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Safety Monitoring of Neural Networks Using
Unsupervised Feature Learning and Novelty

Estimation
Arian Ranjbar, Sascha Hornauer, Jonas Fredriksson, Stella X. Yu, Ching-Yao Chan

Abstract—Neural networks are currently suggested to be
implemented in several different driving functions of autonomous
vehicles. While showing promising results the drawback lies in
the difficulty of safety verification and ensuring operation as
intended. The aim of this paper is to increase safety when using
neural networks, by proposing a monitoring framework based
on novelty estimation of incoming driving data. The idea is to
use unsupervised instance discrimination to learn a similarity
measure across ego-vehicle camera images. By estimating a
von Mises-Fisher distribution of expected ego-camera images
they can be compared with unexpected novel images. A novelty
measurement is inferred through the likelihood of test frames
belonging to the expected distribution. The suggested method
provides competitive results to several other novelty or anomaly
detection algorithms on the CIFAR-10 and CIFAR-100 datasets.
It also shows promising results on real world driving scenarios
by distinguishing novel driving scenes from the training data
of BDD100k. Applied on the identical training-test data split,
the method is also able to predict the performance profile of a
segmentation network. Finally, examples are provided on how
this method can be extended to find novel segments in images.

Index Terms—Autonomous Vehicles, Machine Learning, Safety
Systems, Monitoring.
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I. INTRODUCTION

Automated vehicles are expected to drastically change the
transportation industry, bringing economical, societal and in
particular safety benefits. With highly automated vehicles,
studies indicate that up to 50% of all road fatalities can
be prevented, [1]. However, in order to introduce fully au-
tonomous vehicles into the market they need to reach an
adequate level of safety, both for the user and the surrounding
traffic participants. This proves to be difficult, not only because
of uncertain intentions of other traffic participants but also
because of noisy sensor measurements of the surroundings
leading to a potentially false ego-state perception.

The traditional approach for validating automotive safety
functions is to statistically prove the validity by real world
driving, covering a very high mileage, in order to get confi-
dence in the safety argumentation, [2]. This works for super-
vised driving where lower safety requirements are sufficient,
since the driver is responsible for safety monitoring. As the
trend towards unsupervised driving is moving forward, this
puts stricter requirements on the safety guarantees, implying
that to use similar methods, i.e. real world driving, will
require unfeasible amounts of driving data, in the magnitude
of hundreds of millions of kilometers, see e.g., [2] and [3].

Fig. 1. The suggested method trains a CNN backbone through instance
discrimination, maps all training data into the feature space of the CNN and
estimate a distribution for the training data. During testing a queried image is
mapped into the same feature space and the likelihood of it belonging to the
training distribution is calculated. The likelihood is then used to determine
the novelty of the image. The idea is to run the novelty estimation in parallel
with other driving functions, as a safety measure, estimating the reliability of
the predictions or decisions given by those functions.

Researchers in the automotive safety area are developing
methods to avoid this, and the proposed methods found in the
literature can mainly be divided into two categories, analytical
and statistical methods.

Analytical methods are used to mathematically guarantee
safety constraints. These methods require a mathematical de-
scription of the system. In order to make these computationally
viable, the models are made simple, in most cases meaning
linear and only containing a few state variables to represent
the system. As unsupervised driving systems usually are of
high complexity, this limits the use of the analytical methods.
To make these methods more applicable, the system can
be divided into subsystems, which handle different tasks of
driving. For example perception, using one or several sensors
to build a model of the surroundings, see e.g. [4] or [5];
planning, building both the long term and short term trajectory
for the vehicle to follow based on the model from the per-
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ception, [6]; and control, executing the commands necessary
for the vehicle to follow the plan, see e.g. [7] or [8]; where
each task is analyzed individually. Other examples include
division into driving modes or Operational Design Domains
(ODDs), see [9]. The planning and control tasks can often
be verified by defining the corresponding model in a formal
language and then apply formal methods, proving that a failure
state is possible or impossible, see e.g. [10], [11] or [12]
for a general survey. Another technique commonly used in
trajectory planning is reachability analysis, where safety is
guaranteed by looking into all possible future scenarios of the
ego vehicle and surrounding traffic participants, ensuring no
intersections, [13].

Data driven, learning or other models of high complexity on
the other hand are hard to simplify enough where traditional
methods are viable. This includes deep learning methods
commonly used in many of the subsystems of an automated
vehicle, and in particular for perception. Although some at-
tempts have been made to formally verify neural networks they
are typically done for simple models with a few parameters,
few layers or in other ways limited architectures, see e.g
[14]. Instead safety arguments again rely on statistics, often
requiring a lot of resources due to extensive data collection
and annotation. Although data augmentation and large-scale
simulation of scenarios can be done, all possible configurations
of the world can never be captured. Methods such as neural
networks may also give false results with high confidence
even in environments or domains they were not trained in or
designed for, as shown in [15].

Lately complementary approaches to the traditional verifi-
cation methods have been studied using monitoring systems,
running in parallel to the driving functions. For tasks such as
control and planning this may involve monitoring the vehicle
states in order to reject trajectories during high levels of input
sensor noise resulting in unsafe motion planning, see e.g. [16]
and [13]. Similarly monitoring methods have been developed
for deep learning approaches rejecting predictions when con-
sidered unreliable due to the environmental conditions. This
can be achieved by comparing the similarity of the current
driving environment compared to the data used to train the
algorithms, [17]. By utilizing an unsupervised framework for
such comparison the analysis can be performed independently
of the architecture of the driving function.

This paper presents a framework for novelty detection mon-
itoring of driving environments for automated vehicles using
unsupervised learning. The idea of the monitoring framework
is to determine whether the vehicle has been exposed to
similar driving environments before or not, as illustrated in
Figure 1. If novelty is detected, predictions made by the
systems are less trustable and control decisions should be made
more conservative. The framework is built using Convolutional
Neural Network (CNN) backbones trained unsupervised via
a non parametric softmax, [18]. This paper gives a detailed
description of the novelty detection framework. The main
contribution is an extension of the method developed by
the authors in [19] providing in-depth analysis and a better

clustering approach to the original framework used to estimate
the novelty of the current driving environment.

In summary the contributions are:
• A novelty estimation framework using unsupervised fea-

ture learning [19], further developed utilizing a better
clustering approach and metric for the novelty estimation,
increasing the performance. This also allows the method
to be extended into finding novel segments of an image.

• Competitive results on pure anomaly detection on bench-
marking datasets (such as CIFAR-100 [20]) while still
being scalable to large driving datasets (such as BDD100k
[21]) for autonomous driving.

• An investigation into the correlation between the novelty
estimation and a typical driving function, e.g. segmenta-
tion using SegNet [22].

• Examples of applying the method to find novel segments
of an image.

The paper is organized in the following way. Section II gives
an overview of novelty estimation and the methodologies the
framework is based on. It also positions the framework in
relation to previous research. In section III, the framework is
presented in detail and in Section IV experimental results are
presented. Section V gives a brief discussion on the results,
the applicability of the framework and its limitations. Finally
section VI gives some concluding remarks.

II. RELATED WORK

In this section a brief review of uncertainty estimations
are given, the complementary use of monitoring systems
and how they relate to novelty detection. The common use
of autoencoders for novelty or anomaly detection will be
explored, and also alternatives such as Generative Adversarial
Networks (GANs) and metric learning. In particular why the
latter is suitable for this application, including that it can be
extended to process segments in addition to images.

Several attempts have been made on quantifying uncer-
tainty in neural networks, using different types of approaches.
Some focus on architectural changes as with Bayesian neural
networks, [23], or ensemble networks, [24]. Others focus
on modifying the the training procedure, using re-sampled
training datasets, [25], or Bayesian dropout, [26]. These types
of methods have all showed promising results in estimating
uncertainty, however, they all still operate within the training
domain. Similar techniques have also been developed to detect
adversarial changes in input data. Successful attempts such
as using influence functions, [27], tracing predictions back
to the training data gives better results operating within the
training domain than when queried with out-of-distribution
examples. Temperature scaling, [28], also works on the input
data by adding small perturbations, and evaluate changes of
the softmax score distributions as in [29].

Rather than applying architectural changes to the acting
networks, a monitoring system can run in parallel, with the
task of estimating the novelty of the input data compared to
the training data. This in turn can be used to estimate the
reliability of the predictions given by the acting networks.



Such systems have been previously proposed to increase the
safety in safety critical systems. Input reconstruction reliability
estimation, [30], showed promising results reconstructing an
input image from a driving network using a very limited
amount of parameters. The reconstruction error could in turn
be used as a reliability estimation of the network. However,
due to the computational limits at the time this was only tested
for low resolution images of simple test cases. This approach
has later been re-investigated and extended using more modern
techniques of autoencoders. In [17], an autoencoder is trained
in parallel to a driving network, reconstructing the input
images. Again, the reconstruction error could be used as a
novelty check of the input data compared to the training data.
The unsupervised nature of the autoencoder also makes it
independent of what functions it monitors as opposed to [30].

Autoencoders are also widely applied within the anomaly
detection domain, see e.g. [31], [32], where different architec-
tural variants have been suggested to increase the performance.
In [33], convolutional layers were used to increase the perfor-
mance of anomaly detection on images. It has also been shown
that density estimation in the latent space, using a Gaussian
mixture model [34] or autoregressive model [35], may improve
the accuracy, compared to using the reconstruction error as
a measurement of novelty. In [36] a variational autoencoder
[37] was implemented on driving data for novelty detection
and training de-biasing for end-to-end learning, where features
from the latent space were used for steering control.

Another method commonly used within the anomaly de-
tection domain, akin to autoencoders, are GANs. Instead of
an encoder and a decoder, a GAN trains a generator and
discriminator network as antagonists to generate predictions
with the former and judge them with the latter. In [38],
the anomaly detection is based on the generators ability to
represent a queried test image. By applying gradient descent
on a loss function (defined by pixelwise comparison of the
generated and queried image) the best feature representation
in the latent space of the generator can be found. The pixelwise
similarity in between the generated and queried image is
then used to evaluate anomalies. Similar techniques have also
been applied with different architectures of the generator and
discriminator networks, see e.g. [39].

While reconstruction methods seem to have dominated
the field lately, they may struggle in certain situations. For
example, crucial information may be lost during deconvolution
or max pooling. Because of this, more recent works have also
looked into alternatives such as metric learning. In [40], a
neural network is learned, mapping the training data into a
feature space with the goal of enclosing the features as small as
possible within a hyper-sphere. During testing, queries mapped
outside of the hyper-sphere are considered anomalous.

Recently, advances within metric learning have led to sig-
nificant improvements on the task of image classification, in
some cases approaching supervised performance [41], [42].
In [18], a Residual Neural Network (ResNet) backbone is
trained unsupervised using a non-parametric softmax layer for
classification achieving state of the art results of ImageNet,

[43]. Further research has also shown that similar training
approaches can be extended to work for image segmentation,
[44].

In this paper we will explore the use of metric learning
for novelty detection. Rather than enclosing features within
a hyper-sphere as in [40], unsupervised feature learning [18]
will be used to map training instances onto a hyper-spherical
feature space, that is the most disciriminative among them.
The training data is then modeled through a von Mises-Fisher
distribution and the novelty of test data is estimated through its
probability of being sampled from the same distribution. The
metric learning based novelty detection framework can then
be used to monitor driving scenes, as have been previously
suggested with the use of autoencoders, [17].

III. NOVELTY ESTIMATION FRAMEWORK

The idea of a novelty detection monitoring framework is
to estimate the similarity of a test image y compared to
the training dataset X = {x1, x2, . . . , xn} ⊂ X , for some
input space of images X . In this way, the novelty of y can
be determined and further indicate the expected performance
of learning based methods trained on X when processing y,
independent from the underlying task.

To reduce the complexity of comparing raw images an
embedding function projecting onto a d-dimensional feature
vector is learned f : X 7→ Rd, which significantly reduces
the dimensionality of the problem while retaining important
visual information. Since no labeled examples of novel or
out-of-distribution cases exist (or otherwise they would not
be novel), a typical classification approach cannot be applied
to train the network. Instead an unsupervised training approach
is implemented using instance level discrimination, with the
proxy-task of using each individual image as its own class.
This results in a feature embedding that can capture visual
similarities in images [18].

In section III-A and III-A1 a summary of unsupervised
feature learning from [18] is given, followed by the adaption
for the novelty estimation setting in section III-A2 and III-A3.
An overview of the approach can be found in figure 2.

A. Unsupervised Feature Learning

Applying unsupervised feature learning, the feature embed-
ding is constructed using a convolutional neural network fθ,
parameterized by θ. The network is trained through the proxy
task of identifying each instance in the training data. In other
words, each training image is assigned its own class and the
task of the network is to classify each image as itself. For
regular classification problems, such networks are often trained
using a regular softmax layer. In this case, the probability of
image x being of class ci (corresponding to image xi) is thus,

P(ci|v) =
exp(wT

i v)∑n
j=1 exp(w

T
j v)

(1)

where v = fθ(x) and wj is a weight vector for class cj
essentially serving as a prototype for the corresponding class.



Fig. 2. In the figure the proposed framework is divided into three parts, illustrating the pipeline. First a CNN backbone is trained using non-parametric
softmax with the proxy task of instance discrimination. Once the network is trained, each training image is passed through the network and the corresponding
feature is extracted, before the softmax layer. Each image then has a corresponding feature in the spherical feature space, due to the normalization layer. In
the second step a von Mises-Fisher distribution is estimated for the training data features. Finally in the third step testing can be done by passing a test image
through the same CNN network and estimate the likelihood of the test feature being sampled from the von Mises-Fisher distribution. The likelihood is used
as a measure of novelty.

In other words, wT
j v quantifies how well v matches class cj

or equivalently the similarity between x and xj .
The fundamental problem with this setup is the similarity

evaluation which is done implicitly through the prototype
vectors, wj . Each feature vector, v, is formed to be evaluated
towards these prototypes, via a fully connected layer, which
leaves no room for explicit comparison between features. To
combat this, a non-parametric softmax [18] is implemented
replacing wT

j v with vTj v where vi = fθ(xi) (using a normal-
ization layer to ensure ∥v∥ = 1). Equation (1), can then be
expressed as

P(ci|v) =
exp(vTi v/τ)∑n
j=1 exp(v

T
j v/τ)

(2)

where τ controls the density of the distribution of {vi} on the
hyper-sphere, which will show to be a vital part of the novelty
estimation. Additionally, since this feature embedding allows
for explicit comparison between features, it induces a metric
of similarity in the corresponding feature space.

1) Training: The learning objective of the feature embed-
ding is simply maximizing the joint probability determined
from (2) over all classes (i.e. images), or equivalently mini-
mizing the log-likelihood function

θ̂ = argminθ −
n∑

i=1

logP(ci|fθ(xi)). (3)

Training such a model poses several computational chal-
lenges, in particular for large datasets. For each step it is
required to calculate the collection of feature vectors for the
non-parametric softmax layer calculations. This can be solved
by storing all the features, V = {v1, v2, ..., vn}, of the
training data in a memory bank. This also simplify the training
procedure where the features from the previous iteration can

be used during optimization of θ through stochastic gradient
descent. In other words, while calculating the feature vectors
for step t + 1 (i.e. Vt+1), Vt is used, where V0 is initialized
as unit random vectors.

Although the memory bank significantly simplifies the cal-
culation of the non-parametric softmax, it is still computation-
ally inefficient when dealing with large training datasets. This
is due to the calculation of the softmax (see Eq. (2)) where the
normalization factor i.e. denominator Z =

∑n
j=1 exp(v

T
j v/τ)

may involve hundreds of thousands of terms since there is one
class for each training image. This can be solved by using a
negative sampling model where for the real data point x with
feature v, m negative samples, v1, ..., vm ∈ V \{v}, are drawn
from the memory bank. Using the true data point together with
the negative sample during computation of Z would speed
up the calculations when m << |V|. However, to cover a
large enough subset of V to give a sufficient approximation,
m still needs to be large. Instead this is solved by using Noise-
Contrastive Estimation (NCE), see e.g. [18] and [45],

J(θ) = −(EPd
[log h(ci, v; θ)] +mEPn

[log(1− h(ci, v
′; θ))])

(4)
where Pn denotes the uniform noise distribution (of negative
samples) considered to be m times more common than the
true samples, P the true data distribution, and

h(ci, v) = P(D = 1|ci, v) =
(ci|v)

P (i|v) +mPn(i)
. (5)

The learning task now changes to discriminate between true
and noise samples allowing the use of smaller values of m.

2) Improving training: When using driving data to train
the feature embedding, it is possible to improve the result by
extending the proxy task to incorporate actions. Since most
driving data is collected through driving, the current action



taken by the driver is automatically given while collecting
other sensor data. By redefining the driver scenes to not only
include an image but rather a collection of images from the
past and the future combined with actions, a better understand-
ing of the novelty of the environment can be inferred, [46].

For time step t the driving scenario st is thus defined as,

st = {(xτ , aτ ) : τ ∈ {t− tmin, ..., t, ..., t+ tmax}} (6)

where {xτ}τ∈{t−tmin,...,t+tmax} are the tmin + tmax +1 consecu-
tive frames and {aτ}τ∈{t−tmin,...,t+tmax} are the corresponding
actions at ∈ A for some action space A. The actions are
represented by action probability vectors [47], extended to
the dimensionality of the output from the convolutional layer
where the actions are concatenated with the image data.

In addition, when training on the present and previous
data, i.e. st = {(xτ , aτ ) : τ ∈ {t− tmin, ..., t}} the actions
can be used for performance evaluation, in between training
epochs, through prediction of {aτ}τ∈{t+1,...,t+tmax}. While still
using instance discrimination for the actual training itera-
tions, weighted k-nearest neighbor can be used to predict
future actions on a smaller validation set, Xval, after each
training epoch. For a validation scenario sval

j ∈ Xval, it is
first mapped into the feature space vval

j = fθ(s
val
j ). In the

feature space it is compared to the current stored features
from last training epoch, V finding the k-nearest neighbours
with respect to cosine similarity as metric, d = cos(vval

j , vi)
vi ∈ V . The top k nearest neighbors {vi}i∈Nk

are then used
to predict the future actions of sval

j through weighted voting,
where for action a ∈ A the weight is calculated through
wat =

∑
i∈Nk

exp (d/τ)1(ati = a).
The aim of introducing this classification problem of pre-

dicting the upcoming actions of a particular test scenario, by
looking into similar neighbors, is to increase the accuracy
while also preventing overfitting. After the initial epochs of
training the action prediction classification accuracy is used to
determine model performance.

3) Novelty Estimation: The final step is to estimate the
novelty of a new data point y compared to the training dataset
{xi}. Using the final feature embedding, the training data can
be mapped as features V = {vi : vi = fθ(xi)} onto the d− 1-
dimensional unit hyper-sphere, where dim vi = d. Assuming
the training data is normally distributed on this sphere by the
construction of the feature embedding, a von Mises-Fisher
distribution can be fitted to the collection of feature vectors
V , {

ϕ(v;µ, κ) = Cd(κ) exp(κµ
T v)

Cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)

(7)

where κ ≥ 0 is the concentration parameter of the distribution
(similar to how τ controls the density in the construction of the
feature embedding), ∥µ∥ = 1 is the mean directional feature
vector and Iα is the modified Bessel function of the first kind
where α = d/2−1. Contrary to the training the distribution of
training data is now considered to be known. The novelty of a
new datapoint y is then estimated from the likelihood of v =
fθ(y) belonging to the training distribution, ϕ(v;µ, κ) |µ, κ.

IV. EXPERIMENTS

In this section three experiments are demonstrated to bench-
mark the proposed method. The first experiment benchmarks
the method against some state of the art anomaly detection
algorithms on commonly used datasets for such tasks. The
second experiment shows the potential on driving datasets
using real world driving data. Finally, the third experiment
compares the novelty estimation to performance degradation
in a driving function. The aim of these experiments are to
show that the presented method gives competitive results in
benchmarks, that it can be applied to driving datasets and
potential use cases in automated driving.

A. Anomaly Detection Benchmark

Using the experimental setup from [40] on CIFAR-10, [20],
expanded upon in [19] for CIFAR-100 [20], one class is
considered to be in distribution and the rest anomalies. In total,
each dataset D is split into ND classes, and corresponding
ND experiments are performed. For each class, a subset is
used for training considered to belong to the true distribution
of data. The rest is the used for testing to evaluate the
performance of the model. By using the true labels (i.e.
whether the test image belongs to the true data distribution or
anomalies), the area under the receiver operating characteristic
curve (AUROC) is used as performance metric. For CIFAR-
100 the 20 superclasses are used as labels, instead of the 100
regular classes, to reduce the number of experiments. The
benchmarking is done against a mix of conventional methods,
autoencoders, GANs and metric learning based approaches,
in addition to the original approach proposed in [19]. The
benchmarked methods used are:

• One-Class Support Vector Machine (OC-SVM), [48]
• Deep Convolutional AutoEncoder (DCAE), [31]
• Deep AutoEncoding Gaussian Mixture Model

(DAGMM), [34]
• Latent Space Autoregression (LSA), [35]
• Anomaly Detection with Generative Adversarial Network

guiding marker discovery (AnoGAN), [38]
• Anomaly Detection with Generative Adversarial Net-

works (AD-GAN), [49]
• Unsupervised learning of the Set of Local Maxima (LM),

[50]
• One-Class Deep Support Vector Data Description

(SVDD), [40]
• Unsupervised Feature Learning with the Gaussian Esti-

mation and Mahalanobis Metric (GM), [19]
1) Hyperparameters: The proposed model use a ResNet-

18 [51] as backbone network, encoding a 128-dimensional
feature vector for each image. The network is trained using the
non-parametric softmax layer using stochastic gradient descent
with momentum 0.9, batch size 32 and weight decay 4×10−5.
The learning rate is initialized to 0.01 and decreased by 10%
every 30 epochs. The von Mises Fisher distribution estimation
is done through expectation–maximization and asymptotic
approximation of κ, as described in [52].



2) Results: Results on CIFAR-10 are given in Table I. Each
row corresponds to one experiment where the denoted class is
considered to be in distribution, and each column contains the
corresponding AUROC value for the method as a classifier
between in distribution and novel images in the test set.
The suggested approach (abbreviated vMF-LE) outperforms
the other methods in all but three classes. In a similar way,
AUROC is reported for CIFAR-100 on the 20 superclasses in
Table II, where the proposed method again outperforms the
other methods on most classes.

B. Novelty Estimation in Driving Data

The second experiment investigates novelties in driving
scenes from the Berkeley DeepDrive dataset (BDD100k), [21],
showing the applicability for autonomous driving. BDD100k
consists of 100k 1280x720 pixel images collected from driving
in the United States. The data is mostly collected in San
Francisco and New York to capture a wide variety of sce-
narios and attributes. Among the labels time of day, weather
conditions and locations such as highway, city, parking lot etc
is annotated, which makes the dataset suitable for this kind of
benchmark. It also contains object labels for traffic participants
and other relevant traffic objects such as traffic signs. The
dataset is by default split into 70,000 images for training,
20,000 for testing and 10,000 for validation by default.

BDD100k also contains a subset BDD10k of 10k images
where segmentation masks are provided. Each pixel is labeled
with one of 20 classes ranging from road, vegetation and other
background categories such as buildings, to traffic participants
such as cars, pedestrians and motorcycles, among other things.

1) Experiment setup: As previously discussed, there are
no predefined novelty scenarios for autonomous driving. In
order to benchmark the method such scenarios are created
by omitting certain properties from the training dataset. By
querying the annotated labels for weather data and the time
of day, BDD100k is divided into several subsets found in
Table III. The training is done on good conditions, e.g. clear
weather during daytime, and then the testing is done on both
good and bad conditions, see Figure 3 for examples. The same
hyperparameters are used as in the setup from the preceding
experiment.

The method is benchmarked in this way against an autoen-
coder, since autoencoders have been the predominant tech-
nique suggested for novelty estimation within the autonomous
driving domain. Using the best performing architecture of the
autoencoder the comparison is made against the DCAE, [31].
The original structure is applied with 128, 64, 32 x (5x5x3)-
filters in the encoder and symmetrical decoder replacing max-
pooling with upsampling. The training is done in 250 epochs
using mean squared error loss, batch size 32 and fixed weight
decay of 10−6. The reconstruction error is used as a measure-
ment of similarity to the training data compared against the
likelihood from the proposed model.

In addition, the BDD10k subset is used to show that the
method works even under small semantic changes to the
images. By querying the segmentation masks the dataset is

Fig. 3. Examples of the different conditions, upper left shows clear weather
during daytime, upper right rain during daytime, lower left clear weather
during dusk/dawn and finally lower right shows clear weather during the night.

divided into a training set without any pedestrians, and then a
test set with and without pedestrians. The segmentation mask
is used rather than the object labels to ensure that all images
containing pedestrians are removed from the training set, since
some training images might contain pedestrians not annotated
in the object data. Finally, the action data inclusion is tested
using A = {go straight, stop or slow, turn left, turn right}
and three past and future frames, tmin = tmax = 3. The three
past frames are used in the training and the three future frames
are used to monitor the network performance of predicting
actions.

2) Results: The results can be found in Table IV, where
AUROC is used again to report the performance of the model
as a classifier between images considered to be in distribution
or novel. Naturally it would be challenging to achieve high
performance since there are a lot of similarities in between
the classes of images, in particular rainy scenarios or scenes
from dusk or dawn in relation to the clear daytime images (see
Figure 3 for reference). This can be seen in particular for the
night time images where higher performance is accomplished.

In the second part of the experiment, using BDD10k to
exclude images containing pedestrians, an AUROC of 72.6%
is achieved when images in the test dataset containing pedestri-
ans are considered novelties. This is further increased to 79.2%
when including actions in the images, as can be expected since
driving scenarios where pedestrians are present most likely
involve different driving behaviors.

C. Driving Task Performance Prediction

Up until now each experiment included labels in the testing
phase in order to benchmark the performance. In the third
experiment the novelty estimation will instead be used as an
accuracy prediction and confidence estimation for a typical
driving function. Using a similar experimental setup as in [19],
the correlation of the novelty estimation is evaluated against
a basic segmentation network, SegNet [22].

1) Experimental Setup: Similar to the previous setup the
data is divided into different categories based on the labeling,
this time for day and night time. As segmentation labels are



TABLE I
AVERAGE AUROC IN % (OVER 10 RUNS) FROM NOVELTY DETECTION ON CIFAR-10. THE IN-DISTRIBUTION CLASS IS NOTED IN THE LEFT COLUMN.

OC-SVM DCAE ANO-GAN DAGMM AD-GAN DEEP
SVDD

Local
Maxima LSA GM vMF-LE

airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

61.6
63.8
50.0
55.9
66.0
62.4
74.7
62.6
74.9
75.9

59.1
57.4
48.9
58.4
54.0
62.2
51.2
58.6
76.8
67.3

67.1
54.7
52.9
54.5
65.1
60.3
58.5
62.5
75.8
66.5

41.4
57.1
53.8
51.2
52.2
49.3
64.9
55.3
51.9
54.2

64.9
39.0
65.2
48.1
73.5
47.6
62.3
48.7
66.0
37.8

61.7
65.9
50.8
59.1
60.9
65.7
67.7
67.3
75.9
73.1

74.0
74.7
62.8
57.2
67.8
60.2
75.3
68.5
78.1
79.5

73.5
58.0
69.0
54.2
76.1
54.6
75.1
53.5
71.7
54.8

76.6
69.6
79.0
74.5
71.9
72.0
77.9
70.3
77.4
76.9

80.2
78.3
71.1
72.1
69.5
79.8
82.4
77.2
83.6
80.2

Average 64.8 59.4 61.8 53.1 55.3 64.8 69.8 64.1 74.6 77.4

TABLE II
AUROC (%) OVER THE 20 SUPERCLASSES OF CIFAR-100.

Superclass OC-SVM DAGMM AD-GAN vMF-LE
Aquatic mammals 68.0 43.4 63.1 77.1
Fish 63.1 49.5 54.9 75.9
Flowers 50.4 66.1 41.3 73.7
Food container 62.7 52.6 50.0 70.3
Fruit 59.7 56.9 40.6 72.1
Devices 53.5 52.4 42.8 74.6
Furniture 55.9 55.0 51.1 73.8
Insects 64.4 52.8 55.4 77.8
Carnivores 66.7 53.2 59.2 74.8
Man-made things 70.1 42.5 62.7 81.1
Natural scenes 83.0 52.7 79.8 73.0
Herbivore 59.7 46.4 53.7 71.0
Mammals 68.7 42.7 58.9 74.0
Invertebrates 65.0 45.4 57.4 79.5
People 50.7 57.2 39.4 68.0
Reptiles 63.5 48.8 55.6 64.6
Small mammals 68.3 54.4 63.3 74.9
Trees 71.7 36.4 66.7 81.4
Vehicles 1 50.2 52.4 44.3 68.6
Vehicles 2 57.5 50.3 53.0 77.0

TABLE III
THE SUBSETS USED IN THE EXPERIMENTS. THE NUMBER OF FRAMES AND
DESCRIPTION OF EACH SUBSET ARE INCLUDED. TRAINING IMAGES WERE

EXTRACTED FROM THE TRAINING PART OF BDD100K AND BDD10K,
AND TESTING IMAGES FROM THE VALIDATION PART.

BDD subset # frames Description
Clear training: 12,454 weather: clear
Daytime test: 1,764 time: daytime

Rain 396
weather: rainy
time: daytime

Dusk 778
weather: all

time: dusk/dawn

Night 3,929
weather: all
time: night

No pedestrian
training: 4571

test: 621
No segmented

pedestrian

Pedestrian 379
Contain segmented

pedestrian

TABLE IV
REPORTED AUROC IN SIX EXPERIMENTS. THE FIRST FOUR EXPERIMENTS
USE A MODEL TRAINED ON CLEAR WEATHER DURING DAYTIME AND THE
INTRODUCED NOVELTIES INCLUDE RAIN, DUSK/DAWN, NIGHT AND ONE

ALL THREE CONDITIONS WHERE INCLUDED. THE FIFTH EXPERIMENT USE
A MODEL TRAINED ON DATA WITHOUT PEDESTRIANS, WHERE IN THE

TEST PEDESTRIANS ARE INTRODUCED AS NOVELTIES. FINALLY THE SAME
EXPERIMENT IS DONE BUT THREE CONSECUTIVE FRAMES ARE USED

INSTEAD OF A SINGLE IMAGE TOGETHER WITH ACTIONS.

Model Rain Dusk Night All Ped. Ped.Act.
DCAE 61.2 64.0 78.0 75.0 - -
vMF 75.7 69.0 80.4 78.3 72.6 79.2

required, the subset of BDD100k providing this information
(BDD10k) is used. 2972 of these images contain both a
segmentation mask and descriptive labels such as time and
weather. 829 of the images are taken during daytime and
clear weather, of which 729 are used for training and 100 for
testing. The same hyperparameters are used as in the previous
example.

In parallell a SegNet model is trained using the architecture
from [22], i.e. 13 convolutional layers in the encoder. The
model is trained using stochastic gradient descent with batch
size 8, learning rate 0.1 and momentum 0.9.

2) Results: In Figure 4 the novelty of the data is plotted
against the segmentation loss from the SegNet model. Overall
the segmentation loss is increasing the more visual dissimilar
the test image is from the training data. Although there is
some variance due to the architectural differences between
the models, in other words the SegNet model may generalize
better in some cases.

V. DISCUSSION

In this section a deeper look into the results will be given
explaining some of the performance variances in between
the experiments. Then a brief discussion on the limitations
of the study is presented and some potential future research
directions.

A. Performance

As seen in the first experiment the model performs well on
CIFAR-10 and CIFAR-100. It also maintains the performance
on the driving dataset BDD100k, both distinguishing between



Fig. 4. Segmentation loss plotted against the negative log-likelihood of the
image to belong to the true distribution. Images with higher probability of
being novel generally have a higher segmentation loss.

different contexts in the form of weather but also smaller
semantic differences such as whether pedestrians are included
or not. In particular it keeps a higher relative performance
compared to the autoencoder, even under less contextual
changes, as in between clear weather and rain. The main
difference between the two experiments is that there exists
a clear semantic threshold in between the classes for CIFAR.
For example, there is no doubt whether an image in CIFAR-
10 is a cat or an airplane. However, for the real world driving
scenarios there are several overlaps in between the classes.
Consequently an experiment of this nature will never achieve
as high performance as when using discrete semantic classes.
To illustrate this, a few examples are gathered in Figure 5
showing the overlap between labels as well as misslabeling.

The larger spread in training data for the scenario ex-
periment is also evident when compared to the experiment
including and excluding pedestrians. In the first case, several
examples of what is considered novel scenarios in the test
data, are present in the training data. However, in the second
case, a better split is made through the use of the segmentation
mask with less overlap in between labeling, i.e. there might
be a better consensus of what represents a pedestrian in
contrast to clear and cloudy weather. Thereby a relatively
high performance is achieved in the pedestrian/no pedestrian
scenarios, even though they pose a greater challenge in theory
due to less visual dissimilarity in the test set.

On the same note, pure benchmarking performance can be
increased by using a multimodal mixture of von Mises-Fisher
distributions, but at the cost of generality. This is evident in
scenarios where underlying substructures are known, such as
for classification data. In Figure 6 a t-SNE plot can be found
illustrating the training features when using five classes, as
being in distribution, from CIFAR-10.

Another potential performance increasing modification
could be joint optimization of the feature extracting network
and von Mises-Fisher distribution fitting, as in [34], but is also

Fig. 5. Images with ambiguous labels which impact the quantified perfor-
mance. Both images in the first row are visually close to clear daytime images
but are labelled as ”raining, daytime” and ”clear, dusk/dawn” respectively.
The opposite case is shown in the second row where images are labeled as
”clear, daytime” but are visually close to raining (left) and dusk/dawn (right)
conditions. The third row shows examples of obvious labeling mistakes, the
left being labeled as raining and the right one as night time.

Fig. 6. T-SNE plot of training features from CIFAR-10 when using five
classes for training, each represented by a different color.

left out of this study.

B. Driving Scene Novelties

The experiments in section IV rely on artificially generated
novelties in the test data. Instead of leaving out parts of the
data, the full BDD100k dataset can be used for training. In
this way examples of typical novelties to all driving data can
be found. In figure 8 some of the images with least probability
of belonging to the same distribution as the training data are
listed, with corresponding human interpretation of why they
may be considered novelties.



Fig. 7. Novel segments highlighted with a red to yellow color, and in distribution segments with a light blue to dark blue color, representing the likelihood of
being drawn from the training distribution. In the upper left image pedestrians close to the car are highlighted as novelties, while the sky, buildings and other
commonly appearing surroundings are considered in distribution. In the upper right image a very dirty windshield is included, marking most of the image as
novel apart from the sky due to the occlusion. In the lower left image there is an reflection of a taxi receipt printer considered novel, with a similar scenario
in the final image where a sign is reflected onto the hood of the car.

Fig. 8. Outliers the method ranks as having low probability of belonging
to the training data. Many contain a miscoloration (a), misalignment (b),
occlusions (a, e), blur (d,a) or a combination of them. Others without these
defects miss visible road (c,f), show rare road signs (g), contain road works (j),
include construction equipment/crane (k), have obstructions/reflections (h,i) or
show cloud shapes, rare in this dataset (l).

1) Unsupervised Segmentation: Rather than relying on hu-
man interpretations, the method can be extended to work on
segments of images, with the aim of finding the particular
parts of the images contributing to the novelty. Following the
methodology of [44] this process can be divided into three
parts, first using a CNN to construct a pixel-wise embedding
of an image, second a clustering method to partition these
pixel embeddings into a segmentation and finally and third

applying metric learning for clustering of the segments.
In other words, fθ : X 7→ Rd×N , where N is the number

of pixels of x ∈ X . Similar to how the distribution of features
of all images V could be estimated by a von Mises-Fisher
distribution, the goal is now to represent the distribution of
pixels by a mixture of k such distributions with uniform prior,

F (v|Θ) =

k∑
s=1

1

k
fs(v|µs, κ) (8)

where fs is given by (7) with parameters µs and k, and
Θ = {µ1, ..., µk, κ}. Again, let V = {v1, ..., vN} be the set
of embeddings, but this time for each of the pixels and let
Z = {z1, ..., zN} where zi = s denotes if pixel embedding vi
(i.e. the i:th pixel) belongs to segment s. The aim is then to
maximize the log-likelihood given by,

logP (V,Z|Θ) =
∑
i

log
1

k
fzi(vi|µzi , κ), (9)

which is done through expectation maximization.
Finally the segment sorting is done by defining a prototype

representing each segment. The natural selection of such
vector is the mean direction vector µs of all embeddings within
a segment. The network can now be trained in a similar way as
for the image embeddings in the original method. Each pixel
embedding vi can be compared to the segment prototypes µs

through cosine similarity.
2) Novel Segments: Four test examples of running the un-

supervised segmentation on BDD100k, pre-trained on Pascal



VOC2012 [53], as in [44]; can be found in figure 7. With the
help of this approach segments in the test images considered
to be novel, compared to segments in the training data, can
be highlighted. Even if the examples in figure 7 contain
human interpretations, this approach may help with better
understanding the context of a novelty in an automated setting.

C. Limitations

As discussed before, previous studies such as [17] have
shown how novelty estimation can be used to handle un-
certainties in predictions by choosing conservative driving
actions. Although the third experiment shows how the sug-
gested method can be used as performance prediction, no
investigations are made into how to relate the magnitude of the
estimation to physical driving actions. Such systems may also
be able to collect data when encountering novel environments
to retrain for similar scenarios in the future. The added benefit
of using metric learning is the access of a metric which can
relate the novel scenarios to the training data, for example
indicating degree of sparseness. This can be applied to already
existing datasets for use cases such as retrieving instances of
a particular types of scenarios, by querying an example.

By using unsupervised learning, novelty detection can be
used as a monitoring function independent of the underlying
systems. However, as some studies have shown [30] [36],
using knowledge of the underlying driving tasks, i.e. applying
supervised or semi-supervised methods, additional information
can be extracted for increased performance, at the cost of
generality. Such systems might be able to run in parallel but
are left out of this study.

VI. CONCLUSION

This paper introduced a novelty estimation algorithm based
on unsupervised feature learning and von Mises-Fisher cluster-
ing. The presented experiments show promising results com-
pared to current state of the art algorithms for novelty detection
on the benchmarking datasets CIFAR-10 and CIFAR-100.
In particular the method is applicable on real world driving
data, where novel driving scenes could be distinguished with
variable performance depending on the visual differences in
relation to the training data. An example of how the novelty
estimation could be used as a general monitoring system
is given, where performance degradation in a segmentation
network could be predicted. Finally, qualitative examples of
novel segments in images were given to indicate a potential
future use case.

The suggested method expands upon previous research
regarding safe autonomous driving in general and monitoring
of machine learning algorithms in particular. Although it is
not a complete solution to the safety challenges it provides an
additional layer of safety for machine learning based driving
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