
HAL Id: hal-03936876
https://inria.hal.science/hal-03936876

Submitted on 12 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Goose: an OCaml environment for quantum computing
Denis Carnier, Arthur Correnson, Christopher McNally, Youssef Moawad

To cite this version:
Denis Carnier, Arthur Correnson, Christopher McNally, Youssef Moawad. Goose: an OCaml environ-
ment for quantum computing. JFLA 2023 - 34èmes Journées Francophones des Langages Applicatifs,
Jan 2023, Praz-sur-Arly, France. pp.285-287. �hal-03936876�

https://inria.hal.science/hal-03936876
https://hal.archives-ouvertes.fr


Goose: an OCaml environment for quantum computing
Denis Carnier1, Arthur Correnson2,

Christopher McNally3, and Youssef Moawad4

1 imec-DistriNet, KU Leuven, Belgium
denis.carnier@kuleuven.be

2 CISPA Helmholtz Center for Information Security, Germany
arthur.correnson@cispa.de

3 Massachusetts Institute of Technology, United States
mcnallyc@mit.edu

4 University of Glasgow, United Kingdom
y.moawad.1@research.gla.ac.uk

Abstract

In this presentation, we showcase Goose: an OCaml library to model, simulate and
compile low-level quantum programs. Goose is designed as a playground with an emphasis
on extensibility and accessibility to non-experts. The library is compatible with the Open-
QASM standard, and targets a variety of backends with a minimalistic, circuit-based IR.

1 Introduction
Quantum computing [8] is an emerging model of computation that exploits non-classical effects
like superposition and entanglement to achieve algorithmic speedups. A radical break from
classical computing, the model presents new challenges for programming languages research.

In particular, researchers are interested in more expressive ways to design and develop
quantum algorithms, and the ability to leverage existing tooling for classical programming
languages in the construction of quantum programming languages (QPLs) [1, 4, 9, 3, 6, 2].

OCaml is a mature ecosystem, widely used for programming languages research. However,
to the best of our knowledge, it has a scarcity of tools for quantum programming. We therefore
present Goose1: an OCaml library to model, simulate and compile quantum programs. The
library is designed to act as a playground to experiment with quantum programming in the
OCaml ecosystem.

2 Description and architecture

OpenQASM
Parser 

Modular
Simulator

OCaml
Simulator

Symbolic
Simulator

C emitter

Optimizer

IRCompiler

Other front-ends 

.qasm
.C

Figure 1: A high-level overview of Goose’s modular pipeline.

1Goose is available at https://qgoose.github.io.

https://qgoose.github.io


Goose: an OCaml environment for quantum computing Carnier, Correnson, McNally, and Moawad

Figure 1 gives a high-level overview of Goose. The library is built around an intermediate
representation (IR) for quantum circuits. This IR can be used as an entry point to, for instance,
build simulators, compilers, and static analyzers for quantum programs. Goose includes a
full state-based simulator to interpret the IR, designed as a functor parametrized by a linear
algebra module. This design choice allows one to implement many tools simply by specializing
the simulator. We demonstrate it by deriving both a symbolic simulator and an emitter to C.
Further tools could be implemented, for example optimizers and compilers for other languages.
To ensure compatibility with other existing tools related to quantum computing, we provide a
frontend for OpenQASM 2.0, a standard low-level quantum circuit representation [5].

3 An example

|0⟩ H

|0⟩

|0⟩

Figure 2: 3-qubit GHZ circuit.

In Figure 2, we provide an example of a GHZ [8] circuit entan-
gling three qubits. Listing 3a shows the corresponding Goose
IR representation. This is implemented with a list comprehen-
sion that specifies the CX gates, with an initial H gate. In
Listing 3b, we display the C code that was generated based on
the results of the symbolic simulator. cadd, cmul, and csub are
C functions for complex number arithmetic. Finally, s and o
are arrays for storing the input and output state, respectively.

let entanglement n = {
qbits = n;
gates = List.cons ({

target = A 0;
kind = H;
controls = []

}) (List.init (n-1)
(fun i -> {

target = A (i + 1);
kind = X;
controls = [A 0]

}))
}

(a) Explicit construction of a GHZ cir-
cuit in the Goose IR.

cfloat *s = (cfloat*)malloc(N*sizeof(cfloat));
cfloat *o = (cfloat*)malloc(N*sizeof(cfloat));

for (int i = 0; i < N; i++)
s[i] = (cfloat) {0.0, 0.0};

o[0] = cmul(SQRT1_2,cadd(s[0],s[1]));
o[1] = cmul(SQRT1_2,csub(s[6],s[7]));
o[2] = cmul(SQRT1_2,cadd(s[2],s[3]));
o[3] = cmul(SQRT1_2,csub(s[4],s[5]));
o[4] = cmul(SQRT1_2,cadd(s[4],s[5]));
o[5] = cmul(SQRT1_2,csub(s[2],s[3]));
o[6] = cmul(SQRT1_2,cadd(s[6],s[7]));
o[7] = cmul(SQRT1_2,csub(s[0],s[1]));

(b) Sample of generated C code to simulate this circuit for
n = 3. Each line computes one amplitude in the output state:
1√
2
(1, 0, 0, 0, 0, 0, 0, 1)T

4 Conclusion and future work
We presented Goose: an open source library for quantum computing in the OCaml ecosystem.
Currently, the library’s front-end supports a subset of the OpenQASM 2.0 circuit representa-
tion, a standard for interoperability between quantum computing tools. Additionally, Goose
implements a generic simulator for quantum circuits. We specialized this simulator to both a
symbolic simulator and a C emitter.

In the future, we want to connect Goose to other existing projects, for instance Twist [10],
a QPL whose existing OCaml-based interpreter calls out to C++ quantum simulation libraries,
or VOQC [7], a formally verified compiler for quantum circuits that can be extracted to OCaml.

2



Goose: an OCaml environment for quantum computing Carnier, Correnson, McNally, and Moawad

Acknowledgements
We would like to thank the anonymous reviewers who have helped to improve this paper through
their criticism and suggestions. Moreover, we especially thank Paulette Koronkevich for inspir-
ing the name Goose.

C.M. was supported by the CQE-LPS Doc Bedard Fellowship. This research is co-funded by
a PhD studentship from the College of Science and Engineering at the University of Glasgow,
by the Research Fund KU Leuven, by the Flemish Research Programme Cybersecurity and by
the European Union (ERC, UniversalContracts, 101040088). Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European Union
or the European Research Council. Neither the European Union nor the granting authority
can be held responsible for them.

References
[1] Qiskit: An open-source framework for quantum computing.
[2] Thorsten Altenkirch and Jonathan Grattage. A functional quantum programming language.

arXiv:quant-ph/0409065, April 2005.
[3] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. Silq: A high-level quan-

tum language with safe uncomputation and intuitive semantics. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’20, pages
286–300, New York, NY, USA, June 2020. Association for Computing Machinery.

[4] Cirq Developers. Cirq, July 2018.
[5] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open Quantum

Assembly Language. arXiv:1707.03429 [quant-ph], July 2017.
[6] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron.

Quipper: A Scalable Quantum Programming Language. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, pages 333–342, New
York, NY, USA, June 2013. Association for Computing Machinery.

[7] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. A verified optimizer
for Quantum circuits. Proceedings of the ACM on Programming Languages, 5(POPL):37, January
2021.

[8] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information: 10th Anniver-
sary Edition. Cambridge University Press, 2010.

[9] Robert S. Smith, Michael J. Curtis, and William J. Zeng. A practical quantum instruction set
architecture, 2016.

[10] Charles Yuan, Christopher McNally, and Michael Carbin. Twist: Sound reasoning for purity
and entanglement in Quantum programs. Proceedings of the ACM on Programming Languages,
6(POPL):30:1–30:32, January 2022.

3


	Introduction
	Description and architecture
	An example
	Conclusion and future work

