
HAL Id: hal-03936905
https://hal.science/hal-03936905

Submitted on 12 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Fully polynomial time approximation scheme for the
pagination problem with hierarchical structure of tiles

Aristide Grange, Imed Kacem, Sébastien Martin, Sarah Minich

To cite this version:
Aristide Grange, Imed Kacem, Sébastien Martin, Sarah Minich. Fully polynomial time approximation
scheme for the pagination problem with hierarchical structure of tiles. RAIRO - Operations Research,
2023, 57 (1), pp.1-16. �10.1051/ro/2022022�. �hal-03936905�

https://hal.science/hal-03936905
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

RAIRO-Oper. Res. 57 (2023) 1–16 RAIRO Operations Research
https://doi.org/10.1051/ro/2022022 www.rairo-ro.org

FULLY POLYNOMIAL TIME APPROXIMATION SCHEME FOR THE
PAGINATION PROBLEM WITH HIERARCHICAL STRUCTURE OF TILES

Aristide Grange , Imed Kacem* , Sébastien Martin and Sarah Minich

Abstract. The pagination problem is described as follows. We have a set of symbols, a collection of
subsets over these symbols (we call these subsets the tiles) and an integer capacity 𝐶. The objective
is to find the minimal number of pages (a type of container) on which we can schedule all the tiles
while following two fundamental rules. We cannot assign more than 𝐶 symbols on each page and a tile
cannot be broken into several pieces, all of its symbols must be assigned to at least one of the pages. The
difference from the Bin Packing Problem is that tiles can merge. If two tiles share a subset of symbols
and if they are assigned to the same page, this subset will be assigned only once to the page (and not
several times). In this paper, as this problem is NP-complete, we will consider a particular case of the
dual problem, where we have exactly two pages for which the capacity must be minimized. We will
present a fully polynomial time approximation scheme (FPTAS) to solve it. This approximation scheme
is based on the simplification of a dynamic programming algorithm and it has a strongly polynomial
time complexity. The conducted numerical experiments show its practical effectiveness.

Mathematics Subject Classification. 68W25.

Received November 11, 2021. Accepted February 5, 2022.

1. General description of the subproblem

The considered problem in this paper is based on the one introduced in the work by Sindelar, Sitaraman and
Shenoy in [14]. In their paper, the fundamental problem is to assign a set of virtual machines (VM) to physical
servers. A virtual machine is composed of different memory pages (of different sizes) describing (among other
information) its operating system (iOS, Windows or Linux), the OS version run on the VM (Windows XP,
Windows 7, Ubuntu, . . .), the architectural version of the libraries the VM are going to use (32 or 64 bits), the
different software programs that will be installed in the VM and so on until the set of memory pages describes
a real-functioning-virtual machine. A VM is therefore a set of memory pages and the size of a VM is the sum of
the sizes of its memory pages. Now, two VM can have a subset of memory pages in common. If these VM are
assigned to the same physical server, then they can share these pages. It implies that the common pages do not
have to be repeated: they are assigned only once on the server. In this case, we say that the VMs can merge.
This is the particularity that separates the pagination problem from the famous Bin Packing Problem.

However, the general description of the pagination problem is less VM-oriented, this is why the vocabulary
we use for it is more general. It can be described as follows. We are given a set of symbols 𝒮 (corresponding to

Keywords. Approximation algorithms, scheduling, FPTAS, dynamic programming.

Université de Lorraine, LCOMS, Metz, France.
*Corresponding author: imed.kacem@univ-lorraine.fr

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2022022
https://www.rairo-ro.org
https://orcid.org/0000-0001-5777-4603
https://orcid.org/0000-0001-6649-7257
https://orcid.org/0000-0002-0078-9983
mailto:imed.kacem@univ-lorraine.fr
https://creativecommons.org/licenses/by/4.0

2 A. GRANGE ET AL.

Figure 1. An example of an input for the Pagination Problem – extracted from [4].

Figure 2. Two examples of models, the tree model (left) and the cluster-tree model (right) –
extracted from [14].

the former memory pages). All the symbols have the same size which is equal to 1. We are also given a collection
of subsets of these symbols called the tiles 𝒯 (former virtual machines) and an integer capacity (𝐶). The size
of a tile is the number of symbols it contains. We have to find the minimal number of pages (former physical
servers), which can contain all tiles without exceeding a maximal number of 𝐶 symbols per page. The other
fundamental and inherent rule of the problem is that a tile cannot be broken: all its symbols must be assigned
to at least one page to be able to claim that the tile has been allocated to the page. The NP-hardness proof of
this problem is developed in [5].

In Figure 1 (extracted from [4]), we can see an example of an input for the Pagination Problem. There are four
different tiles and three of them partially merge. For example, tile 𝑡1 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} fuses with tile 𝑡2 = {𝑑, 𝑒, 𝑓}
as the intersection between 𝑡1 and 𝑡2 is not empty: 𝑡1 ∩ 𝑡2 = {𝑑, 𝑒}.

It is worth-mentioning again that we exclude the case where a tile would be entirely contained in another
one as this situation does not present any interest (it can be easily detected and avoided).

In [14], the authors claimed that “[. . .] The inter-VM sharing occurs largely in hierarchical fashion” and they
proposed two hierarchical sharing models to represent this organisation: a model based on a tree and a more
general model based on a cluster-tree. We can see two illustrative examples in Figure 2 (both illustrations are
from the article of [14]).

In this paper, we consider that the tiles are organised according to the tree model. In the tree representation
of Figure 2, each node contains one piece of information, i.e., one symbol. However, by generalising having
multiple symbols per node, we create the most generic inputs for our subproblem. That is why from now on, we
will present the tree model representation with numbers in the nodes. We label the nodes using a breadth-first

FPTAS FOR THE PAGINATION PROBLEM 3

Figure 3. Example of an input for the 2 |merging, tree | 𝐶max where one node contains two
symbols.

algorithm, which starts with the root. Each number 𝑖 ∈ [1, 2, . . . 𝑁] (with 𝑁 the number of nodes in the tree)
will represent the name of a node and 𝑝𝑖 ∈ R will be equal to the number of symbols contained by a node,
also called the size of the node. For example, in Figure 3, the node containing symbols 𝑎 and 𝑚 will be labelled
𝑛𝑜𝑑𝑒 5 and its size 𝑝5 will be equal to 2.

There will be as much leaves as there are tiles in the input. We denote by 𝑚 the number of leaves in the tree
(the size of a tile is equal to the sum of the corresponding nodes’ sizes). We can also verify that |𝒮| =

∑︀𝑁
𝑖=1 𝑝𝑖

and here again, each symbol is contained by only one node.
It is easy to observe that the well-known 2-PARTITION problem can be reduced to our problem

2 |merging, tree | 𝐶max. Recall that the 2-PARTITION problem consists in determining if a set of 𝑁 given
integers (𝑎1, 𝑎2, . . . , 𝑎𝑁) can be partitioned into two disjoint subsets 𝑆1 and 𝑆2 such that

∑︀
𝑖∈𝑆1

𝑎𝑖 =
∑︀

𝑖∈𝑆2
𝑎𝑖

(for further information, see [11]. Indeed, we can consider an input where we have a tree with one root and
𝑚 = 𝑁 leaves (i.e., 𝑚 tiles). Every tile 𝑖 is associated to the root (𝑝1 = 0) and to its specific leaf (containing
its proper 𝑝𝑖+1 = 𝑎𝑖 symbols, with 𝑖 = 1, 2, . . . ,𝑚). These hypotheses have several consequences. First, the only
symbol shared by all tiles is put in the root of the tree. Then, as the tiles do not share any other symbol, all
the vertices apart from the root will have only one child.

This example illustrates how one can transform an input of 2-PARTITION problem to an equivalent input
of our problem and thus perform the polynomial reduction 2-PARTITION ≺𝑝 2 |merging, tree | 𝐶max. Such a
reduction proves that 2 |merging, tree | 𝐶max is NP-complete.

2. Dynamic programming algorithm

2.1. Introduction

In order to use the dynamic programming (DP) principle, we have to define what a state of this algorithm
is and then we have to establish the recursive relationship we will use in it. A state will have four integer
components [𝑎, 𝑏, 𝑗, 𝑘]:

– 𝑎: number of symbols assigned to page 𝑃1
– 𝑏: number of symbols assigned to page 𝑃2
– 𝑗: index of last tile on 𝑃1
– 𝑘: index of last tile on 𝑃2

The second step in the design of a dynamic programming (DP) algorithm is to devise the recursive relation-
ship. In our case, it is simple: the relationship shows the choice we have to make when we schedule a tile. This

4 A. GRANGE ET AL.

choice can be presented as a question: shall we assign the current tile to page 𝑃1 or to page 𝑃2? In the DP
algorithm displayed in Algorithm 1, both choices are explored (see lines 6 and 7).

2.2. Pre-process

As the main idea in our algorithm is based on the tree representing how tiles share symbols, it is natural to
compute the tiles following an order coming from that tree. We will begin with the tile ending with the left-most
leaf (when 𝑖 = 1) and then we will continue with the tile ending with the leaf just to the right of the previous
one (𝑖 = 2) and so on until the tiles are all handled (when we arrive at the right-most tile with 𝑖 = 𝑚). Of
course, we can process the tiles in the opposite order (starting with the right-most tile and going toward the
left-most one) with the same algorithm.

Before actually presenting the pseudocode of the DP algorithm, we need to introduce one more thing we use
in it: a matrix M. A cell in the matrix represents the number of symbols we need to add to a page when we
want to assign a tile to it. Of course, this number depends on the tile we are considering but it also depends on
the tiles already scheduled on this page.

Thanks to the hierarchy into the tiles and if the tiles are processed in a correct order (which is described
above), it is easy to see that we only need to know the last tile assigned to a page in order to know how many
symbols we will have to add to this page to schedule the new tile.

Let us study a quick example. Let 𝒫 be one of our two pages and let us say tile 𝑗 is the last tile assigned
to page 𝒫. The value M(𝑖, 𝑗) represents the number of symbols we have to add to page 𝒫 as a consequence of
scheduling tile 𝑖.

The matrix is filled in a pre-process before the beginning of the dynamic programming algorithm that is why
this step is ignored in Algorithm 1. This is also the reason why this computation is not taken into account later
in the time complexity of the DP algorithm.

2.3. The algorithm

Algorithm 1: The dynamic programming algorithm.
Input: The set of tiles 𝒯 and the set of symbols 𝒮
Output: The optimal value

1 begin
2 𝜒0 ← {[0, 0, 0, 0]}
3 Fill matrix M
4 for i from 1 to 𝑚 do
5 foreach [𝑎, 𝑏, 𝑗, 𝑘] in 𝜒𝑖−1 do
6 𝜒𝑖 ← 𝜒𝑖 ∪ {[𝑎 + M(𝑗, 𝑖), 𝑏, 𝑖, 𝑘]}
7 𝜒𝑖 ← 𝜒𝑖 ∪ {[𝑎, 𝑏 + M(𝑘, 𝑖), 𝑗, 𝑖]}
8 foreach [𝑎, 𝑏, 𝑗, 𝑘] in 𝜒𝑖 do
9 if Several quadruplets have the same values for 𝑎, 𝑗, 𝑘 then

10 Keep only the one having the smallest 𝑏

11 Delete set 𝜒𝑖−1

12 return min[𝑎,𝑏,𝑗,𝑘]∈𝜒𝑚{max{𝑎, 𝑏}}

Complexity. Recall that 𝑃 is
∑︀𝒩

𝑖=1 𝑝𝑖. Thanks to the dominating rule, there is only one possible value for 𝑏 while
there are 𝑃 + 1 possible different values for 𝑎 and at most 𝑚 different values for 𝑗 and 𝑘. From this, we know
that we generate at most 𝒪(𝑚2.𝑃) different states during one iteration. As there are 𝑚 iterations in total, this
gives us a time complexity of 𝒪(𝑚3.𝑃) in a worst-case scenario analysis.

FPTAS FOR THE PAGINATION PROBLEM 5

Figure 4. All the states in 𝜒𝑖 displayed in a chequered 2-dimension space.

3. FPTAS based on DP

3.1. Principe

Observation. We already used this property earlier but both 𝑎 and 𝑏 have 𝑃 as maximum value such as: 𝑎 ≤ 𝑃
and 𝑏 ≤ 𝑃 . Furthermore, the best (but maybe infeasible) relaxed solution we can obtain is splitting the set of
symbols 𝒮 into two subsets having exactly the same size and scheduling the first subset on 𝑃1 and the other
one on 𝑃2. This implies that OPT ≥ 𝑃

2 .
The principle of the FPTAS we are going to present is to decrease the time complexity of the dynamic

programming algorithm thanks to the reduction of the number of states we keep at each generation while
assuring a certain quality in the solution we find at the end.

Steps. For one iteration 𝑖, we can represent all the states generated in 𝜒𝑖 in a 2-dimension coordinate system.
The 𝑥-axis (resp. 𝑦-axis) represents the different values that 𝑎 (resp. 𝑏) can take.

First, we divide both axes (each going from 0 to 𝑃) into subintervals defined as follows: 𝐼𝑧 = [(𝑧−1) · 𝛿; 𝑧 · 𝛿]
with 𝑧 = 1, 2, . . . , 2𝑚

𝜖 . It implies a division of the space in squares. Then, we apply a modified algorithm based
on the previous DP. For each iteration, the states of 𝜒𝑖 are ranked according to their value 𝑎. For each interval
𝐼𝑧, we will keep the state with the smallest 𝑎-value as a representative for all states being the same interval. If
two representatives are possible (if two states have the same 𝑎-value), we will keep the one with the smallest
𝑏-value. Such a representative is denoted by [𝑎♯, 𝑏♯, 𝑗, 𝑘] and stored in the set 𝜒#

𝑖 .
This simplification technique is inspired from [8], in which the state space is divided into rectangular sub-

spaces (based on upper and lower bounds) and a specific representative state for each sub-space is kept at
each iteration of the FPTAS. Another successful example can be found in [9]. Other geometrical forms, not
rectangular, can be used for these sub-spaces (see for instance [10]) but generally are less efficient, since they
do not guarantee usually a strongly polynomial time complexity.
→ For the need of the performance guarantee of the algorithm, we set 𝛿 = 𝜖𝑃

2𝑚 . In Figures 4–8, we can see an
illustration of the two steps described above for an arbitrary iteration 𝑖.

3.2. The algorithm

These modifications lead us to the modified algorithm showed in Algorithm 2. The next subsection of this
paper is dedicated to the proof that this modified dynamic programming algorithm is an FPTAS.

4. The proof

Before proving that the modified algorithm is an FPTAS for the problem, we need to show a lemma that will
be useful in the second part of the proof.

6 A. GRANGE ET AL.

Figure 5. We select the state with the smallest 𝑎 in the 1st “square”.

Figure 6. When two states have the same 𝑎, we take the one with the smallest 𝑏.

Figure 7. We keep only one state for each delimited zone.

FPTAS FOR THE PAGINATION PROBLEM 7

Figure 8. 𝜒#
𝑖 is composed of the kept state of each interval.

Algorithm 2: FPTAS pseudo-code: reducing the number of states kept at each iteration.
Input: The set of tiles 𝒯 and the set of symbols 𝒮
Output: The optimal value

1 begin

2 𝜒#
0 ← {[0, 0, 0, 0]}

3 Fill matrix M
4 for i from 1 to 𝑚 do

5 𝜒#
𝑖 ← ∅ foreach [𝑎#, 𝑏#, 𝑗, 𝑘] in 𝜒#

𝑖−1 do

6 𝜒#
𝑖 ← 𝜒#

𝑖 ∪ {[𝑎
+ M(𝑖, 𝑗), 𝑏#, 𝑖, 𝑘]} 𝜒#

𝑖 ← 𝜒#
𝑖 ∪ {[𝑎

#, 𝑏# + M(𝑖, 𝑘), 𝑗, 𝑖]}
7 For every [𝐼𝑧, 𝐼𝑧′ , 𝑗, 𝑘], keep only one state [𝑎#, 𝑏#, 𝑗, 𝑘] such as 𝑎# ∈ 𝐼𝑧 and 𝑏# ∈ 𝐼𝑧′ .

(𝑧, 𝑧′ ∈ {0, 1, 2, . . . , 𝑧0}) If several states can be chosen, keep the one with the smallest 𝑎.
8 Delete set 𝜒#

𝑖−1

9 return min
[𝑎#,𝑏#,𝑗,𝑘]∈𝜒

#
𝑚
{max{𝑎#, 𝑏#}}

4.1. Lemma and proof

Lemma 1. ∀ [𝑎, 𝑏, 𝑗, 𝑘] ∈ 𝜒𝑖(𝑖 ∈ {0, . . . ,𝑚}), the modified algorithm generates at least one state [𝑎#, 𝑏#, 𝑗, 𝑘] ∈
𝜒#

𝑖 such as:

𝑎# ≤ 𝑎 (1)

𝑏# ≤ 𝑏 + 𝑖𝛿. (2)

Proof by Induction.
Base case. For 𝑖 = 0, we have:

𝜒0 = 𝜒#
0 = {[0, 0, 0, 0]}.

→˓ Then, the lemma is verified for 𝑖 = 0.
Inductive step. We assume that the property is verified until step 𝑖− 1 (with 𝑖 ≥ 1). We want to prove that the
lemma holds for step 𝑖.

Let us consider an arbitrary state [𝑎, 𝑏, 𝑗, 𝑘] ∈ 𝜒𝑖 produced in step 𝑖. This state can have been created from
two different ways: the 𝑖th job was scheduled on 𝑃1 and so we can replace 𝑗 by 𝑖 (represented in Eq. (3)) or it
was scheduled on 𝑃2 and we replace 𝑘 by 𝑖 (see Eq. (4)).

[𝑎, 𝑏, 𝑗, 𝑘] = [𝑎, 𝑏, 𝑖, 𝑘] = [𝑎′ + M(𝑖, 𝑗′), 𝑏′, 𝑖, 𝑘] with [𝑎′, 𝑏′, 𝑗′, 𝑘] ∈ 𝜒𝑖−1 (3)

8 A. GRANGE ET AL.

[𝑎, 𝑏, 𝑗, 𝑘] = [𝑎, 𝑏, 𝑗, 𝑖] = [𝑎′, 𝑏′ + M(𝑖, 𝑘′), 𝑗, 𝑖] with [𝑎′, 𝑏′, 𝑗, 𝑘′] ∈ 𝜒𝑖−1. (4)

Case 1. [𝑎, 𝑏, 𝑗, 𝑘] = [𝑎′ + M(𝑖, 𝑗′), 𝑏′, 𝑖, 𝑘] with [𝑎′, 𝑏′, 𝑗′, 𝑘] ∈ 𝜒𝑖−1.
The induction hypothesis says that there exists a state [𝑎′#, 𝑏′#, 𝑗′, 𝑘] in 𝜒#

𝑖−1 such that:

𝑎′# ≤ 𝑎′ (5)

𝑏′# ≤ 𝑏′ + (𝑖− 1)𝛿. (6)

The modified algorithm will thus create the state [𝑎′# + M(𝑖, 𝑗′), 𝑏′#, 𝑖, 𝑘] ∈ 𝜒#
𝑖 . This state may be kept or

it can be represented by another state [𝛼, 𝛽, 𝑖, 𝑘] from the same zone in 𝜒#
𝑖 such that:

𝛼 ≤ 𝑎′# + M(𝑖, 𝑗′) (7)

𝛽 ≤ 𝑏′# + 𝛿 (8)
(7) =⇒ 𝛼 ≤ 𝑎′ + M(𝑖, 𝑗′) (using the lemma) (9)

(8) =⇒ 𝛽 ≤ 𝑏′# + 𝛿 ≤ 𝑏′ + (𝑖− 1)𝛿 + 𝛿 = 𝑏′ + 𝑖𝛿 (10)
→˓ 𝛽 ≤ 𝑏 + 𝑖𝛿 (11)

→˓ The lemma is verified for the first case.
Case 2. [𝑎, 𝑏, 𝑗, 𝑘] = [𝑎′, 𝑏′ + M(𝑖, 𝑘′), 𝑗, 𝑖] with [𝑎′, 𝑏′, 𝑗, 𝑘′] ∈ 𝜒𝑖−1.

The induction hypothesis says that there exists a state [𝑎′#, 𝑏′#, 𝑗, 𝑘′] in 𝜒#
𝑖−1 such that:

𝑎′# ≤ 𝑎′ (12)

𝑏′# ≤ 𝑏′ + (𝑖− 1)𝛿. (13)

The modified algorithm will thus create the state [𝑎′#, 𝑏′# + M(𝑖, 𝑘′), 𝑗, 𝑖]. This state may be kept or it can
be dominated by another state [𝛼, 𝛽, 𝑗, 𝑖] in 𝜒#

𝑖 with:

𝛼 ≤ 𝑎′# (14)

𝛽 ≤ 𝑏′# + M(𝑖, 𝑘′) + 𝛿 (15)
(14) =⇒ 𝛼 ≤ 𝑎′ (using the lemma) (16)

𝛼 ≤ 𝑎 (as 𝑎′ = 𝑎) (17)

(15) =⇒ 𝛽 ≤ 𝑏′# + M(𝑖, 𝑘′) + 𝛿 ≤ 𝑏′ + M(𝑖, 𝑘′) + (𝑖− 1)𝛿 + 𝛿 (18)
𝛽 ≤ 𝑏 + 𝑖𝛿 (19)

→˓ The lemma is verified for the second case.

Conclusion. Since both the base case and the inductive step have been performed, by induction the lemma holds
for all natural numbers. �

Theorem 1. The problem admits an FPTAS.

Proof. In order to prove the modified algorithm is an FPTAS, we need to show two results:

∙ First, we must prove that the algorithm respects the performance quality required to belong to this family
of algorithms;

∙ Then, we have to prove that the time complexity is bounded by a polynomial in the input size and 1/𝜖.

FPTAS FOR THE PAGINATION PROBLEM 9

Performance quality. Consequence of the Lemma 1: Let [𝑎*, 𝑏*, 𝑙, 𝑠] ∈ 𝜒𝑚 be a state associated with an optimal
solution.

The lemma claims there exists a state [𝑎#, 𝑏#, 𝑙, 𝑠] in 𝜒#
𝑚 such as:

𝑎# ≤ 𝑎* (20)

𝑏# ≤ 𝑏* + 𝑚𝛿. (21)

First, the equations (20) and (21) imply that:

(20) =⇒ 𝑎# ≤ 𝑎* (22)

(21) =⇒ 𝑏# ≤ OPT + 𝑚 * 𝜖𝑃

2𝑚
(23)

≤ OPT +
𝜖𝑃

2
(24)

≤ OPT + 𝜖 *OPT (25)
≤ (1 + 𝜖) OPT (26)

→˓ The solution found by the modified algorithm respects the condition quality.
Time complexity. As we keep only one representative per box and as each interval length is equal to 𝛿, there are
in fact 𝑃

𝛿 different possible intervals respectively for 𝑎# and 𝑏#. In every box, at most one state will remain.
Moreover, by using the dominance between boxes, the number of non-dominated states [𝑎#, 𝑏#, 𝑗, 𝑘] for a given
couple (𝑗, 𝑘) can be reduced to 𝒪(𝑃

𝛿).
Furthermore, there are 𝑚 tiles in total, which means that for one iteration, there are at most 𝑚2.(𝑃

𝛿) generated
non-dominated states. As there are 𝑚 iterations, we generate at most 𝒪(𝑚4

𝜖) non-dominated states.
→ The time complexity of the modified algorithm can be reduced to 𝒪(𝑚4

𝜖).
Conclusion. Both conditions are respected, which implies that the modified algorithm is an FPTAS. Moreover,
the complexity time is strongly polynomial.
Conclusion. The problem admits an FTPAS with a strongly time complexity. �

Both algorithms we designed to address 2 | merging, tree | 𝐶max being presented, let us move on the experi-
mental study we conducted.

5. Experiments

Before going further, let us first recall a central element to our algorithms: the triangular matrix M (also
called cost matrix). Recall that a cell in M represents the number of symbols we have to add to a page 𝑝 in
order to be able to assign tile 𝑖 to it, knowing that the last tile assigned to 𝑝 was tile 𝑗. Since this matrix is
fundamental for our algorithms, we decided to try to measure the impact of the average of values in the matrix
might have on the performance of the algorithms. However, we have to mention that there is an input of the
problem directly impacted by these values: the larger the mean values in the matrix, the larger the weights of
the symbols and therefore the larger the

∑︀𝑛
𝑖=1 𝑝𝑖 will be. The only control we have chosen to keep over the 𝑝𝑖 is

the range of values in which they are allowed to evolve. We have chosen three: i1: 𝑝𝑖 ∈ [1; 50], i2: 𝑝𝑖 ∈ [51; 100]
and finally i3: 𝑝𝑖 ∈ [101; 200]. The number of tiles in an instance and the 𝜖 used in the FPTAS are logical
parameters to study. We have chosen to use five values for 𝜖: 0.1, 0.3, 0.5, 0.7 and 0.9. The instances created
have a number of tiles between 6 and 48. The last parameter we varied is the height of the tree representing the
hierarchy in the tiles. We have results for three heights (ℎ = 6, ℎ = 7 and ℎ = 8). We tried for greater heights
but the computation times became too long to test all the instances we wanted. In summary, for a height, we
created three subgroups according to the range of values allowed for 𝑝𝑖 (i1, i2 or i3). In each subgroup, we
generated three groups of one hundred instances with a certain mean in the M matrix.

10 A. GRANGE ET AL.

Figure 9. Simple statistics over the number of successful execution of the DP algorithm.

Table 1. Presentation of simple statistics on the percentage of successful DP executions as a
function of the number of tiles in the instances.

Tile count Instance count Number of successful DP runs % of successful DP runs

26 16 16 100
27 8 16 100
28 18 0 0
29 18 0 0
31 5 0 0
32 10 0 0

5.1. Impact of the number of tiles on the hardness of an instance

As the theoretical time complexities of both algorithms depend on the number of tiles 𝑚 in an input, we
suppose there exists a close link between 𝑚 and the difficulty of an instance. Figure 9 displays three tables
presenting simple statics on executions of the dynamic programming algorithm. Each table works in the same
way: it regroups all inputs having the same cost mean value 𝑐. Then, the instances are separated according to
the number of tiles 𝑚 its contain. Finally, we ran the DP on each group defined by (𝑐, 𝑚) and we added up the
number of successful runs. For example, we see there is a 100% rate of success for inputs having 13 tiles and an
average cost value of 22. Conversely, the success rate drops to 0% for inputs having more than 28 tiles whatever
the average cost value.

We deduce that if an instance has 26 tiles or less, then we will be able to find a solution for it using our dynamic
programming algorithm. However, if the input has 28 tiles or more, the combinatorial explosion becomes too
important (the memory of the computer used to perform the tests was saturated).

There remains the case of instances having 27 tiles for which the data presented in Figure 1 do not allow us
to draw a reliable conclusion. However, in another group (with larger processing time: 𝑝𝑖 ∈ [51, 100]) for which a
small number of dynamic programming runs were successful, the results seem to indicate that 27-tile instances
are still solvable by DP algorithm (see Tab. 1).

We do not present the totality of the results for ℎ = 7, 𝑝𝑖 ∈ [51, 100]] and a cost mean equal to 406 because
we have only tried dynamic programming on a part of the instances (the first 70). As the other instances were
not processed, we should not try to interpret the results as a whole.

In order to validate our results, we tried to show a positive correlation between the execution time and the
number of tiles in an instance. For this, we used the Principal Component Analysis (PCA) method.

FPTAS FOR THE PAGINATION PROBLEM 11

Figure 10. Example of a cloud of individuals (cloud obtained by PCA on the DP results).

We used an implementation of PCA provided by the R library FactoMineR and ran this algorithm on several
result files. We studied [7, 12,13] to help us draw our conclusions.

The data files selected for the PCA are the results of running the DP algorithm and the FPTAS (for three
values of 𝜖: 0.1, 0.5 and 0.9) on a group of 100 instances with characteristics ℎ = 7, 𝑝𝑖 ∈ [1; 50], cost mean = 109.
The number of tiles in this set of instances is between 13 and 38.

The first step when applying PCA is to check that there is not a factorial axis impacted by only a small
number of individuals (and therefore that the cloud of individuals along the different factorial axes is roughly
regular). In fact, if an axis was predominantly impacted by a small number of individuals, we would have to
start by interpreting the results in terms of individuals and not in terms of variables first. This is not an issue
here: most of the inputs are close to the axe’s origin but not along a single axis (an example of a cloud of
individuals is given in Fig. 10).

The numbers that appear in the figures generated by the PCA represent an instance: we could not use the
names of the instances directly as they were too long. The correspondence is available, but it is sufficient to
know that the larger a number is, the larger the number of tiles in the instance. We did not put all the clouds
of individuals we had to generate and then check, that would have made too many different graphs.

Let us now study the graph of variables obtained when we used the PCA over the data of the runs of DP
algotihm. An example is available in Figure 11. Some graphs of variables of the FPTAS are available in the
appendix (see Figs. A.1–A.3).

It can be seen that systematically, the arrows representing the time and the number of tiles are separated by
acute angles. Moreover, The length of both arrows are very similar.

We can conclude that the time and the number of tiles are positively and closely correlated

5.2. Impact of the average value in the cost matrix

To see if the average in the cost matrix has a direct impact on the execution times of the algorithms, we
grouped in a single file all the results for the instances containing twenty tiles. Then, for each value of the average
in the matrix M, we computed the average execution time. The results for ℎ = 7 are presented in Table 2.

In Figure 12 are presented several histograms summarising in a more visual way the data in the Table 2.
It is apparent that the overall look of the histograms presented in Figure 12 match what we expected. We

will focus on the impact on the average value in the cost matrix M for now and we will move on to the impact
of 𝜖 in the next paragraphs.

12 A. GRANGE ET AL.

Figure 11. Graph of variables when PCA was fed data from DP executions.

Table 2. Table of execution times of the FPTAS as a function of the average value in the cost
matrix.

ℎ = 7

Cost mean values: 22 71 109 250 323 529 606 694

Average time
(in seconds)

𝜖 = 0.1 0,90 0,94 0,95 0,67 0,78 0,76 0,69 0,72

𝜖 = 0.3 0,23 0,24 0,23 0,22 0,22 0,24 0,23 0,22
𝜖 = 0.5 0,12 0,12 0,11 0,11 0,22 0,11 0,13 0,11
𝜖 = 0.7 0,08 0,08 0,07 0,08 0,12 0,07 0,08 0,07
𝜖 = 0.9 0,06 0,06 0,06 0,06 0,06 0,06 0,06 0,05

Figure 12. Presentation of average execution times of the FPTAS on instances having 20 tiles.

It seems that for different cost mean values but fixed 𝜖 values, the executions times are quite steady. Therefore,
it seems that the value of the average cost in matrix M does not have a direct impact on the execution times of
the FPTAS.

This hypothesis is confirmed by the PCA results presented in Figure 13. In order to obtain them, we ran the
PCA on all the execution times of the FPTAS whatever the 𝜖 value.

FPTAS FOR THE PAGINATION PROBLEM 13

Figure 13. Graph of variable when we ran the PCA over execution times of the FPTAS.

We notice that the PCA shows that the arrows representing the time and the average in the cost matrix
are almost orthogonal. It means that both variables seem to be very slightly correlated. But as their length
are similar and nearly equal the radius of the circle, they both convey a lot of information in regard of the
dimensions we chose for the graph of variables.

5.3. Impact of 𝜖

Regarding the value of 𝜖, it seems that she smaller the 𝜖, the longer the execution times. Indeed, the arrows
representing these values are almost on the same straight line, of nearly the same length but of opposite
directions. This means that the execution time and the value of 𝜖 are negatively correlated: the bigger the
epsilon, the smaller the execution times.

We can therefore state that the execution time of the FPTAS is inversely proportional to the value of 𝜖.

6. Conclusion and perspectives

In this paper, we presented the work we conducted on a first scenario of the pagination problem. We establish
that this scenario is NP-hard in the ordinary sense since a pseudo-polynomial dynamic programming algorithm
is proposed to solve optimally the problem. In addition, we propose an FPTAS with a strongly polynomial time
complexity. This scheme is based on the simplification of the dynamic programming algorithm by removing a
part of the generated states at every iteration of the algorithm, without deteriorating the solution quality too
much. The exact algorithm is compared to the FPTAS in terms of effectiveness and fastness. The numerical
results are conducted and analysed, which allows us to understand more on the correlation of some parameters
by applying PCA approach.

As perspectives, the study of other scenarios seems to be very interesting (the case of 2 symbols per tile is in
especially very challenging). Moreover, we will try to find another reliable alternative to devise different FPTAS
as it is done in other references [2,3,9]. Finally, the study of differential approximation seems of a great interest
since the general pagination problem is difficult to approximate [1].

14 A. GRANGE ET AL.

Appendix A. PCA graphs of variables

Here follow the graphs of variables obtained when PCA was fed data from FPTAS executions with different
values of 𝜖.

Figure A.1. Graph of variables when PCA was fed data from FPTAS executions where 𝜖 = 0.1.

Figure A.2. Graph of variables when PCA was fed data from FPTAS executions where 𝜖 = 0.5.

FPTAS FOR THE PAGINATION PROBLEM 15

Figure A.3. Graph of variables when PCA was fed data from FPTAS executions where 𝜖 = 0.9.

Acknowledgements. This work was supported by the French MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET
DE LA RECHERCHE, by the CONSEIL REGIONAL GRAD-EST, by the EUROPEAN UNION, through the Cyber-
entreprises project. The preliminary version of this work has been published at CIE49 conference [6].

References

[1] G. Ausiello and V. Paschos, Differential approximation (September 2005), Chapter 13 in Approximation Algorithms and
Metaheuristics, edited by T. Gongalez. Taylor and Francis (2005).

[2] A. Elalouf, An FPTAS for just-in-time scheduling of a flow shop manufacturing process with different service quality levels.
RAIRO Oper. Res. 55 (2021) S727–S740.

[3] A. Elalouf and E. Levner, Improving the solution complexity of the scheduling problem with deadlines: a general technique.
RAIRO Oper. Res. 50 (2016) 681–687.

[4] A. Grange, I. Kacem and S. Martin, Algorithms for the bin packing problem with overlapping items. Comput. Ind. Eng. 115
(2018) 331–341.

[5] A. Grange, I. Kacem, K. Laurent and S. Martin, On the knapsack problem under merging objects’ constraints, in Proc. of 45th
International Conference on Computers and Industrial Engineering 2015 (CIE45). Vol. 2. Metz, France, Curran Associates,
Inc. (2018) 1359–1368.

[6] A. Grange, I. Kacem, S. Martin and S. Minich, Fully polynomial-time approximation scheme for the pagination problem, in
Proc. of 49th International Conference on Computers and Industrial Engineering 2019 (CIE49). Beijing, China (2019) 400.

[7] I.T. Jolliffe, Principal component analysis for special types of data, in Principal Component Analysis. Springer Series in
Statistics. Springer, New York, NY (1986).

[8] I. Kacem, Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed
non-availability interval. J. Comb. Optim. 17 (2009) 117–133.

[9] I. Kacem and H. Kellerer, Fast approximation algorithms to minimize a special weighted flow-time criterion on a single machine
with a non-availability interval and release dates. J. Sched. 14 (2011) 257–265.

[10] I. Kacem and E. Levner, An improved approximation scheme for scheduling a maintenance and proportional deteriorating
jobs. J. Ind. Manage. Optim. 12 (2016) 811.

[11] M. Kovalyov and E. Pesch, A generic approach to proving NP-hardness of partition type problems. Discrete Appl. Math. 158
(2010) 1908–1912.

[12] M. Rouaud, Probabilités, statistiques et analyses multicritères (2012).

[13] J. Pagès, Analyse Factorielle Multiple Avec R. Vol. 158. EDP Sciences (2013) 1908–1912.

16 A. GRANGE ET AL.

[14] M. Sindelar, R.K. Sitaraman and P. Shenoy, Sharing-aware algorithms for virtual machine colocation, in Proc. of the Twenty-
third Annual ACM Symposium on Parallelism in Algorithms and Architectures SPAA’11. San Jose, California, USA (2011)
367–378.

Please help to maintain this journal in open access!

This journal is currently published in open access under the Subscribe to Open model
(S2O). We are thankful to our subscribers and supporters for making it possible to
publish this journal in open access in the current year, free of charge for authors and
readers.

Check with your library that it subscribes to the journal, or consider making a personal donation to
the S2O programme by contacting subscribers@edpsciences.org.

More information, including a list of supporters and financial transparency reports,
is available at https://edpsciences.org/en/subscribe-to-open-s2o.

mailto:subscribers@edpsciences.org
https://edpsciences.org/en/subscribe-to-open-s2o

	General description of the subproblem
	Dynamic programming algorithm
	Introduction
	Pre-process
	The algorithm

	FPTAS based on DP
	Principe
	The algorithm

	The proof
	Lemma and proof

	Experiments
	Impact of the number of tiles on the hardness of an instance
	Impact of the average value in the cost matrix
	Impact of

	Conclusion and perspectives
	PCA graphs of variables
	References

