθ−2]dθ.

Then, we use the estimate cos(x) − 1 ⩽ −x2

5 , valid for x ∈ (−π, π), so that

ℜ[eiθ + e−iθ − 2] = 2 cos(θ) − 2 ⩽ −2θ2

5
. (52)

Hence, setting t = ε−4T , we obtain

pR
t (x, y) ⩽ ε2

π

∫ π

π
e

−θ2t
5 dθ.

Finally, using the change of variables θ = θ̃t−1/2,

pR
t (x, y) ⩽ 1

π
√
t

∫
R
e

−θ̃2
5 dθ̃

which proves (45) with C = 1
π

∫
R e

−z2
5 dz. Now we turn to the proof of (46) and assume henceforth

that µ = e−ε. Since pR
t (x, ·) defines a measure on N with mass at most 1, and 0 < µ < 1, we

have the trivial bound E [Zt(x)] ⩽ 1, so that ε−2E [Zt(x)] ⩽ ε−2. It remains to show that

ε−2E [Zt(x)] = ε−2 ∑
y≥0

pε
t (x, y)µy ⩽ C(ε4t)−1.

Using the change of variables ξ = eiθε2 , and setting x = ε−2X, (50) becomes

ε−2 ∑
y≥0

pε
t (x, y)µy = 1

2π

∫ ε−2π

−ε−2π
e

1
2

(
eiε2θ+e−iε2θ−2

)
t
eiθX (1 − e−2ε)(1 − e2iε2θ)

(1 − e−ε−iε2θ)(1 − e−ε+iε2θ)2dθ. (53)

Using x− x2

2 ⩽ 1 − e−x ⩽ x for x > 0, and 0 ⩽ 1 − cos(x) ⩽ x2

2 for x ∈ (−π, π), we have∣∣∣∣∣ (1 − e−2ε)(1 − e2iε2θ)
(1 − e−ε−iε2θ)(1 − e−ε+iε2θ)2

∣∣∣∣∣ = (1 − e−2ε)
√

2(1 − cos(2ε2θ))
(1 + e−2ε − 2e−ε cos(ε2θ))3/2 ⩽ 4ε3|θ|

(ε− ε2/2)3 = 4|θ|
(1 − ε/2)3 .

Thus, using additionally the estimate (52) and setting t = ε−4T , we obtain the bound

ε−2 ∑
y≥0

pε
t (x, y)µy ⩽ 1

2π

∫ ε−2π

−ε−2π
e

−θ2T
5

4|θ|
(1 − ε/2)3dθ.
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The change of variables θ = θ̃T−1/2 now yields (for ε ∈ (0, 1))

ε−2 ∑
y≥0

pε
t (x, y)µy ⩽ 1

T

16
π

∫
R

|θ̃|e
−θ̃2

5 dθ̃,

which proves (46) with C = 16
π

∫
R |z|e−z2/5dz. Now we turn to the proof of (47). Using (51) and

the same steps as above (with y = ε−2Y ),∣∣∣∣∣∣ε−2 ∑
z≥0

pε
t (x, z)µz − ε−2 ∑

z≥0
pε

t (y, z)µz

∣∣∣∣∣∣ ⩽ 1
T

16
π

∫
R

|θ̃|e
−θ̃2

5

∣∣∣eiXθ̃T −1/2 − eiY θ̃T −1/2
∣∣∣ dθ̃ (54)

Hence, using the change of variables u = 2θ and choosing a constant C such that 16
π |θ̃|e

−θ̃2
5 ⩽

Ce
−u2

2 , ∣∣∣∣∣∣ε−2 ∑
z≥0

pε
t (x, z)µz − ε−2 ∑

z≥0
pε

t (y, z)µz

∣∣∣∣∣∣ ⩽ C

T

∫
R
e

−u2
2

∣∣∣e2iXuT −1/2 − e2iY uT −1/2
∣∣∣ du,

⩽ C

T

∫
R
e

−u2
2

∣∣∣1 − e2i(X−Y )uT −1/2
∣∣∣ du,

⩽ 2C
T

max{|X − Y |T−1/2, 1}
∫
R
ue

−u2
2 du.

Thus, (47) holds for any α ∈ (0, 1]. □

6. Near-equilibrium initial condition: proof of Theorem 3.9

In this section we assume that the initial condition is near-equilibrium, and we prove Theorem
3.9. We are thus interested in the rescaled process Z ε

t defined in (24) for any u ∈ ε2N and
then extended to R+ by linear interpolation. Together with the uniqueness of the solution to
the martingale problem (28)–(29), the next two propositions prove the desired result stated in
Theorem 3.9.

Proposition 6.1 (Tightness). Under the assumptions of Theorem 3.9, the sequence of pro-
cesses (Z ε

s )s∈[0,T ] is tight in the space D([0, T ], C(R+)). Moreover, any limit point belongs to
C([0, T ], C(R+)).

Proposition 6.2 (Identification of limit points). Under the assumptions of Theorem 3.9, any
limit point (Zs)s∈[0,T ] of (Z ε

s )s∈[0,T ] in the space D([0, T ], C(R+)) satisfies the continuous mar-
tingale problem (28)–(29).

The rest of the section is devoted to the proof of Proposition 6.1 and Proposition 6.2.

6.1. Tightness: proof of Proposition 6.1. The main ingredient is the following lemma,
which is a consequence of estimates established in [CS18, Par19], adapted to the case µ = e−ε

instead of 1 − ε2A.

Lemma 6.3. Fix T > 0 and assume that the initial condition Z ε
0 ∈ C(R+) is near-equilibrium

(Definition 3.8). Then for all n ∈ N and α ∈ [0, 1
2), there exists C = C(α, n, T ) ∈ R+ such that

for all ε > 0, u, u′ ∈ R+, s, s′ ∈ [0, T ],
∥Z ε

s (u)∥n ⩽ Ceau, (55)

∥Z ε
s (u) − Z ε

s (u′)∥2n ⩽ C|u− u′|αea(u+v), (56)

∥Z ε
s (u) − Z ε

s′(u′)∥2n ⩽ C
(
ε2α ∨ |t− t′|α/2

)
e2au. (57)

These estimates, together with Arzela-Ascoli’s Theorem, imply Proposition 6.1 (see [Bil68,
Chapter 3]). In order to prove Lemma 6.3, we use the bounds on the heat kernel pR which have
been proved in Lemma 5.3 and Lemma 5.4. Sine the proof closely follows that in [Par19], we
do not detail it, but just point out which ingredients are needed where. We repeatedly use the
following lemma (proved in [DT16, Lemma 3.1], [CS18, Lemma 4.18], as stated in [Par19, Lemma
5.3]).
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Lemma 6.4. For any n ∈ N∗, there exists C = C(n) < ∞ such that, for any F bounded on
R+ × N and any t > 1,∥∥∥∥ ∫ t

0

∞∑
y=0

F (s, y)dMs(y)
∥∥∥∥2

n

⩽ Cε2
∫ t

0

∞∑
y=0

F (s, y)2∥∥Zs(y)
∥∥2

n
ds, (58)

where F (s, y) = sup|s′−s|<1 |F (s′, y)|. Moreover, when F (s, y) = pε
s(x, y) for some x ∈ N,

pε
s(x, y)2 ⩽ Cs−1/2pε

s+1(x, y). (59)

The first bound (55) in Lemma 6.3 is obtained by an iteration argument, and is a consequence
of (25), (36) and Lemma 6.4 (same proof as in [Par19, Proof of Proposition 5.4]).

For the second bound (56), write the consequence of Lemma 3.1

Zt(x) − Zt(y) =
∞∑

z=0
[pε

t (x, z) − pε
t (y, z)]Z0(z) +

∫ t

0

∞∑
z=0

[
pε

t−s(x, z) − pε
t−s(y, z)

]
dMs(z). (60)

To control the first sum, we can proceed as in [Par19] and extend Z0 into a function over Z by
imposing that z 7→ Z0(z − 1) − µZ0(z) is odd. Note that Z0 now depends implicitly on ε. Then
it is easy to check that Z0 still satisfies (26) (possibly changing C). The rest of the proof of (56)
is exactly similar to [Par19] and uses Lemma 6.4, (36), (37), (40), and (55).

The last bound (57) is obtained as in [Par19]. It is even simpler for us because the term
labeled J2 therein vanishes. The estimates rely on Lemma 6.4, on (55) and on (36).

6.2. Identification of limit points: proof of Proposition 6.2.

6.2.1. Discrete martingale problem. Let us denote by ∆ε := ∆µ the discrete Laplacian with
boundary condition defined in (13) with µ = e−ε. We also introduce, for any ϕ, ψ : R+ → R
which are square summable, the following notation:

(ψ, ϕ)ε := ε2
∞∑

x=0
ϕ(ε2x)ψ(x). (61)

From Lemma 3.1, for any ϕ : R+ → R with compact support,

N ε
t (ϕ) := (Zε−4t, ϕ)ε − (Z0, ϕ)ε − 1

2

∫ ε−4t

0
(∆εZs, ϕ)ε ds (62)

is a martingale. Let us compute

ε−2(∆εZs, ϕ)ε =
∞∑

x=0
Zs(x)

[
ϕ(ε2(x+ 1)) + ϕ(ε2(x− 1)) − 2ϕ(ε2x)

]
+ Zs(−1)ϕ(0) − Zs(0)ϕ(−ε2)

=
∞∑

x=0
Zs(x)ε4ϕ′′(ε2x)

+
∞∑

x=0
Zs(x)

[
∆ϕ(ε2·)(x) − ε4ϕ′′(ε2x)

]
+
√
q

p
Zs(0)ϕ(0) − Zs(0)ϕ(−ε2),

= ε4
∞∑

x=0
Z ε

ε4s(ε2x)ϕ′′(ε2x)

+
∞∑

x=0
Z ε

ε4s(ε2x)
[
∆ϕ(ε2·)(x) − ε4ϕ′′(ε2x)

]
+ Z ε

ε4s(0)
[√

q

p
ϕ(0) − ϕ(−ε2)

]
.

Therefore N ε
t (ϕ) can be rewritten as

N ε
t (ϕ) = ε2

∞∑
x=0

ϕ(ε2x)Z ε
t (ε2x) − ε2

∞∑
x=0

ϕ(ε2x)Z ε
0 (ε2x) − 1

2

∫ t

0
ε2

∞∑
x=0

Z ε
s (ε2x)ϕ′′(ε2x)ds

− 1
2
ε−2

[√
q

p
ϕ(0) − ϕ(−ε2)

] ∫ t

0
Z ε

s (0)ds+ E1(ε), (63)
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where the error term is

E1(ε) := −1
2
ε−2

∞∑
x=0

[
∆εϕ(ε2·)(x) − ε4ϕ′′(ε2x)

] ∫ t

0
Z ε

s (ε2x)ds. (64)

Let ϕ : R → R be smooth and compactly supported, such that ϕ(0) = 0. Fix ψ : R → R+
smooth, compactly supported, such that ψ(0) = 1 and ψ′(0) = 0, and define

ϕε = ϕ+ εϕ′(0)ψ, (65)

so that ϕε(0) = εϕ′
ε(0). From the previous computation (63), the following is a martingale:

N ε
t (ϕε) = ε2

∞∑
x=0

ϕ(ε2x)Z ε
t (ε2x) − ε2

∞∑
x=0

ϕ(ε2x)Z ε
0 (ε2x)

− ε2

2

∫ t

0

∞∑
x=0

Z ε
s (ε2x)ϕ′′(ε2x)ds+R1 +R2 +R3,

where

R1 := −1
2
ε−2

∞∑
x=0

[
∆εϕε(ε2·)(x) − ε4ϕ′′

ε(ε2x)
] ∫ t

0
Z ε

s (ε2x)ds (66)

R2 := −1
2
ε−2

[
e−εϕε(0) − ϕε(−ε2)

] ∫ t

0
Z ε

s (0)ds, (67)

R3 := ε3ϕ′(0)
∞∑

x=0
ψ(ε2x)

[
Z ε

t (ε2x) − Z ε
0 (ε2x)

]
. (68)

Moreover, the quadratic variation of N ε
t (ϕε) is given (see Lemma 3.1 and Lemma 3.2) by:

[N ε(ϕε)]t = ε4
∞∑

x=1
ϕ2

ε(ε2x)
∫ ε−4t

0

[
ε2Zs(x)2 + ∇+Zs(x)∇−Zs(x) + o(ε2)Zs(x)2

]
ds (69)

+ ε4ϕ2
ε(0)

∫ ε−4t

0

[
ε2Zs(0)2 + εZs(0)∇+Zs(0) + o(ε2)Zs(0)2

]
ds. (70)

In order to conclude, we prove in the next section that R1, R2, R3 vanish in probability as ε → 0,
which then establishes that Nt(ϕ) (defined in (28)) is a martingale for any Z limit point of Z ε.
Then, we verify (29).

6.2.2. Proof of Proposition 6.2. In order to prove that R1, R2, R3 vanish in probability, we
estimate their ∥ · ∥n-norms. Let us start with R2, where we will see why we chose ϕε as in (65).

(R2) For any n ∈ N, by Lemma 6.3,

∥R2∥n ⩽ Cε−2t
[
e−εεϕ′(0) − ϕ(−ε2) − εϕ′(0)ψ(−ε2)

]
(71)

⩽ Cε−2t
[
(1 − ε)εϕ′(0) + ε2ϕ′(0) − εϕ′(0) + o(ε2)

]
= o(1). (72)

Therefore R2 vanishes in any Ln, n ∈ N.

(R3) Moreover, the same holds for R3, again thanks to Lemma 6.3, and because the series
ε2∑∞

x=0 ψ(ε2x)e2aε2x converges to
∫
R+
ψ(u)e2audu (the finiteness of this quantity is the

reason we do not take ψ ≡ 1).

(R1) Let us now consider R1. By Lemma 6.3, it is enough to show that, for all x ∈ N∗,∣∣∣∆εϕε(ε2·)(x) − ε4ϕ′′
ε(ε2x)

∣∣∣ = o(ε4),

and ∣∣∣∆εϕε(ε2·)(0) − ε4ϕ′′
ε(0)

∣∣∣ = o(ε2),

which can be checked by elementary computations and thanks to the compactness of the
support of ϕ.
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It remains to show that any limit point Z of Z ε satisfies (29). Let us rewrite

[N ε(ϕε)]t =
∫ t

0
ε2

∞∑
x=0

ϕ2(ε2x)Z ε
s (ε2x)2ds+R′

1 +R′
2 +R′

3 +R′
4, (73)

where

R′
1 =

∫ t

0
ε2

∞∑
x=0

[ϕ2
ε(ε2x) − ϕ2(ε2x)]Z ε

s (ε2x)2ds, (74)

R′
2 = ε4

∫ ε−4t

0

∞∑
x=1

ϕ2
ε(ε2x)∇+Zs(x)∇−Zs(x)ds, (75)

R′
3 = −ε5

∫ ε−4t

0
ϕ2

ε(0)Zs(0)∇+Zs(0)ds, (76)

R′
4 = o(1)

∫ t

0
ε2

∞∑
x=0

ϕ2(ε2x)Z ε
s (ε2x)2ds. (77)

We have to show that R′
1, R

′
2, R

′
3 vanish (e.g. in L2) as ε → 0.

(R′
1) For the first term, the result follows from the bound ∥ϕ2

ε − ϕ2∥∞ = O(ε), the fact that
ϕ, ϕε have compact support, and from (55).

(R′
3 and R′

4) Both terms R′
3 and R′

4 are also controlled with (55) and (56).

(R′
2) Similarly to [CS18] and [Par19, Proof of Theorem 5.7], we split R′

2 in two parts: write
R′

2 = r1 + r2, where

r1 = ε4
∫ ε−3

0

∞∑
x=1

ϕ2
ε(ε2x)∇+Zs(x)∇−Zs(x)ds (78)

r2 = ε4
∫ ε−4t

ε−3

∞∑
x=1

ϕ2
ε(ε2x)∇+Zs(x)∇−Zs(x)ds. (79)

By (56), ∥∇±Zs(x)∥2 ⩽ Cε2αe2aε2x for any α < 1
2 and some C, a > 0. Therefore, we can

bound

∥r1∥2 ⩽ Cε4ε−3ε4α
∞∑

x=1
ϕ2

ε(ε2x)e4aε2x ⩽ C ′ε4α−1, (80)

which goes to 0 if we choose for instance α = 1/3. On the other hand,

E[r2
2] = 2ε8

∫ ε−4t

ε−3

∫ s

ε−3

∞∑
x,x′=1

ϕ2
ε(ε2x)ϕ2

ε(ε2x′)E
[
∇+Zs(x)∇−Zs(x)∇+Zr(x′)∇−Zr(x′)

]
drds (81)

= 2ε8
∫ ε−4t

ε−3

∫ s

ε−3

∞∑
x,x′=1

ϕ2
ε(ε2x)ϕ2

ε(ε2x′)E
[
∇+Zr(x′)∇−Zr(x′)U(x, r, s)

]
drds, (82)

where

U(x, r, s) := E
[
∇+Zs(x)∇−Zs(x)|Fr

]
, Fr := σ (Zs(x);x ∈ N, s ⩽ r) . (83)

Therefore,

E[r2
2] ⩽ Cε8ε4α

∫ ε−4t

ε−3

∫ s

ε−3

∞∑
x,x′=1

ϕ2
ε(ε2x)ϕ2

ε(ε2x′)e4aε2x′
E
[
|U(x, r, s)|

]
drds (84)

⩽ Cε6+4α
∫ ε−4t

ε−3

∫ s

ε−3

∞∑
x=1

ϕ2
ε(ε2x)E

[
|U(x, r, s)|

]
drds. (85)

We will prove in Lemma 6.5 below an estimate on E
[
|U(x, r, s)|

]
which shows that

E[r2
2] ⩽ Cε4+6α

∫ ε−4t

ε−3

∫ s

ε−3

1√
s− r

drds ⩽ Cε1+6α. (86)
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Therefore, R′
i goes to 0 in L2 for i = 1, ..., 4, and both properties (28) and (29) are satisfied,

which conclude the proof of Proposition 6.2. We now prove the last needed estimate:

Lemma 6.5. For any α < 1
2 , there exist a,C = C(α, t) > 0 such that, if ε−3 ⩽ r ⩽ s ⩽ ε−4t,

x ∈ N∗,

E
[
|U(x, r, s)|

]
⩽ Cε2α eaε2x

√
s− r

. (87)

Proof of Lemma 6.5. As in [BG97,CS18,Par19], we write

U(x, r, s) =∇−Is(x)∇+Is(x) + ∇−Is(x)∇+N s
r (x) + ∇−N s

r (x)∇+Is(x) + ∇−N s
r (x)∇+N s

r (x)

+ E

∫ s

r

∞∑
y=0

Ks−τ (x, y)d[M(y)]τ

∣∣∣∣∣∣Fr

 , (88)

where

Is(x) =
∞∑

y=0
pε

s(x, y)Z0(y)

N s
r (x) =

∫ r

0

∞∑
y=0

pε
s−τ (x, y)dMτ (y),

Kt(x, y) = ∇+pε
t (x, y)∇−pε

t (x, y).

By (39), (25) and Lemma 3.1, we have (see e.g. [CS18, Proof of Lemma 5.7])

max
(
E
[(

∇±Is(x)
)2]

,E
[(

∇±N s
r (x)

)2]) ⩽ Cε2α eaε2x

√
s− r

. (89)

Moreover, the expectation term in (88) can be split into

(ε2 + o(ε2))
∞∑

y=0

∫ s

r
Ks−τ (x, y)E[(Zτ (y))2|Fr]dτ − ε

∫ s

r
Ks−τ (x, 0)E[Zτ (0)∇+Zτ (0)|Fr]dτ

−
∞∑

y=1

∫ s

r
Ks−τ (x, y)E[∇−Zτ (y)∇+Zτ (y)|Fr]dτ.

If we can bound the first two terms by Cε2αeaε2x/
√
s− r, using (42), (43), the same iterative

procedure as described in [CS18] yields the desired result.
Let us consider the second term (which is new with respect to the case treated in [CS18]).

By (55), (56) and (38), we have for any α < 1
2 , b ⩾ 0, ν ⩽ 1∣∣∣∣ε ∫ s

r
Ks−τ (x, 0)E

[
Zτ (0)∇+Zτ (0)|Fr

]
dτ

∣∣∣∣ ⩽ Cε1+4αe−2b|x|
∫ s

r

(
1 ∧ (s− τ)1+ν

)
dτ

= Cε1+4αe−2b|x|(s− r)−ν .

It thus remains to check that

ε2
∞∑

y=0

∫ s

u
Ks−τ (x, y)E[(Zτ (y))2|Fu]dτ ⩽ Cε2α eaε2x

√
s− u

, (90)

which is exactly Lemma 5.8 in [CS18]. In turn, this inequality is a consequence of bounds (38),
(39) and Lemma 6.3 (see [CS18]). □

7. Delta prime initial condition: proof of Theorem 3.7

In this section we come back to our initial problem and assume that the initial condition is
empty so that Z0(x) = µx, where we recall that µ =

√
q/p. Therefore, the initial condition is

not near-equilibrium, and we now use the different scaling
Zε

t (u) := ε−2Zε−4t(ε−2u). (91)
Let us now prove Theorem 3.7.
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Recall that we already know from Section 4 existence and uniqueness of the solution to the
SHE (Definition 3.11) with Dirichlet boundary condition and initial condition Zini = −2δ′

0.
Also, we have obtained in Section 5 explicit estimates involving the discrete Dirichlet heat
kernel, relying on exact computations.

The estimates from Section 5 enable us to show in Section 7.1 that at time δ > 0, Zε
δ (·) is

near-equilibrium in the sense of Definition 3.8. This allows to follow the same strategy as in
Section 6 to have tightness in the space D([δ, T ], C(R+)) for any 0 < δ < T , and show that
the limit points satisfy the SHE (Proposition 7.2). Following [Par19], we will then show in
Section 7.2 that there exists a limit point in the space D((0, T ], C(R+)), which is solution to the
SHE with Dirichlet boundary condition. We also prove in Section 7.2 second moment bounds
satisfied by this limit point, using exact formulas from [BC22a]. We finally determine the initial
condition in Section 7.3, using the moment bounds from Section 7.2.

7.1. Near-equilibrium property. Recall definition (91). We now prove the following esti-
mates which tell us that at any positive time t, Zε

t is near-equilibrium:

Proposition 7.1. Fix T ⩾ 0. Let α ∈ [0, 1
2) and n ∈ N. There exists C = C(α, T, n) ∈ R+ such

that, for all ε ∈ (0, 1), x, x′ ∈ N, and t, t′ ∈ [0, ε−4T ] with t′ < t:

∥ε−2Zt(x)∥n ⩽ C(ε4t)−1 (92)

∥ε−2(Zt(x) − Zt(x′))∥n ⩽ C(ε2|x− x′|)α(ε4t)−1−α/2 (93)

∥ε−2(Zt(x) − Zt′(x))∥n ⩽ C(ε4t′)−1−α/2 ε2α(1 ∨ |t− t′|α/2). (94)

Proof. The proof uses the same argument as in [Par19, Proposition 6.2].
First of all, let us note that, as in [Par19, Lemma 6.1]: for any τ ⩾ 0, there exists Cτ such

that, for any ε ∈ (0, 1),
sup
t⩽τ

∥Zt(x)∥n ⩽ CτZ0(x). (95)

This is due to the fact that the initial configuration of particles is empty and the jump rate
satisfies p ⩽ 1

2 + ε, therefore the position of the largest occupied site at time t is stochastically
dominated by a Poisson random variable N(3t/2) with mean 3t/2.

Then, we write the martingale decomposition

Zt(x) =
∑
z⩾0

pε
t (x, z)Z0(z) +

∫ t

0

∑
z⩾0

pε
t−s(x, z)dMs(z). (96)

We bound the second term in the right-hand-side for t ⩾ 1, using both estimates (58) and (59)
from Lemma 6.4, and get∥∥∥∥ ∫ t

0

∑
z⩾0

pε
t−s(x, z)dMs(z)

∥∥∥∥2

n

⩽ Cε2
∫ t

0
(t− s)−1/2∑

z⩾0
pε

t−s+1(x, z)∥Zs(z)∥2
n ds. (97)

For the first term, from Proposition 5.5, (46) recall that

ε−2∑
z⩾0

pε
t (x, z)Z0(z) ⩽ C min

{
(ε4t)−1, ε−2}, (98)

where C > 0 is a universal constant, and therefore∣∣∣∣ε−2∑
z⩾0

pε
t (x, z)Z0(z)

∣∣∣∣2 ⩽ C min
{
(ε4t)−1, ε−2}(pε

t ∗ ε−2Z0)(x). (99)

Summarizing, using the convexity inequality (a + b)2 ⩽ 2a2 + 2b2 we have proved, for any
t ∈ [1, ε−4T ],∥∥ε−2Zt(x)

∥∥2
n
⩽ Cmin

{
(ε4t)−1, ε−2}(pε

t ∗ ε−2Z0)(x)

+ Cε2
∫ t

0
(t− s)−1/2∑

z⩾0
pε

t−s+1(x, z)
∥∥ε−2Zs(z)

∥∥2
n
ds. (100)
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Now, for t ⩽ 1, we use (95) together with (40), and we obtain
∥Zt(x)∥n ⩽ CZ0(x) ⩽ Cetpε

t (x, x)Z0(x) ⩽ C(pε
t ∗ Z0)(x)

which implies from (99): for any t ⩽ 1,∥∥ε−2Zt(x)
∥∥2

n
⩽ Cmin

{
(ε4t)−1, ε−2}(pε

t ∗ ε−2Z0)(x). (101)

Since (101) is stronger than (99), we have established that (100) holds for any t ∈ [0, ε−4T ]. We
are now able to iterate this inequality using the semigroup property of pε

t . We get

∥ε−2Zt(x)∥2
n ⩽ Cmin

{
(ε4t)−1, ε−2}(pε

t ∗ ε−2Z0)(x) +
+∞∑
k=0

Ck+2ε2(k+1)Ik(t) (pε
t+k+1 ∗ ε−2Z0)(x)

where

Ik(t) =
∫

∆k(t)
min

{
(ε4t0)−1, ε−2} k∏

j=1
(tj − tj−1)−1/2(t− tk)−1/2dt0 · · · dtk

∆k(t) = {(t0, . . . , tk) ∈ Rk+1 : 0 < t0 < t1 < · · · < tk < t}
and with the convention

∏
∅ = 1. We estimate the Ik(t) with a change of variables, and we

obtain

Ik(t) ⩽ 2k+1t(k+1)/2

(k/2)!
.

Now, recalling the bound (98), we can conclude that

∥ε−2Zt(x)∥2
n ⩽ C min

{
ε−2, (ε4t)−1}(pε

t ∗ ε−2Z0)(x) + C ′ ∑
k⩾0

Ck (ε4t)k/2

(k/2)!
(pε

t+k+1 ∗ ε−2Z0)(x)

⩽ C(ε4t)−1((pε
t ∗ ε−2Z0)(x) + 1

)
.

where we used that ε4t ⩽ T and therefore C depends on the terminal time T . We then obtain
(92) from (98).

We now turn to (93). In a similar fashion we have∥∥ε−2(Zt(x) − Zt(x′))
∥∥

n
⩽
∣∣(pε

t ∗ ε−2Z0)(x) − (pε
t ∗ ε−2Z0)(x′)

∣∣
+
∥∥∥∥ε−2

∫ t

0

∑
z⩾0

(
pε

t−s(x, z) − pε
t−s(x′, z)

)
dMs(z)

∥∥∥∥
n

. (102)

We call the terms on the right-hand-side J1 and J2, respectively. We get from (47) that

J1 ⩽ C(ε2|x− y|)α(ε4t)−1−α/2

Now, for J2, we have

J2
2 ⩽ Cε2|x− y|α

∫ t

0
(t− s)−(1+α)/2∑

z⩾0

(
pε

t−s+1(x, z) + pε
t−s+1(y, z)

)∥∥ε−2Zs(z)
∥∥2

n
ds

⩽ Cε−2|x− y|α
∫ t

0
(t− s)−(1+α)/2s−1∑

z⩾0

(
pε

t−s+1(x, z) + pε
t−s+1(y, z)

)(
(pε

s ∗ ε−2Z0)(x) + 1
)
ds

= Cε−2t−1/2t−α/2|x− y|α
(
(pε

t+1 ∗ ε−2Z0)(x) + (pε
t+1 ∗ ε−2Z0)(y) + 1 + 1

)
⩽ C(ε4t)−1/2(ε4t)−1−α/2(ε2|x− y|)α.

So
J2 ⩽ C(ε2|x− y|)α/2(ε4t)−3/4−α/4

and we conclude that (93) holds since (ε4t)−3/4−α/4 ⩽ T 1/4+α/4(ε4t)−1−α/2.
Finally we prove (94), noting similarly that∥∥ε−2(Zt(x)−Zt′(x))

∥∥
n
⩽
∥∥(pε

t−t′ ∗ε−2Zt′)(x)−ε−2Zt′(x)
∥∥

n
+
∥∥∥∥ε−2

∫ t

t′

∑
z⩾0

pε
t−u(x, z)dMt′(z)du

∥∥∥∥
n

.

(103)



WEAKLY ASYMMETRIC FACILITATED EXCLUSION PROCESS 23

We denote the terms on the right-hand side above by I1 and I2 respectively. We have, using
(92) and (93),

I1 =
∥∥∥∥ε−2∑

z⩾0
pε

t−t′(x, z)Zt′(z) − Zt′(x)
∥∥∥∥

n

⩽
∥∥∥∥ε−2∑

z⩾0
pε

t−t′(x, z)
(
Zt′(z) − Zt′(x)

)∥∥∥∥
n

+
∣∣∣∣∑

z⩾0
pε

t−t′(x, z) − 1
∣∣∣∣ ∥∥ε−2Zt′(x)

∥∥
n

⩽
∑
z⩾0

pε
t−t′(x, z)(ε4t′)−1−α/2(ε2|x− z|

)α + Cε|t− t′|1/2(ε4t′)−1

⩽ C(ε4t′)−1−α/2 ε2α(1 ∨ |t− t′|α/2) + Cε|t− t′|1/2(ε4t′)−1

⩽ C(ε4t′)−1−α/2 ε2α(1 ∨ |t− t′|α/2) + C(ε4t′)−1−α/2ε2α|t− t′|α/2.

Let us explain the steps used in the above series of inequalities.
• In the second line we have simply used the triangle inequality.
• In the third line, we have used Proposition 7.1 and the bound∣∣∣∣∑

z⩾0
1 − pε

t−t′(x, z)
∣∣∣∣ ⩽ Cε2|t− t′|1/2. (104)

Recall that pε
t−t′(x, z) correspond to transition probabilities of continuous-time discrete-

space random walks (see the discussion below Definition 5.1). Hence, the LHS of (104) is
the probability, for a random walk started at x at time t′ (let t′ = 0 for simplicity), to have
been killed by time t. This probability is bounded by the killing rate 1−µ

2 < Cε times the
expectation of the time spent at 0 by an auxiliary random walk having transition kernel
pR with µ = 1 (that is with no killing). For the latter random walk, the expectation
of the time spent at 0 is the same as for the discrete space-discrete time random walk,
with kernel denoted pn(x, z) in (34). It is well-known that the local time at 0 for such
random walks is of order

√
t (one may for instance consider that when at 0, the random

walk stays there for an independent time, geometrically distributed, while outside from
0 it behaves as the absolute value of the simple random walk). Hence, the bound (104)
holds.

• In the fourth line, we have used the bound∑
z⩾0

pε
t−t′(x, z)|x− z|α ⩽ C(1 ∨ |t− t′|α/2). (105)

This bound is proved in [Par19, Eq. (30) and Corollary 3.3] for the Robin heat kernel
pR under a different scaling of µ, and in particular, it holds for µ = 1. Now recall that
for any t > 0, x, z ∈ N, the Robin heat kernel pR is increasing in µ (see (35)), so that
(105) holds when µ = e−ε.

• In the last line we used ε4t, ε4t′ ⩽ T , and the fact that

ε2|t− t′|1/2 × (ε4t′)−1 =
(
(ε4(t− t′))1/2−α/2ε2α(t− t′)α/2

)
×
(
(ε4t)α/2(ε4t)−1−α/2

)
. (106)

This proves the desired bound for I1. Now we consider I2. We have, using (92)

I2
2 ⩽ Cε2

∫ t

t′
(t− s)−1/2∑

z⩾0
pε

t−s+1(x, z)
∥∥ε−2Zs(z)

∥∥2
n
ds

⩽ Cε2(ε4t)−2
∫ t

t′
(t− s)−1/2∑

z⩾0
pε

t−s+1(x, z)ds

⩽ Cε2(ε4t)−2
∫ t

t′
(t− s)−1/2ds = C(ε4t)−2ε2(t− t′)1/2,

where we have used that ∑
z⩾0

pε
s(x, z) ⩽ 1, (107)
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since the pε
s(x, z) correspond to transition probabilities of a random walk with killing. Therefore

I2 ⩽ C(ε4t)−1 × ε(t− t′)1/4 ⩽ C(ε4t′)−1−α/2ε2α|t− t′|α/2,

by the same argument as in (106). This proves (94). □

7.2. Construction and properties of the limit point. We are now able to obtain tightness
of {Zε

t }, and identify the law of any of its limit point, as follows:

Proposition 7.2 (Tightness). For any 0 < δ ⩽ τ , the laws of {Zε} are tight on the Skorokhod
space D([δ, τ ], C(R+)). Moreover, any limit point P is an element of C([δ, τ ], C(R+)).

For any θ ∈ [δ, τ ], define Lθ : C([δ, τ ], C(R+)) → C(R+) as the evaluation map at time θ.
Then, the process {Lθ+δ ; θ ∈ [0, τ − δ]} has the same distribution under P as the solution of
the stochastic heat equation (17) as defined in Definition 3.11, with initial condition Zini whose
distribution is the same as the one of Lθ under P.

Proof. The argument is exactly the same as in [Par19, Proof of Corollary 6.3]. The tightness
property is based on Proposition 7.1, together with Arzela-Ascoli’s Theorem. Continuity of
limit points follow from Proposition 7.1 and Kolmogorov’s continuity criterion. Finally, the
identification of limit points follows from the same arguments as in Section 6.2, replacing Z ε

by Zε in (63) (Proposition 7.1 replacing Lemma 6.3 in the control of the error terms). □
The next step consists in defining a limit point in C((0,+∞), C(R+)) (Lemma 7.3 below) and

identifying the initial condition. This means showing that the Duhamel form of the SHE (18)
is satisfied for all t > 0, with Zini = −2δ′

0, that is,

Zt(u) = dPDir
t (u, 0) +

∫ t

0
ds

∫
R+
dvPDir

t (u, v)Zs(v)ξ(s, v). (108)

Lemma 7.3. Let Qε denote the law of Zε on C((0,+∞), C(R+)). Then, there exists a measure
Q on C((0,+∞), C(R+)) which is a limit point of the sequence {Qε}ε on D((0,+∞), C(R+)).

Proof. This can be proved exactly as in [Par19, Lemma 6.5] thanks to Kolmogorov’s extension
Theorem. □

The identification of the initial condition follows a general argument, given in [Par19], based
on estimates on the first two moments given in the next two lemmas, which however are specific
to the δ′

0 initial condition and use arguments different from [Par19]. We start with some exact
computation for the first moment.

Lemma 7.4. Let {Zt} be distributed according to the measure Q defined in Lemma 7.3. For
any t > 0, and u ∈ R+, we have

lim
ε→0

E [Zε
t (u)] = E [Zt(u)] = dPDir

t (u, 0) = 1
2π

∫ +∞

−∞
e

−t
2 θ2+iθu(−4iθ)dθ, (109)

where we recall that dPDir
t (u, 0) is defined in (30).

Proof. Using the same steps as in the proof of Proposition 5.5 – see (53) in particular –

E [Zε
t (u)] = ε−2 ∑

v≥0
pε

tε−4(ε−2u, ε−2v)µy

= 1
2π

∫ ε−2π

−ε−2π
e

1
2

(
eiε2θ+e−iε2θ−2

)
ε−4t

eiθu (1 − e−2ε)(1 − e2iε2θ)
(1 − e−ε−iε2θ)(1 − e−ε+iε2θ)2dθ. (110)

Using the estimate (52), we see that the exponential term in the integrand of (110) is dominated
by e−2θ2t/5, so that we may apply dominated convergence to take the ϵ → 0 limit. It is easy to
see that the integrand converges pointwise to

e− θ2t
2 +iθu(−4iθ),

so that
lim
ε→0

E [Zε
t (u)] =

∫ +∞

−∞
e− θ2t

2 +iθu(−4iθ)dθ.
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This Gaussian type of integral can be computed explicitly as 2
√

2
π

u
t3/2 e

− u2
2t , which, by the

definition of the Dirichlet heat kernel from (19), equals 2∂vP
Dir
t (u, 0). Furthermore, we have

E
[
(Zε

t (u))2] ⩽ (C/T )2 by (92), so that the sequence is uniformly integrable. Hence we may
exchange the limit with the expectation, and obtain (109). □

We can conclude from Lemma 7.4 that if Zε
t (u) does converge as ε → 0 to some Zt(u) solving

the stochastic heat equation (17) with some deterministic initial condition Zini, then for all
t > 0, ∫

R+
dvPDir

t (u, v)Zini(v) = dPDir
t (u, 0). (111)

This suggests that Zini = −2δ′. However, in order to rigorously identify the initial condition,
we need to establish that (108) holds, and for that we will also need a second moment estimate.
Lemma 7.5. Fix T > 0 and consider {Zt}t∈(0,T ] distributed according to the measure Q defined
in Lemma 7.3 (restricted to the time interval (0, T ]). There exists a constant C = C(T ) such
that, for any u ∈ R+ and 0 < t ⩽ T , ∥∥Zt(u)

∥∥2
2 ⩽ C

(
dPDir

t (u, 0)
)2

(112)∥∥Zt(u) − dPDir
t (u, 0)

∥∥2
2 ⩽ C

√
t
(
dPDir

t (u, 0)
)2
, (113)

where ∥F∥2 :=
√∫

|F |2dQ.

Remark 7.6. The bounds (112) and (113) are different from those in [Par19, Lemma 6.6] which
is the analogue of Lemma 7.5 in the case of the Neumann boundary condition with narrow wedge
initial condition. The proof of [Par19, Lemma 6.6] uses the martingale decomposition (96) and
equation (100) above. These ingredients allow to mimic at the microscopic level the construction
of the solution to the SHE (similar to our Section 4). In our case, we did not manage to obtain
the discrete analog of (32) which would have been needed to complete the proof, because this
required much sharper heat kernel estimates. We eventually opted to use the exact computation
of limE

[
Zε

t (u)2] as ε → 0 which was done in the separate article [BC22a].
Proof. From [BC22a, Prop. 4.8], we have that for u1 ⩽ u2,

E[Zt(u1)Zt(u2)] = 42
∫

iR+1+η

dz1
2iπ

∫
iR

dz2
2iπ

z1 − z2
z1 − z2 − 1

z1 + z2
z1 + z2 − 1

e
tz2

1
2 −u1z1+

tz2
2

2 −u2z2z1z2, (114)

where η > 0 is any positive real number, and the expectation is taken with respect to the
measure Q. More precisely, [BC22a, Prop. 4.8] in the case n = 2 states that under the measure
Qε from Lemma 7.3, the limit as ε → 0 of E[Zε

t (u1)Zε
t (u2)] is given by the right-hand side of

(114). However, the case n > 0 of the same equation [BC22a, Eq. (4.20)] shows that higher
moments are uniformly bounded as ε → 0, which implies that the sequence of random variables
Zε

t (u1)Zε
t (u2) is uniformly integrable as ε → 0. Hence, the weak convergence to Zt(u1)Zt(u2)

implied by Proposition 7.2 holds as well in L1, so that (114) holds.
The evaluation of this double Gaussian integral is not trivial. To simplify its estimation, it is

convenient to use the shorthand notation

D(t, u) = 4
∫

iR

dz

2iπe
tz2

2 −uzz = 4
∫

iR+1+η

dz

2iπe
tz2

2 −uzz = dPDir
t (u, 0). (115)

The second equality follows from Cauchy’s theorem5 and the lack of residues between the vertical
lines iR and iR + 1 + η.

Using that for Real[z1 ± z2 − 1] > 0,
1

z1 ± z2 − 1
=
∫ ∞

0
dye−y(z1±z2−1),

5More precisely, we may apply the Cauchy theorem on the rectangle formed by the points −iR, iR, iR + 1 + η,
−iR + 1 + η. Since the function z 7→ e

tz2
2 −uzz has no residues inside the rectangle, the integral over the rectangle

equal zero. Moreover, due to the exponential decay of the integrand as the imaginary part increases, we see that
the difference between the integration along the segment [−iR, iR] or the segment [−iR + 1 + η, iR + 1 + η] goes
to zero as R goes to infnity. This proves that the two integral formulas in (115) are equal.
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we have that

E[Zt(u1)Zt(u2)] =
∫ ∞

0
dλ

∫ ∞

0
dµeλ+µ∂λ∂µD(t, u1 + λ+ µ)D(t, u2 − λ+ µ),

so that using the exact explicit expression for dPDir
t (u, 0) in (30),

∥Zt(u)∥2
2

dPDir
t (u, 0)2 = 1

4

∫ ∞

0
dλ

∫ ∞

0
dµeλ+µ∂λ∂µ

(
(u+ µ)2 − λ2

u2 e− λ2+µ2+2µu
t

)
.

Computing the derivatives in λ and µ, the integral can be evaluated using Mathematica, which
yields the explicit formula

∥Zt(u)∥2
2

dPDir
t (u, 0)2 =

e−u

(√
πet/4√

t

(
eu
(
erf
(√

t
2

)
+ 1

) (
t(u− 1) + 2u2)+ te

u2
t

(
erf
(

t−2u
2
√

t

)
+ 1

))
+ 2euu(t+ 2u)

)
4u2 .

(116)

We see that the maximum of this function is attained as u → 0, so that

0 ⩽ ∥Zt(u)∥2
2

dPDir
t (u, 0)2 ⩽ 1

8

(
√
πet/4√

t(t+ 6)
(

erf
(√

t

2

)
+ 1

)
+ 2(t+ 4)

)
. (117)

It can be checked that this expression behaves as 1 + 3
√

π
4

√
t + o(

√
t) as t → 0, so that on an

interval [0, T ], (117) is bounded by 1+C
√
t where the constant C depend on T . This immediately

implies (112), and, using Lemma 7.4, it also implies (113). □

7.3. Conclusion. Provided with Proposition 7.2 and Lemma 7.3, one can follow the argument
of [Par19, Lemma 6.7 and Theorem 6.8], and one obtains that {Zε

s }s∈(0,T ] converges as ε → 0
to a solution of the stochastic heat equation (17) on the time interval [0, T ] with Dirichlet
boundary condition, in the sense of weak convergence of probability measures on the path space
D((0, T ], C(R+)) endowed with the Skorokhod topology.

It remains to formally check that the initial condition is Zini = −2δ′
0 as we have claimed. We

need to check that the limit of {Zε
s }s∈(0,T ], denoted {Zs}s∈(0,T ], satisfies (108). Since Zs is a

solution of (2) on the space D((0, T ], C(R+)), we already know that for any 0 < s < t < T ,

Zt(u) = PDir
t−s(u, ·) ∗ Zs(·) +

∫ t

s
dτ

∫
R+
dvPDir

t−τ (u, v)Zτ (v)ξ(τ, v).

Hence, following [Par19, Section 6], we may write∥∥∥∥∥Zt(u) − dPDir
t (u, 0) −

∫ t

0
dτ

∫
R+
dvPDir

t−τ (u, v)Zτ (v)ξ(τ, v)
∥∥∥∥∥

2
⩽

∥∥∥PDir
t−s(u, ·) ∗ Zs(·) − dPDir

t (u, 0)
∥∥∥

2
+
∥∥∥∥∥
∫ s

0
dτ

∫
R+
dvPDir

t−τ (u, v)Zτ (v)ξ(τ, v)
∥∥∥∥∥

2
. (118)

This inequality holds for any 0 < s < t, so that in order to show that the LHS of (118) equal
zero, it suffices to show that the RHS vanishes as s → 0. Using the semi-group property,∥∥∥PDir

t−s(u, ·) ∗ Zs(·) − dPDir
t (u, 0)

∥∥∥
2
⩽
∥∥∥∥∥
∫
R+
dvPDir

t−s(u, v)
(
Zs(v) − dPDir

s (v, 0)
)∥∥∥∥∥

2

⩽
∫
R+
dvPDir

t−s(u, v)
∥∥∥Zs(v) − dPDir

s (v, 0)
∥∥∥

2

⩽
∫
R+
dvPDir

t−s(u, v)s1/4dPDir
s (v, 0)

⩽ s1/4dPDir
t (v, 0)
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where in the third inequality we have used Lemma 7.5. Hence we have obtained that

lim
s→0

∥∥∥PDir
t−s(u, ·) ∗ Zs(·) − dPDir

t (u, 0)
∥∥∥

2
= 0.

Now we turn to the second term to bound. By Ito isometry,∥∥∥∥∥
∫ s

0
dτ

∫
R+
dvPDir

t−τ (u, v)Zτ (v)ξ(τ, v)
∥∥∥∥∥

2

2
=
∫ s

0
dτ

∫
R+
dvPDir

t−τ (u, v)2E
[
Zτ (v)2

]
⩽ C

∫ s

0
dτ

∫
R+
dvPDir

t−τ (u, v)2dPτ (v, 0)2

= C

∫ s

0
dτGt(τ)

⩽ C

√
t

t− s

∫ s

0
dτ

1√
τ
dPt(u, 0)2

⩽ C

√
st

t− s
dPt(u, 0)2,

where in the first inequality we have used Lemma 7.5, and in the second inequality we have used
Lemma 4.1 (recall that the function Gt(τ) is defined in (31)). We conclude that

lim
s→0

∥∥∥∥∥
∫ s

0
dτ

∫
R+
dvPDir

t−τ (u, v)Zτ (v)ξ(τ, v)
∥∥∥∥∥

2
= 0,

so that (108) is satisfied for all 0 < t ⩽ T . This concludes the proof of Theorem 3.7.

Appendix A. Microscopic Cole-Hopf transform

Here we explain our choice of parameters (10) which permits to obtain the discrete stochastic
heat equation as in (11). We observe that Zt(x) is affected only by exchanging values η(x),
η(x+ 1). Therefore, one can check that

LZt(x) =
[
pσt(x)(1 − σt(x+ 1))(e2λ − 1) + qσt(x+ 1)(1 − σt(x))(e−2λ − 1)

]
Zt(x)

for any x > 0 and moreover
LZt(0) = p(1 − σt(1))(e2λ − 1)Zt(0).

Besides, the discrete Laplacian acts as:
∆Zt(x) =

[
e−λ(2σt(x+1)−1) + eλ(2σt(x)−1) − 2

]
Z(x)

for any x > 0. By identification we obtain the following conditions
ν = D(eλ + e−λ − 2) (119)
ν = D(2eλ − 2) − p(e2λ − 1) (120)
ν = D(2e−λ − 2) − q(e−2λ − 1). (121)

which, after resolution, give

λ = 1
2

log q
p
, D = √

pq, ν = q + p− 2√
pq. (122)

Finally, we need to define Z(−1) such that, at the boundary point x = 0, we get (νZ(0) +
LZ(0)) = D∆Z(0). This gives

ν = D

(√
p

q
− 2 + Z(−1)

Z(0)

)
if η(1) = 1 (123)

ν + q − p = D

(√
q

p
− 2 + Z(−1)

Z(0)

)
if η(1) = 0. (124)

With the choice of D made in (122), the last two conditions are in fact the same, and read

Z(−1) = µ Z(0) with µ =
√
q

p
. (125)
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