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Abstract

In this presentation, we showcase Goose: an OCaml library to model, simulate and
compile low-level quantum programs. Goose is designed as a playground with an emphasis
on extensibility and accessibility to non-experts. The library is compatible with the Open-
QASM standard, and targets a variety of backends with a minimalistic, circuit-based IR.

1 Introduction
Quantum computing [8] is an emerging model of computation that exploits non-classical effects
like superposition and entanglement to achieve algorithmic speedups. A radical break from
classical computing, the model presents new challenges for programming languages research.

In particular, researchers are interested in more expressive ways to design and develop
quantum algorithms, and the ability to leverage existing tooling for classical programming
languages in the construction of quantum programming languages (QPLs) [1, 4, 9, 3, 6, 2].

OCaml is a mature ecosystem, widely used for programming languages research. However,
to the best of our knowledge, it has a scarcity of tools for quantum programming. We therefore
present Goose1: an OCaml library to model, simulate and compile quantum programs. The
library is designed to act as a playground to experiment with quantum programming in the
OCaml ecosystem.

2 Description and architecture
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Figure 1: A high-level overview of Goose’s modular pipeline.

1Goose is available at https://qgoose.github.io.

https://qgoose.github.io
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Figure 1 gives a high-level overview of Goose. The library is built around an intermediate
representation (IR) for quantum circuits. This IR can be used as an entry point to, for instance,
build simulators, compilers, and static analyzers for quantum programs. Goose includes a
full state-based simulator to interpret the IR, designed as a functor parametrized by a linear
algebra module. This design choice allows one to implement many tools simply by specializing
the simulator. We demonstrate it by deriving both a symbolic simulator and an emitter to C.
Further tools could be implemented, for example optimizers and compilers for other languages.
To ensure compatibility with other existing tools related to quantum computing, we provide a
frontend for OpenQASM 2.0, a standard low-level quantum circuit representation [5].

3 An example
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Figure 2: 3-qubit GHZ circuit.

In Figure 2, we provide an example of a GHZ [8] circuit entan-
gling three qubits. Listing 3a shows the corresponding Goose
IR representation. This is implemented with a list comprehen-
sion that specifies the CX gates, with an initial H gate. In
Listing 3b, we display the C code that was generated based on
the results of the symbolic simulator. cadd, cmul, and csub are
C functions for complex number arithmetic. Finally, s and o
are arrays for storing the input and output state, respectively.

let entanglement n = {
qbits = n;
gates = List.cons ({

target = A 0;
kind = H;
controls = []

}) (List.init (n-1)
(fun i -> {

target = A (i + 1);
kind = X;
controls = [A 0]

}))
}

(a) Explicit construction of a GHZ cir-
cuit in the Goose IR.

cfloat *s = (cfloat*)malloc(N*sizeof(cfloat));
cfloat *o = (cfloat*)malloc(N*sizeof(cfloat));

for (int i = 0; i < N; i++)
s[i] = (cfloat) {0.0, 0.0};

o[0] = cmul(SQRT1_2,cadd(s[0],s[1]));
o[1] = cmul(SQRT1_2,csub(s[6],s[7]));
o[2] = cmul(SQRT1_2,cadd(s[2],s[3]));
o[3] = cmul(SQRT1_2,csub(s[4],s[5]));
o[4] = cmul(SQRT1_2,cadd(s[4],s[5]));
o[5] = cmul(SQRT1_2,csub(s[2],s[3]));
o[6] = cmul(SQRT1_2,cadd(s[6],s[7]));
o[7] = cmul(SQRT1_2,csub(s[0],s[1]));

(b) Sample of generated C code to simulate this circuit for
n = 3. Each line computes one amplitude in the output state:
1√
2
(1, 0, 0, 0, 0, 0, 0, 1)T

4 Conclusion and future work
We presented Goose: an open source library for quantum computing in the OCaml ecosystem.
Currently, the library’s front-end supports a subset of the OpenQASM 2.0 circuit representa-
tion, a standard for interoperability between quantum computing tools. Additionally, Goose
implements a generic simulator for quantum circuits. We specialized this simulator to both a
symbolic simulator and a C emitter.

In the future, we want to connect Goose to other existing projects, for instance Twist [10],
a QPL whose existing OCaml-based interpreter calls out to C++ quantum simulation libraries,
or VOQC [7], a formally verified compiler for quantum circuits that can be extracted to OCaml.
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