
HAL Id: hal-03936924
https://hal.science/hal-03936924

Submitted on 16 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental constrained clustering with application to
remote sensing images time series

Baptiste Lafabregue, Pierre Gançarski, Jonathan Weber, Germain Forestier

To cite this version:
Baptiste Lafabregue, Pierre Gançarski, Jonathan Weber, Germain Forestier. Incremental con-
strained clustering with application to remote sensing images time series. IEEE International Con-
ference on Data Mining Incr’Learn Workshops, Nov 2022, Orlando, United States. pp.814-823,
�10.1109/ICDMW58026.2022.00110�. �hal-03936924�

https://hal.science/hal-03936924
https://hal.archives-ouvertes.fr


Incremental constrained clustering with application
to remote sensing images time series
Baptiste Lafabregue1, Pierre Gançarski1, Jonathan Weber2, Germain Forestier2

1 ICube, Université de Strasbourg, France, {lafabregue, gancarski}@unistra.fr
2 IRIMAS, Université de Haute Alsace, France, {jonathan.weber, germain.forestier}@uha.fr

Abstract—Automatically extracting knowledge from various
datasets is a valuable task to help experts explore new types
of data and save time on annotations. This is especially required
for new topics such as emergency management or environmental
monitoring. Traditional unsupervised methods often tend to not
fulfill experts’ intuitions or non-formalized knowledge. On the
other hand, supervised methods tend to require a lot of knowledge
to be efficient. Constrained clustering, a form of semi-supervised
methods, mitigates these two effects, as it allows experts to inject
their knowledge into the clustering process. However, constraints
often have a poor effect on the result because it is hard for experts
to give both informative and coherent constraints. Based on the
idea that it is easier to criticize than to construct, this article
presents a new method, I-SAMARAH, an incremental constrained
clustering method. Through an iterative process, it alternates
between a clustering phase where constraints are incorporated,
and a criticize phase where the expert can give feedback on the
clustering. We demonstrate experimentally the efficiency of our
method on remote sensing image time series. We compare it to
other constrained clustering methods in terms of result quality
and to supervised methods in terms of number of annotations.

Index Terms—Constrained clustering, User feedback, Time
series, Remote sensing

I. INTRODUCTION

Following the growth of data production, machine learning
has seen an increasing interest these last years, leading to the
production of robust and effective methods. These methods
often rely on a lot of annotated data to perform well, however,
in most cases such annotations are not easily available. New
application domains, like time series and more specifically in
remote sensing, are particularly prone to this issue. On one
hand, due to the novelty of such data, the semantic fields
(thematic classes, nomenclatures...) appropriate to qualify the
data may not be perfectly defined. This tends to make the
creation of learning datasets difficult, if not impossible. On
the other hand, even if formalized knowledge exists, manual
annotation remain fastidious and time-consuming.

In such a situation, where a lot of data is available but not
labeled, unsupervised clustering approaches have been shown
to be relevant and very effective [1]. Nevertheless, experts
often have intuitions or partial knowledge of the data (e.g.
idea of existing thematic classes, labels for some objects, . . . ).
Unfortunately, they do not generally have efficient mechanisms

This work was supported by the ANR HERELLES project (grant ANR-
20-CE23-0022) and the ANR HIATUS project (grant ANR-18-CE23-0025)
and the ANR TIMES project (ANR-17- CE23-0015) of the French Agence
Nationale de la Recherche

to provide this background knowledge directly to the clustering
process. So, constrained clustering, a form of semi-supervised
clustering, has been proposed to circumvent this problem [2].

In this kind of approach, experts express their background
knowledge in the form of constraints that the clustering should
respect, constraints that are easier to define than labels. How-
ever, most of the time these methods require a large amount of
constraints to be significantly effective [3], [4]. Thus, experts
face a similar problem as in supervised scenarios: how to give
the set of relevant annotations as small as possible?

The article [2] highlights two limitations of constraints use.
First, it shows that most constraints given at random will be
satisfied whether they are fed to the clustering method or not as
they correspond to a strong intrinsic reality. Secondly, it also
demonstrates that constraints’ quality is an important factor
that can help reduce the number of required constraints.

To tackle these issues, an extension of constrained cluster-
ing methods, called active constrained clustering, has been
recently proposed. It is based on the idea that knowledge
can be interactively discovered during the clustering process
itself. It consists in submitting chosen queries to the expert
to allow the system to create constraints more relevant and
more exploitable by the constrained clustering method [5],
[6]. Experiments show that these methods tend to dramatically
reduce the number of required constraints. Unfortunately, the
system’s queries can involve objects out of the experts’ domain
of interest or out of their expertise domain.

Therefore, the aim of our work is to define a method able
to guide experts in defining constraints that are both likely to
be useful and that allow them to focus on the part of the data
that they are interested in. Concretely, this article proposes an
innovative method that aims to answer to these two points,
called Incremental SAMARAH (I-SAMARAH) and based on
SAMARAH method [7]. It differs from existing approaches by
changing the way constraints are given by the user. In this
method, the user can provide additional constraints on the fly
based on the algorithm’s results and thus, thanks to those,
guide the progress of the analysis. Indeed, it seems simpler
for an expert to propose new constraints based on a result
rather than from scratch, i.e. only based on the raw data.
The paper also validates this method on remote sensing time
series analysis. Indeed, the remote sensing domain presents the
majority of the issues introduced above (lack of knowledge,
high number of potential thematic classes, . . . ).

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works. DOI: https://doi.org/10.1109/ICDMW58026.2022.00110

https://doi.org/10.1109/ICDMW58026.2022.00110


Indeed, even though studies were already conducted on
satellite image time series in the past decades [8], [9], they
were limited by three major factors: low data resolution,
data sparsity, and acquisition cost. These limitations have
been strongly mitigated with various initiatives, such as the
Copernicus1 European Union’s program (e.g. Sentinel-2 satel-
lites launched in 2015-2017).This new paradigm offers many
perspectives to monitor or analyze land coverage evolution [8].

In the rest of this article, we first discuss related work on
(active) constrained clustering in Section II. In Section III
we present our new method I-SAMARAH. In Section IV
we present the material and methodological choices made
for the experiments. Then, in Section V we present and
discuss our test results. We show that our method outperforms
other constraints clustering and active constrained clustering
methods, even with a fewer number of constraints. Finally,
in Section VI, we present our conclusions and discuss the
perspectives of our work.

II. BACKGROUND AND RELATED WORK

A. Pairwise constraints and clustering

Clustering is an essential tool in data analysis but its
results will often depend on its optimization function and its
initialization state. Hence, it may often fall in local optima
that will not match the user requirements or expectations.
Constrained clustering aims to incorporate knowledge in the
clustering process to regulate its result. The user expresses
this knowledge through a set of constraints. Constraints can
have different forms and can be distinguished between the one
related to clusters and the one related to instances [10].

We distinguish two main types of constraints. First, the ones
on the cluster-level, e.g. the number of clusters K or their
maximum diameter [2]. Second, the ones on the instance-level,
with mainly the pairwise constraints that are of two kinds,
must-link (ML) and cannot-link (CL). ML constraints indicate
that two instances should be assigned to the same cluster and
CL constraints that they should be assigned to different ones.
This type of constraint has been extensively used, which makes
it easier for method comparison. These constraints are also
intuitive for the user and easy to give, as they just express if
two objects (e.g. pixels or segments in remote sensing) should
be grouped together or not. In consequence, this article will
only focus on pairwise constraints.

Many methods use pairwise constraints, introduced first
by Wagstaff et al. with the COP-KMEANS method [11].
COP-KMEANS is an extension of the widely used K-means
clustering method. Most of the proposed constrained clustering
methods follow the same scheme and extend a standard
clustering method, including K-Means [11], [12], Spectral
Clustering [4], SOM. Constraints may be used at different
levels of the clustering process. Some methods use them
to update the similarity of the constrained instances [4], to
control the clustering assignment [11], [13], or as a simple
guidance [7]. However, they either need a very high number

1https://www.copernicus.eu/fr

of annotations, or a large portion of the data to be annotated
for small datasets.

In all these methods, the constraints quality plays an impor-
tant role in constrained clustering performance and is an im-
portant track to reduce the number of required constraints. [14]
Davidson et al. [14] have shown that constraints are effective
if they fulfill two criteria:
• to be informative: constraints should not be satisfied by

the algorithm on its own (i.e. unconstrained clustering).
• to be coherent: constraints should not contradict them-

selves. Davidson et al introduced coherence as a measure
that quantifies “the amount of agreement between the
constraints themselves, given a metric that specifies the
distance between points” [14].

To this end, active constrained clustering methods were pro-
posed to ensure the constraints’ quality.

B. Active constrained clustering and user feedback

Different strategies are proposed to select constraints in the
literature [5]. Some methods focus on finding constraints that
bring the most information or with the most uncertainty [5],
but others try to find the ones that will have the larger effect
on the clustering [6], [15] or reduce the potential errors of the
clustering.

Another approach, inspired by active learning [5], has been
proposed by Cohn et al. [16]. This method relies on user feed-
back to generate constraints. In this approach, the user starts
from an initial clustering. Then, the user gives indications of
his/her agreement or disagreement with the proposed result in
the form of pairwise constraints between clustered instances.
Constraints are integrated into the similarity measure, the
KL divergence to the mean. This measure was proposed for
document classification, however, to the best of our knowl-
edge, no adaptation to temporal data has been done. Davidson
et al. studied another approach to circumvent the problem,
based on the idea that it is often more efficient to update an
existing clustering to satisfy new (and old) constraints rather
than re-clustering the entire dataset from scratch [17]. These
two articles confirm that user feedback is more effective than
randomly selected constraints. They also argue that the number
of constraints does not need to be high, and even more, that
if this number increases too much, the results can deteriorate.

With I-SAMARAH, we propose a new approach that extends
the collaborative clustering framework proposed by SAMA-
RAH [7] by adding a mechanic that allows the expert to give
new constraints in an iterative way as described in the next
section. I-SAMARAH aims to take advantage of both good
results obtained by collaborative methods [2] and iterative user
feedback described above.

III. INCREMENTAL COLLABORATIVE CLUSTERING WITH
SAMARAH

A. Collaborative clustering

Collaborative clustering is similar to ensemble clustering
which considers that the information offered by different
sources and different methods are complementary. It consists



in making multiple clustering methods (agents) collaborate to
reach an agreement on one data partitioning.

The SAMARAH [7] main concept is to make different
clustering algorithms (agents) collaborate and modify their
results until they reach a strong similarity. The algorithm is
divided in three steps:
• Initialization: each agent computes its clustering
• Collaboration: mutual refinement of agents’ clustering

results
• Unification: combination of agents’ clustering results
In the first step, every agent applies its clustering method

to the data (lines 2 to 3 of Algorithm 1). Each agent may use
a different algorithm or the same but with different parameter
values (e.g. hyperparameters, initialization, a data’s subset).

In the second step, results computed previously are refined
to maximize an optimization function, called collaborative
criterion (line 4 to 14 of Algorithm 1). During the refinement
stage, each result is compared with the set of results proposed
by the other methods. It evaluates the dissimilarity between the
different agent’s results in order to define a set of differences,
also named conflicts. A conflict is defined as a non-similarity
between a cluster from an agent and its most overlapping
cluster in another agent’s cluster. Once these conflicts are
identified, the objective is to modify the results to reduce
these differences, i.e. resolving the conflicts [18]. Conflicts are
sorted from higher to lower dissimilarity. Then, conflicts are
resolved one after the other by either merging clusters, splitting
clusters, or re-clustering clusters (delete the cluster) iteratively.
This step can be seen as questioning each result according to
information provided by the other actors in the collaboration.
For each conflict, different combinations are proposed, and the
one that maximizes the local collaborative criterion is retained.
The local criterion between two agents i and j can be defined
as follow:

γ(i,j) =
1

2
(ps.(

1

ni

ni∑
k=1

ω
(i,j)
k +

1

nj

nj∑
k=1

ω
(j,i)
k ) + pq.(δ

i + δj))

, where ps + pq = 1
(1)

Where ω(j,i)
k is the similarity between the cluster k of agent

i’s clustering and its most overlapping cluster in agent j’s
clustering, δi the internal quality of agent i’s clustering (e.g.
the clusters’ compactness), and ps, pq are weights that allow
the user to balance between similarity and internal quality.
After the best combination selection, we evaluate its impact
on the global clustering. The global criterion can be defined
as a sum of local criterion between each m agents:

Γ =
1

m

m∑
i=1

Γi, where Γi =
1

m− 1

m∑
j=1,j 6=i

γ(i,j) (2)

More details on similarity computation of conflict detection
and resolution can be found in [18]. After multiple refinement
iterations, the agent’s results are expected to be more similar
than before the collaboration started. This step can be seen as
an exploratory process, guided by the global criterion.

During the third and final step, the refined results are
combined to propose a final and unique result, which is
simplified due to the similarity of agents’ results (line 15 of
Algorithm 1).

Algorithm 1 SAMARAH

1: procedure SAMARAH(dataset O, set of clust. agents A)
2: for each agent ai in A do
3: Compute clustering of O with method ai
4: Create the set of all conflicts C, by evaluating the

dissimilarities between pairs of results
5: Let E = Γ be the evaluation of the initial results

according to the collaborative criterion
6: while C not empty do
7: Choose a conflict c to solve from C
8: Local resolution of the c with the involved agents
9: Let E ′ = Γ be the evaluation of the updated results

according to the collaborative criterion
10: if E ′ > E then
11: E = E ′
12: Apply modifications to the learning agents
13: Compute the new set of conflicts and update C
14: Compute the final result from the agents with an

adapted voting algorithm

B. Integration of constraints
Forestier et al. proposed an adaptation of SAMARAH to

integrate constraints in the process [7]. Background knowledge
is incorporated into the collaborative criterion. The criterion
is extended to ensure that constraints are represented when
resolving conflicts. This way a wide range of background
knowledge can be integrated.

It requires a function to be defined that measures the
satisfaction of the prior knowledge in agent n’s solution
(Rn) on the range [0, 1]. In our implementation that support
must-link (ML) and cannot-link (CL) constraints, the rate of
satisfied constraints by the agent n, θn, is used. The local
criterion in SAMARAH algorithm is then modified as follows:

γ(i,j) =
1

2
(ps.(

1

ni

ni∑
k=1

ω
(i,j)
k +

1

nj

nj∑
k=1

ω
(j,i)
k ) + pq.(δ

i + δj)

+ pc.(θ
i + θj)), where ps + pq + pc = 1

(3)

This modification causes a balance between the background
knowledge and the distance metric to be pursued during con-
flict resolution. Therefore, constraints are used as a guideline
for the clustering process, so constraints are not ensured
to be satisfied. This might be considered a disadvantage if
constraints must be fulfilled, but it also relaxes the problem of
over-constraining that usually limit the constraints’ effect [2].

C. User feedback

When users are queried feedback, they want that the new
clustering takes into account the new information provided



(constraints, labels, . . . ), but also that the new clustering
is as similar as possible to the previous clustering. This is
required because users have to find their bearings between two
incremental steps. The integration of user feedback supposes
the possibility to launch the clustering process iteratively to
take user constraints into account at each iteration. To do so,
we let a first unsupervised SAMARAH run produce an initial
clustering result. After the user gives its feedback, a new run
of constrained SAMARAH is launched, but agents keep their
current state (e.g. centroı̈ds value). However, as SAMARAH
aims to reduce dissimilarity among agents, the final agents’
results should be strongly similar. Thus, it tends to reduce the
number of conflicts and therefore the exploration space of the
collaboration.
To solve this problem, we decided to force artificially the
dissimilarity between agents’ results. To this end, we spread
the constraints among the set of agents to add clusters in each
agent’s current clustering.

This operation is at the moment only implemented for
centroid-based methods. In this implementation, we add cen-
troids for each constraint, as described in algorithm 2. For
an ML constraint, we add a new centroid that is the average
of the two constraint’s instances and for a CL constraint, we
add the two involved instances as new centroids, see figure 1.
For other methods, a study is ongoing. Note that adding new
clusters is not a problem as SAMARAH, by construction, will
remove (by merging or re-clustering) unnecessary clusters. The
final method is summarized in figure 2.

Algorithm 2 Generate dissimilarity between agents
1: procedure GENERATE DISSIMILARITY(set of learning

agents A, set of constraints C ⊆ O ×O)
2: for each constraint c, between c1 and c2, in C do
3: A′ = ∅
4: for each agent ai in A do
5: if ai does not satisfy c then
6: A′ = A′ ∪ ai
7: if A′ 6= ∅ then
8: Pick at random a from A′ with Centersa its

set of centroı̈ds,
9: if c is a ML constraints then

10: Centersa = Centersa ∪ {avg({c1; c2})}
11: if c is a CL constraints then
12: Centersa = Centersa ∪ {c1; c2}

IV. MATERIALS

As presented in the introduction, time series in remote
sensing is a crucial problem where the experts have often a
partial knowledge of the data [1]. Because of that, they are
looking for methods to support them in their research that
require as few annotations as possible. Furthermore, some
visualization tools are already available to help experts analyze
remote sensing clustering results. Thus, validating our method
on this kind of data seems more beneficial for the experts. We
used the FODOMUST framework [19] in our experiments.

(a) (b)

(c) (d)

Fig. 1. Illustration of dissimilarity generation when a CL constraint (a) is used
and the result afterwards (b), respectively (c) and (d) with a ML constraint.
Crosses are representing clusters’ centroids

Data

Clustering 1

Clustering 2

Clustering n

...

Clusterings
refinement

Evaluate 
new result

Results 
Unification

User 
feedback

Final result

Clustering 1

Clustering 2

Clustering n

...

Add constraints

Validate

Resolve next conflict

Fig. 2. I-SAMARAH method

We first present the data used in section IV-A. In section
IV-B we present methods used for the comparison. In section
IV-C we explain how user feedback is provided. Then, in
section IV-D we present the metric and the protocol used for
the evaluation. Finally, in section IV-E we present the reference
data.

A. Remote sensing time series

To evaluate our method and facilitate the comparison be-
tween existing constrained clustering methods, we choose two
datasets used in a previous review on constraint clustering [2].
The first one, an agricultural monitoring case, illustrates a
frequent remote sensing application. The second one, on multi-
temporal tree clear-cuts detection, is used to show the capacity
of our method to focus on only one cluster.

1) Crops dataset: An area located near Toulouse (South-
west France), 1000×1000 pixels in size, was selected for this
study. The dataset represents 11 multispectral images sampled
over a period of eight months in 2007. One of the images in
the time series is presented in Figure 3a. The multispectral
images (green, red, and near-infrared bands) are captured by



(a) Image (b) Class Labels (c) Reference Data

Fig. 3. Real-world image time-series clustering data: 12 classes, and 11 time points (t4 displayed here).

the Formosat-2 satellite and were provided by Centre d’Études
Spatiales de la Biosphère (CESBIO) Unité Mixte de Recherche
CNES-CNRS-IRD-UPS, Toulouse, France. A random subset of
the image time-series is sampled (within regions for which
reference data are available, see Figure 3c). The dataset is
totaling 9869 pixel time series.

2) Tree clear-cuts dataset: An area of the Vosges Moun-
tains (Alsace, France), 724× 337 pixels in size, was selected
for this study, see Figure 4a. The time series is composed
of 11 images sampled over 3 years. The dataset contains
10 areas of clear-cut: 8 appear at t4 and 2 at t8. The
images are composed of one band that contains the computed
NDVI (normalized difference vegetation index) values. The
images were computed from Copernicus Sentinel-2 data (tile
T32ULU) processed at level 2A/3A by CNES for Theia Land
Data Centre. A subset of the area was selected by randomly
sampling 40, 000 pixel time series. In the following pages, tree
clear-cuts may be directly referred to as tree cuts or cuts.

B. Selected methods

In this paper, we compare our method with other existing
constrained methods. In particular, we used those presented in
[2] excepted Spectral methods. Indeed, such methods require
a step of parameters learning (i.e. σ and eigenvectors) and so
they cannot be used in a fair comparison with unsupervised
methods. The methods used are :
• COP-KMEANS [11] from B. Babaki implementation 2.
• MIP-KMEANS [12] from B. Babaki implementation 3

• CPClustering [13] from the python launcher available
online 4.

More details on these methods are available in [2]. For all
the methods, we use constraints provided by the expert. But
obtaining them is not always easy as it is time-consuming.
Therefore we used some existing active constrained strategies
to generate them and as a comparison to user feedback:

2https://github.com/Behrouz-Babaki/COP-Kmeans
3https://github.com/Behrouz-Babaki/MIPKmeans
4https://icube-forge.unistra.fr/lampert/TSCC/-/tree/master/methods/Dao17

• MinMax [20]: this method is a neighborhood-based ap-
proach that works in two phases. In the first phase,
Explore, it builds k disjoint neighborhoods using the
farthest-first traversal method, where k is the total number
of clusters. In the second phase, Consolidate, Min-
Max incrementally expands the set of instances in the
neighborhoods set by selecting the most uncertain in-
stance from the set of remaining instances according to
a MinMax criterion. Afterward, queries are submitted
to the oracle until an ML is found between q and a
neighborhood.

• NPU (Normalized Point-based Uncertainty) [21]: this
method is also a neighborhood method, but it works in
an iterative scheme. It alternates between clustering the
data and adding new instances in the neighborhoods set
N . It picks new instances based on a similarity metric
computed from a Random Forest classifier on clustering
labels and select the instance that maximizes the gain of
information with the minimal expected cost of queries.

We used the public implementation in the active-semi-
supervised-clustering python package of NPU and MinMax
for our tests5.

For SAMARAH and I-SAMARAH, they were configured as
follow:
• 3 K-Means agents, with a number of seeds of respectively

12, 15 and 18.
• the compactness [7] is used as quality index.
• ps, pq and pc have respectively a value of 0.08, 0.12,

0.8. Those are the default I-SAMARAH values for these
parameters.

The choice of K-Means method for the agents was motivated
by the comparison with MIP-KMEANS and COP-KMEANS
methods that are based on the same clustering algorithm.
It allows for better evaluation performance gains. The code
of the method is available online6 as well as a GUI for

5https://pypi.org/project/active-semi-supervised-clustering/
6https://icube-forge.unistra.fr/lafabregue/JCL



(a) Image (b) Ground Truth

(c) Zone 1, t1 (d) Zone 1, t4 (e) Zone 1, t7 (f) Zone 1, t8 (g) Zone 1, t9 (h) Zone 1, t11

(i) Zone 2, t1 (j) Zone 2, t4 (k) Zone 2, t7 (l) Zone 2, t8 (m) Zone 2, t9 (n) Zone 2, t11

Fig. 4. (a) Clear-cuts NDVI time-series image (t8 displayed here), (b) tree cut ground truth locations, (c) to (h) and (i) to (n) respective evolution of NDVI
index on zone 1 and 2 sampled to the dates t1, t4,t7, t8, t9, t11.

remote sensing that allows the user to automatically launch
the algorithm and add constraints7.

Based on the results in [2] we also adapted all methods
to use the DTW (Dynamic Time Warping) [22] measure
with DBA (DTW Barycenter Averaging) [23] average method
for the Tree clear-cuts dataset to take into account the time
dimension and the Euclidean metric for the Crops dataset.

C. User feedback and its simulation

In our approach, we rely on expert intuitions and knowledge
to give useful constraints by taking into account the previous
clustering result.

For the Tree clear-cuts dataset, we were able to gather a
group of remote sensing experts that agreed to participate in
the experiments. During the experiment, they took the decision
to stop the incremental process when they estimated that either
a satisfying result is obtained, or that new constraints were not
improving the result.

But in some cases, for example the Crops dataset, no experts
were available as it also requires to have a good knowledge
of the different crop types phenology in the selected area. So,
having the required expertise is difficult because it is well
known as time-consuming and fastidious. So, to get around
this lack of experts we define a generic mechanism to simulate
the expert. It consists in using a ground truth to generate
constraints: two pixels are picked at random and a constraint
is added between them of type ML if the two pixels have the
same labels or of type CL otherwise. Then, we simulated the

7https://icube-forge.unistra.fr/lafabregue/Mustic

experts’ feedback by only selecting constraints not satisfied by
the current clustering.

D. Validation methodology

Following the choices made in [2], we used the classic
adjusted Rand index (ARI) to measure the similarity of the
clustering results and the ground truth for the Crops dataset.
The ARI score reaches its best value at 1 (perfect match), 0
for equivalent to random, and negative if it is worst.

For the Tree clear-cuts dataset, we only focus on one cluster
that we want to separate from other classes. Therefore, we used
the F1 score for the evaluation. The F1 score reaches its best
value at 1 (perfect precision and recall) and worst at 0.

However, a binary classification in such unbalanced and
diverse data would not be possible in an unsupervised or a
weakly semi-supervised setting. Typically, in remote sensing
problems, the number of clusters in an image is unknown.
Based on the expert recommendation on the expected number
of evolution classes in the image series, this number is
set to 15. However, the evaluation is only concerned with
clusters that include clear-cuts, details on this selection will
be discussed further in section V-D2. We also have to take
into account the spatial context of the data, indeed in a real
scenario, the expert may know a portion of the targeted data
(tree cuts). However, it is not expressed in terms of the number
of pixels but in the number of objects (tree cuts polygons).
Hence, in our experiments, we limited all user feedback on
tree cuts to only one cut area per run. For this objective, we
used two different cuts to illustrate the impact of this choice



on the result, zone 1 and zone 2, described in Fig 4. Note that
this restriction is only used for user feedback.

Also, the F1 score is computed on one predicted class,
however, for unsupervised methods, no cluster is dedicated
to a specific class beforehand. Thus, we have to specify a way
to select which cluster or clusters have to be selected for the
evaluation. In a real case, the expert will select clusters that
are close to their known example, therefore, it has to overlap
a major part of this zone but also be as specific as possible.
We took the set of clusters with the best ratio between pixels
inside and outside the selected zone, that covers at least half
of the selected zone. It allows the inclusion of small but highly
representative clusters.

We also took into consideration the number of detected cuts.
In a real case, the expert is satisfied if all cuts are detected,
even partially. This is more useful than a result where only
a portion of the cuts is detected even if their contour is well
defined.

E. Ground truth used in experiments

For the crops, the ground truth is extracted from the
RPG (Registre Parcellaire Graphique) that contains farmer’s
declaration of crops grown made to the European Environment
Agency for the Common Agricultural Policy. This experiment
is subject to a specific setup as no expert was available for the
annotation process (see section IV-C).

For the Tree clear-cuts, the clear-cuts ground truth was man-
ually created by remote sensing experts. It was also validated
in the field by forestry rangers, see Figure 4b. However, the
experts involved in the experiments did not have knowledge
of the ground truth before or during the experiment.

V. EXPERIMENTS

A. Experiment levels

A semi-supervised method is usually evaluated by compar-
ing it to other state-of-the-art methods. However, in our case,
we want to demonstrate that our method benefits from both
allowing the user to give feedback and from its capacity to
incrementally take them into account.

To show that it is the combination of these two factors that
make this framework relevant, we will test the effect of each
element of the framework separately. We conduct different
levels of experiments on the two datasets to determine:
• Level 1: the performance of unconstrained clustering

(section V-B)
• Level 2: the performance of using standard constrained

clustering method (i.e. non-incremental) with randomly
selected constraints (section V-B)

• Level 3: the performance with user feedback and non-
incremental methods (section V-C)

• Level 4: the performance with randomly selected con-
straints and an incremental method (section V-D1)

• Level 5: the performance with user feedback and an
incremental method (section V-D2)

For all experiments, the reported results are the average
over 10 runs. Also, all iterative/incremental experiments are

launched from the initial states computed in level 1. In the
following pages, we will speak about I-SAMARAH initial state
as the result after a complete run of unsupervised SAMARAH.
An iteration i refers to the result after an initial state followed
by i repetitions of the sequence user feedback followed by a
complete I-SAMARAH run.

B. Unconstrained (level 1) vs Constrained clustering (level 2)

The first step in our experimental process is to evaluate if
the methods benefit from constraint addition. To do this, we
carried out the experiments from level 1 and level 2. For the
Crops dataset, we used the results reported in [2].

For level 1 we run each method without using constraints
to establish an unsupervised baseline. The results for each
dataset are displayed in Table I. For this experiment, we
also reported the constraint satisfaction rate computed with
respect to 50% fraction sets (see level 2 below). It denotes the
portion of constraints that are satisfied by the method even if
constraints are not provided, this is referred to as the method’s
consistency.

TABLE I
LEVEL 1: UNCONSTRAINED AVERAGE PERFORMANCE AND SATISFACTION

RATE PER DATASET. EACH DATASET’S BEST PERFORMANCE IS BOLD

Crops Tree clear-cuts
Method ARI Sat. F1 score Sat.

COP-KMEANS 0.420 0.807 0.104 0.917
MIP-KMEANS 0.407 0.803 0.107 0.920

CPClustering 0.681 0.413 0.106 0.877
SAMARAH 0.463 0.817 0.036 0.916

The results show a high consistency, especially for the Tree
clear-cuts dataset. This illustrates that constraints chosen at
random will not bring much knowledge to the semi-supervised
methods, which may lower their effect.

Then, for level 2 we add constraints in the clustering
process. For constraints generation, we followed the protocol
used in [2]. Constraints were generated by taking pairs of
points randomly and generating a must-link or cannot-link
constraint depending upon whether they belonged to the same
class or not. Different sizes of constraint sets were considered:
5%, 10%, 15%, and 50% of the number of points N in
the dataset (they represent a very small fraction of the total
number of possible constraints, which is 1

2N(N − 1)). Ten
repetitions of each constraint set size were generated, as such,
each experiment was repeated ten times, each with a different
random subset of constraints (all algorithms are evaluated
using the same random constraint sets).

For the Tree clear-cuts dataset, we have to take into consid-
eration that we only want constraints that include tree clear-
cuts, as we don’t know the labels for other classes. Thus, for
random constraints, we first pick a pixel in a tree clear-cut
and the other one is picked randomly among other tree and
non-tree pixels.

The results are reported in table II, they do not include
the satisfaction rate as all methods satisfy all constraints by
construction, with the exception of SAMARAH that have an



TABLE II
LEVEL 2: AVERAGE PERFORMANCE OF CONSTRAINED CLUSTERING WITH DIFFERENT FRACTIONS OF RANDOM CONSTRAINTS. THE BEST PERFORMANCE

FOR EACH CONSTRAINT FRACTION IS HIGHLIGHTED IN BOLD.

Crops (ARI) Tree clear-cuts (F1 score)
Method 5% 10% 15% 50% 5% 10% 15% 50%

COP-KMEANS 0.406 0.314 0.443 0.369 0.104 0.098 0.124 0.112
MIP-KMEANS 0.428 0.416 0.431 0.532 0.112 0.109 0.105 0.114

CPClustering 0.650 0.562 0.542 0.510 0.099 0.103 0.105 0.096
SAMARAH 0.691 0.682 0.714 0.702 0.102 0.097 0.108 0.121

average satisfaction rate of 0.86 for Crops and 0.97 for Tree
clear-cuts. It can be observed beforehand that the methods do
not necessarily benefit from constraints’ information. This is
a known effect that has already been shown and studied [14].

MIP-KMEANS and SAMARAH benefit from constraints
addition, even though the gain for MIP-KMEANS is only
significant with the 50% fraction. For COP-KMEANS and CP-
Clustering, they see their results deteriorate with constraints,
especially CPClustering that have an ARI performance that
decreases inversely with the number of constraints. It was
highlighted in [2] that the most consistent improvements
in ARI are observed with methods that do not guarantee
constraint satisfaction (SAMARAH in our case).

For Tree clear-cuts, the results are more mitigated. SAMA-
RAH is the only method to benefit largely from constraints, but
it is also the method that has the lower unconstrained result.
Overall, no method really gives good results that may justify
the addition of constraints in the process, especially with the
number of involved constraints (5% of 40000 pixels is already
totaling 2000 constraints).

Moreover, the performance seems not correlated to the
number of constraints, with the exception of CPClustering on
Crops where it is negative.

C. User feedback and non-incremental methods (level 3)

For level 3, we propose to integrate user feedback, but
also to compare it to the NPU and MinMax active constraints
selection methods. However, as a first step, we use the standard
constrained clustering method (i.e. without I-SAMARAH). For
NPU and user feedback, that give constraints based on an
existing clustering, the process of giving constraints was
repeated for 4 iterations. This process consists in analyzing
the previous clustering, an unconstrained for the first iteration,
then querying constraints, and launching a constraints cluster-
ing with the new constraints. The constraints are cumulated
from one iteration to the other. For user feedback, the number
of constraints was limited to 6 annotations per iteration. For
Tree clear-cuts, the total number of constraints varies between
13 and 21 constraints, with an average of 16 constraints. For
Crops, it is fixed for a total of 24 constraints. For NPU we fixed
the number of queries to 10 per iteration. For MinMax only
one iteration is done as it does not depend on a previous result
but with a total of 40 queries. For this experiment, the reported
average is also computed over 10 runs with the exception of
user feedback for Tree clear-cuts with 5 runs for each Zone.

TABLE III
LEVEL 3: AVERAGE ARI FOR CONSTRAINED CLUSTERING WITH

DIFFERENT CONSTRAINTS STRATEGIES ON CROPS DATASET. THE BEST
PERFORMANCE FOR EACH CONSTRAINT STRATEGY IS HIGHLIGHTED IN

BOLD.

Crops (ARI)
Method User feedback NPU MinMax

COP-KMEANS 0.424 0.427 0.317
MIP-KMEANS 0.533 0.521 0.389

CPClustering 0.649 0.506 0.483
SAMARAH 0.715 0.587 0.431

TABLE IV
LEVEL 3: AVERAGE F1 SCORE OF CONSTRAINED CLUSTERING WITH

DIFFERENT CONSTRAINTS STRATEGIES ON TREE CLEAR-CUTS DATASET.
THE BEST PERFORMANCE FOR EACH METHOD IS HIGHLIGHTED IN BOLD.

(U.F.: USER FEEDBACK)

Tree clear-cuts (F1 score)
Method U. f. - Zone 1 U. f. - Zone 2 NPU MinMax

COP-KMEANS 0.096 0.105 0.084 0.045
MIP-KMEANS 0.133 0.129 0.076 0.076

CPClustering 0.138 0.097 0.108 0.082
SAMARAH 0.151 0.126 0.119 0.081

The results are reported in table III for the Crops dataset
and table IV for the Tree clear-cuts dataset. Two elements can
be pointed out from these results:

First, similarly to random constraints, the methods do not
necessarily benefit from constraints’ information even when
they are selected from a criterion. SAMARAH is again the
method that benefits the most from constraints, even though
the difference is not always important.

Second, user feedback is the strategy that seems to be
the most consistent, especially if we do not consider COP-
KMEANS which performs poorly with all constraint strategies.
But more surprisingly NPU and MinMax perform poorly,
especially MinMax which gives even worst result than in
the unconstrained setting. This may be explained by the way
these two methods operate as they rely on an exploration
mechanism that tries to find the most informative instance.
To determine informativeness they use a criterion that favors
the most uncertain instances that are also the ones that are far
from each other in the data space. Thus, these methods tend to
focus on instances from clusters that have high overall inertia.
For tree cuts that represent only a small fraction of the dataset,
these methods are unlikely to reach the granularity to extract
it. For crops, it tends to focus on noisy parts of the dataset
(e.g. road or hedge crossing the field).

In figures 5c and 5d we display four examples of CL



constraints gave by the expert on the Tree clear-cuts dataset.
In both negative examples (not a tree cut) we can observe
a sudden decrease in NDVI. This decrease can easily be
confused with tree cuts, but for negative examples, the NDVI
increases rapidly afterward or drops multiple times. This
evolution is typical of meadows or crops that regrow faster
than forests and are often harvested multiple times in a two
years period. These constraints illustrate that this approach
allows the expert to easily identify good opposite examples.

D. I-SAMARAH: incremental method (level 4 and 5)

User feedback gave the best results, however in the level
3 experiment we launched the next iteration with the new
constraint set but without taking into account the previous
clustering itself. I-SAMARAH aims to answer this problem, but
Beforehand, we want to measure the benefit from I-SAMARAH
with random constraints.

1) Randomly selected constraints and an incremental
method (level 4): For level 4, we fed 6 constraints selected
randomly, similarly to level 2, to I-SAMARAH for a total of
4 iterations (1 unconstrained run followed by 4 constrained
incremental runs). The results are reported in table V.

TABLE V
LEVEL 4: AVERAGE PERFORMANCE OF CONSTRAINED CLUSTERING WITH

DIFFERENT FRACTIONS OF RANDOM CONSTRAINTS AT DIFFERENT
PROCESS STEPS (ITR. : ITERATION).

Dataset Initial Last itr. Best itr.
Crops (ARI) 0.463 0.711 0.721

Tree cuts (F1 score) 0.036 0.109 0.113

The observed results show that the performance does not
really differ from SAMARAH with random constraints. The
final result, after 4 iterations, is reported in the ”Last itr.”
column, but we also reported the best result from all the
iterations in the ”Best itr.” column. These two columns differ
which implies that the performance may lower from one
iteration to another. It leads to performance comparable to
level 2 but with a way a smaller number of constraints.
However, for Tree clear-cuts, the benefit seems still negligible.

2) User feedback and an incremental method: For this
last level, we combine user feedback with I-SAMARAH. For
the Crops dataset 10 runs are launched with simulated user
feedback and for tree clear cuts 5 runs for each zone are
launched with expert feedback and constraints are cumulated
between each run. In the end, we have a total of 24 constraints
for Crops. For Tree clear-cuts, this number is determined by
the choice of the expert with a restriction fixed at a maximum
of 6 constraints.

The overall results in Table VI show a clear increase when
I-SAMARAH is used with user feedback with a significant
margin. This is even the case for Crops, where we only
simulated this expertise. We also reported the progression
after one supplementary iteration is launched by the user for
the Tree clear-cuts. One can observe that the result does not
necessarily improve with a new iteration, confirming in a real
case scenario the results observed on Crops and in the level 4

TABLE VI
LEVEL 5: EVOLUTION OF AVERAGE F1 SCORE ON 5 I-SAMARAH RUNS

FOR TREE CLEAR-CUTS (ITR.: ITERATION, CST.: CONSTRAINTS).

Dataset Initial #itr. #cst Last itr. One more itr. Best itr.
T.c.-Zone 1 0.036 2.6 13.4 0.411 0.301 0.416
T.c.-Zone 2 0.035 3.6 15.6 0.202 0.184 0.212

Crops 0.463 ∅ 24 0.773 ∅ 0.785

experiment. It even decreases in our case, despite more than
a 20% increase in the number of constraints, going from an
average of 14.5 before the supplementary iteration to 17.9
after. Usually, it is linked to a lower consistency between
constraints, we ask the method to put together instances that
are too dissimilar or to take into account outliers. During our
experiment the experts tried to remove the remaining noise
or include all the selected zone pixels, in consequence, the
remaining pixels will be the ones that are difficult for the
algorithms. In terms of the number of detected cuts, we have
on average 9.8 over 10 cuts detected (only one run on zone
2 missed two cuts). The F1 score difference is explained by
more false positives pixels and tree cuts that are only partially
detected. Results examples are displayed in figure 5.

VI. CONCLUSIONS AND PERSPECTIVES

We have introduced, I-SAMARAH, a clustering method that
supports user feedback in an incremental way. I-SAMARAH
uses constraints to guide the clustering in an exploratory pro-
cess. This approach allows I-SAMARAH to efficiently modify
the existing clustering to incorporate the expert’s background
knowledge through constraints. Our experiments demonstrate
the effectiveness of our method in terms of quality compared
to state-of-the-art constrained clustering methods, but also in
terms of user investment compared to supervised methods.
Therefore, this method can be an alternative to supervised
methods, offering a trade-off between quality and annotation
time, or also help the constitution of a training set.

The experiments have also shown that, even if I-SAMARAH
benefits more from constraints than compared constrained
methods, the results deteriorate when the number of iter-
ations/constraints is too high. This subject should undergo
further investigation, but it is likely to be related to the
over-constraint problem as K-means learning agents struggles
to properly learn the structure of the data. Two approaches
may contribute solving this problem. First, the expert may
benefit from a mechanism that helps him/her to select effective
constraints, either to suggest new constraints, but also when
deciding if some constraints should be kept from one iteration
to the other. Second, this could be mitigated by using other
learning agents that take more advantage of the time and space
dimensions and have the capacity to learn a more suitable
data representation. It also has to be noted that this method
is efficient for the expert when the clustering result can be
clearly visualized. It makes this method particularly suited to
the remote sensing domain but it may not be the case for other
types of datasets.



(a) Initial result with constraints set on zone 1 (b) Result with same constraints on zone 1

0 5 10 15 20 25
Number of month from start

0.4

0.6

0.8

ND
VI

0 5 10 15 20 25
Number of month from start

0.4

0.6

0.8

ND
VI

(c) CL profile examples on meadow

0 5 10 15 20 25
Number of month from start

0.4

0.6

0.8

ND
VI

0 5 10 15 20 25
Number of month from start

0.4

0.5

0.6

0.7

ND
VI

(d) CL profile examples (others)

0 5 10 15 20 25
Number of month from start

0.4

0.6

ND
VI

0 5 10 15 20 25
Number of month from start

0.4

0.6

ND
VI

(e) ML profile examples

Fig. 5. Results of I-SAMARAH with cumulative strategy, in green true positives, in red false negatives and in blue false positives. In (a) red lines represent
CL constraints and cyan lines ML constraints. Only the first iteration constraints are displayed. (c) represent the final result after multiple iterations. (c) and
(e) represent constraints profiles, dashed lines represent non tree cuts and each tick is spaced according to the date of capture.

REFERENCES

[1] M. U. Ali, W. Sultani, and M. Ali, “Destruction from sky: Weakly
supervised approach for destruction detection in satellite imagery,”
ISPRS Journal of Photo. and Rem. Sen., vol. 162, pp. 115–124, 2020.

[2] T. Lampert, B. Lafabregue, T.-B.-H. Dao, N. Serrette, C. Vrain,
P. Gançarski, et al., “Constrained distance-based clustering for satellite
image time-series,” JSTAR, vol. 12, no. 11, pp. 4606–4621, 2019.

[3] B. Lafabregue, J. Weber, P. Gançarski, and G. Forestier, “Deep con-
strained clustering applied to satellite image time series,” Proceedings
of the 2019 MACLEAN workshop, 2019.

[4] Z. Li, J. Liu, and X. Tang, “Constrained clustering via spectral regular-
ization,” in 2009 CVPR, pp. 421–428, IEEE, 2009.

[5] B. Settles, “Active learning literature survey,” tech. rep., University of
Wisconsin-Madison Department of Computer Sciences, 2009.

[6] T. Van Craenendonck, S. Dumančić, E. Van Wolputte, and H. Blockeel,
“Cobras: fast, iterative, active clustering with pairwise constraints,” arXiv
preprint arXiv:1803.11060, 2018.

[7] G. Forestier, P. Gançarski, and C. Wemmert, “Collaborative clustering
with background knowledge,” Data & Knowledge Engineering, vol. 69,
no. 2, pp. 211–228, 2010.

[8] P. Jonsson and L. Eklundh, “Seasonality extraction by function fitting to
time-series of satellite sensor data,” IEEE transactions on Geoscience
and Remote Sensing, vol. 40, no. 8, pp. 1824–1832, 2002.

[9] G. Roerink, M. Menenti, and W. Verhoef, “Reconstructing cloudfree
ndvi composites using fourier analysis of time series,” International
Journal of Remote Sensing, vol. 21, no. 9, pp. 1911–1917, 2000.

[10] S. Basu, I. Davidson, and K. Wagstaff, Constrained clustering: Advances
in algorithms, theory, and applications. CRC Press, 2008.

[11] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, et al., “Constrained k-
means clustering with background knowledge,” in ICM, vol. 1, pp. 577–
584, 2001.

[12] B. Babaki, “MIPKmeans,” 2017.
[13] T.-B.-H. Dao, K.-C. Duong, C. Vrain, et al., “Constrained clustering

by constraint programming,” Artificial Intelligence, vol. 244, pp. 70–94,
2017.

[14] I. Davidson, K. L. Wagstaff, and S. Basu, “Measuring constraint-set
utility for partitional clustering algorithms,” in ECML-PKDD, pp. 115–
126, Springer, 2006.

[15] B. Settles, M. Craven, and S. Ray, “Multiple-instance active learning,”
in Advances in neural information processing systems, pp. 1289–1296,
2008.

[16] D. Cohn, R. Caruana, and A. McCallum, “Semi-supervised clustering
with user feedback,” Constrained Clustering: Advances in Algorithms,
Theory, and Applications, vol. 4, no. 1, pp. 17–32, 2003.

[17] I. Davidson, S. Ravi, and M. Ester, “Efficient incremental constrained
clustering,” in SIGKDD, pp. 240–249, 2007.

[18] G. Forestier, C. Wemmert, and P. Gancarski, “Towards conflict resolution
in collaborative clustering,” in 2010 5th IEEE International Conference
Intelligent Systems, pp. 361–366, IEEE, 2010.

[19] P. Gançarski, B. Lafabregue, A.-D. Salaou, and H. Vernier, “Fodomust-
une plateforme de clustering collaboratif sous contraintes incrémental
de séries temporelles.,” in EGC, pp. 507–514, 2020.

[20] P. K. Mallapragada, R. Jin, and A. K. Jain, “Active query selection for
semi-supervised clustering,” in 2008 19th ICPR, pp. 1–4, IEEE, 2008.

[21] S. Xiong, J. Azimi, and X. Z. Fern, “Active learning of constraints for
semi-supervised clustering,” IEEE Transactions on Knowledge and Data
Engineering, vol. 26, no. 1, pp. 43–54, 2013.

[22] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE transactions on acoustics, speech,
and signal processing, vol. 26, no. 1, pp. 43–49, 1978.

[23] F. Petitjean, A. Ketterlin, and P. Gançarski, “A global averaging method
for dynamic time warping, with applications to clustering,” Pattern
Recognition, vol. 44, no. 3, pp. 678–693, 2011.


	Introduction
	Background and Related Work
	Pairwise constraints and clustering
	Active constrained clustering and user feedback

	Incremental collaborative clustering with Samarah
	Collaborative clustering
	Integration of constraints
	User feedback

	Materials
	Remote sensing time series
	Crops dataset
	Tree clear-cuts dataset

	Selected methods
	User feedback and its simulation
	Validation methodology
	Ground truth used in experiments

	Experiments
	Experiment levels
	Unconstrained (level 1) vs Constrained clustering (level 2)
	User feedback and non-incremental methods (level 3)
	I-Samarah: incremental method (level 4 and 5)
	Randomly selected constraints and an incremental method (level 4)
	User feedback and an incremental method


	Conclusions and Perspectives
	References

