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Abstract

This paper presents a mathematical model for tumour-immune response interactions in the per-
spective of immunotherapy by immune checkpoint inhibitors (ICIs). The model is of the integro-
differential Lotka-Volterra type, in which heterogeneity of the cell populations is taken into account
by structuring variables that are continuous internal traits (aka phenotypes). These represent a
lumped “aggressiveness”, i.e., for tumour cells, malignancy understood as the ability to thrive in a
viable state under attack by immune cells or drugs - which we propose to identify as a potential of
de-differentiation -, and for immune cells, ability to kill tumour cells, in other words anti-tumour
efficacy. We analyse the asymptotic behaviour of the model in the absence of treatment. By means
of two theorems, we characterise the limits of the integro-differential system under an a priori con-
vergence hypothesis. We illustrate our results with a few numerical simulations, which show that our
model exemplifies the three Es of immunoediting: elimination, equilibrium, and escape.

Keywords: Tumour-Immune interactions, Phenotype-structured model, Asymptotic analysis, Immune
checkpoint inhibitors. 2020 MSC: 35B40, 35F50, 35Q92, 92-10, 92C50, 92D25

1 Introduction
In the field of oncology, several clinical and experimental studies concur to show that the immune system
plays a decisive role, providing tumor control, long-term clinical benefits and prolonged survival [24].
Nevertheless, the anti-tumour immune response is an extremely complex process that depends on many
factors. In this context, mathematical models can help understand the interactions between tumour
growth and the immune response.

In the present paper, we propose an integro-differential equations based model, designed to analyse
tumour-immune interactions between cell populations and the asymptotic behaviours of these popula-
tions. We follow the principle of modelling cell population heterogeneity by structuring them by relevant
internal traits (aka cell phenotypes), as initiated in [13] and partially reviewed in [6].

Deterministic phenotype-structured models, which are usually stated in terms of non-local partial dif-
ferential equations or integro-differential ones have been widely used to describe phenotype heterogeneity
in tumour cell populations. In these models, the phenotypic state is represented by a continuous real
variable x, modelling different biological characteristics such as viability and fecundity, see [2, 3, 12, 18]
and the references therein.

To the best of our knowledge, the first phenotype-structured model for tumour-immune interactions
was proposed by Delitala and Lorenzi [7], where a tumour cell population characterised by heterogeneous
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antigenic expressions is exposed to the action of antigen-presenting cells and immune T-cells. More
precisely, their model incorporates five populations of cells. All populations but one are assumed in [7]
to be structured by a real continuous variable in [0, 1] representing an internal phenotypic state of the
cell. Their model reproduces well the selective recognition and learning processes in which immune cells
are involved. Our model, which belongs to the category of non-local Lotka-Volterra systems, has been
designed to offer a rationale for the use of immune checkpoint inhibitors [22].

Such models, which can be derived from stochastic individual-based models [5], are known to possibly
lead to the concentration of populations on one or several phenotypes, which will be shown in the model
described below for the tumour cell population, under restrictive assumptions. The original motivation
for this work is the article [18], in which an integro-differential system for the time evolution of densities
of cancer and healthy cells, structured by a continuous phenotypic variable, representing their level of
resistance to chemotherapy to which they are exposed is studied. In a completely different context,
which is the application to ICI immunotherapy, we will here make use of similar methods of asymptotic
analysis.

Main theoretical and numerical results. In summary, we identify the possible (generally unique)
non-trivial limits the solution to the integro-differential system may have. More precisely, under the strong
a priori assumption that the density of cancer cells converges, we prove that its limit, when non-zero, is
a weighted Dirac mass. We provide in Section 4 a formula to compute the weight and location.

Moreover, we present simulation results that show how our model illustrates the three Es of immu-
noediting (elimination, equilibrium, and escape) and that it may also exhibit oscillatory solutions. We
mention that, in the context of our model, which is of the Lotka-Volterra type, it is difficult to distinguish
between equilibrium and escape. Nevertheless, we propose to interpret solutions for which the system
reaches its carrying capacity as tumour escape, whereas solutions for which the tumour cell population is
contained below its carrying capacity may be interpreted as an equilibrium between tumour and immune
cells.

Outline of the paper. The paper is organised as follows. In Section 2, we start by introducing
biological motivations for the development of the model under study. The integro-differential model itself
is presented in detail in Section 3. We then analyse the model and prove some asymptotic properties
in Section 4. In Section 5, we present some numerical results. In Section 6, we conclude with several
comments and open questions.

2 Biological background
When a cancer cell population thrives, the immune response, and essentially its part that is constituted of
CD8+ T-lymphocytes (for the adaptive response) and NK-lymphocytes (for the innate response), consists
in recognising as foe elements and killing these cancer cells. This has been called immunosurveillance, later
immunoediting [4, 20, 22], which may consist of three different configurations: eradication, equilibrium
or escape. If this process is performed during the early stages of tumour initiation, the tumour is
quickly and successfully eradicated. However, cancer cells can escape these innate NK-cell and adaptive
specific T-cell immune responses in the course of genetic and phenotypic evolution at the time scale
of a cancer disease. More precisely, phenotypic1 heterogeneity in the cancer cell population, involving
its possible internal invasion by secondarily mutated, robust, cells, may be responsible for both tumour
escape and treatment failure. Here, a focus is set on immunotolerance [20, 22], which renders cancer
cells able to evade immune detection and elimination. Indeed, cancer cells have the resource to weaken

1The term phenotype means here the set of characteristics of an individual (a cell, represented by a population density
function taking a given value, in our model), resulting from the interaction of its genotype with the environment; observable
characteristics are not necessarily visibly observed but may be internal traits, e.g., related to some epigenetic, reversible,
modification by a graft of a chemical radical (methyl, acetyl...) on some base of the DNA before transcription or on some
amino acid in a histone protein, such traits being possibly evidenced after some dynamic stimulation only.
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the immune response by emitting molecules such as PD-L1 (i.e., PD-1 ligand) and CTLA-4 2 which can
respectively bind to the PD-1 and B7 receptors on activated T-cells, inhibiting their cytotoxic activity and
reducing their own immunogenicity. This is represented in the model by direct competition between cancer
cells and T-lymphocytes. As regards innate immunity, the role of NK-lymphocytes (readily effective
on cancer cells with lacking MHC-I surface antigens [15], not the same mechanism as in the case of
CD8+ T-cells, that are activated by tumour antigen-presenting cells, APCs), has recently gained more
consideration, in particular, because a role for anti-PD1/anti-PDL1 has been suspected for them in cancer
immunotherapies [17].

Immunotherapy with immune checkpoint inhibitors [22] (hereafter noted ICIs) is a recently introduced
class of drugs (aiming at being less toxic than the classical anti-cancer therapies, chemotherapy and
radiation therapy) that inhibit such cancer cell-produced inactivation of T- and NK-lymphocytes, either
at the receptor sites on lymphocytes or by inhibiting the ligands themselves. The clinical use, firstly of
anti-CTLA4 drug Ipilimumab, which has been shown to mainly target the priming lymphocyte response
at the level of lymphoid organs [27], and later of direct (at the tumour site) antagonisers of PD-L1
to PD-1 binding, drugs Nivolumab and Pembrolizumab [8] 3, has drastically modified the prognosis of
several advanced cancers that were until recently out of reach (e.g., melanoma, a skin cancer with very
bad prognosis [21]), offering sustained positive responses (about 20% of complete cures, the remaining
80% consisting of non- or partial responders with relapse). However, not all cancer types respond as
well as melanoma. To the best of our knowledge, the reasons for successes or failures are still unknown.
Moreover, there is no clear dose-response relationship and a maximum tolerated dose, for checkpoint
inhibitors, has not been identified as yet [11].

3 The model

3.1 The cell populations
To describe tumour-immune interactions, we consider three different cell population densities:

• a heterogeneous cancer cell population n(t, x) with continuous aggressiveness (or malignancy)
trait x ∈ [0, 1] linked to their stemness (i.e., their ability to de-differentiate, allowing them to
re-differentiate with adapted phenotypes);

• a heterogeneous population of mixed competent T-lymphocytes and NK-lymphocytes `(t, y) en-
dowed with continuous anti-tumour aggressiveness trait y ranging from 0 (exhausted) to 1 (highly
aggressive) interacting with cancer cells n(t, x) at the tumour site;

• a heterogeneous population of naive T-lymphocytes and inactive NK-lymphocytes p(t, y), either
resident and present at the tumour site (for NK-cells, particularly activated by their sensing lack
of MHC-I surface antigens in tumour cells, so-called “loss-of-self”), or present in distant lymphoid
organs, informed there of the presence of tumour cells of malignancy phenotype x by patrolling NK-
lymphocytes - or humoral messages - for inactive NK-lymphocytes, and for naive T-lymphocytes by
APCs (antigen-presenting cells, here represented by a weighted integral of the cancer cell population
involving a localisation kernel coupling x and y). Both “naive” cell populations are represented by
the lumped population density p(t, y). Note that in our asymptotic analysis and in simulations, we
will consider separately the three cases: innate, adaptive, and a combination of the two immune
responses.

2PD-1: programmed cell death protein 1/CTLA-4: cytotoxic T lymphocyte antigen 4 for the adaptive response.
3Note that in the sequel, as our model aims at representing direct tumour-immune interactions and their possible

enhancing by immunotherapy, the term ICIs should be thought of as representing this second class of drugs.
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Our model is given by the following system of integro-differential equations (IDEs):

∂n

∂t
(t, x) = [r(x)− d(x)ρ(t)− µ(x)ϕ(t, x)]n(t, x),

∂`

∂t
(t, y) = p(t, y)−

(
ν(y)ρ(t)

1 + hICI(t)
+ k1

)
`(t, y),

∂p

∂t
(t, y) = χ(t, y)p(t, y)− k2p

2(t, y).

(3.1)

with the total number of cancer cells at time t

ρ(t) :=

∫ 1

0

n(t, x)dx.

The initial value function n(0, x) is chosen to represent the assumed initial malignancy of the tumour,
and in the same way, the initial value functions `(0, y) and p(0, y) will be chosen to represent the initial
host’s immune response.

3.2 Biological motivations
In the above model:

• For the tumour cell population of density n(t, x), a cell of phenotype x is all the more malignant,
i.e., able to thrive, as x is close to 1, and conversely less malignant when x is close to 0. More
precisely, the malignancy trait x represents a progression potential towards stemness (ability to
differentiate).

Let us mention that the malignancy trait x might in principle be measured in single cells by as-
sessing the expression of genes like the Yamanaka genes, identified in 2006, that enable dedifferen-
tiation [25]. More recently, a de-differentiated phenotype MIT low/AXLhigh phenotype, defined by
the concomitant downregulation of the transcription factor MIT and accumulation of the tyrosine
kinase receptor AXL has been evidenced in immunotherapy-resistant melanoma cells [10], which
could provide a measurable basis for such continuous malignancy trait x identified as a potential
for tumour cells to de-differentiate in response to deadly attacks coming from the immune response
or more generally from the tumour microenvironment, including drugs. Importantly, we assume in
this model that both the density of a loss-of-self in tumour cells sensed by NK-cells (made precise
in the next paragraph) and the density of specific tumour antigens sensed by APCs reflect the level
of the hidden tumour aggressiveness, or malignancy, phenotype x in the tumour cell population,
even though the anti-tumour action of lymphocytes will be directed towards the manifest general
loss-of-self or specific tumour antigen-bearing cells.

• For the T-lymphocyte population and for the non-adaptive NK-lymphocyte population, in a similar
way, we structure it by a phenotype y of anti-tumour aggressiveness, or efficacy, which may be
defined as the reverse of the ‘dysfunction’ or ‘exhaustion’ phenotype that has been observed in
CD8+ T-cells exhibiting incapacity to efficaciously fight tumour cells. In our model, the difference
between NK-lymphocytes and effector (CD8+) T-cells consists in the nature of their action on
tumour cells, either independent of the tumour phenotype x for NK-cells represented below by a
function ϕ(t), or highly dependent on it for T-cells, represented by a function ϕ(t, x). In the analysis
of our model, we will study separately the case of innate (function ϕ(t)) and adaptive (function
ϕ(t, x)) immune response, and also a mix of these two cases. To identify and measure in single
cells such dysfunction or exhaustion in T-cells, different biological markers have been proposed;
they have been recently reviewed in [26] (an article in which it is, in particular, noted that “T cell
dysfunctionality is a gradual, not a binary, state”, which fully justifies the continuous character
of our structure variable y). The closer the phenotype y approaches 0, the less aggressive are T-
and NK-lymphocytes, i.e., less competent to kill cancer cells (complete exhaustion), whereas if y
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approaches 1, they are highly aggressive (full competence) against the targeted tumour cells, an
aggressiveness identified by their competence as immune cells due to the tumour antigen recognition
performed by the APCs, or to the absence of MHC-I4 antigens (loss-of-self) in tumour cells in the
case of NK-cells. The principle of immune checkpoint inhibition (ICI) immunotherapy is to boost
CD8+ T-lymphocytes and NK-lymphocytes in their efficacy by antagonising such tumour-emitted
inhibitory mechanisms, mainly in the modelling framework presented here, PD-L1 to PD-1 binding
on T-cells and NK-cells.

3.3 Modelling choices for the mathematical functions of phenotypes
In the absence of experimental data, the precise choices for functions r, d, µ, ν, ϕ are largely arbitrary,
only guided by physiological considerations on an assumed monotonicity. They are listed in Table 1 of
Section 5 for simulations, reflecting such monotonicity: non-increasing for r, d, µ, ν, non-decreasing for
the weight function ψ that defines the immune response ϕ in the case of innate immunity by NK-cells
(see below). The biological background for these functions is as follows.

• We assume that in the absence of immune response, tumour cells undergo logistic growth, with a
net growth rate (aka fitness) defined by

r(x)− d(x)ρ(t).

Here, the function r(x) stands for the intrinsic proliferation rate. As x stands for a de-differentiation,
stem-like, cell phenotype, admitting that a stem-like status does not favour replication velocity, r
will typically be assumed to be a positive, decreasing function of x on [0, 1], e.g., of the form
r(x) = r0 − ηx2 where the parameter r0 > 0 corresponds to the maximum fitness of cancer cells,
while η > 0 provides a measure of the strength of natural selection in the absence of the immune
response, with r0−η > 0. The term d(x)ρ(t) models the intrinsic death rate due to within-population
competition for space and resources, assumed to be proportional to the total population number
of tumour cells ρ(t). The function d will typically be taken to be positive, decreasing function of x
on [0, 1] (in the same way as for the replication function r, a de-differentiated, stem-like, status is
admitted to protect cells from the natural death term represented by the function d).
The fitness structure chosen here for the tumour and for the immune cell population is of the
nonlocal Lotka-Volterra type. It has been in particularly used in [16] to model the adaptation of
individuals to their environment.

• We assume that, once an immune response has been activated, the tumour cells interact with NK-
cells at a rate which is proportional to the product of the tumour cell population density by a
weighted integral ϕ(t) given by

ϕ(t) =

∫ 1

0

ψ(y)`(t, y)dy, (3.2)

where ψ is a positive function, which we will take to be non-decreasing on [0, 1]. The term µ(x)ϕ(t)
models an additional death rate for tumour cells due to their interactions with NK-cells `. We note
that in this formulation, the immune response ϕ(t), emitted by NK-cells present at the tumour site,
is non-specific, only the tumoral sensitivity function µ(x) makes it somehow specific; the function
ϕ(t) then stands for a response in which the phenotype y in lymphocytes is averaged over all the
population of activated NK-cells, ϕ(t) representing a sort of “mass immune response”.

• In order to account for an adaptive, specific, immune response which is the one of T-cells, we more
generally consider ϕ to be of the form

ϕ(t, x) =

∫ 1

0

Ψ(x, y)`(t, y)dy. (3.3)

4The Major Histocompatility Complex I, MHC-I, is present in all jawed vertebrates, hence in Man, species to which we
will limit the scope of our model, which is intended to pave the way for immunotherapy.
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Here, the weight function ψ(y) of the innate response is replaced by Ψ(x, y), which we typically
take to be the product of a function ψ(y) by a localisation kernel, e.g.,

Ψ(x, y) =
ψ(y)

v
e−|x−y|/v, (3.4)

in which ψ will again be a positive function, non-decreasing on [0, 1], assumed for simplicity to be
the same as in the innate, non-adaptive case (3.2). One can see parameter v as the precision with
which the immune response targets the cancer cell population (as identified by its malignancy trait
x).

We will in fact in simulations consider separately these two cases, native non-specific (NK-cells: ϕ(t)
given by (3.2)) and adaptive specific (T-cells: ϕ(t, x) given by (3.4)) anti-tumour immune response,
and also a mixed case, convex combination of the two immune responses, non-specific (NK-cells)
and specific (T-cells):

Ψλ(x, y) =

(
(1− λ) + λ

1

v
e−|x−y|/v

)
ψ(y), λ ∈ [0, 1], (3.5)

corresponding to simultaneous and independent activation of NK-cells and T-cells by loss-of-self
(NK-cells) and specific tumour antigen (T-cells) stimuli. This choice interpolates (for a given
fixed ψ) between (3.2) obtained with λ = 0, and (3.3) with the choice (3.4) obtained with λ = 1.

• The function µ(x) represents a factor of sensitivity to the effects of the immune response. As
de-differentiation is supposed to protect tumour cells from these effects (e.g., by hiding tumoral
antigens, targets of lymphocytes), µ is chosen to be a positive, decreasing function of x.

• The amplification of the naive T-lymphocytes p(t, y) at lymphoid organs is related to the mean x
malignancy value through a weighted integral χ(t, y) of the tumour cell population, representing
the message borne by APCs to initiate the adaptive anti-tumour immune response produced in
the lymphoid organs. When an APC detects a tumour cell, the related antigen is presented to
naive T-cells. Thus, naive T-cells that recognise this antigen as their cognate one become activated.
Activated T cells start to proliferate and, through a complex process chain, they become able to
recognise and attack tumour cells that express the cognate antigen. The function χ(t, y) is defined
as

χ(t, y) =

∫ 1

0

ω(x, y)n(t, x)dx, (3.6)

where ω is another localisation kernel such as ω(x, y) = α 1
se
−|x−y|/s, so as to represent a more or

less faithful message transmitted by the APCs (activating naive T-lymphocytes) to the lymphoid
organs about both the size and malignancy of the tumour. The efficacy of activated T-lymphocytes
in killing tumour cells depends on the initial size of the tumour and on how localised the kernel is
(i.e., on the width of the range of phenotypes y concerned by their detected tumour cognates x,
which can be measured by the value of the parameter s in the proposed function ω(x, y)). The
parameter α represents the strength of the immune response (i.e., a good transmission by APCs,
and a good synthesis of the expansion). In the present model, communication between recognition
at the contact of tumour cells and activation of naive T-lymphocytes at the site of lymphoid organs
is represented, for the sake of simplicity without taking communication time into consideration, by
the shortcut of the function ω(x, y). In this localisation kernel function, the parameter s may be
seen as the precision of the detection of the malignancy trait x in the cancer cell population by
APCs or circulating NK-cells.

• We consider a similar mechanism for NK-lymphocytes, that are known to proliferate and amplify
not only in the bone marrow but also in lymphoid organs, like T-lymphocytes [1]. In the case
of this innate immune response, there are no APCs, but the message from sensor patrolling NK-
lymphocytes to proliferating NK-lymphocytes in lymphoid organs is assumed to be of (coarse,
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quantitative) humoral nature, carrying a message on the density of loss-of self loci in the tumour
cell population. The same function χ(t, y) with the same localisation kernel ω(x, y) will be used for
the activation of NK-lymphocytes.

• In the second equation of (3.1) for the competent NK- and T-lymphocytes `(t, y), the function ν of
the anti-tumour aggressiveness phenotype y represents their weakening (immunotolerance) induced
by PD-1 ligands; note that it is assumed to be decreased by ICIs. As the function ν stands for a
sensitivity factor in lymphocytes to the weakening reaction molecules (in this model, mainly PD-L1)
emitted by tumour cells or produced in the tumour microenvironment, it will be chosen to be a
positive, decreasing function of y, which in this case reflects the fact that cells in the phenotypic
state y = 1 are fully aggressive on contact with tumour cells and, for cells in phenotypic states
other than the most aggressive one, the inhibition term induced by the tumour cells decreases with
the drug dose.

• The parameter k1 stands for the natural death rate of the population of competent T- and NK-
lymphocytes.

• The input of external control targeting immune checkpoints inhibitors is represented by the function
ICI(t) that enhances anti-tumour CD8+ T-lymphocyte and NK-lymphocyte responses by boosting
the exhausted immune cells, which helps them to respond more strongly to the presence of the
tumour, by “weakening the weakening” due to immunotolerance induced by the tumour cells. We
assume that

0 ≤ ICI(t) ≤ ICImax.

for some maximum tolerated dose ICImax. The factor 1
1+hICI(t) , with h > 0, models the decrease

in the immunotolerance rate due to the immune checkpoints inhibitors therapy. We note that fine
details of clinical administration protocols are not meant to be described here. We also mention
that ICI is a quantitative dose function, and is APC-independent.

• The term −k2p(t, y) with the positive constant k2 stands for the self-limitation on population
growth imposed by carrying capacity constraints (e.g., limited availability of space and resources in
lymphoid organs).

3.4 Goals of the present study
Our goals in this study are

• to analyse the asymptotic properties of the model, as we want to understand how the interaction
between tumour cells and T cells leads to the selection (or not) of some traits, which are considered
as dominant traits by the environment;

• to numerically investigate if and how our model captures the three Es of immunoediting, i.e.,
eradication, equilibrium and escape.

3.5 Comparison with an ODE-reduced system
In order to exploit useful ideas to guide our study of the dynamics of the above integro-differential
system, we mention that a simplified version of (4.8), reduced to an ODE system, has been analysed
in [9]. Assuming that all functions are constant in x and y, and denoting

σ(t) :=

∫ 1

0

`(t, y)dy, and γ(t) :=

∫ 1

0

p(t, y)dy,
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the system (3.1) boils down to the dynamics of (ρ(t), σ(t), γ(t)), which after integration solves the following
ODE system: 

dρ(t)

dt
= [r − dρ(t)− σ(t)] ρ(t),

dσ(t)

dt
= γ(t)− (k1 + νρ(t))σ(t),

dγ(t)

dt
= γ(t) (ρ(t)− k2γ(t)) .

(3.7)

The mathematical analysis of these equations has been performed in [9], in the particular case where
k1 = ν. The existence of the steady states has been characterised and analysed with respect to their local
asymptotic stability. Regions of the parameter space have also been identified, in which a Hopf bifurcation
exists. The ODE system (3.7) reproduces a tumour equilibrium (second situation of the immunoediting
process), which corresponds either to a stable steady state or to a stable limit cycle, characterised by a
sustained periodic behaviour of alternating growth and decay (without extinction) of both tumour and
immune T cells. For particular choices of initial conditions, the ODE model also captures either tumour
eradication or tumour immune escape.

Figure 1: ODE reduction: Plots displaying the time evolution of total masses ρ(t) (left panel), activated
NK-cells and competent T-cells σ(t) (central panel), and naive T-cells or inactive NLK-cells γ(t) (right panel) as
defined by system (3.7) in two different cases: stationary and periodic solutions [9]. Upper row. The solution
shows stability of the interior equilibrium (0.6257, 1.1436, 0.746), for k = 0.8514. Lower row. The solution shows
instability of the interior equilibrium (0.5204, 1.1699, 0.7115) with limit cycle (Hopf bifurcation), for k = 0.7314.
For all plots, r = 1.3, d = 0.25, ν = 0.4, and initial conditions are (ρ0, σ0, γ0) = (1.5, 0.5, 3).

4 Asymptotic analysis

4.1 Asymptotics in the absence of treatment, innate, non-adaptive response
We study the asymptotic properties of the system (3.1) in the absence of treatment, i.e., with ICI(t) = 0.
Of course, upon changing the function ν, our study also encompasses the case where the dose ICI is
taken to be constant with time.
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The evolution of the population densities is then governed by the following integro-differential system:
∂n
∂t (t, x) = [r(x)− d(x)ρ(t)− µ(x)ϕ(t)]n(t, x),

∂`
∂t (t, y) = p(t, y)− (ν(y)ρ(t) + k1) `(t, y),

∂p
∂t (t, y) = χ(t, y)p(t, y)− k2p

2(t, y),

(4.8)

the above system starting from initial conditions

n(0, x) = n0(x) ≥ 0, `(0, y) = `0(y) ≥ 0, p(0, y) = p0(y) ≥ 0.

Main assumptions on the functions and initial conditions. For the remaining part of this section,
we assume that the initial conditions n0, `0 and p0 are all in C([0, 1]), and whenever necessary, we will
assume that

n0 > 0 and p0 > 0 on [0, 1], (4.9)

and we will work with the following regularity assumptions:

r, d, µ, ψ, ν ∈ C([0, 1]), and ω ∈ C
(
[0, 1]2

)
, (4.10)

and all the above functions are assumed to be positive. In the more general adaptive case, the assumption
ψ ∈ C([0, 1]) is replaced by Ψ ∈ C([0, 1]2). We note that all proposed functions in the introduction and
those used in simulations do satisfy these regularity and positivity hypotheses.

We also stress that no monotonicity assumptions whatsoever are required for the results of this section
to hold true.

The existence and uniqueness of global classical (nonnegative) solutions in C0([0,+∞), L1(0, 1)3) is
standard and follows from using the Banach fixed point theorem, see [16].

Notations. For the rest of the article, we will when needed denote

lim sup
t→+∞

g(t) = lim
t→+∞

g(t), lim inf
t→+∞

g(t) = lim
t→+∞

g(t),

For a continuous real-valued function f defined on a compact set, we denote fm and fM its minimum
and maximum. Finally, δx denotes the Dirac mass at the position x.

4.1.1 Asymptotics for tumour cells alone

In the absence of immune response (for instance, assuming either that there are no competent immune
cells initially, i.e., `0 = 0, or that immune cells are inefficient in interacting with cancer cells through
either ψ = 0 or µ = 0), the first equation of (4.8) boils down to a standard logistic integro-differential
model, namely 

∂n
∂t (t, x) = [r(x)− d(x)ρ(t)]n(t, x), n(t = 0, x) = n0(x) ≥ 0,

ρ(t) =
∫ 1

0
n(t, x)dx.

(4.11)

The asymptotic behaviour of this equation is well known [16, 14, 18]. For any positive continuous initial
condition n0, the total population of tumour cells ρ(t) converges to ρ? := max( rd ) as t→ +∞.
This asymptotic cell population number, which is its maximal value, is readily interpreted, as for all
logistic models of tumour growth, as the tumour carrying capacity. Furthermore, the density n(t, ·)
viewed as a Radon measure supported on [0, 1] concentrates on the set

A := {x ∈ [0, 1], r(x)− d(x)ρ? = 0} = arg max
x∈[0,1]

r(x)

d(x)

as t→ +∞. If A is reduced to a singleton x?, then in particular n(t, ·) ⇀ ρ?δx? as t→ +∞ inM([0, 1]).
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4.1.2 A priori bounds

We first indicate the derivation of an upper bound for ρ. Integrating the first equation of system (4.8)
with respect to x, we find using ϕ ≥ 0:

dρ

dt
=

∫ 1

0

[r(x)− d(x)ρ− µ(x)ϕ(t)]n(t, x) dx ≤ max
x∈[0,1]

(r(x)− d(x)ρ) ρ.

The right-hand side is negative as soon as max
x∈[0,1]

(r(x)− d(x)ρ) < 0, i.e., as soon as ρ > max r
d . Hence

ρ(t) ≤ ρM =: max

(
ρ(0), max

x∈[0,1]

r(x)

d(x)

)
, ∀t > 0. (4.12)

Consequently, we have
∀y ∈ [0, 1], χ(t, y) ≤ ωMρM ∀t ∈ [0,+∞). (4.13)

Let us fix y ∈ [0, 1]. From the bounds (4.12) and (4.13), we have

d

dt
p(t, y) ≤

[
ωMρM − k2p(t, y)

]
p(t, y).

By the comparison principle, we find

p(t, y) ≤ pM (y) =: max

(
p0(y),

ωMρM

k2

)
, ∀t > 0.

Using the same arguments, one can prove that the population density ` is bounded from above. Indeed,

d

dt
`(t, y) = p(t, y)− (ν(y)ρ(t)− k1) `(t, y) ≤ p(t, y)− k1`(t, y) ≤ pM (y)− k1`(t, y).

Applying the comparison principle, we have

`(t, y) ≤ `M (y) := max

(
`0(y),

pM (y)

k1

)
, ∀t > 0. (4.14)

As a result, we obtain

ϕ(t) ≤ ϕM :=

∫ 1

0

ψ(y)`M (y)dy, ∀t > 0.

Finally, we may argue as above for a lower bound for ρ (on top of nonnegativity ρ ≥ 0). Indeed, from

dρ

dt
≥ min
x∈[0,1]

(
r(x)− d(x)ρ− µ(x)ϕM

)
ρ,

it follows that

ρ(t) ≥ ρm := min

(
ρ(0), min

x∈[0,1]

(
r(x)− µ(x)ϕM

d(x)

))
, ∀t > 0.

We accordingly consider an assumption ensuring non-extinction, given by

min
x∈[0,1]

(
r(x)− µ(x)ϕM

d(x)

)
> 0 (4.15)
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4.1.3 Asymptotics for the complete model, innate, non-adaptive response

This section is devoted to analysing the asymptotic behaviour of the model (4.8) in the non-adaptive case,
particularly represented by NK-lymphocytes rather than by T-lymphocytes, where ϕ does not depend
on x.

As already mentioned in Section 3, assuming all functions to be constant, the IDE system has the
ODE (1) as a particular case. For that ODE, it has been proved that all three behaviours can occur:
convergence to a (unique) trivial stable point (extinction or escape), convergence to a (unique) non-trivial
stable point (equilibrium) and convergence to a limit cycle. The existence of such periodic solutions means
that there is no hope of deriving any unconditional result of convergence to steady states for the IDE
model.

In what follows, we prove a partial result, which makes the strong a priori assumption that n converges.
We then establish that the limit either equals 0 or can precisely be characterised, see Theorem 4.1.

Lemma 1. Suppose that the density n weakly converges inM([0, 1]), and denote n∞ the limit measure.
Setting ρ∞ :=

∫ 1

0
dn∞(x), and under the assumptions (4.9)- (4.10), both densities ` and p converge

respectively to `∞, p∞ ∈ C0([0, 1]) given by

`∞(y) = p∞(y)
ν(y)ρ∞+k1

,

p∞(y) = 1
k2

∫ 1

0
ω(x, y) dn∞(x).

(4.16)

Proof. We let y ∈ [0, 1] be fixed. First remark that χ(t, y) converges to χ̄(y) given by

χ̄(y) :=

∫ 1

0

ω(x, y) dn∞(x).

Hence p(·, y) satisfies a non-autonomous logistic ODE, given by

dp(t, y)

dt
= [χ(t, y)− k2p(t, y)] p(t, y).

For a given ε > 0 and t large enough (say t ≥ t0) such that χ(t, y) ≤ χ̄(y) + ε, we can write

dp(t, y)

dt
≤ [χ̄(y) + ε− k2p(t, y)] p(t, y),

p is thus a sub-solution of the equation

du

dt
(t) = [χ̄(y) + ε− k2u(t)]u(t),

with initial condition chosen to be u(t0) = p(t0, y). The solution of the latter logistic autonomous
equation converges to χ̄(y)+ε

k2
as t→ +∞, since p(t0, y) > 0 by the assumption (4.9). We conclude by the

comparison principle that

∀ε > 0, lim
t→+∞

p(t, y) ≤ lim
t→+∞

u(t) =
χ̄(y) + ε

k2
. (4.17)

Therefore, we may pass to the limit ε→ 0 in inequality (4.17) to obtain

lim
t→+∞

p(t, y) ≤ χ̄(y)

k2
.

Using the same reasoning from below, we have proved

∀y ∈ [0, 1], lim
t→+∞

p(t, y) =
χ̄(y)

k2
=

1

k2

∫ 1

0

ω(x, y) dn∞(x) = p∞(y).
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Turning to the limit for `, we fix y in [0, 1]. Letting Ly(t) := `(t, y), we have

dLy(t)

dt
= Ay(t)−By(t)Ly(t),

which is a non-autonomous linear differential equation, with
lim

t→+∞
Ay(t) = lim

t→∞
p(t, y) = p∞(y) =: Āy,

lim
t→+∞

(ν(y)ρ(t) + k1) = ν(y)ρ∞ + k1 =: B̄y.

For ε > 0 small enough and t large enough (say t ≥ t0) such that Ay(t) ≤ Āy + ε and By(t) ≥ B̄y − ε, we
can write

dLy
dt
≤
(
Āy + ε

)
−
(
B̄y − ε

)
Ly,

Ly is thus a sub-solution of the autonomous equation given by

dv

dt
=
(
Āy + ε

)
−
(
B̄y − ε

)
v,

with v(t0) = Ly(t0), the comparison principle allows us to conclude that

∀ε > 0, lim
t→+∞

Ly(t) ≤ lim
t→+∞

v(t) =
Āy + ε

B̄y − ε
.

We then let ε go to 0 to get

∀y ∈ [0, 1], lim
t→+∞

Ly(t) ≤ Āy
B̄y

=
p∞(y)

ν(y)ρ∞ + k1
.

Arguing in a similar manner to get a lower bound, we find

∀y ∈ [0, 1], lim
t→+∞

`(t, y) =
p∞(y)

k1 + ν(y)ρ∞
= `∞(y).

Let us now explain how to determine possible limits for the system, still making the strong a priori
assumption that n(t, ·) converges. We shall need a technical (but rather weak) assumption, namely

∀ρ̄ > 0, ∀ϕ̄ > 0, arg max
x∈[0,1]

(r(x)− d(x)ρ̄− µ(x)ϕ̄) =: {x(ρ̄, ϕ̄)}. (4.18)

From the proof and by the a priori bounds, one can see that this can be weakened by restricting the above
assumption to the values 0 < ρ̄ ≤ ρM , 0 < ϕ̄ ≤ ϕM such that the function x 7→ r(x)− d(x)ρ̄− µ(x)ϕ̄ has
maximum zero.

Theorem 4.1. Suppose that the density n weakly converges inM([0, 1]), and denote n∞ the limit mea-
sure. Under the assumptions (4.9)-(4.10)-(4.18), then either n∞ = 0 or n∞ is of the form

n∞ = ρ∞δx∞ ,

where x∞ = x(ρ∞, ϕ∞) and (ρ∞, ϕ∞) solves the following system over (ρ, ϕ) ∈ R2
ρ = max

x∈[0,1]

(
r(x)− µ(x)ϕ

d(x)

)
,

ϕ =
ρ

k2

∫ 1

0

ψ(y)ω(x(ρ, ϕ), y)

ν(y)ρ+ k1
dy.

(4.19)
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Remark 4.1. If one makes the additional assumption (4.15), ρ is bounded away from 0 and hence we
must have n∞ 6= 0. In other words, the only possible limits are of the form given by the above result
if (4.15) holds.

Proof. We assume that n∞ 6= 0.
According to Lemma 1, both t 7→ `(t, ·) and t 7→ p(t, ·) converge pointwise to `∞ and p∞ implicitly

given by formulae (4.16).
Let us justify that ϕ converges. The bound (4.14) shows that the function (t, y) 7→ ψ(y)`(t, y) is

dominated by the continuous function y 7→ ψ(y)`M (y), hence by the dominated convergence theorem, we
have

lim
t→+∞

ϕ(t) = ϕ∞ :=

∫ 1

0

ψ(y)`∞(y) dy =
1

k2

∫ 1

0

[
ψ(y)

ν(y)ρ∞ + k1

∫ 1

0

ω(x, y) dn∞(x)

]
dy. (4.20)

The asymptotic behaviour of n is exponential, governed by r(x) − d(x)ρ∞ − µ(x)ϕ∞, a quantity whose
sign we now analyse.

• If r(x0) − d(x0)ρ∞ − µ(x0)ϕ∞ > 0 for some x0 ∈ [0, 1], then there exists ε > 0 such that by
continuity r − dρ − µϕ > ε on some open interval I ⊂ [0, 1] containing x0, and all t large enough
(say t ≥ t0). As a result, for all t ≥ t0,

ρ(t) =

∫ 1

0

n(t, x)dx ≥
∫
I

n(t0, x) exp
∫ t
t0

(r(x)−d(x)ρ(s)−µ(x)ϕ(s)) ds
dx ≥ |I| inf

x∈I
n(t0, x) expε(t−t0) .

with |I| the Lebesgue measure of I. Recalling the assumption (4.9), the continuous function n(t0, ·)
is also positive, which shows that inf

x∈I
n(t0, x) > 0. Since the right-hand side goes to +∞, we obtain

a contradiction with the convergence of ρ.

• If r − dρ∞ − µϕ∞ < 0 on the whole of [0, 1], then using similar arguments, one can prove that ρ
converges to 0 which is incompatible with the convergence of ρ to a positive limit (since n∞ 6= 0).

The function r− dρ∞−µϕ∞ is thus non positive on [0, 1], and its maximum equals 0. This is equivalent
to saying that ρ∞ = max( r−µϕ

∞

d ).
Assumption (4.18) ensures that the maximum point x∞ := x(ρ∞, ϕ∞) is unique. Furthermore, the

first bullet further shows that n(t, x) vanishes at any other point x than x 6= x∞. We have thus proved
that n concentrates at x∞, hence n∞ = ρ∞δx∞ .

Finally, inserting n∞ = ρ∞δx∞ into the formula (4.20), we obtain the second equation, concluding
the proof.

Remark 4.2. In general, there is no close formula for the solutions of (4.19), which may not be unique.
In practice, this system is easily solved numerically, for instance by a fixed point method. Hence, assuming
convergence of n, this theorem does provide a rather complete picture of the possible non-trivial limits the
system may reach. When there exists a unique solution to (4.19), a single such limit is hence characterised.

4.1.4 Asymptotics in the adaptive and mixed innate-adaptive response case

We now sketch the extension of Theorem 4.1 to the (more general) case where ϕ depends on x. In
this case, we may obtain a result similar to Theorem 4.1, but at the expense of an assumption stronger
than (4.18) and a more intricate system solved by the stationary state.

Indeed, keeping the same notations, we make the assumption that for all 0 < ρ̄ ≤ ρM and for all
functions ¯̀∈ C([0, 1]) satisfying 0 ≤ ¯̀(y) ≤ `M (y) for all y ∈ [0, 1],

arg max
x∈[0,1]

(
r(x)− d(x)ρ̄− µ(x)

∫ 1

0

Ψ(x, y)¯̀(y) dy

)
=: {x(ρ̄, ¯̀)}. (4.21)

Following the proof of Theorem 4.1, one can then prove in exactly the same way:
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Theorem 4.2. Under the assumptions (4.9)-(4.10)-(4.21), supposing that n converges weakly inM([0, 1])
to some n∞, then either n∞ = 0 or n∞ is of the form

n∞ = ρ∞δx∞ ,

where x∞ = x(ρ∞, `∞) and (ρ∞, `∞) solves the following system over (ρ, `) ∈ R× C([0, 1])
ρ = max

x∈[0,1]

(
r(x)− µ(x)

∫ 1

0
Ψ(x, y)`(y) dy

d(x)

)
,

`(y) =
ρ

k2

ω(x(ρ, `), y)

ν(y)ρ+ k1
.

5 Numerical simulations

5.1 Simulations in the absence of treatment
In this section, we present some numerical simulations of system (3.1). We follow the numerical method
given in [19] and we select a discretisation of the phenotype interval [0, 1] consisting of 1000 points for the
computational domain of the independent variables x and y and let t ∈ [0, T ], unless otherwise specified,
we choose the final time to be T = 500 or T = 1000.

The function Ψ = Ψλ underlying ϕ in (3.3) is chosen to be of the form (3.5), and the kernel ω
underlying χ in (3.6) is given by ω(x, y) = α 1

se
−|x−y|/s. Parameters λ and v (for Ψ), and s (for ω)

may vary across simulations. Unless otherwise specified, all other parameters take values as presented in
Table 1.

We emphasise that parameters have been chosen arbitrarily in the absence of suitable experimental
data, in order to reproduce different biological scenarios.

To define the initial density of tumour cells, we use a Gaussian profile, and a homogeneous condition
for competent immune cells `, while the naive immune cells p are distributed over the whole interval [0, 1]:

n0(x) = n(0, x) = C√
2πσ2

0

exp(−(x−m)2

2e2 ),

`0(y) = `(0, y) = 0,

p0(y) = p(0, y) = 1− y2,

with m = 0.5, e = 0.1, and a normalisation constant C > 0 chosen so that ρ(0) = 1. Thus, we start with
a total mass equal to 1, and the phenotype x is initially concentrated at 0.5.

Parameter/function Biological meaning Value
r(x) Proliferation rate of tumour cells 0.666− 0.132x2

d(x) Death rate of tumour cells 0.5(1− 0.3x)
µ(x) Sensitivity to the effects of the immune response 1− 0.1x2

ψ(y) Efficacy of the immune response 0.5y2

ν(y) Immunotolerance of immune cells induced by tumour cells 0.5− 0.1y (in Section 5.2)
1− 0.1y (in Section 5.3)

k1 Natural death rate of competent immune cells 0.5 (in Section 5.2)
0.01 (in Section 5.3)

k2 Carrying capacity of naive immune cells 1.5
α Strength of the immune response 1

Table 1: Values of the model parameters/functions used to carry out numerical simulations.
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Tumour development in the absence of the immune response. We begin by establishing a
baseline scenario in which tumour cells proliferate and die according to the modelling approach described
in Section 3, i.e., in the absence of the immune response, the growth of the tumour cell population is of
the logistic type.

Figure 2: Numerical simulation of the solution to (4.11) (complete absence of immune response).
Left panel, plots of cell densities n(t, ·) at different times up to T = tf = 1000 (in red): the phenotype
x evolves towards more and more malignancy. Right panel, dynamics of the total density of tumour
cells ρ(t). The black dashed line highlights a numerical estimation of the tumour cell carrying capacity
ρ? and the parameter values are as listed on Table 1, with ρ(0) = 1.

According to Section 4, we expect convergence of ρ and weak convergence of n to a weighted Dirac
mass. Moreover, the limit for ρ is ρ? = max( rd ), which corresponds to the carrying capacity of the tumour,
i.e., the saturation term reached by the total number of tumour cells due to within-population competition
for space and resources. Here, ρ? ≈ 1.5320 and this is what we observe on Figure 2 to the right. On
the other hand, the phenotype at which the density concentrates is located at arg max( rd ) = {x?} with
x? ≈ 0.8587, which becomes apparent on Figure 2 to the left (and would be seen even more clearly if the
simulation were run longer).

As already mentioned in the introduction, we will from now on, when the immune response is activated,
interpret solutions for which the total number of tumour cells approaches this carrying capacity ρ? as
“tumour escape”. This represents one case of the three Es in which the immune cells are present at the
tumour site but are inefficient in interacting with the tumour cells.

5.2 Simulations in the mixed innate-adaptive case (0 < λ ≤ 1)
We have explored in simulations separately the innate, adaptive and mixed innate-adaptive cases, which
all can lead to the three Es. In agreement with Theorems 4.1 and 4.2, if convergence of the density of
cancer cells occurs, we find that tumour cells asymptotically concentrate on a single phenotype, and total
numbers of cells all converge. Furthermore, the phenotype on which the cancer cell density concentrates
as well as the asymptotic numbers of cells have been checked to match the specific values uncovered by
Theorems 4.1 and 4.2.

To avoid repetitive figures, we have chosen to focus mostly on the mixed innate-adaptive case: Fig-
ures 3, 4 and 5 illustrate different possible asymptotic behaviours with λ = 0.5. Let us mention that
simulations run with λ = 1 lead to qualitatively similar results.

• For simulations illustrated on Figures 3-4-5:

Upper row. Evolution in time t of the densities x 7→ n(t, x) (left panel); y 7→ `(t, y) (central
panel), and y 7→ p(t, y) (right panel), with the initial conditions in blue, and the final ones in
red.
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Lower row. Time dynamics of the total number of tumour cells ρ(t) (left panel), of the total
number of competent immune cells σ(t) =

∫ 1

0
`(t, y) dy (central panel), and of the total number

of naive immune cells γ(t) =
∫ 1

0
p(t, y) dy (right panel).

• We assume that activated NK-cells and competent T-cells `(t, y) are absent at time t = 0, and
that the most aggressive inactive NK-cells and naive T-cells p(t, y) have been duly informed by
circulating NK-cells and by APCs and present themselves at time t = 0 at the tumour site to
activate the immune response by `(t, y) cells.

When the parameter s is small enough, and for all considered values of the parameter v, the total num-
ber of tumour cells decreases steadily over time until the tumour cell population is completely eradicated.
This is due to the fact that precise transmission of the malignancy phenotype x by circulating NK-cells
and by APCs (i.e., small values of the parameter s in the function χ(t, y)) promotes the eradication of
tumour cells by CD8+ T-cells.

Eradication also occurs for larger values of s (here s = 1) as long as v is small enough, see Figure 3. In
fact, numerical results not displayed here show that for the same value for s but with an innate immune
response (λ = 0), one can obtain escape rather than eradication, highlighting the importance of adaptive
immune responses.

Fixing the value s = 1, the results displayed on Figure 4 show that intermediate values of the
parameter v (which measures the precision of the targeting of cancer cells by the immune response)
facilitate the coexistence between tumour and immune CD8+ T-lymphocytes, while the total number of
tumour cells remains at a low level.

Finally, still with s = 1, Figure 5 shows that a large value of the parameter v leads to tumour escape.
Taken together, these results suggest the idea that the efficacy of the anti-tumour immune response is
affected by the specificity of the anti-tumour immune response and also by the specificity of the message
transmitted by circulating NK-cells to inactive NK-cells and by APCs to naive T cells. Additionally,
high values of parameters s and v, respectively, are associated with low numbers of immune cells and less
effective immune response, which may enhance tumour development.

Figure 3: Eradication. Mixed innate/adaptive case (λ = 0.5). Simulations with (s, v) = (1, 0.1) for T = 500.
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Figure 4: Equilibrium. Mixed innate/adaptive case (λ = 0.5). Simulations with (s, v) = (1, 0.5) for T = 1000.
Note that the malignancy phenotype x concentrates onto a phenotype close to 0.

Figure 5: Escape. Mixed innate/adaptive case (λ = 0.5). Simulations with (s, v) = (1, 1) for T = 1000. Note
that the malignancy phenotype x concentrates onto a phenotype close to 1.

As shown on Figures 3-5, for an intermediate value of the parameter λ in [0, 1], and for low values of
the parameter v, the specific anti-tumour immune response involving CD8+ T-lymphocytes is relatively
high, leading to the total eradication of tumour cells; intermediate values of v lead to a co-existence state
representing tumour-immune response equilibrium; and finally, high values of v decrease the efficacy of
the specific immune response and lead to the emergence of malignant tumour cells.

This is illustrated on Figure 6, on which one can in particular see (upper horizontal panel of the
heatmap) that even with high values of s, low values of v (i.e., wide detection, narrow targeting), a mixed
innate/adaptive immune response can still yield low values of the total density of tumour cells.
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Figure 6: Precision of detection parameter s vs. precision of targeting parameter v. (Here again,
λ = 0.5). Heatmap representation of the contribution of the two localisation kernel parameters s and v to the
relative density ρ∞

ρ?
of total tumour cells at the end of simulations, in the case without treatment. Recall that ρ?

is the maximum possible density (the carrying capacity) of tumour cells.

Taken together, the numerical results that we have presented in the previous subsections suggest
that the model has validity for providing a consistent qualitative description of the anti-tumour immune
response involving both NK cells and CD8+ T-lymphocytes.

5.3 From escape to eradication by ICIs, strictly adaptive response (λ = 1)
Starting from a situation in which we have a tumour escape without ICIs, we exemplify how introducing
them at a constant dose may lead the tumour cell population to equilibrium, and by increasing the drug
dose, to elimination. We consider the strictly adaptive case where Ψ is given by (3.4), i.e., Ψλ with λ = 1.

We fix (s, v) = (1, 2), the other parameter values are as listed in Table 1. The drug dose is first set to
ICI = 0, then to ICI = 1 and finally to ICI = 10, with h = 10. As Figure 7 shows, these choices lead to
escape, equilibrium and eradication, respectively. Escape is associated to a distribution of the malignancy
phenotype moving to the right (with eventual convergence to a Dirac mass located on the right), while
equilibrium is associated to a phenotype remaining at around x = 0.5, and eradication occurs without
any visible density shift (to either side). This last point, in apparent contradiction with the situation
illustrated on Fig. 4, where a clear shift to the left is apparent, may be interpreted in light of the high
value of parameter v in the present case, i.e., of a low precision of the targeted immune response.
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(a) Escape. Simulation with ICI = 0.

(b) Equilibrium. Simulation with ICI = 1.

(c) Eradication. Simulation with ICI = 10.

Figure 7: Simulations with λ = 1 and increasing levels of ICIs, up to time T = 500. The black dashed
line stands for the tumour cell carrying capacity ρ?.

5.4 Periodic solutions
We can also numerically address the existence of periodic solutions. We first take all the parameters
and functions to be equal to those chosen for the ODE model in the periodic case, i.e., leading to
Figure 1. Then, we perturb them by a small parameter 0 < δ � 1. In this case, an oscillatory behaviour
also emerges, corresponding to a co-existence state representing a time-dependent periodic solution, see
Figure 8. We have not been able to analytically address the existence of periodic solutions, except for
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the very specific case where all functions are constant, in which case we recover the model (1), for which
we know that periodic solutions do exist [9].

Figure 8: Evolution with time of the tumour total density ρ(t) (in blue), competent T cells total density σ(t) =∫ 1

0
`(t, y)dy (in magenta), and the total density of naive T cells γ(t) =

∫ 1

0
p(t, y)dy (in cyan) for T = 5000.

6 Conclusions and research perspectives.

6.1 Summary of the mathematical results.
We have proposed a new mathematical model of tumour-immune interactions in which cell populations
are structured by continuous phenotype variables representing their aggressiveness. Despite its simplicity,
our model features some relevant phenomena, and it captures the three Es of immunoediting - eradication,
equilibrium and escape. In particular, it reproduces the formation of an equilibrium, which characterises
the capacity of the immune system to contain tumour growth.

In Section 4, we showed through an asymptotic analysis of the model that under the a priori assump-
tion that the population of tumour cells converges to a certain measure, such a measure can precisely be
characterised when it is not the trivial measure.

We explained why convergence cannot be the general outcome: our model does have the ODE sys-
tem (1), with known possible periodic behaviour, as a particular case. Finding which parameters lead to
convergence or to oscillatory behaviours is a completely open question.

Our model can incorporate three different types of anti-tumour immune responses: innate, adaptive,
and a combination of both immune responses. By numerically comparing these three cases in Section 5,
the outcomes are as follows:

Innate anti-tumour immune response. If the parameter s, which determines how localised the
phenotype x is with respect to the phenotype y, is small enough, then the tumour is always eliminated.
For intermediate values of s, we obtain convergence to a limit coherent with Theorem 4.1: a coexistence
state occurs, yielding a persistent tumour cell population at a controlled level. Finally, high values of the
parameter s reduce the efficacy of the anti-tumour immune response and lead to tumour escape. For par-
ticular choices of the model parameters, the numerical results also show periodic solutions, characterised
by periodic alternating growth and decay of all the immune and tumour cell populations.
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Adaptive anti-tumour immune response. The situations that we have numerically explored in the
adaptive anti-tumour response, showed that both the specificity of the response of competent immune
cells (i.e., the parameter v) and the specificity of the message transmitted by APCs (i.e., the parameter s)
play a key role in the tumour-immune interactions. In fact, when s and v are both small, our results
indicate that tumour eradication can occur, while higher values of s or v may result in tumour escape.

Combination of the innate and the adaptive anti-tumour immune responses. Increasing the
specificity of the adaptive immune response (low values of the parameter v) has a beneficial effect on
the immune response to tumours, whereas higher values of the parameter v can be detrimental to the
anti-tumour immune action.

Simulations of the effect of constant drug doses. Our numerical simulations show that a constant
control allows to maintain the total density of tumour cells below its carrying capacity and prevents
malignant tumour cells from taking over the whole population. We have also shown that slightly changing
the immunotolerance rate along with the natural death rate of competent T cells improves the immune
check-point inhibitor immunotherapy efficacy and that it can bring tumours from escape to eradication.

6.2 Biological interpretations.
Taking for granted the existence of a continuous malignancy trait in tumour cells, that we relate to a
‘degree of stemness’ or de-differentiation potential, and similarly, of a continuous potential of tumour
cell-kill in lymphocytes at the contact of tumour cells, we have qualitatively produced scenarios that
reproduce the three Es of immunoediting. We have shown that the initial malignancy trait of tumour
cells is affected by the immune response, with or without boosting by ICI therapy, and that it will always
concentrate on a pointwise value, meaning that tumour cells as a population organise their stemness trait
around a fixed dominant characteristic. Whether this sharp malignancy trait is increased or decreased
by the immune response cannot a priori be decided, as its determinants depend in a complex way on
the entangled functions d, r, µ and ϕ that govern the proliferation of the tumour cell population. If this
model has some relevance with the reality of antitumoral immune response, it means that the effect of
lymphocytes attacking a tumour may as well increase or decrease its stemness, which to the best of our
knowledge is not inconsistent with biological observations so far. From a therapeutic point of view, we
have shown, as proofs of concept, numerical case studies in which a tumour can be brought from escape
to extinction, or at least equilibrium, by continuous delivery of ICIs.

It should also be mentioned that the design of this model, its characteristics and the results of its math-
ematical analysis can be enlightened by informal opinions heard in conversations or oral reports among
oncologists, such as “This is a very aggressive tumour, very indifferentiated and escaping all drugs” for
tumour cell populations, or “Initially vigorous immune cells can, under the influence of immunotolerance
induced by tumour cells, lose their vigor and become exhausted” for immune cell populations. Such in-
formal representation of a common aggressiveness potential in cell populations may be seen as tentatively
formalised by the present phenotype-structured model of tumour-immune interactions.

6.3 Possible generalisations.
Firstly, we plan to extend the model considered in this paper to carry out a mathematical study of
tumour-response interactions, taking into account non-genetic instability, which may be considered as
mediated by random epimutations in populations of tumour cells. In this respect, a modelling approach
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analogous to the one presented in [12], would consist in modifying system (3.1) as follows:

∂n

∂t
(t, x) = [r(x)− d(x)ρ(t)− µ(x)ϕ(t, x)]n(t, x)

[
+β

∂2n

∂x2
(t, x)

]
,

∂`

∂t
(t, y) = p(t, y)− (ν(y)ρ(t) + k1) `(t, y),

∂p

∂t
(t, y) = αχ(t, y)p(t, y)− k2p

2(t, y).

The linear diffusion operator β ∂
2n
∂2x (t, x), with 0 < β � 1, represents here a malignancy phenotype lability

(uncertainty) linked to the extreme plasticity of cancer cells [23], that are able to vary their phenotype
in response to any (drug or other environmental) insult.

Another natural way to extend our work would be to introduce a population of antigen-presenting
cells (APCs), that recognises a tumour antigen as their cognate one to activate naive T-cells, instead of
the time-independent shortcut function ω(x, y) (see Section 3). Delays might also naturally be introduced
in this bidirectional communication process.

Future research perspectives, from the point of view of confronting the model to data, are to identify
its parameters, making use of preclinical and clinical data on the growth of in-vivo tumours in laboratory
rodents and in melanoma patients exposed to ICI therapies. This, however, will necessarily rely on long-
term collaborations with teams of laboratory experimentalists and clinicians, towards whom we have here
only set this physiologically based model as a basis for interactive discussions to assess it qualitatively.

Finally, as exemplified in [18], it would be relevant to address the numerical optimal control of
model (3.1) in order to identify possibly optimal delivery schedules for the ICI therapies, which will
also be intended in the framework of an interactive collaboration with experimentalists and clinicians.
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