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Abstract

Generating a Boltzmann distribution in high dimension has recently been achieved
with Normalizing Flows, which enable fast and exact computation of the generated
density, and thus unbiased estimation of expectations. However, current implemen-
tations rely on accurate training data, which typically comes from computationally
expensive simulations. There is therefore a clear incentive to train models with
incomplete or no data by relying solely on the target density, which can be obtained
from a physical energy model (up to a constant factor). For that purpose, we
analyze the properties of standard losses based on Kullback-Leibler divergences.
We showcase their limitations, in particular a strong propensity for mode collapse
during optimization on high-dimensional distributions. We then propose strategies
to alleviate these issues, most importantly a new loss function well-grounded in the-
ory and with suitable optimization properties. Using as a benchmark the generation
of 3D molecular configurations, we show on several tasks that, for the first time,
imperfect pre-trained models can be further optimized in the absence of training
data.

1 Introduction

Application context. In statistical physics, the properties of materials and molecular systems are
expressed as expectations over probability distributions of microscopic configurations, which are
determined by macroscopic, thermodynamic parameters. Such expectations can be estimated numeri-
cally by Monte Carlo averaging using samples from physically relevant distributions, particularly
the Boltzmann distribution characterizing systems at equilibrium with a thermostat. The Boltzmann
distribution over configurations x is characterized by the density pB , which is related to the potential
energy UB by:

pB(x) =
1

ZB
· e−βUB(x) (1)

where β = 1/kBT is the inverse temperature, and ZB is a normalization factor known as the partition
function. Though there are usually closed form expressions or robust numerical methods to estimate
p̃B := ZB pB , there is no direct method to sample it. In practice, sampling is commonly performed
with stochastic simulations of physical systems, however pB is typically high-dimensional and
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multimodal, so that simulations are plagued by long autocorrelation times. Sampling with generative
models, which produce i.i.d. samples, is a potential avenue to overcome these limitations.

Normalizing Flows for Boltzmann distributions. Flow-based models (often just called normaliz-
ing flows) are a valuable type of architecture for this purpose ([1], [2], [3] and [4] for an overview),
which is invertible and yields not only samples x but also the probability density pG(x) of the
generated distribution. This in turns allows for unbiased estimation of expectations with respect to
the ground-truth Boltzmann distribution via reweighting:

E
x∼pB

[f(x)] = E
x∼pG

[
pB(x)

pG(x)
f(x)

]
(2)

for any function f , assuming that pG is nonzero over the support of f . This is the case of Boltzmann
generators [5], which are based on Normalizing Flows with affine coupling layers [6], trained to
generate a known Boltzmann distribution.

Designing more robust and expressive normalizing flow architectures is an active field of research,
with innovations such as rank-one perturbations to train fully connected layers [7], Augmented
Normalizing Flows [8], Stochastic Normalizing Flows [9], Smooth Normalizing Flows [10] and base
distribution resampling [11].

Towards data-free training. In principle, a loss function based on a well-chosen KL divergence
should allow for the training of normalizing flows in the absence of data, merely based on the
knowledge of the target Boltzmann distribution up to a constant factor [4]. However, there are
no claims of successful numerical experiments in the literature, suggesting that this approach may
be impractical for so-far undocumented reasons. Thus, it remains that in practice, Boltzmann
generators must be trained using accurate reference data, which makes them applicable to systems
that have already been sampled by other means, rather than standalone substitutes to simulations for
studying new, unknown systems. Generally speaking, training generative models on high-dimensional
distributions is difficult because it puts a high demand on the space to be covered during training;
training them in the absence of complete reference data is to date an unsolved problem. There are two
requirements for success: proper convergence (which implies stability of the generated distribution
near its target), and exploration of the ground-truth distribution. Here we focus on stability and
propose the very first data-free loss leading to stable training. We discuss possible approaches for an
exploration strategy in the discussion (section 6).

Contributions and overview. In this work, we analyze the properties of loss functions based on
Kullback-Leibler divergences, and showcase their limitations, in particular their lack of robustness
with respect to discretization, with a general tendency towards mode drop that makes data-free training
unstable. We then introduce a loss function that exhibits stable refinement training in the absence of
data, after an initial data-dependent pre-training. We assess all losses and training strategies on a toy
model (a high-dimensional double-well potential) and two molecular systems. We further discuss the
sensitivity of normalizing flow training to degrees of freedom with broad probability distributions in
the output, and propose strategies to avoid these effects at the level of the training criterion, without
added architectural constraints such as equivariance or invariance.

2 Optimizing Kullback-Leibler Divergences

KL divergence defined in z-space. The goal of training a Normalizing Flow G = F−1 is to
obtain a one-to-one mapping between a known base distribution qN (typically Gaussian) and a target
distribution pB , such that the pushforward measure pG of qN by G is similar to pB .

Gaussian distribution︷ ︸︸ ︷
zN ∼ qN

G

−−−−−−−−−−−→

generated distribution︷ ︸︸ ︷
xG = G(zN ) ∼ pG

zF = F (xB) ∼ qF ←−−−−−−−−−−−
F

xB ∼ pB︸ ︷︷ ︸
target distribution

Since normalizing flows are bijective, the conventional way of achieving this is by providing xB
samples from pB (usually from a dataset) to the inverse function F and then minimizing the KL
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divergence between the pushforward measure qF of pB by F and the known qN .

KL(qF ||qN ) =

∫
qF (z) log

qF (z)

qN (z)
dz (3a)

= logZN − SB + E
xB∼pB

[
1

2σ2
UN (F (xB))− log

∣∣∣∣det

(
∂F (xB)

∂xB

)∣∣∣∣] (3b)

When leveraging the principle of Stochastic Gradient Descent, this gives rise to the following standard
and data-dependent loss function, with xB a mini-batch of xB points sampled from pB (appendix A):

LKLz(xB) =

n∑
i=1

[
1

n
·
[

1

2σ2
UN (F (xB,i))− log

∣∣∣∣det

(
∂F (xB,i)

∂xB,i

)∣∣∣∣]] (4)

KL divergence defined in x-space. Another loss can be derived in an almost identical fashion by
defining a KL divergence in x-space instead (appendix B):

KL(pG||pB) =

∫
pG(x) log

pG(x)

pB(x)
dx (5a)

= logZB − SN + E
zN∼qN

[
βUB(G(zN ))− log

∣∣∣∣det

(
∂G(zN )

∂zN

)∣∣∣∣] (5b)

This leads to the following data-free loss function (with zN a mini-batch of zN points)::

LKLx(zN ) =

n∑
i=1

[
1

n
·
[
βUB(G(zN ,i))− log

∣∣∣∣det

(
∂G(zN ,i)

∂zN ,i

)∣∣∣∣]] (6)

ComparingLKLx withLKLz . When optimizing over mini-batches, these two loss functions behave
very differently. LKLz is known to be very stable and leads to good performance [4] while LKLx is
more erratic and often leads to mode collapse. To illustrate this, we pre-train a model on a simple
dataset with LKLz and then fine-tune it with LKLx. This is the general experimental setup used in
this work. Poor pre-trainings are allowed as long as they do not miss an entire mode of the target
distribution so as to analyze whether the fine-tunings manage to refine pG successfully. See section 6
on possible strategies to remove this data-dependent pre-training in the future.

The dataset is a simple double well in 12 dimensions similar to those used in previous works[5, 12]
(figure 1a), where the first dimension is bimodal and the 11 other dimensions are independent and

(a) 2D Projection of the dataset:
Double Well 12D

(b) Percentage of generated samples xG ∼ pG in the minor mode during
fine-tunings compared to the real ratio from pB (in orange).

(c) Partial pre-training. (d) Fine-tuning of 1c. (e) Complete pre-training. (f) Fine-tuning of 1e.

Figure 1: Results of two fine-tunings withLKLx after pre-trainings of different lengths withLKLz . Data from pB
(i.e. the dataset) is represented in orange. Both pre-training results are represented in pink. Fine-tuning results
after the partial pre-training are represented in blue (note the total collapse to the major mode). Fine-tuning
results after the complete pre-training are represented in purple. Figures 1c to 1f all represent the potential
energy UB of generated samples xG (in ordinates) as a function of the multi-modal dimension (in abscissa).
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Gaussian with a standard deviation of 10. The lack of normalization is intended to exhibit how
difficult this task already is for LKLx. Even with a partial pre-training that already samples the
bottom of each mode (figure 1c), it is incapable of keeping both modes and collapses to the main one
(figure 1d). A complete pre-training with LKLz (figure 1e) results in a better fine-tuning (figure 1f)
but is still not sufficient to completely stabilize LKLx as shown in figure 1b when looking at the
ratio between the modes over time. Note that this failure is not due to the poor normalization of the
target distribution, which only exacerbates this undesirable behavior, since LKLx also fails on more
complex datasets with good normalization (appendix C).

Making LKLz data-free. The standard loss LKLz cannot be used in a data-free setting since it
relies on samples from pB , but it can be modified to use samples from pG instead by leveraging
importance sampling (appendix D):

Ldf
KLz(x

‡
G) =

n∑
i=1

1

n
·

( p̃B(x‡G)

pG(x‡G)

)‡
·

(
1

2σ2
UN (F (x‡G,i))− log

∣∣∣∣∣det

(
∂F (x‡G,i)

∂x‡G,i

)∣∣∣∣∣
) (7)

with ‡ the symbol used to denote the “detach” operator that makes the term constant with respect to
gradient descent: x‡G ∼ p

‡
G is therefore a detached mini-batch of size n.

This results in a loss that is significantly more stable than LKLx and works perfectly on Double
well 12D (data not shown). It also achieves good performance on more complex target distributions
like that of Butane (figure 2). The configurations of the butane molecule have three main modes that
can easily be visualized when projecting onto the values of the dihedral angle φ of its carbon chain
(in red, figure 2a).

The potential energy function UB of physical systems in the absence of external fields is invariant by
collective rotation and translation. When the generative model is expressed in Cartesian coordinates
and is not equivariant with respect to these external degrees of freedom, it is necessary to add a loss
term that discourages translations and rotations, essentially acting as an alignment penalty. This
penalty is weighted by a scalar denoted λalign. To showcase the different behaviors of LKLx and
Ldf
KLz , a model is pre-trained with λalign = 10 and then fine-tuned with λalign = 0, essentially asking

the generated density to expand infinitely in the translational degrees of freedom and to cover all
possible rotations.

LKLx makes pG continuously expand translationally (figure 2c) but at the expense of losing the minor
modes (figures 2b and 2d), resulting in an explosion of the energy of generation UG (figure 2e). Ldf

KLz
on the other hand, does not explore significantly (figure 2g) but remains very stable by keeping all
the modes (figure 2i) and producing samples that stay at low energy levels (figures 2h and 2j).

While these results describe the extreme case of degrees of freedom distributed uniformly over R,
they exemplify the importance of removing unnecessary degrees of freedom for better performance,
especially those whose broad distribution considerably expands the support of the target density. For
translations and rotations, this can be achieved by always using λalign > 0. Of note, the degrees of
freedom of hydrogen atoms (which are permutation invariant within groups like −CH3 for example)
are also ignored here. The model is only asked to generate the positions of the carbon atoms, and
another module places the hydrogen atoms deterministically near their energy minimum. This
introduces a bias and changes the target ratio between the modes (from the solid to the dashed line
in figure 2b, see appendix E) but does not explain why Ldf

KLz does not converge to the expected
(“dashed”) ratio. Ldf

KLz is also shown to be unstable on more complex datasets (i.e. Dialanine,
figure 3i) and a better loss is developed in section 4 to counteract this problem.

Since divergences are not symmetric, one might also wonder what happens when swapping the two
distributions within the KL divergences, but an important result from the literature [4] already shows
that the minimizations of KL(qN ||qF ) and KL(pG||pB) are equivalent, as well as the minimizations
of KL(pB ||pG) and KL(qF ||qN ). KL(pB ||pG) is known to often lead to mode-drop in x-space [13],
whereas KL(qN ||qF ) tends to avoid that behavior (in our case, it may cause mode collapse in z-space
but this is not an impediment since the Gaussian target distribution has only one mode). Note also
that combining both data-free losses (Ldf

KLz and LKLx) is not sufficient to get proper ratios since
LKLx tend to dominate and the fine-tuning still results in a mode-collapse.
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Optimization pitfalls due to discretization over minibatches. In Appendix I, we show that in
general the optimization of Kullback-Leibler divergences with respect to a distribution suffers from
severe issues when discretized over minibatches without proper normalization. This is due to the
fact that the properties of KL heavily rely on a global unit mass constraint (for Gibbs inequality to
hold), which hinders its estimation or optimization in practice. We show how to build more suitable
estimators of the gradient of the Kullback-Leibler divergence, as well as how to minimize their
variance via a stabilizing trick.

3 Desirable Properties for a Loss Function

3.1 Estimator variance as a loss

With normalizing flows, one can compute exactly the probability with which one generates any given
point. As a consequence, one can correct the sampler based on the trained generator with importance
sampling, i.e. by associating each sample x with a weight pB(x)

pG(x) . Expectations are then taken with
respect to pB

pG
pG, which exactly matches the target pB , regardless of pG (provided that it has positive

density everywhere pB does). However, if importance sampling weights are closer to 1, the produced
distribution will converge faster towards pB , that is, fewer samples will need to be generated. The
question here is how to design a loss to train pG in such a context where the reweighted output
distribution is always perfect.

(a) A configuration of Butane (b) Percentage of generated samples xG ∼ pG in the minor modes.

(c) Centers of mass
(d) UB energies (e) UG energies (f) Correlations

(g) Centers of mass
(h) UB energies (i) UG energies (j) Correlations

Figure 2: Results of two fine-tunings with LKLx (second row) and Ldf
KLz (third row) after the same pre-training

with LKLz on Butane. In all sub-figures, data from pB (i.e. the dataset) is represented in orange, fine-tuning
results with LKLx are represented in blue, fine-tuning results with Ldf

KLz are represented in cyan.
- Figures 2c and 2g represent the centers of mass of generated samples xG ∼ pG.
- Figures 2d and 2h represent the potential energy UB of generated samples xG ∼ pG (in blue or cyan) vs.
samples from the dataset xB ∼ pB (in orange). Note that in both cases the energy of the hydrogens is minimized
(either by the model or manually). These figures visualize whether or not pG ⊂ pB .
- Figures 2e and 2i represent the energy of generation UG of samples from the dataset xB ∼ pB according to
each pre-trained model (in orange) vs generated samples xG ∼ pG (in blue or cyan). These figures visualize
whether or not pB ⊂ pG.
- Figures 2f and 2j represent the correlations between the energy of generation UG and the potential energy UB

of generated samples xG ∼ pG.
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An important application of our generatorG is often to estimate integral quantities of the form EpB [f ]
for some given function f . For instance, a classic use case in practice is to compute the free energy
difference ∆FBC between the state being sampled (with energy UB) and an alternate state (with
energy UC). Then:

e−β∆FBC := E
x∼pB

[f ] with f(x) = e−β(UC(x)−UB(x)) (8)

Let us denote by Q the true value of the quantity to estimate:

Q := E
pB

[f ] :=

∫
x∈X

pB(x)f(x)dx = E
pG

[
pB
pG
· f
]

(9)

The latter equality holds under the assumption that pG is never 0 where pB is not. For any pG, the
following quantity Q̂ is an unbiased estimator of Q:

Q̂ :=
1

n

∑
xi∈m

f(xi)
pB(xi)

pG(xi)
(10)

where m = (x1, . . . , xN ) is a large set of points sampled according to pG. That is, when averaging
over all possible mini-batches, Q̂ becomes Q (i.e. Em[Q̂] = Q). Yet, for some distributions pG,
the estimate Q̂ may converge faster than others, in terms of number of samples required to reach a
given accuracy. The quality of a generator pG can thus be quantified through the expected error when
estimating Q with n points. This can be shown to be proportional to the variance of Q̂, which can
then be turned into a training loss (see appendix F for a proof):

Lf (pG) = E
x∼pG

[
p2
B(x)

p2
G(x)

· f2(x)

]
(11)

If the function f is not fixed and can be any bounded function over the space X of points x, then one
can deduce the following optimization criterion:

L(pG) = E
x∼pG

[
p2
B(x)

p2
G(x)

]
= E
x∼pB

[
pB(x)

pG(x)

]
= eRN2(pB ||pG) = var

x∼pG

[
pB
pG

]
+ 1 (12)

where RN2(pB ||pG) is the Rényi divergence of order 2. This formula looks very similar to the KL
divergence, without the log, thus penalizing high ratios pB

pG
more strongly. In practice, one knows

how to compute p̃B(x) := ZBpB(x) but not pB(x) directly. Fortunately, a model pG trained with L
will yield by definition a good estimator of ZB = EpB [ZB ] = EpG

[
p̃B
pG

]
.

Another justification for this loss is that one aims to find pG ∝ p̃B , and therefore to make the ratio
p̃B
pG

constant over X . Without knowing the value of the target constant, this can still be achieved by
minimizing the variance of the ratio over X , which is precisely the loss L.

Thus we arrive at L(pG) = varx∼pG

[
pB
pG

]
as a principled loss to minimize the variance of estimators

of expectations over the Boltzmann distribution.

3.2 Practical Recommendations

Beyond the theoretical points considered in section 3.1, there are a few practical considerations that
need to be addressed.

Degrees of freedom:

- As illustrated in section 2, avoiding unnecessary symmetries within the target distribution is
often beneficial to ease the training. Hydrogen atoms for instance are permutation invariant
within −CH3 groups and thus multiply by 6 the total number of modes for each group. Since
the position of hydrogen atoms is often irrelevant for downstream applications they can often be
ignored. In this work we choose the simplest method which consist in placing the hydrogens

6



deterministically near their energy minimum at the cost of intruducing a bias that changes the
ratio between modes. Better options exist such as adjusting UB (to encourage having only one
permutation possible), or placing hydrogen atoms stochastically but with a model that does not
care about mode collapse.

- More importantly, extremely flat degrees of freedom should be removed if possible. When
it comes to translations and rotations, several approaches are available. One could add an
alignment penalty to the potential energy UB (as described in section 2), but it is also possible to
generate configurations in internal coordinates directly (thereby removing 6 degrees of freedom).

Numerical instabilities:

- The loss Ldf
KLz may suffer from training instabilities due to the use of importance sampling

weights that have a high variance and therefore often focuses most of the gradient onto just a
few points of each mini-batch. Such weights should be avoided if possible during the design of
new loss functions.

- The potential energy term UB is also at risk of introducing training instabilities since it can be
very sensitive to small changes in the position of the atoms. The strategy followed in this work
is to cap each term of the energy function individually, so that their gradient never exceeds a
given threshold. This approach is much more fine-grained than using a global capping, directly
on UB .

Minimizing vs. maximizing the energy terms:

- The term UB should probably never be increased explicitly through gradient descent (which
is equivalent to saying that pB should never be decreased). Although some training objectives
that do this may seem to be principled in the context of an integral over the whole space, they
usually fail once converted into loss functions used on discrete mini-batches.

- In the same spirit, it is often a preferable to avoid decreasing pG directly. Indeed, decreasing
pG at a given point implies moving the mass somewhere else, but since the direction where to
move this mass is not specified, it could go anywhere without actually getting any closer to pB .
Since pG is a probability distribution, increasing it anywhere implies that some other region of
the space will become less probable to compensate (i.e. pG cannot increase everywhere). In
the case where pG is never decreased explicitly (maybe by masking the troublesome points) the
training is much smoother since the probability mass is always pushed where it is most needed.

4 A data-free L2 loss

Building on varx∼pG

[
pB
pG

]
(from equation 12), we replace ratios pB(x)

pG(x) with log-ratios

r(x) = log
pB(x)

pG(x)
(13)

for numerical reasons, as normalizing flows actually compute log-probabilities and the exponentiation
leads to instability. We also note that:

var
pG

[r] = E
pG

[(
r − E

pG
[r]

)2
]

(14)

This formulation with differences between log-ratios has the advantage of making ZB cancel out
from the computations in practice. To avoid decreasing pG(x) explicitly at any point x, as mentioned
in Section 3.2, we modify the loss as follows by masking (r−K). As a consequence, r (and therefore
UG) can only be minimized (whereas UB(x‡G) is not differentiated with respect to θ). The masked
L2 loss with detached means is therefore defined as:

LL2
+

(x‡G) =

n∑
i=1

[
1

n
·
[(
r(x‡G,i)−K

‡
)2

+

]]
(15)

where a2
+ = a2 if a > 0 and 0 otherwise, and where K‡ =

[∑n
j=1

[
1
n · r(x

‡
G,j)

]]‡
is not

differentiated (so as to ensure that it is never increased). Note that in the continuous limit:
EpG [r] = −KL(pG||pB) 6 0.
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One can prove that, in spite of the non-differentiation of K‡, a pseudo-gradient descent on this loss
will converge towards pB , provided the model is expressive enough and that the initial pG is non-zero
on the support of pB , for an adequate choice of inner product (appendix G).

This loss has common features with log-variance loss of Richter et al. [14], yet the mask applied in the
present loss is critical for stability, just as well as detaching K (see the ablation study in appendix H).

The conformational distribution of dialanine is often projected onto its two main dihedral angles φ
and ψ for visualization (figures 3a and 3c). The “real” distribution pB has about ≈ 6% of its mass
in the minor mode (the one where φ > 0) but when taking into account the minimization of the
energy of hydrogen atoms, this ratio drops to ≈ 1.21% (dashed line in figure 3b, see appendix E).

(a) A configuration of dialanine (b) Percentage of generated samples xG ∼ pG in the minor modes.

(c) Projections on (φ, ψ) dihedral angles. Ground truth target (orange), model after data-dependent
pre-training (pink), models fine-tuned with Ldf

KLz (cyan) and LL2
+

(green)

(d) UB energies with Ldf
KLz

(e) UB energies with LL2
+

(f) UG energies with Ldf
KLz

(g) UG energies with LL2
+

(h) Correlations (i) UB energy of generated samples xG ∼ pG during fine-tuning.

Figure 3: Results of two fine-tunings (withLdf
KLz andLL2

+
) after the same pre-training withLKLz on Dialanine.

In all sub-figures, data from pB (i.e. the dataset) is colored in orange, pre-training results are colored in pink,
fine-tuning results with Ldf

KLz are colored in cyan, fine-tuning results with LL2
+

are colored in green.
- Figure 3b represents the percentage of generated samples xG ∼ pG in the minor modes during fine-tuning. The
solid orange line corresponds to the “real” ratio from pB , whereas the dashed orange line corresponds to the
same ratio from pB but with the energy minimized with repect to hydrogen atom coordinates (appendix E).
- Figure 3c contains 2D projections of the ground truth dataset and generated data.
- Figures 3d and 3e represent the potential energy UB of generated samples xG ∼ pG (in cyan or green) vs.
samples from the dataset xB ∼ pB (in orange). Note that in both cases the energy of the hydrogens is minimized
(either by the model or manually). These figures visualize whether or not pG ⊂ pB .
- Figures 3f and 3g represent the energy of generation UG of samples from the dataset xB ∼ pB (in orange) vs
generated samples xG ∼ pG (in cyan or green). These figures visualize whether or not pB ⊂ pG.
- Figures 3h represents the correlations between the energy of generation UG and the potential energy UB of
generated samples xG ∼ pG.
- Figure 3i represents the potential energy UB of generated samples xG ∼ pG during fine-tuning. Note the
instability of Ldf

KLz compared to the stability of LL2
+

.
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This means that the result of the pre-training with the data-dependent LKLz produces a ratio (≈ 6%,
figure 3c) that is different from the one expected at the end of the fine-tuning (≈ 1.21%). It is clear
that Ldf

KLz completely loses the minor mode (figures 3c and 3f) whereas LL2
+

does not (figures 3c and
3g) and converges to the expected correct ratio of ≈ 1.21%. The bias induced by the deterministic
placement of the hydrogen atoms does not change the main point that LL2

+
converged to the ratio

it was supposed to produce. Another thing to notice is that Ldf
KLz has unstable UB energies during

fine-tuning whereas the LL2
+

does not (figure 3i). In addition to those clear qualitative improvements,
and unlike Ldf

KLz , LL2
+

does not rely on numerically unstable importance sampling weights.

Note that the accuracy on this test is limited by the choice of generating deterministic hydrogen
atom positions: this can be lifted by using a conditional normalizing flow to generate a Boltzmann
distribution of hydrogen atom positions conditioned on the set of heavy atom positions generated by
the main model.

5 Technical details

Data and pretraining. For all datasets (i.e. Double Well 12D, Butane and Dialanine), the
data has been generated by Metropolis-Hastings simulations with Parallel Tempering [15–17]).
The potential energy UB of the molecules of butane and dialanine is evaluated according to the
CHARMM36m force field [18]. The energy function used in the simulations also uses an alignment
penalty with λalign = 10. The data-dependent pre-training is performed with LKLz . The number of
iterations was a 10th of the one used for fine-tunings (i.e. 10000 iterations).

Alignment Penalty. The alignment penalty is an L2 distance between generated coordinates and
their image after a roto-translational alignment to some reference. The alignment may only be partial
since we cap the maximum allowed rotation by π/3 to ease the training.

Model Architecture. Only two model architectures are used. One for Double Well 12D and one
for molecular datasets (i.e. Butane and Dialanine). The architecture used in Double Well 12D
experiments is a simple stack of 8× 4 Coupling Blocks (as described in section [6]). Every Coupling
Block uses an internal feed-forward sub-network M composed of two layers with an internal feature
size of 64 separated by a CELU non-linearity [19]. The architecture used in Butane and Dialanine
experiments is quite similar except for two changes:

- The stack is made deeper (24× 4 Coupling Blocks) and wider (internal sub-networks M have a
layer size of 256),

- and an additional feed-forward network is used to generate the position of the hydrogen atoms.
It has 3 layers separated by CELUs and a hidden size of 512.

Error estimation. No error bars are provided, but empirically, each experiment proved to be
entirely reproducible over dozens of runs.

Resources. Every experiment has been performed on a single machine with two GPUs GeForce
RTX™ 2070. Each experiment on Double Well 12D takes about 40m, whereas the experiments on
Butane and Dialanine take between 7 to 10 hours.

6 Conclusion and Perspectives

In this contribution, we have explored the conditions necessary for training or refining flow-based
models based on an explicitly known target density, rather than pre-determined samples from a
Markov-chain simulation. We have found that several losses that may seem appropriate in theory lead
to numerical failures in a discrete setting. In particular, we have documented a major instability issue
when optimizing the KL divergence KL(pG||pB) between the generated and target distributions. We
note that loss functions whose minimization amounts to decreasing the probability of a sample point
(lowering either pG or pB) push the model to spread local mass in improbable directions, resulting in
instability. Based on an estimator variance minimization approach, we have derived a stable data-free
loss based on L2 distances between log-distributions, with the important condition that a mask must

9

https://www.charmm.org/archive/charmm/resources/charmm-force-fields


be applied to follow the criterion stated above. This loss is the first one to exhibit stable data-free
optimization on the dialanine molecule task.

While this allows for stable optimization of a correctly trained model, lifting the requirement for
complete reference data will require a training protocol able to explore the target space to discover
new modes. We envision two families of approaches to that effect:

- Keeping the current paradigm of a generator fully trained on a single system, training could
be initiated based on a limited and/or biased set of data, for example from high-temperature
simulations, then extended using the properties of normalizing flows themselves [20, 21],
enhanced-sampling simulations[22], or hybrid approaches [23].

- Alternately, the cost of complete training for every new target could be reduced by transferring
information between systems using curriculum learning. In the case of molecular targets, this
would require a generalizing model, e.g. one based on graph convolutions [24–26].

The novel masked L2
+ loss has demonstrated remarkable stability on the Dialanine test case, which

is a good benchmark for small molecules of pharmacological interest, and a smaller proof of concept
for proteins. It remains to be seen how it will scale to larger systems, yet previous work has shown
the normalizing flow approach to scale to larger molecules in presence of a training dataset [5].
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A Derivation of KL(qF ||qN )

KL(qF ||qN ) =

∫
qF (z) log

qF (z)

qN (z)
dz (16a)

=

∫
qF (z) logZN dz +

∫
qF (z) log

qF (z)

q̃N (z)
dz (16b)

= logZN +

∫
qF (z) log

qF (z)

q̃N (z)
dz (16c)

= logZN +

∫
pB(x) log

pB(x) ·
∣∣∣det

(
∂F (x)
∂x

)∣∣∣−1

q̃N (F (x))
dx (16d)

= logZN − SB +

∫
pB(x) log

∣∣∣det
(
∂F (x)
∂x

)∣∣∣−1

q̃N (F (x))
dx (16e)

= logZN − SB +

∫
pB(x) log

∣∣∣det
(
∂F (x)
∂x

)∣∣∣−1

e−
1

2σ2
UN (F (x))

dx (16f)

= logZN − SB + E
xB∼pB

[
1

2σ2
UN (F (xB)) + log

∣∣∣∣det

(
∂F (xB)

∂xB

)∣∣∣∣−1
]

(16g)

= logZN − SB + E
xB∼pB

[
1

2σ2
UN (F (xB))− log

∣∣∣∣det

(
∂F (xB)

∂xB

)∣∣∣∣] (16h)

with:

- (16a) by definition of the KL divergence
- (16b) by using qN = 1

ZN q̃N
- (16c) by using

∫
qF (z)dz = 1 (probabilities sum to one)

- (16d) by substitution of qF (z) by the change of variable formula:

qF (z) dz = pB(F−1(z)) ·
∣∣∣∣det

(
∂F−1(z)

∂z

)∣∣∣∣ dz
= pB(x) ·

∣∣∣∣det

(
∂F (x)

∂x

)∣∣∣∣−1

dz

= pB(x) dx

(17)

- (16e) by definition of the entropy: SB = S(pB) = −
∫
pB(x) log pB(x)dx

- (16f) by using: q̃N (z) = e−
1

2σ2
UN (x)

- (16g) by definition of expectation: E
xB∼pB

[
f(xB)

]
=
∫
pB(x)f(x)dx
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B Derivation of KL(pG||pB)

KL(pG||pB) =

∫
pG(x) log

pG(x)

pB(x)
dx (18a)

=

∫
pG(x) logZB dx+

∫
pG(x) log

pG(x)

p̃B(x)
dx (18b)

= logZB +

∫
pG(x) log

pG(x)

p̃B(x)
dx (18c)

= logZB +

∫
qN (z) log

qN (z) ·
∣∣∣det

(
∂G(z)
∂z

)∣∣∣−1

p̃B(G(z))
dz (18d)

= logZB − SN +

∫
qN (z) log

∣∣∣det
(
∂G(z)
∂z

)∣∣∣−1

p̃B(G(z))
dz (18e)

= logZB − SN +

∫
qN (z) log

∣∣∣det
(
∂G(z)
∂z

)∣∣∣−1

e−βUB(G(z))
dz (18f)

= logZB − SN + E
zN∼qN

[
βUB(G(zN )) + log

∣∣∣∣det

(
∂G(zN )

∂zN

)∣∣∣∣−1
]

(18g)

= logZB − SN + E
zN∼qN

[
βUB(G(zN ))− log

∣∣∣∣det

(
∂G(zN )

∂zN

)∣∣∣∣] (18h)

with:

- (18a) by definition of the KL divergence
- (18b) by using pB = p̃B/ZB
- (18c) by using

∫
pG(x)dx = 1 (probabilities sum to one)

- (18d) by using the change of variable formula:

pG(x) dx = qN (G−1(x)) ·
∣∣∣∣det

(
∂G−1(x)

∂x

)∣∣∣∣ dx
= qN (z) ·

∣∣∣∣det

(
∂G(z)

∂z

)∣∣∣∣−1

dx

= qN (z) dz

(19)

- (18e) by definition of the entropy: SN = S(qN ) = −
∫
qN (x) log qN (x)dx

- (18f) by using: p̃B(x) = e−βUB(x)

- (18g) by definition of expectation: E
zN∼qN

[
f(zN )

]
=
∫
qN (z)f(z)dz

C Optimizing LKLx leads to mode collapse on Dialanine

Although most generated samples have low energy, not all of them do (figure 4b) and they only
represent a subset of the target distribution (figure 4d), since during training minor modes are
progressively lost (figure 4a), until a single mode remains in the 2D projection (figure 4c).
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(a) Percentage of generated samples xG ∼ pG in the minor mode during fine-tuning with LKLx.

(b) UB energies (c) pG projection on (φ, ψ) (d) UG energies

Figure 4: Results of the fine-tuning with LKLx on Dialanine. See the captions of figure 3 of the main paper
for more details.

D Derivation of KL(qF ||qN ) with Importance Sampling

∇θKL(qF ||qN ) = ∇θ
[

E
xB∼pB

[
1

2σ2
UN (F (xB))− log

∣∣∣∣det

(
∂F (xB)

∂xB

)∣∣∣∣]] (20a)

= ∇θ
[∫

p‡B(x)

(
1

2σ2
UN (F (x))− log

∣∣∣∣det

(
∂F (x)

∂x

)∣∣∣∣) dx] (20b)

= ∇θ

[∫
p‡G(x)

(
pB(x)

pG(x)

)‡(
1

2σ2
UN (F (x))− log

∣∣∣∣det

(
∂F (x)

∂x

)∣∣∣∣) dx
]

(20c)

= ∇θ

 E
x‡G∼p

‡
G

(pB(x‡G)

pG(x‡G)

)‡(
1

2σ2
UN (F (x‡G))− log

∣∣∣∣∣det

(
∂F (x‡G)

∂x‡G

)∣∣∣∣∣
) (20d)

=
1

ZB
· ∇θ

 E
x‡G∼p

‡
G

( p̃B(x‡G)

pG(x‡G)

)‡(
1

2σ2
UN (F (x‡G))− log

∣∣∣∣∣det

(
∂F (x‡G)

∂x‡G

)∣∣∣∣∣
)

(20e)

=
1

ZB
· E
x‡G∼p

‡
G

∇θ

( p̃B(x‡G)

pG(x‡G)

)‡(
1

2σ2
UN (F (x‡G))− log

∣∣∣∣∣det

(
∂F (x‡G)

∂x‡G

)∣∣∣∣∣
) (20f)

with:

- (20a) by taking the gradient of equation 16h.
- (20b) by definition of expectation: E

xB∼pB

[
f(xB)

]
=
∫
pB(x)f(x)dx. Note the subtle

replacement of pB with p‡B which is allowed inside the gradient operator∇θ since pB is
not a function of θ.

- (20c) by importance sampling.
- (20d) by definition of expectation.
- (20e) by definition of p̃B = ZBpB .
- (20f) by noticing that, although p‡G is a function of θ, it is not a differentiated function of θ.

Since it is detached, it is treated as a constant by the gradient operator and the expectation
can be sampled in the context of Stochastic Gradient Descent.
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E Analysis of the bias when generating deterministic, minimum-energy
hydrogen coordinates

In our two-stage architecture, the normalizing flow generator G outputs only heavy atom coordinates
xC , while hydrogen atoms are added at minimum-energy positions xH by an auxiliary neural network
denoted by h. Thus, all-atom coordinates are generated as {xC , xH} = h(xC) = h(G(z)), and the
reverse operation is z = F (h̄(xC , xH)), noting h̄ the operation of stripping H coordinates from an
all-atom configuration.

As a result, whereas the generatorG is bijective, the complete pipeline h◦G is not: while F ◦ h̄◦h◦G
is identity in the latent space, h ◦G ◦F ◦ h̄ = h ◦ h̄ corresponds to energy minimization with respect
to hydrogen atom coordinates, i.e. the projection of complete atomic coordinates onto the minimum-
energy-hydrogen manifold.

In the spirit of a coarse-graining (CG) approach, the desirable target for the generated distribution pCG
of heavy atom coordinates is the marginal pCB of the target pB with respect to those coordinates:

pCB(xC) =

∫
pB(xC , xH)dxH (21)

We characterize convergence on the dialanine example by computing the predicted probability of
the minor modeM of dialanine (known to biochemists as the C7ax conformation). The Boltzmann
probability of this mode is:

PB(M) =

∫
M
pB(x)dx (22)

=

∫
M
pB(xC , xH)dxCdxH (23)

Now we use the fact thatM is defined solely based on the values of xC , so that it can be written
M =MC × R3NH , withMC a set of heavy atom coordinates, and NH the number of hydrogen
atoms.

PB(M) =

∫
MC

[∫
pB(xC , xH)dxH

]
dxC (24)

=

∫
MC

pCB(xC)dxC (25)

However, in practice, the optimization of G minimizes the divergence between pCG and an auxiliary
distribution p̄B defined by:

p̄B(xC) = pB(h(xC)) (26)
Thus any difference between pCB and p̄B introduces a bias in the generation of heavy atom coordinates.
Furthermore, the probability pG of generation of an all-atom configuration x is:

pG(x) = pCG(h̄(x)) δ(x− h ◦ h̄(x)) (27)

which is non-zero only on the minimum-energy-hydrogen manifold that is the image of h ◦ h̄.

Assuming perfect training (pCG = p̄B), we obtain:

pG(x) = pB(h ◦ h̄(x))δ(x− h ◦ h̄(x)) (28)

The probability of the minor mode as generated by a perfectly trained network is thus:

P̄B(M) =

∫
M
pG(x)dx (29)

=

∫
M
pB(h ◦ h̄(x))δ(x− h ◦ h̄(x))dx (30)

≈
∫
M
pB(h ◦ h̄(x))dx (31)
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where the last step relies on the fact that the conditional Boltzmann distribution of hydrogen atom
positions is peaked, that is, pB is largest around minimal-energy hydrogen coordinates (where
x = h ◦ h̄(x)).

This leads to an importance sampling estimator for this probability based on samples from the
reference dataset:

ˆ̄PB(M) :=

∑
xB∼pB |xB∈M

p̃B(h ◦ h̄(xB))

p̃B(xB)∑
xB∼pB

p̃B(h ◦ h̄(xB))

p̃B(xB)

≈ 1.21% (32)

which we use as a reference value in Figure 3b.

F Details and proofs for section 3.1 (Estimator variance as a loss)

F.1 Integral quantity of interest

Let us suppose that the use case of our generator is to estimate integral quantities of the form:

E
pB

[f ]

for some given function(s) f .

Let us denote by Q its true value.

Q := E
pB

[f ] :=

∫
x∈X

f(x) pB(x) dx = E
pG

[
f
pB
pG

]
This is exact provided that pG is never 0 where pB is not.

F.2 Estimation by sampling

In practice, one estimates Q by sampling:

Q ' Q̂ :=
1

N

∑
xi∈m

f(xi)
pB(xi)

pG(xi)

where m = (x1, . . . , xN ) is a mini-batch of points sampled according to pG. Note however than we
do not know pB , but only p̃B = ZBpB . We will come back to this point later.

F.3 This estimator is unbiased

Whatever pG, Q̂ is an approximation of Q, in that for very large mini-batches m, i.e. large N , the
estimate Q̂ tends to Q. One then says that the estimator is unbiased. The convergence rate is typically
in O(1/

√
N). Indeed:

E
m∼ pNG

[ Q̂ ] = Q

where the expectation is taken over mini-batches of N independent samples, taken according to pG.
To prove this, see that even for just one sample (N = 1) one has:

Q̂ = f(x1)
pB(x1)

pG(x1)

and thus:

E
x1∼ pG

[
Q̂
]

= E
x∼ pG

[
f(x)

pB(x)

pG(x)

]
=

∫
x∈X

f(x) pB(x) dx =: Q
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For a mini-batch of arbitrary size N , one gets the average of N such quantities, each of which are Q
on expectation, so one recovers Q again:

E
m∼pNG

[Q̂] = E
m∼pNG

[
1

N

∑
xi∈m

f(xi)
pB(xi)

pG(xi)

]

=
1

N

N∑
i=1

E
xi∼pG

[
f(xi)

pB(xi)

pG(xi)

]

=
1

N

N∑
i=1

E
x∼pG

[
f(x)

pB(x)

pG(x)

]
because points xi are sampled independently;

= E
x∼ pG

[
f(x)

pB(x)

pG(x)

]
=: Q

F.4 Variance of the estimator

Yet, for some distributions pG, the estimate Q̂ may converge faster than for other ones, in terms of
number of samples required to reach a given target accuracy. This is reflected in the variance of the
estimator Q̂:

V = E
m∼ pNG

[ (Q̂−Q)2 ]

that one would like to be as small as possible. Indeed the typical gap between an estimate Q̂ for a
mini-batch and the real value Q can be expected to be of the order of magnitude of V (by definition).

Can we train pG so as to minimize V ?

F.5 Reducing variances over mini-batches to variances over single samples

For a given mini-batch size N , the variance over the choice of mini-batch m is:

V = E
m∼pNG

[(Q̂−Q)2]

= E
m∼pNG

[Q̂2]−Q2

As Q2 is constant (does not depend on pG), we aim at minimizing only:

E
m∼pNG

[Q̂2] = E
m∼pNG

( 1

N

∑
xi∈m

f(xi)
pB(xi)

pG(xi)

)2


=
1

N2
E

m∼pNG

∑
xi∈m

f2(xi)
p2
B(xi)

p2
G(xi)

+
∑

xi,xj∈mi6=j

f(xi)
pB(xi)

pG(xi)
f(xj)

pB(xj)

pG(xj)


Note that points xi and xj are sampled independently, and all points are sampled identically (according
to the same law), and thus:

E
m∼pNG

[Q̂2] =
1

N2

N∑
i=1

E
xi∼pG

[
f2(xi)

p2
B(xi)

p2
G(xi)

]
+

1

N2

N∑
i,j=1,i6=j

E
xi∼pG

[
f(xi)

pB(xi)

pG(xi)

]
E

xj∼pG

[
f(xj)

pB(xj)

pG(xj)

]

=
1

N
E

x∼pG

[
f2(x)

p2
B(x)

p2
G(x)

]
+
N(N − 1)

N2
E

x∼pG

[
f(x)

pB(x)

pG(x)

]2

=
1

N
E

x∼pG

[
f2(x)

p2
B(x)

p2
G(x)

]
+

(
1− 1

N

)
Q2
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The variance (without forgetting any constant term) thus interestingly rewrites as:

V =
1

N

(
E

x∼pG

[
f2(x)

p2
B(x)

p2
G(x)

]
−Q2

)
which can be interpreted as: the variance of an estimator based on N samples is 1

N times the variance
of the estimator based on a single sample. This implies that the variance behaves as O( 1

N ) and thus
the typical error (standard deviation) is O( 1√

N
).

F.6 Optimizing the variance w.r.t. pG

Based on the variance formula above, one can consider that the quality (or rather: expected error) of
the generator G can be quantified as:

C(pG) = E
x∼ pG

[
f2(x)

p2
B(x)

p2
G(x)

]
and we would like to minimize it w.r.t. pG.

If f can be any bounded function over the space X of points x, then one can deduce the following
optimization criterion:

C(pG) = E
x∼ pG

[
p2
B(x)

p2
G(x)

]
Note that this resembles a KL divergence without the logarithm, and is also equal to:

C(pG) = E
x∼pG

[
e2β(UG−UB)

] 1

Z2
B

This loss is also equal to:

C(pG) = E
x∼ pB

[
pB(x)

pG(x)

]
though this is not directly exploitable.

Note that if function f that needs to be integrated is known, it should be used explicitly in the criterion
to optimize!

F.7 Special case: estimating free energy differences

An interesting and classic case in practice is to compute the free energy difference ∆FBC between
the sate being sampled (with energy UB) and an alternate state defined by energy UC . Then:

f(x) = e−β(UC(x)−UB(x))

and
e−β∆FBC = E

x∼pB
[f ]

G Proof of L2 loss pseudo-gradient descent convergence (section 4)

We study here the optimization properties of the masked L2 loss, with detached means.

G.1 Notations

Given a dataset of points xi, we denote by

ri = log
pB(xi)

pG(xi)

the log-ratio of the target and generated densities at point xi.
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Differences of log-ratios satisfy:

ri − rj = log
pB(xi)

pG(xi)
− log

pB(xi)

pG(xi)
= log

p̃B(xi)

pG(xi)
− log

p̃B(xi)

pG(xi)

where p̃B = (logZB) pB is easily computable, which makes such differences easily computable, to
the opposite of the log-ratios ri themselves.

Let us note that:
E

xj∼pB
[rj ] = KL(pB ||pG)

and similarly:
E

xi∼pG
[ri] = −KL(pG||pB)

G.2 Pairwise L2 loss

G.2.1 Definition

The pairwise L2 loss (simple version) is defined as:

L(pG, pB) = var
xi∼pG

(ri) = E
xi∼pG

[(
ri − E

xj∼pG
[rj ]

)2
]

As a side remark, let us note that this is equal to:

L(pG, pB) =
1

2
E

xi,xj∼pG

[
(ri − rj)2

]
but we will not use this property here. The proofs are the same as for the mixed sampling case (cf
below).

G.2.2 Global minimum

This loss is also equal to:
L(pG, pB) = eD2(pG||pB)

where D2 is the Rényi divergence of order 2, a measure of divergence between distributions. D2 is a
f -divergence and in particular it is jointly convex. As a consequence, the only minimum is the global
one, reached at pG = pB .

G.3 Masked L2 loss with detached means

G.3.1 Definition

The masked L2 loss (simple version) with detached means is defined as:

LMD(pG, pB) = E
xi∼pG

[(
ri −K‡

)2
+

]
where a2

+ = a2 if a > 0 and 0 otherwise, and where K = Exj∼pG [rj ] = −KL(pG||pB) 6 0 is not
differentiated (considered as a constant at every time step of the gradient descent); we say K‡ is
detached, following PyTorch vocabulary.

This definition is motivated as follows:

• masking (ri −K) with ()+ to consider it only when positive has the consequence that
ri will be only asked to decrease. Since pG is a probability distribution, this implies that
some other rj will increase to compensate (pG cannot increase everywhere), but at least
this will not be done by the gradient descent, hence not in the worst possible direction
(make xj as unlikely as possible, and this as fast as possible, i.e. make it as unrealistic as
possible), but rather in the smoothest possible way (push the probability mass to regions
where it is more needed).

• not detaching K would ask it to increase, and thus to decrease values of pG at most points
xj .
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G.3.2 Global minimum

This loss is non-negative, and 0 can be reached if all ri are equal (note that 0-loss implies that no
ri is greater than the mean K, and consequently no ri can be strictly less than the mean K as well,
otherwise the mean would be lower than itself). As previously, this is the case if and only if pG
is proportional to p̃B and thus equal to pB (see the end of the convergence proof below for more
details).

G.3.3 Optimization by partial gradient descent

However, since only part of the loss is differentiated (K is considered a constant though changing
with pG), then strictly speaking the optimization process is not a gradient descent, as the loss is
different at each time step. Therefore one needs to check that this optimization process does converge,
and to the global minimum.

This task is hindered by the fact that the constraint that the total mass of pG has to remain 1 is handled
implicitly by the normalizing flow, and so the precise way the gradient w.r.t. pG is replaced with
a variation δpG that preserves the total mass depends on the architecture and the neural network
weights.

Total variation of log-ratios Let us study the variation of K induced by a (partial) gradient step:

δK = δ

(
E

x∼pG
[r]

)
= δ

(∫
pG r dx

)
= E
x∼pG

[δr] +

∫
r δpG dx

Note that:
pG(xi) = elog pG(xi) = e−ri+log pB(xi) = e−ripB(xi)

As Ex∼pG [1] = 1 we have Ex∼pB [e−r(x)] = 1, and this for any pG or equivalently for any associated
r. As a consequence, the variation of Ex∼pB [e−r] w.r.t. to any realizable change δr (pB being fixed
and pG varying) is necessarily 0:

δ

(
E

x∼pB
[e−r]

)
= E
x∼pB

[e−rδr] = 0

which rewrites as
E

x∼pG
[δr] = 0

Consequently δK can be simplified as:

δK =

∫
r δpG dx

and rewritten as:

δK =

∫
(r −K) δpG dx

since K
∫
δpG = 0 as pG has conserved total mass = 1.

Now, note that the gradient descent step is asking to decrease all r that are greater than K. Since
r = log pB/pG, this means increasing pG for such points where r > K. So δpG > 0 when
r −K > 0.

For points where r < K, pG is not asked to change, but the conservation of mass makes that (at least
some of) such points will have their probabilities decreased, to produce the extra mass needed by the
previous points above (r > K). Thus δpG 6 0 where r < K.

In the end, for all points, (r −K)δpG > 0 and consequently:

δK > 0

See Section G.3.4 below for more details about this proof.
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Consequences Therefore, K is increasing with time. This is good news, as K = −KL(pG||pB):
this means that with this optimization process, pG is getting closer to pB .

As K is actually strictly increasing as long as pG is not pB , we can conclude that the optimization
process will lead to the desired global optimum.

Another way to see this is that K is an increasing, upper-bounded value (bounded by 0) and this will
converge. When K converges (possibly to a non-0 value), then the training criterion becomes stable
with time and the optimization process becomes a real gradient descent w.r.t. ri. Therefore a local
minimum of this loss (for fixed limit K) will be reached. Now, the gradient of this fixed-K loss is 0
when all ri are either equal to or less than K. If at such a minimum one ri was strictly less than K,
we would get that the average of all ri (according to pG) would be strictly less than K, while it is
precisely K. Therefore all r are equal and the global minimum is reached.

G.3.4 More details on the proof

We explain here in more details the links between the signs of δpG(x) and of (r(x) −K), that is,
that their product is never negative.

To see this, we need to detail how δpG(x) is obtained. We are optimizing the following criterion :

LMD(pG, pB) = E
xi∼pG

[(
ri −K‡

)2
+

]
with K = Exj∼pG [rj ] = −KL(pG||pB), where:

• the sampling distribution pG over which the expectation is performed is not differentiated,
i.e. the minibatch points xG = (xi) are detached; this is similar to what is done with
VarGrad [14] ;

• the log ratios ri = log pB(xi)
pG(xi)

are differentiated, with respect to the parameters of the
modeled distribution pG, and this will induce a desired variation for pG ;

• K is not differentiated ;

• only points for which ri > K are actually taken into account in the criterion.

These two last points differ from VarGrad [14]; practice shows that they are required for the opti-
mization process to go well. Interestingly, this pseudo gradient descent can be proven theoretically to
converge towards the right minimum. We will prove that K = −KL(pG||pB) increases with time,
and tends to 0, and thus pG gets closer to pB at each step and finally converges to the target.

The hypotheses for this theoretical study are only that:

• the support of pG includes the one of pB ;

• the neural network is expressive enough (for the pseudo gradient direction to be followed).

Desired variations Let us first note that the log ratio is r(x) = log pB(x)
pG(x) , i.e. pG = e−rpB . As a

consequence, possible variations of r or pG are linked as follows:

δr = − 1

pG
δpG

δpG = −pG δr

The (opposite of the) derivative of LMD(pG, pB) with respect to r yields the desired variation:
δrdesired(x) = −2(r(x)−K)+ pG(x) having taken into account that only some parts of the criterion
are differentiated as explained above. This translates into a desired distribution variation : δpGdesired =
2(r −K)+ p

2
G This is 0 for points x such that r(x) 6 K and positive otherwise.

Constrained variations However pG is a probability distribution and is constrained to sum up to 1.
How a practical training step projects the desired probability variation δpGdesired onto a realizable
variation δpGrealizable depends on the normalizing flow architecture, its weights, and its expressivity, in
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a complex manner. If the neural network is expressive enough though, the desired variation δpGdesired
is realizable up to the mass constraint. We will study here this ideal case, where the network is
sufficiently expressive, and reason in the functional space of possible functions pG, forgetting about
the network (that will be able to express the realizable variation δpGrealizable anyway).

There are several ways to project δpGdesired onto a realizable variation δpGrealizable that satisfies the
mass constraint. We do as follows:

For points x such that r(x) > K:
δpGrealizable(x) = δpGdesired(x)

and for other points:
δpGrealizable(x) = −µ

where µ is the following constant (i.e. not depending on x):

µ =
1

|Ω−|

∫
x∈Ω

δpGdesired(x) dx > 0

where Ω is the support of pG and where Ω− is the subset of Ω where r(x) < K. This construction is
meant so that: ∫

x∈Ω

δpGrealizable(x) dx = 0

which is the condition for pG to remain a probability distribution (the mass is kept constant).

Note that this projection of the desired pseudo-gradient over the set of variations satisfying the mass
constraint is not the standard orthogonal one.

Impact on the average K By construction, the projected gradient will decrease the criterion LMD

for fixed K and fixed sampling distribution. However pG and consequently K evolve with time.

The variation of K = Exj∼pG [rj ] is:

δK = δ

(∫
pG r

)
=

∫
r δpG +

∫
pG δr

As explained earlier, the last term is 0:
∫
pG δr =

∫
−δpG = 0 for any realizable variation δpG.

The variation of K thus becomes:

δK =

∫
r δpG =

∫
(r −K) δpG =

∫
Ω+

(r −K)δpG +

∫
Ω−

(r −K)δpG

as
∫
δpG = 0, and where Ω+ is the subset of Ω where r(x) > K.

Considering for δpG our pseudo gradient δpGrealizable, we obtain:

δK = 2

∫
Ω+

(r −K)2p2
G − µ

∫
Ω−

(r −K)

where the fist term is non-negative, and µ > 0 and r − K < 0 on Ω−. Consequently δK > 0.
Therefore K keeps increasing with time.

Moreover, δK > 0 as long as pG is not proportional to pB on the support of pG. As K increases
and is upper-bounded by 0, K converges. Convergence implies δK = 0, and therefore that pG is
proportional to pB on the support of pG. The hypothesis on the supports then implies that pG = pB .

H Not detaching K: experimental results

The masked L2 loss with detached means is defined as:

LL2
+

(x‡G) =

n∑
i=1

[
1

n
·
[(
r(x‡G,i)−K

‡
)2

+

]]
(33)

When K from equation 33 is not detached, the potential energy UB of the generated samples xG is
highly unstable during fine-tuning (blue curve of figure 5a in this appendix), but when K is detached
the potential energies remain stable (green curve of figure 3i of the main paper). Very similar
results are obtained when the mask of equation 33 is omitted, thereby illustrating experimentally that
VarGrad [14] does not allow for stable data-free fine-tuning.
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(a) UB energy of generated samples xG ∼ pG during fine-tuning.

(b) UB energies with LL2
+

with no
detach of K

(c) UG energies with LL2
+

with no
detach of K

Figure 5: Results of a fine-tunings on Dialanine with a slightly modified version of LL2
+

where K (from
equation H) is not detached. See caption of figure 3 of the main paper for more details.

I Optimization pitfalls induced by the discretization of distributions into
minibatches

In this section we list various optimization pitfalls encountered during gradient descents over a
“distances” or divergences between probability distributions, and bring practical or theoretical recom-
mendations to avoid them.

Historically for us, the results below were strong motivations to search for new optimization criteria
with better optimization properties. We did not include this part in the main paper for space reasons
and because these considerations are not essential, though they help understand the theoretical context
of our study. The proofs and details are deferred to the next section, for readability reasons.

I.1 Discretization issues with Kullback-Leibler and remedies

To motivate this study of discretization and normalization issues, we start with an intruiguing fact.

Optimization of naively-discretized Kullback-Leibler does not converge towards the target.
The main property of Kullback-Leibler divergence, as a measure of “distance” between probability
distributions, is Gibbs inequality: KL(pB ||pG) > 0 for any pB , pG, with equality if and only if
pB = pG. Without the constraint of being probabilities (unit total mass), Gibbs inequality does not
hold anymore, and thus minimizing KL(pB ||pG) w.r.t. pG in the space of all distributions leads to an
unexpected behavior.

Proposition I.1 (Unconstrained-mass pitfall) The gradient descent dpG
dt = −∇pGKL(pB ||pG),

starting from pG,0 and without constraining
∫
X
pG to be 1, yields, for large times t:

∀x, pG,t(x) '
√

2t
√
pB(x)

Thus a lack of normalization will push pG to get infinite mass, and even correcting pG,t by its total
mass will not yield pB , but

√
pB . Clearly, pG = pB is not the minimizer of KL(pB ||pG), and indeed

with pG,t =
√

2t
√
pB one gets KL(pB ||

√
2tpB) = 1

2H(pB)− 1
2 log(2t) << 0 = KL(pB ||pB) for

high t.

This pitfall still stands even if one considers a parameterized model for pG that always satisfies the
constraint

∫
X
pG = 1, such as the output of a normalizing flow, if the discretization is inadequate.

Indeed the above also applies to continuous distributions discretized on a minibatch m of samples:

pB|m(x) :=
∑
i∈m

δx=xipB(xi) and pG|m(x) :=
∑
i∈m

δx=xipG(xi)
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The total mass of these distributions is not 1, even if normalized by the number of samples (minibatch
size). It can be arbitrarily high, as pG(xi) is a probability density. As a consequence:

Corollary I.1 (Unproper-minibatch-normalization pitfall) A gradient descent w.r.t. θ, parame-
ters of pG, to minimize KL(pB|m || pG|m), with always the same minimibatch m, will follow similar
exploding dynamics.

Variance over minibatches. Note that the followed gradient −∇pGKL(pB ||pG) = pB
pG

is always
positive, at all locations x, and thus at each time step, the density increases at sampled points of the
current minibatch, and is implicitely reduced at other locations by the normalizing flow architecture.
This positive pressure will cancel out when integrated over the whole space, as one cannot increase
densities at all points simultaneously while keeping the total mass constant; in the end, pressures
matter only relatively to the average one (densities at locations x with relatively weak pressure will
decrease). In practice this induces a lot of variance, as one needs to wait for mini-batches to have
covered the whole space for the average gradient to be informative, furthermore hoping that the
resulting sampling will be sufficiently uniform. This slows down and may significantly hinder the
optimization of quantities such as KL strongly relying on global quantities (unit mass).

Correct normalization. The problem above disappears with correct normalization over mini-
batches, ensuring that the distributions inside KL have unit mass:

p
d|m
B (x) :=

1∑
i∈m

pB(xi)

∑
i∈m

δx=xipB(xi) and p
d|m
G (x) :=

1∑
i∈m

pG(xi)

∑
i∈m

δx=xipG(xi)

As pd|mB and pd|mG are probability distributions over minibatch points, the divergence KL(p
d|m
B ‖pd|mG )

makes sense, as well as its gradient w.r.t. the parameters θ of the generative model pG, as redistributing
the mass within the minibatch, without pulling extra mass from non-sampled points. Therefore each
minibatch gradient is informative, and convergence is much faster. On the opposite, the divergence
KL(p

d|m
B ‖pG) and the former discretization of the divergence KL(pB ||pG) over the minibatch both

suffer from manipulating densities pG(xi) that are not constrained to sum to 1 over the minibatch,
leading to the previously detailed issues.

I.2 Reducing the variance of estimators induced by discretization

Losses vs. estimators of them by discretization. One important thing is not to confuse a quantity,
such as Q = KL(pB ||pG), with estimators Q̂ of it, such as the approximations obtained by discretiza-
tion over mini-batches of samples. Another important thing is not to confuse the gradient∇Q̂ of a
good estimator of a quantity with a good estimator ∇̂Q of the gradient of that quantity. This is the
latter one that we aim at finding, and that we study now.

We would like to estimate the gradient of KL(pB‖pG) (or of another similar criterion) w.r.t. the
generator parameters θ.

Such gradient is of the form:

A :=

∫
X

g dµ =

∫
x∈X

g(x) dµ(x)

where for instance in the case of ∇θKL(pB‖pG) =
∫
X
pB
pG

dpG
dθ , one could choose g(x) =

pB(x)
pG(x)

dpG(x)
dθ and dµ = dx, or g = pB

p2G

dpG
dθ and dµ(x) = pG(x)dx, depending on the sampler.

Yet, all we can do is to sample a minibatch m containing n samples, chosen i.i.d. according to dµ:

Â :=
1

n

∑
i∈m

g(xi)

This estimator is unbiased: Em[Â] = A, i.e. on average over all possible minibatches, Â becomes A.
The approximation error, or estimator variance, can be shown to be:

E
m

[(A− Â)2] =
1

n

(
E
x

[
g2
]
−A2

)
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Stabilizing trick to reduce estimator variance. Note that adding +
∫
X
K dpG

dθ to the gradient A,
for some constant K, does not change it, as

∫
X
dpG
dθ = d

dθ

∫
X
pG = d

dθ (1) = 0. A new expression of
our target quantity A, with its associated unbiased estimator Â′, is thus:

A =

∫
X

g =

∫
X

g +K
dpG
dθ

and Â′ :=
1

n

∑
i∈m

g(xi) +K
dpG(xi)

dθ

Minimizing the variance of the estimator Â′ w.r.t. K yields K∗ = −E
[
g dpGdθ

]
/E
[
dpG
dθ

2
]
'

−
∑
j g(xj)

dpG(xj)
dθ /

∑
j(
dpG(xj)
dθ )2 where the approximation is performed through running means

over past minibatches.

This variance-reduced estimator of the gradient can easily be obtained by just adding +K∗
∫
X
pG

to the optimization criterion before discretization over the minibatch. The corresponding gradient
descent will be more robust to minibatch discretization.

Normalization mistakes are removed by the stabilizing trick (on average). Applying the trick
above removes the normalization mistakes of the naive discretization. Indeed, on average, i.e. on
expectation over minibatches, one can show that the total mass within a minibatch is preserved
by a gradient step based on the trick-corrected gradient estimator. This was not the case with the
naively-discretized KL gradient, which always asks for increasing the mass at each point of each
minibatch.

J Proofs and details of the previous section

J.1 Reminder about KL divergence

The quantity:

KL(p||q) =

∫
X

p log
p

q

is called a “divergence" and has the following properties, when applied to 2 probability distributions
p and q defined over a space X:

• KL(p||q) > 0 for any different p and q

• KL(p||q) = 0 if and only if p = q

This is known as Gibbs inequality and makes KL usable as a criterion to measure how far two
probability distributions are from each other. KL is not a distance in the mathematical sense though.
In particular, KL(p||q) is not equal to KL(q||p) in general.

Note 1: it is important that p and q be probability distributions, i.e. p > 0 and
∫
X
p = 1, and similarly

for q. Without these constraints, Gibbs inequality is not true anymore, and thus minimizing KL(p||q)
w.r.t. q might lead to a solution q∗ different from p.

Note 2: formulas containing the symbol
∫
X

are generically true for any measure over X , and not
necessarily just the Lebesgue measure. For instance, one can replace

∫
X

with
∑
i δx=xi , i.e. consider

a discrete set of points {xi}, or a weighted set:
∑
i wiδx=xi with wi > 0.

J.2 First pitfall: dynamics of minimizing KL(p||q) w.r.t. q without constraining
∫
X
q to be 1

Let us start from qt=0 = q0 and minimize KL(p||qt) by gradient descent w.r.t. qt directly (no
intermediate parameterization), i.e. dqdt = −∇qKL(p||qt)
To obtain the expression of the functional gradient∇qKL, let us consider any infinitesimal variation
δq of q : the quantity KL(p||q) =

∫
X
p(x) log p(x)

q(x)dx = −
∫
X
p(x) log q(x)dx+ Constant would

change by:

δ(KL(p||q))(δq) = −
∫
X

p(x)

q(x)
δq(x)dx
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As the (L2) gradient ∇qf(q) of a function f is defined as the unique distribution v such that∫
X
v(x) δq(x)dx = δ(f(q))(δq) + o(δq) ∀δq, one has:

∇qKL(p||q) = −p
q

Hence the dynamics rewrite:
dq

dt
=
p

q

in the sense that ∀x, dqt(x)
dt = p(x)

qt(x) . Let us note that this implies dq
dt > 0 ∀x, t and that as a

consequence, q(x) increases with time for all x, getting farther and farther away from the missing
constraint

∫
X
q = 1. Indeed:

dq2

dt
= 2p

and hence:
q2(t) = 2pt+ q2

0

q(t) =
√

2pt+ q2
0

Thus, for large times t,

q(t) '
√

2t
√
p

in the sense that:
∀x, qt(x) '

√
2t
√
p(x)

which shows that:

• there is a lack of normalization (q will get infinite mass),

• even correcting by the total mass of q will not yield p, but
√
p,

• q = p is not the minimizer of KL(p||q).

Indeed with qt =
√

2t
√
p one gets:

KL(p||
√

2tp) =
1

2
H(p)− 1

2
log(2t) << 0 = KL(p||p)

for t > 1
2e
H(p).

J.3 Extension to normalizing flows keeping full mass constant by design

The above also applies to distributions discretized on a minibatch m:

p(x) = pB|m(x) :=
∑
i

δx=xipB(xi)

and
q(x) = pG|m(x) :=

∑
i

δx=xipG(xi)

The total mass of these distributions is not 1. It can be arbitrarily high, as pG(xi) is a density (and not
a probability: it is not constrained to be less than 1). As a consequence, a gradient descent w.r.t. θ,
parameters of pG, to minimize KL(pB|m||qG|m), with always the same minimibatch m, will follow
similar exploding dynamics.
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J.4 Gradient of the estimator vs. estimator of the gradient

The gradient ∇L2

q with respect to the distribution q does not take into the fact that q should remain a
probability distribution, i.e. sum up to 1. One should project this gradient onto the set of possible
variations of q. This can be done for instance by considering∇L2

q KL−
∫
X
∇L2

q KL, i.e. removing
its mean. This would definitely change the dynamics studied in the previous section.

In our implementation with “normalizing flows”, the gradient∇L2

θ with respect to the parameters θ
of the probability distribution qθ does implicitely take into account the fact that q should remain a
probability distribution, in that by construction all qθ are probability distributions: with a “normalizing
flow”, there is no way to escape the manifold of distributions which sum up to 1.

Note the difference between:

• the gradient ∇L2

θ of KL(pd‖qd) between discretized distributions (which is the correct
way according to the previous sections):

∑
i
d log q(xi)

dθ

(
qd(xi) − pd(xi)

)
, the first term

coming from the derivative of the log of the normalizing factor 1∑
i q(xi)

• and the discretization of the gradient ∇L2

θ of KL(pd‖q) (which is an incorrect way):
−
∑
i p
d(xi)

d log q(xi)
dθ .

The incorrect way misses a term, which acts as if it had a supplementary term − 1∑
i q(xi)

∑
i
dq(xi)
dθ

which leads to be a positive additive term in a gradient descent: all q(xi) are increased.

This is similar to the actor-critic approach in reinforcement learning, where the comparison
(
qd(xi)−

pd(xi)
)

improves the dynamics of the training, pushing the probability flow in the right direction (the
sign indicates whether more probability mass is needed or the opposite), while without the critic pd
the training would be far less stable and require much more time.

J.5 Stabilizing trick

First note that for any parameterized probability distribution q = pG = p
(θ)
G :

∀θ,
∫
X

pG = 1

and consequently:
d

dθ

∫
X

pG =

∫
X

dpG
dθ

= (0, 0, 0 . . . 0)

with as many 0 as parameters θ. Thus any gradient formula of the form
∫
X
dq
dθf =

∫
x∈X

dq
dθ (x)f(x)dx

satisfies: ∫
X

dq

dθ
f =

∫
X

dq

dθ
(f +K) ∀K ∈ R|Θ|

for any additive constant K (which is a vector). Thus we can form many different estimators of∫
X
dq
dθf by picking a value for K and discretizing

∫
X
dq
dθ (f +K) over a minibatch. What we will do

in next section is to note that our gradient writes in that form (
∫
X
dq
dθf ), and choose within this family

of estimators the one with the least variance.

Similarly, ∫
X

d log q

dθ
f =

∫
X

d log q

dθ
(f +Kq) ∀K ∈ R|Θ|

Note: for readability purposes, we used the abusive notation f+K, which stands for f.∗(1, 1, 1 . . . )+

K, and the product with dq
dθ is done coefficient-wise for K. To be more precise:

• f(x) ∈ R, so dq
dθf reads f(x)dq(x)

dθ : real × vector multiplication,

• K ∈ R|Θ| is a vector (as many coefficients as parameters θ) and dq
dθK reads dq

dθ .∗ K =(
dq(x)
dθj

Kj

)
j

which is a coefficient-wise multiplication, yielding a vector of same size.
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Implementing the trick very simply as an addition to the loss Instead of manipulating the
gradient, this trick can be implemented directly by changing the loss to be optimised. Indeed adding
+
∫
X
dq
dθK to the gradient amounts to adding +K

∫
X
q to the optimization criterion (with detached

K and without replacing
∫
X
q by its expected value, 1).

J.6 Minimizing the variance of the estimator of the gradient

J.6.1 Set-up

Consider the case where one wants to minimize KL(p‖q) (or another criterion) w.r.t. q. At some
point during gradient computations we would like to compute a quantity of the form:

A :=

∫
X

g =

∫
x∈X

g(x)dx

but all we can do is sample a minibatch m containing n samples, chosen i.i.d. and uniformly over X:

B :=
1

n

∑
i∈m

g(xi)

NB: this i.i.d. and uniform hypotheses will be important in the sequel. One could imagine that points
are sampled on purpose far away from each other, or from another distribution. In which case, the
proves below have to be adapted.

We know that on average over all possible minibatches, B becomes A:

E
m

[B] = A

and this can be shown by: Em[B] = 1
n Em

[∑
i∈m g

]
= Ex [g(x)] = A as minibatch points are

i.i.d. and uniformely sampled over X (see next section for details).

Yet for any minibatch, B is rarely exactly A. In particular if X is large, n is small, or g varies quickly,
B is not likely to be exactly A. We thus want to study the approximation error:

E
m

[(A−B)2]

in order to minimize it w.r.t. the parameter K above.

NB: computations below are done with integrals and samplers uniform over X .

J.6.2 Minimizing the variance

E
m

[(A−B)2] = A2 + E
m

[
B2
]
− 2AE

m
[B] = −A2 + E

m

[
B2
]

as A does not depend on m. The −A2 term is constant (depends neither on m, nor K). Let us study
the other term, in order to optimize it w.r.t. K later:

B2 =

(
1

n

∑
i∈m

g(xi)

)2

=
1

n2

∑
i

g(xi)
2 +

∑
i 6=j

g(xi)g(xj)


On average over minibatches, this yields:

E
m

[
B2
]

=
1

n2
E
m

[∑
i

g(xi)
2

]
+

1

n2
E
m

∑
i 6=j

g(xi)g(xj)


Useful properties of averages over minibatches. As minibatches are formed with samples ran-
domly chosen, i.i.d. (that is, each sample is independently sampled from the other ones in the
minibatch), Em is actually Ex1∼S Ex2∼S . . .Exm∼S where S is the sampling distribution of one
point, and consequently formulas such as Em [

∑
i f(xi)] can be simplified as follows:

E
m

[∑
i

f(xi)

]
=
∑
i

E
m

[f(xi)] =
∑
i

E
xi∼S

[f(xi)] = n E
x∼S

[f(x)]
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Similarily, formulas involving 2 variables symmetrically such as Em
[∑

i 6=j f(xi)f(xj)
]

boil down
as follows:

E
m

∑
i6=j

f(xi)f(xj)

 =
∑
i 6=j

E
m

[f(xi)f(xj)] = n(n− 1)E
m

[f(x)f(x′)]

= n(n− 1) E
x∼S

[f(x)] E
x′∼S

[f(x′)] = n(n− 1)
(

E
x∼S

[f(x)]
)2

Back to our variance minimization. Our quantity of interest above thus becomes: Em
[
B2
]

=
1
n Ex∼S

[
g(x)2

]
+ n(n−1)

n2 (Ex∼S [g(x)])
2

= 1
n E

[
g(x)2

]
+(1− 1

n )A2 in our case where the sampling
distribution is uniform.

Thus the approximation error is:

E
m

[(A−B)2] = − 1

n
A2 + E

m

[
1

n2

∑
i

g(xi)
2

]
which we can estimate by sampling as:

E
m

[(A−B)2] ≈ − 1

n
A2 +

1

n2

∑
i

g(xi)
2

using as many samples as possible (not the current minibatch considered at that gradient descent step,
but a sliding average over past minibatches for instance). Using the current minibatch might lead to a
biased estimator.

Let us develop the second term (the first one being constant). The target quantity A is the gradient of
the optimization criterion, of the form

A =

∫
X

g =

∫
X

dq

dθ
(f +K)

thus

g(xi) =
dq(xi)

dθ
(f(xi) +K)

Note that g and K are vectors, but we can deal with each coordinate independently as they do not
interact in these expressions. Let us focus on the j-th coordinate of g, i.e. the j-th parameter:

gj(xi) =
dq(xi)

dθj
(f(xi) +Kj)

In order not to hamper the reading, we drop j in the next lines:∑
i

g(xi)
2 =

∑
i

dq(xi)

dθ

2

(f(xi)
2 +K2 + 2Kf(xi))

= K2

(∑
i

dq(xi)

dθ

2
)

+ 2K

(∑
i

dq(xi)

dθ

2

f(xi)

)
+

(∑
i

dq(xi)

dθ

2

f(xi)
2

)
Minimizing this w.r.t. K yields:

K = −
∑
i(
dq(xi)
dθ )2f(xi)∑
i(
dq(xi)
dθ )2

i.e.

Kj = −
∑
i(
dq(xi)
dθj

)2f(xi)∑
i(
dq(xi)
dθj

)2

This quantity can be efficiently computed in practice using libraries such as BackPACK1 [27].
1https://backpack.pt/
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J.6.3 Gradient estimation

Thus, given a minibatch, the estimation of a gradient A of the form
∫
X
dq
dθf , such as ∇θKL(p||qθ) =

−
∫
X
dq
dθ

p
q , should rather be done with the formula:

Aj =
1

n

∑
i

dq(xi)

dθj

f(xi)−
∑
k(dq(xk)

dθj
)2f(xk)∑

k(dq(xk)
dθj

)2

 ∈ R

=
1

n

∑
i

dq(xi)

dθj
f(xi)−

(∑
i

dq(xi)

dθj

) ∑
k(dq(xk)

dθj
)2f(xk)∑

k(dq(xk)
dθj

)2


The full gradient A with all coordinates is then estimated as:

Â =
1

n

(∑
i

dq

dθ
f −

(∑
i

dq

dθ

) ∑
k( dqdθ )2f∑
k( dqdθ )2

)
using coefficient-wise squaring, multiplication and division between parameter-size vectors.

NB: as said above, the terms coming from K, i.e. the sums involving squares, should be computed
with running means over minibatches, while the other sums are performed on the current minibatch.

Remember that
∑
i
dq
dθ is a quantity which on average over possible minibatches is 0, but is not

necessarily exactly 0 for any given minibatch. One could correct the deviation of
∑
i
dq
dθ from 0 by

removing the mean of dqdθ , which would lead to an expression of the form:

1

n

∑
i

(
dq

dθ
− dq

dθ

)
f =

1

n

∑
i

dq

dθ
f − 1

n2

(∑
i

dq

dθ

)(∑
i

f

)
but it turns out that with our stabilizing trick, a better correction can be found, by exploiting the
correlation between f and ( dqdθ )2.

Note also that it is not useful to use this trick on normalized discretized distribution optimization such
as KL(pd||qd). Indeed,

∑
i
dqd

dθ would be 0 always, so no correction would be brought.

J.6.4 Variance

The expected deviation between the true gradient A and the (optimized) minibatch estimation B is
then (estimated over a minibatch):

E
m

[(A−B)2] = − 1

n
A2 +

1

n2

(∑
i

dq

dθ

2

f2

)
−

(∑
i(
dq
dθ )2f

)2

∑
i(
dq
dθ )2


Note that the term between brackets is positive (or 0), according to Cauchy-Schwartz. It is 0 when
(and only when) f is constant (in which case A is 0 also).
Note also that without optimization upon K, i.e. with K = 0, the negative term in the bracket

disappears. Consequently, the variance reduction due to this stabilizing trick is 1
n2

(
∑
i(
dq
dθ )2f)

2∑
i(
dq
dθ )2

.

J.7 Normalization mistakes are removed by the stabilizing trick (on average)

We show here that applying the stabilizing trick correctly (i.e. with running means to estimate K)
does remove the normalization mistakes of the naive discretization. Indeed, on average, i.e. on
expectation over minibatches, the total mass is preserved at sampled points, as follows.

Considering the mass (density) q(xi) at point xi, the mass change during this time step, at point
xi, is dq

dθ (xi) · ε δθ where ε is the learning rate and δθ is the parameter change, given by δθ =∑
i
dq
dθf +

∑
i
dq
dθK.
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The global mass change over all sampled points is thus:

ε

(∑
i

dq

dθ
(xi)

)
·

(∑
i

dq

dθ
f +

∑
i

dq

dθ
K

)
∝

(∑
i

dq

dθ

)(∑
i

dq

dθ
f

)
+

(∑
i

dq

dθ

)2

K

On average over minibatches, this becomes:

E
[
dq

dθ

2

f

]
+ E

[
dq

dθ

2]
K

which can be enlightened by the value of K obtained in previous section: K = −
E
[
dq
dθ

2
f
]

E
[
dq
dθ

2
] . Conse-

quently on average the mass is kept. This prevents the pathological dynamic behavior observed with
naive discretization.
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