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We consider the controllability of a class of systems of n Stokes equations, coupled through terms of order zero and controlled by m distributed controls. Our main result states that such a system is null-controllable if and only if a Kalman type condition is satisfied. This generalizes the case of finite-dimensional systems and the case of systems of coupled linear heat equations. The proof of the main result relies on the use of the Kalman operator introduced in [1] and on a Carleman estimate for a cascade type system of Stokes equations. Using a fixed-point argument, we also obtain that if the Kalman condition is verified, then the corresponding system of Navier-Stokes equations is locally null-controllable.

Introduction

In the last fifteen years the challenging issue of controlling systems of coupled equations of the same nature has attracted the interest of the control community. In optimal control problems this kind of systems appears as a characterization of the optimal control, with one equation coupled to its adjoint. Also coupled parabolic equations appear as a model for chemical reactions, population models, cancer and other physical situations (see e.g. [START_REF] Conforto | Some asymptotic limits of reaction-diffusion systems appearing in reversible chemistry[END_REF][START_REF] Érdi | Mathematical models of chemical reactions[END_REF] and [START_REF] Iida | Vanishing, moving and immovable interfaces in fast reaction limits[END_REF]).

The firsts results treating the null controllability for a single parabolic equations appear in the seminal papers of [START_REF] Fattorini | Uniform bounds on biorthogonal functions for real exponentials with an application to the control theory of parabolic equations[END_REF][START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Lebeau | Contrôle exacte de l'équation de la chaleur[END_REF] for the heat equation and in [START_REF] Coron | Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary[END_REF][START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF][START_REF] Yu | On exact controllability for the Navier-Stokes equations[END_REF] for the Navier-Stokes system. That means that it is possible to drive an initial datum to zero at time T > 0 acting locally or on the boundary of the domain. The development in this area has been intense in the last 50 years and it is impossible to mention all the contributions on the subject.

In the case of scalar (heat) coupled equations an important number of challenging problems has been solved (see [START_REF] Ammar-Khodja | Recent results on the controllability of linear coupled parabolic problems: a survey[END_REF] for a survey of results until 2011) and sometimes the results have been surprising [START_REF] Farid Ammar Khodja | Minimal time for the null controllability of parabolic systems: the effect of the condensation index of complex sequences[END_REF][START_REF] Farid Ammar Khodja | New phenomena for the null controllability of parabolic systems: minimal time and geometrical dependence[END_REF][START_REF] Benabdallah | A block moment method to handle spectral condensation phenomenon in parabolic control problems[END_REF]. In the case of coupled Stokes or Navier-Stokes systems, to our knowledge, mainly the cases of two coupled systems have been treated [START_REF] Carreño | Insensitizing controls with two vanishing components for the three-dimensional Boussinesq system[END_REF][START_REF] Carreño | Insensitizing controls with one vanishing component for the Navier-Stokes system[END_REF][START_REF] Guerrero | Controllability of systems of Stokes equations with one control force: existence of insensitizing controls[END_REF][START_REF] Montoya | Robust Stackelberg controllability for the Navier-Stokes equations[END_REF]. Recently (see [START_REF] Takahashi | Controllability results for cascade systems of m coupled N -dimensional Stokes and Navier-Stokes systems by N -1 scalar controls[END_REF]), the authors of the present paper considered the case of m coupled Stokes (Navier-Stokes) systems acting with only a control on the first equation. In [START_REF] Takahashi | Controllability results for cascade systems of m coupled N -dimensional Stokes and Navier-Stokes systems by N -1 scalar controls[END_REF] the coupling matrix on the zero order terms has a cascade structure and the coupling matrix for the first order terms is triangular superior.

Here, our aim is to generalize the classical Kalman rank condition for the controllability of a finite dimensional system to the case of Stokes or Navier-Stokes equations. More precisely, we consider a system coupling n systems of Navier-Stokes equations, that we want to control by using m distributed controls:

             ∂ t y (i) -µ i ∆y (i) + ∇p (i) + y (i) • ∇ y (i) + n j=1 q i,j y (j) = m j=1 r i,j v (j) 1 ω in (0, T ) × Ω, ( 1 
⩽ i ⩽ n) ∇ • y (i) = 0 in (0, T ) × Ω, ( 1 
⩽ i ⩽ n) y (i) = 0 on (0, T ) × ∂Ω, (1 ⩽ i ⩽ n) y (i) (0, •) = y (i) 0 in Ω, ( 1 
⩽ i ⩽ n).
(1.1)

Here Ω is a smooth open bounded domain of R N , N = 2, 3. For each i ∈ {1, . . . , n}, y (i) and p (i) are the velocity and the pressure of a fluid and we assume that the viscosity µ i > 0 is constant. These Navier-Stokes equations are coupled through a matrix (q i,j ) i,j=1,...,n assumed to be constant (in time and space). The controls are denoted by v (j) , j = 1, . . . , m and appear through a matrix (r i,j ) i∈{1,...,n},j∈{1,...,m} , also constant in time and space. We impose that our controls have a vanishing component, for instance v (j) • e (N ) = 0 (j = 1, . . . , m),

where e (1) , . . . , e (N ) is the canonical basis of R N . Using the coupling between the equations, we aim at using less controls than the number of states (m < n) and our objective is to show that the well-known Kalman condition in finite dimension can be extended in this context. Such an extension is already known for systems of heat type equations (see [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF]) and we show here the same result for Stokes equations and for controls with a vanishing component.

First, let us consider a linearization of (1.1):

             ∂ t y (i) -µ i ∆y (i) + ∇p (i) + n j=1 q i,j y (j) = m j=1 r i,j v (j) 1 ω in (0, T ) × Ω, ( 1 
⩽ i ⩽ n) ∇ • y (i) = 0 in (0, T ) × Ω, ( 1 
⩽ i ⩽ n) y (i) = 0 on (0, T ) × ∂Ω, (1 ⩽ i ⩽ n) y (i) (0, •) = y (i) 0 in Ω, ( 1 
⩽ i ⩽ n) (1.3)
that couples a system of Stokes equations. We can write the above system in an abstract way: first, we introduce the Hilbert space

H := y ∈ L 2 (Ω) N : ∇ • y = 0 in Ω, y • ν = 0 on ∂Ω , (1.4) 
where we denote by ν the unit outward normal vector field on ∂Ω. We consider the classical Stokes operator

A := -P∆, D(A) := y ∈ H 2 (Ω) ∩ H 1 0 (Ω) N : ∇ • y = 0 in Ω , (1.5) 
where P : L 2 (Ω) N → H is the orthogonal projection (Leray projector). The control operator B ∈ L(U, H) of our system can be defined as follows:

Bv := P 1 ω N -1 i=1 v i e (i) , for v = (v 1 , . . . , v N -1 ) ∈ U := L 2 (ω) N -1 .
We also denote by D, Q ∈ M n (R) and R ∈ M n,m (R) respectively the matrices diag(µ 1 , . . . , µ n ), (q i,j ) i,j and (r i,j ) i,j . Finally, we consider the operator of the coupled system (1.3):

D(L) := D(A) n , L := DA + Q, (1.6) 
that is for y = y (1) , . . . , y (n) ∈ D(A) n ,

Ly :=   µ i Ay (i) + n j=1 q i,j y (j)   i∈{1,...,n}
.

The control operator of the coupled system is

RB ∈ L(U m , H n ): for v = v (1) , . . . , v (m) ∈ U m , RBv =   m j=1 r i,j Bv (j)   i∈{1,...,n}
.

Then, we can write (1.3) as

y ′ + Ly = RBv, y(0) = y 0 (1.7) with y 0 = y (1) 0 , . . . , y (n) 0 
.

In order to study the null-controllability of (1.7), we introduce the Kalman operator, as in [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF]:

K : H m × D(A) m × . . . × D(A n-1 ) m → H n , w (1) , . . . , w (n) → n i=1 L i-1 Rw (i) . (1.8)
In the above definition, note that

w (i) = w (i) 1 , . . . , w (i) m 
∈ D(A i-1 ) m so that

Rw (i) =   m j=1 r k,j w (i) j   k∈{1,...,n} ∈ D(A i-1 ) n = D L i-1
and thus the Kalman operator is well-defined. The adjoint of K is given by

D(K * ) = D A n-1 n , K * φ = R * φ, R * L * φ . . . , R * (L * ) n-1 φ . (1.9)
We say that (1.7) is null-controllable in time T > 0 if for any y 0 ∈ H n , there exists a control v ∈ L 2 (0, T ; L 2 (ω) N -1 ) m such that the corresponding solution y to (1.7) satisfies y(T, •) = 0.

Our main result states this property is equivalent to the injectivity of K * :

Theorem 1.1. Assume ω ⊂ Ω is a nonempty open set. Then Ker K * = {0} (1.10) if and only if (1.7) is null-controllable in time T > 0.
In order to prove the above result, we show that (1.10) is equivalent to the final-state observability for the adjoint system of (1.3) or equivalently (1.7):

       ∂ t φ (i) -µ i ∆φ (i) + ∇π (i) + n j=1 q j,i φ (j) = 0 in (0, T ) × Ω, ( 1 
⩽ i ⩽ n) ∇ • φ (i) = 0 in (0, T ) × Ω, ( 1 
⩽ i ⩽ n) φ (i) = 0 on (0, T ) × ∂Ω, (1 ⩽ i ⩽ n) φ (i) (0, •) = φ (i) 0 in Ω, ( 1 
⩽ i ⩽ n).
(1.11)

In an abstract form, the adjoint system writes as follows:

φ ′ + L * φ = 0, φ(0) = φ 0 . (1.
12)

The adjoint of the control operator is B * R * ∈ L(H n , U m ). More precisely, if φ = φ (1) , . . . , φ (n) ∈ H n and if we denote by φ 

(i) k , k = 1, . . . , N the components of φ (i) ∈ H, then B * R * φ = (B * R * φ) (1) , . . . , (B * R * φ) (m) ∈ U m , (B * R * φ) (i) =   n j=1 r j,i N -1 k=1 φ (j) k e (k)   ω (i =
R * φ = 0 in (0, T ) × ω.
We show this result in Section 2.

Theorem 1.3. Assume ω ⊂ Ω is a nonempty open set and T > 0. If (1.10) holds, then there exist C > 0 and ℓ > 0 such that for any

φ 0 ∈ H n , Ω |φ(T, •)| 2 dx ⩽ Ce C/T ℓ (0,T )×ω N -1 k=1 |R * φ k | 2 dx dt. (1.13) 
In the above statement, we can write the right-hand side with (0,T )×ω

N -1 k=1 |R * φ k | 2 dx dt = (0,T )×ω N -1 k=1 m i=1 n j=1 r j,i φ (j) k 2 dx dt.
In order to prove (1.13), we will show a Carleman estimate of the form

(0,T )×Ω ρ 2 ♯ |φ| 2 dx dt ⩽ C (0,T )×ω ρ 2 ♭ N -1 k=1 |R * φ k | 2 dx dt. (1.14) 
where ρ ♯ and ρ ♭ are regular functions on [0, T ], positive in (0, T ) and vanishing in 0 and T . There expressions are given through weights defined in Section 4.1: for some κ ∈ (0, 1), and for some δ n ∈ N * :

ρ ♯ = e -sα * (sξ * ) 3/2-1/ℓ , ρ ♭ = e -κs α s ξ δn/2
.

The proof of (1.13) from (1.14) is quite standard so that we skip its proof and we refer the reader to [START_REF] Takahashi | Controllability results for cascade systems of m coupled N -dimensional Stokes and Navier-Stokes systems by N -1 scalar controls[END_REF] (see, also, [START_REF] Fernández | Global Carleman Inequalities for Parabolic Systems and Applications to Controllability[END_REF]). The proof of (1.14) is the consequence of a Carleman estimate stated and proved in Section 4 and of a general method using the Kalman criterion. This method is presented in Section 3.

Remark 1.4. Note that this method follows the proof proposed in [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF] in the case of the heat equation. The idea is to reduce the problem to the case where (1.11) is a cascade system with a particular right-hand side that can be absorbed by using the properties of the weights in the Carleman estimates. However, in the case of Stokes equations, the same method can not be applied with the Carleman estimates that are available in the literature.

More precisely, with the notation for the weights that are described in Section 4.1, a standard Carleman estimate for the heat equation can be written as

(0,T )×Ω e -2sα (sξ) 3 |ψ| 2 dxdt ⩽ C (0,T )×Ω e -2sα |g| 2 dxdt + (0,T )×ω e -2sα (sξ) 3 |ψ| 2 dxdt (1.15) for ψ solution of    ∂ t ψ -∆ψ = g in (0, T ) × Ω, ψ = 0 on (0, T ) × ∂Ω, ψ(0, •) = ψ 0 in Ω.
In particular, if g is of the form aψ with a ∈ R, the integral of g in (1.15) can be absorbed by the left-hand side.

For the Stokes equations, the observability obtained in [START_REF] Carreño | Local null controllability of the N -dimensional Navier-Stokes system with N -1 scalar controls in an arbitrary control domain[END_REF] in the case of a control satisfying (1.2) can be written as

(0,T )×Ω e -5sα * (sξ * ) 4 |ψ| 2 dxdt ⩽ C (0,T )×Ω e -3sα * |g| 2 dxdt + i<N (0,T )×ω e -2s α-3sα * (s ξ) 7 |ψ i | 2 dxdt (1.16) for ψ solution of        ∂ t ψ -∆ψ + ∇p = g in (0, T ) × Ω, ∇ • ψ = 0 in (0, T ) × Ω, ψ = 0 on (0, T ) × ∂Ω, ψ(0, •) = ψ 0 in Ω.
In that case, one can see that if g is of the form aψ with a ∈ R, the integral of g in (1.16) can not be absorbed anymore by the left-hand side. The consequence is that in our Kalman method we need to consider a generalized cascade system and we will then show a Carleman estimate for this cascade system.

Finally using a general method (see, [START_REF] Liu | Single input controllability of a simplified fluid-structure interaction model[END_REF]), one can also deduce from Theorem 1.3 a result of local controllability for the system (1.1): Theorem 1.5. Assume ω ⊂ Ω is a nonempty open set and T > 0. If (1.10) holds, then there exists c > 0 such that for any

y 0 ∈ V n satisfying ∥y 0 ∥ V n ⩽ c, there exists a control v ∈ L 2 (0, T ; L 2 (ω) N -1
) m such that the corresponding solution y to (1.1) satisfies

y(T, •) = 0.
We skip the proof of Theorem 1.5 since the corresponding proof is completely similar to the proof of Theorem 1.3 in [START_REF] Takahashi | Controllability results for cascade systems of m coupled N -dimensional Stokes and Navier-Stokes systems by N -1 scalar controls[END_REF].

Our results are based on a Kalman method and on (global) Carleman inequalities. Such estimates were introduced in [START_REF] Fursikov | Controllability of evolution equations[END_REF] for the controllability of parabolic equations and have been used by many authors. In particular, one can quote [START_REF] Yu | Remarks on exact controllability for the Navier-Stokes equations[END_REF] or [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF] among the large number articles devoted to the controllability of Stokes or Navier-Stokes systems. Several works are devoted to the case where the controls have one vanishing component: [START_REF] Fernández-Cara | Some controllability results for the N -dimensional Navier-Stokes and Boussinesq systems with N -1 scalar controls[END_REF], [START_REF] Coron | Null controllability of the N -dimensional Stokes system with N -1 scalar controls[END_REF], [START_REF] Carreño | Local null controllability of the N -dimensional Navier-Stokes system with N -1 scalar controls in an arbitrary control domain[END_REF] and [START_REF] Carreño | Insensitizing controls with one vanishing component for the Navier-Stokes system[END_REF]. Note that in [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF], the authors obtain the local null controllability of the Navier-Stokes system in dimension 3 with a control having two vanishing components but their method is different, using a particular linearization combined with results of Gromov. Here we follow the proof we did in [START_REF] Takahashi | Controllability results for cascade systems of m coupled N -dimensional Stokes and Navier-Stokes systems by N -1 scalar controls[END_REF] for a standard cascade system to obtain our Carleman estimate.

This paper is organized as follows. In Section 2, we recall some results of [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF] that allow us to show Lemma 1.2 and present several important examples of systems of the form (1.3). The Kalman method is described in Section 3 and we show the Carleman estimates needed to show Theorem 1.3 in Section 4.

Preliminaries and examples

Let us recall that the Stokes operator A (defined by (1.4), (1.5)) is a positive self-adjoint operator with compact resolvents. In particular, its spectrum is composed by positive eigenvalues (γ p ) p⩾1 . Let us consider an orthonormal basis (ϕ p ) p⩾1 of H composed by eigenvectors of A associated with the eigenvalues (γ p ) p⩾1 . Then, we can define for all p ⩾ 1 the matrix

K p := R | (γ p D + Q) R | • • • | (γ p D + Q) n-1 R ∈ M n,nm (R) (2.1)
and its adjoint

K * p =      R * R * (γ p D + Q * ) . . . R * (γ p D + Q * ) n-1      ∈ M nm,n (R).
Then, we have the following result (which is Proposition 2.2 in [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF]):

Proposition 2.1. With the above notation, we have the following equivalencies:

Ker K * = {0} ⇐⇒ ∀p ⩾ 1, Ker K * p = {0} ⇐⇒ ∀p ⩾ 1, rank K p = n.
The above result allows us to show Lemma 1.2 exactly as in [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF]. We only repeat the proof for sake of completeness:

Proof of Lemma 1.2. Assume Ker K * ̸ = {0}. Then from Proposition 2.1, there exist p 0 ⩾ 1 and z 0 ∈ Ker K * p0 ⊂ R n , z 0 ̸ = 0. Then, from the standard Kalman condition (see, for instance, [35, Proposition 1.4.7, p.13]), we have

R * e -(γp 0 D+Q * )t z 0 = 0 (t ∈ R).
For z = (z (1) , . . . , z (n) ) ∈ R n and ϕ ∈ H, we set

zϕ := (z (1) ϕ, . . . , z (n) ϕ) ∈ H n .
We can check that φ(t) := e -(γp 0 D+Q * )t z 0 ϕ p0 (t ⩾ 0)

is the solution of (1.12) with φ 0 := z 0 ϕ p0 . We have

φ(T ) = e -(γp 0 D+Q * )T z 0 ϕ p0 ̸ = 0 and R * φ(t) = R * e -(γp 0 D+Q * )t z 0 ϕ p0 = 0 (t ⩾ 0).
Using Proposition 2.1, we can also consider the following particular cases of Theorem 1.1. These cases are already discussed in [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF] (see Remark 1.1 in [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF]).

Case 1: all the viscosities are equal. Assume ∀i ∈ {1, . . . , n} µ i = µ > 0.

Then we deduce from Proposition 2.1 that (1.10

) is equivalent to rank R | QR | • • • | Q n-1 R = n, (2.2)
that is the original Kalman condition for the matrices Q and R. In particular,

             ∂ t y (i) -µ∆y (i) + ∇p (i) + n j=1 q i,j y (j) = m j=1 r i,j v (j) 1 ω in (0, T ) × Ω, ( 1 
⩽ i ⩽ n) ∇ • y (i) = 0 in (0, T ) × Ω, ( 1 
⩽ i ⩽ n) y (i) = 0 on (0, T ) × ∂Ω, (1 ⩽ i ⩽ n) y (i) (0, •) = y (i) 0 in Ω, (1 ⩽ i ⩽ n)
is null-controllable if and only if the finite-dimensional linear system

     d dt Y (i) + n j=1 q i,j Y (j) = m j=1 r i,j V (j) in (0, T ), (1 ⩽ i ⩽ n) Y (i) (0, •) = Y (i) 0 ∈ R (1 ⩽ i ⩽ n) is controllable.
Case 2: simultaneous controllability. Assume

Q = 0, m = 1, R = (r i ) i=1,...,n .
Then (2.1) can be written as

K p :=      r 1 (γ p µ 1 ) r 1 • • • (γ p µ 1 ) n-1 r 1 r 2 (γ p µ 2 ) r 2 • • • (γ p µ 2 ) n-1 r 2 . . . . . . . . . . . . r n (γ p µ n ) r n • • • (γ p µ n ) n-1 r n      ∈ M n (R)
In particular, using Vandermonde matrices, we see that (1.10) is equivalent to

∀i ∈ {1, . . . , n}, r i ̸ = 0, µ i ̸ = µ j if i ̸ = j.
In particular, taking r i = 1 for all i, we obtain that the system

       ∂ t y (i) -µ i ∆y (i) + ∇p (i) = v (1) 1 ω in (0, T ) × Ω, ( 1 
⩽ i ⩽ n) ∇ • y (i) = 0 in (0, T ) × Ω, ( 1 
⩽ i ⩽ n) y (i) = 0 on (0, T ) × ∂Ω, (1 ⩽ i ⩽ n) y (i) (0, •) = y (i) 0 in Ω, ( 1 
⩽ i ⩽ n)
is null-controllable with only one control v (1) (with a vanishing component) provided all the viscosities µ i are distinct. The above system is simultaneously null-controllable in any time T > 0.

Case 3: cascade systems. Assume

q i,j = 0 if i ⩾ j + 2, q i,i-1 ̸ = 0 (2 ⩽ i ⩽ n), R = (δ 1,i ) i=1,...,n
where δ i,j is the Kronecker delta. Then a proof by induction yields that K p is an upper triangular matrix of the form

K p :=               1 0 q 2,1 . . . 0 q 3,2 q 2,1 . . . . . . 0 . . . . . . . . . . . . 0 0 0 • • • n i=2 q i,i-1               ∈ M n (R)
By hypothesis, the elements of diagonal are non zero. Thus in that case, (1.3) is null-controllable and we recover a part of the result of [START_REF] Takahashi | Controllability results for cascade systems of m coupled N -dimensional Stokes and Navier-Stokes systems by N -1 scalar controls[END_REF].

The Kalman method

In order to prove Theorem 1.1, we extend the method proposed in [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF] for the coupling of parabolic equations of heat type. In this section, we can assume general hypotheses on the system. Let us consider

A : D(A) → H
a positive self-adjoint operator in a Hilbert space H and B ∈ L(U, H) a bounded control operator. We consider the control problem

∂ t y (i) + µ i Ay (i) + n j=1 q i,j y (j) = m j=1 r i,j Bv (j) , y (i) (0) = y (i) 0 , (3.1) 
where

µ i > 0 (i = 1, . . . , n), Q = (q i,j ) ∈ M n (R), R = (r i,j ) ∈ M n,m (R).
Defining the operator L as in (1.6) with D = diag(µ 1 , . . . , µ n ), the above system can be written as in (1.7) and the adjoint system can be written as in (1.12). In order to study the controllability of (3.1) or equivalently the observability of (1.8), we use the Kalman operator defined by (1.8). Let us state a result for the Kalman operator obtained in [1, Theorem 2.1]. We recall that the adjoint of K is given by (1.9). Theorem 3.1. Assume (1.10). Then there exists a constant C > 0 such that for any φ ∈ D A 2n(n-1) n ,

∥φ∥ H n ⩽ C A (2n-1)(n-1) K * φ (H m ) n .
The Kalman operator allows us to reduce the problem to a family of cascade systems that we describe now. Let us denote by S n the group of permutations of the set {1, . . . , n}. Then, we consider the following "cascade" system

         ∂ t ψ (i,σ) + µ σ(i) Aψ (i,σ) = ψ (i+1,σ) (1 ⩽ i ⩽ n -1, σ ∈ S n ) ∂ t ψ (n,σ) + µ σ(n) Aψ (n,σ) = σ∈Sn n p=1 β p, σ ψ (p, σ) (σ ∈ S n ) ψ (i,σ) (0) = ψ (i,σ) 0 (1 ⩽ i ⩽ n, σ ∈ S n ) (3.2) 
where β p,σ ∈ R for p ∈ {1, . . . , n} and σ ∈ S n . This system couples n × n! equations and the state is

ψ (i,σ) (1 ⩽ i ⩽ n, σ ∈ S n ).
This is a generalization of the following system considered in [START_REF] Takahashi | Controllability results for cascade systems of m coupled N -dimensional Stokes and Navier-Stokes systems by N -1 scalar controls[END_REF] and in [START_REF] González | Controllability results for cascade systems of m coupled parabolic PDEs by one control force[END_REF] where A is the Stokes operator or the Laplace operator:

     ∂ t ψ (i) + µ i Aψ (i) = ψ (i+1) (1 ⩽ i ⩽ n -1) ∂ t ψ (n) + µ n Aψ (n) = n p=1 β p ψ (p) .
Using a weighted estimate for the above system in the case where A is the Laplace operator, the authors in [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF] manage to show the Kalman rank condition for the heat equation. In the case of the Stokes equations, we need the following weighted estimate for the system (3.2):

σ∈Sn n-1 k=0 T 0 ρ ♯ (t) A (2n-1)(n-1) ∂ k t ψ (1,σ) (t) 2 H dt ⩽ C σ∈Sn T 0 ρ ♭ (t) B * ψ (1,σ) (t) 2 U dt (3.3)
where ρ ♯ , ρ ♭ : [0, T ] → R + are continuous functions and C > 0 a constant. The above estimate can be the consequence of a Carleman estimate as in the case of coupled Stokes equations or heat equations.

Proposition 3.2. Assume (1.10) and that for any (β p,σ ) p∈{1,...,n},σ∈Sn and for any smooth solutions of (3.2), the weighted estimate (3.3) holds. Then, there exists C > 0 such that for any φ 0 ∈ H n , and for any solution φ of (1.12), Proof of Proposition 3.2. From Theorem 3.1 and (1.9), there exists a constant C > 0 such that for any φ ∈ D A 2n(n-1) n ,

T 0 ρ ♯ (t) ∥φ(t)∥ 2 H n dt ⩽ C T 0 ρ ♭ (t) ∥B * R * φ(t)∥ 2 U m dt. ( 3 
∥φ∥ 2 H n ⩽ C n-1 k=0 A (2n-1)(n-1) R * (L * ) k φ 2 H m .
Assume φ is solution of (1.12) with φ 0 ∈ D A 2n(n-1) n . Then for all t, φ(t) ∈ D A 2n(n-1) n and the above estimate becomes

∥φ∥ 2 H n ⩽ C n-1 k=0 A (2n-1)(n-1) ∂ k t R * φ 2 H m = C n-1 k=0 m i=1 A (2n-1)(n-1) ∂ k t (R * φ) (i) 2 H (3.6)
where

(R * φ) (i) = n j=1 r j,i φ (j) (1 ⩽ i ⩽ m). (3.7) 
Now, we show that (R * φ) (i) satisfies an evolution equation. More generally, let us consider r = (r 1 , . . . , r n ) ∈ R n and let us set

ψ (1) := n j=1 r j φ (j) (3.8)
where φ is the solution of (1.12). We write

E i := ∂ t + µ i A, M := diag(E 1 , . . . , E n ) + Q * ,
so that the first equation of (1.12) can be written as

Mφ = 0.
Taking the transpose of the cofactor matrix of M on the above system, we deduce that for all j = 1, . . . , n, det (M) φ (j) = 0 and in particular, with (3.8), det (M) ψ (1) = 0. (3.9)

Moreover, there exist α i1,...,ip ∈ R (depending on Q) such that

det (M) = n i=1 E i - n-1 p=0 1⩽i1<•••<ip⩽n α i1,...,ip p k=1 E i k . (3.10)
For σ ∈ S n , we set

ψ (p,σ) := p-1 k=1 E σ(k) ψ (1) . (3.11)
We have in particular, for any σ ∈ S n ,

ψ (1,σ) = ψ (1) , E σ(p) ψ (p,σ) = ψ (p+1,σ) (1 ⩽ p ⩽ n -1), (3.12) 
and, using (3.9) and (3.10),

E σ(n) ψ (n,σ) = ψ (n+1,σ) = n i=1 E i ψ (1) = n-1 p=0 1⩽i1<•••<ip⩽n α i1,...,ip p k=1 E i k ψ (1) . (3.13)
Let us fix p ∈ {0, . . . , n -1}. Then for any 1 ⩽ i 1 < • • • < i p ⩽ n, there exists a permutation σ ∈ S n such that

σ(k) = i k (k = 1, . . . , p).
We set β p+1, σ := α i1,...,ip for the corresponding permutations and β p+1, σ := 0 for any other permutations σ ∈ S n . Thus

n-1 p=0 1⩽i1<•••<ip⩽n α i1,...,ip p k=1 E i k ψ (1) = n p=1 σ∈Sn β p, σ ψ (p, σ) .
Then combining the above relation with (3.12) and (3.13), we deduce that for any σ ∈ S n , ψ (p,σ) p satisfies the cascade system (3.2). In particular, we can use the estimate (3.3), and we deduce that for any r = (r 1 , . . . , r n ) ∈ R n , the function ψ (1) defined by (3.8) satisfies

n-1 k=0 T 0 ρ ♯ (t) A (2n-1)(n-1) ∂ k t ψ (1) (t) 2 H dt ⩽ C T 0 ρ ♭ (t) B * ψ (1) (t) 2 U dt. (3.14)
Going back to (3.6) and using (3.7), we deduce (3.4). To end the proof, we use the density of D A 2n(n-1) n into H n to obtain (3.4) in the case where φ 0 ∈ H n .

The Carleman estimate

In order to show Theorem 1.1, we will apply the abstract result Proposition 3.2 to our system. In particular, we need to show a weighted estimate of the form (3.3) for a cascade system of the form (3.2), where A and B are the operators introduced in Section 1. This is done by first showing a Carleman estimate on a "generalized" cascade system of Stokes equations. A similar Carleman estimate is obtained in [START_REF] Takahashi | Controllability results for cascade systems of m coupled N -dimensional Stokes and Navier-Stokes systems by N -1 scalar controls[END_REF] for a "standard" cascade system of Stokes equations. Here we follow the same strategy so that we skip many details and point out the main differences. We also focus in the case N = 2, the proof for N = 3 is completely similar.

Statement of the Carleman estimate

First, we consider the weights needed in the Carleman estimate. We start by introducing a nonempty domain ω 0 such that ω 0 ⊂ ω. Then, using [START_REF] Fursikov | Controllability of evolution equations[END_REF] (see also [START_REF] Tucsnak | Observation and control for operator semigroups[END_REF]Theorem 9.4.3,p.299]), there exists η 0 ∈ C 2 (Ω) satisfying

η 0 > 0 in Ω, η 0 = 0 on ∂Ω, max Ω η 0 = 1, ∇η 0 ̸ = 0 in Ω \ ω 0 . (4.1)
Then, we define the following functions:

α(t, x) = exp {λ(2ℓ + 2)} -exp{λ(2ℓ + η 0 (x))} t ℓ (T -t) ℓ , ξ(t, x) = exp{λ(2ℓ + η 0 (x))} t ℓ (T -t) ℓ , (4.2) α * (t) = max x∈Ω α(t, x) = exp {λ(2ℓ + 2)} -exp{2λℓ} t ℓ (T -t) ℓ , ξ * (t) = min x∈Ω ξ(t, x) = exp{2λℓ} t ℓ (T -t) ℓ , (4.3) α(t) = min x∈Ω α(t, x) = exp {λ(2ℓ + 2)} -exp{λ(2ℓ + 1)} t ℓ (T -t) ℓ , ξ(t) = max x∈Ω ξ(t, x) = exp{λ(2ℓ + 1)} t ℓ (T -t) ℓ , (4.4) 
where ℓ ⩾ 11, λ > 1. Note that we have the following useful relations: there exists C > 0 depending on Ω such that

|∂ t α| + |∂ t ξ| ⩽ CT ξ 1+1/ℓ , (4.5) (α * ) ′ + (ξ * ) ′ ⩽ CT (ξ * ) 1+1/ℓ , (α * ) ′′ + (ξ * ) ′′ ⩽ CT 2 (ξ * ) 1+2/ℓ , (4.6) ξ * ⩾ C T 2ℓ , (4.7) |∇α| = |∇ξ| ⩽ Cλξ, |∆α| = |∆ξ| ⩽ Cλ 2 ξ. (4.8)
Such weights functions were first considered in [START_REF] Fursikov | Controllability of evolution equations[END_REF] and have been already used in many articles (see, for instance, [START_REF] Guerrero | Null controllability of some systems of two parabolic equations with one control force[END_REF], [START_REF] Guerrero | Controllability of systems of Stokes equations with one control force: existence of insensitizing controls[END_REF], etc.). System (3.2) in our context can be written as follows:

                 ∂ t ψ (i,σ) -µ σ(i) ∆ψ (i,σ) + ∇π (i,σ) = ψ (i+1,σ) in (0, T ) × Ω, ( 1 
⩽ i ⩽ n -1, σ ∈ S n ) ∂ t ψ (n,σ) -µ σ(n) ∆ψ (n,σ) + ∇π (n,σ) = σ∈Sn n p=1 β p, σ ψ (p, σ) in (0, T ) × Ω, (σ ∈ S n ) ∇ • ψ (i,σ) = 0 in (0, T ) × Ω, ( 1 
⩽ i ⩽ n, σ ∈ S n ) ψ (i,σ) = 0 on (0, T ) × ∂Ω, (1 ⩽ i ⩽ n, σ ∈ S n ) ψ (i,σ) (0, •) = ψ (i,σ) 0 in Ω, ( 1 
⩽ i ⩽ n, σ ∈ S n ). (4.9) 
Our aim is to estimate the following quantity associated with the solutions of the system (4.9):

I(s, ψ) := (0,T )×Ω e -2sα s -1 ξ -1 ∇ 3 ∆ψ 1 2 + sξ ∇ 2 ∆ψ 1 2 + s 3 ξ 3 |∇∆ψ 1 | 2 + s 5 ξ 5 |∆ψ 1 | 2 dxdt + (0,T )×Ω e -2sα * (sξ * ) 5 |ψ| 2 dxdt. (4.10) 
The first Carleman estimate for the above system can be stated as follows:

Theorem 4.1. There exist C > 0 depending on the geometry and δ n ∈ N * such that for any s ⩾ C T ℓ + T 2ℓ and for any ψ

(i,σ) 0
∈ H, (i ∈ {1, . . . , n}, σ ∈ S n ), the solution ψ (i,σ) i,σ of (4.9) satisfies

σ∈Sn n i=1 I(s, ψ (i,σ) ) ⩽ C σ∈Sn (0,T )×ω e -2sα (sξ) δn ψ (1,σ) 1 2 dxdt. (4.11) 
From the above result, we can deduce a weighted estimate of the form (3.3):

Corollary 4.2. Assume κ ∈ (0, 1), J, K ∈ N. There exist C > 0 depending on the geometry and δ n ∈ N * such that for any s ⩾ C T ℓ + T 2ℓ and for any ψ Proof. We first take the divergence of the two first equations of (4.9) to deduce that

(i,σ) 0 ∈ H, (i ∈ {1, . . . , n}, σ ∈ S n ), the solution ψ (i,σ) i,σ of (4.9) satisfies J j=0 K k=0 σ∈Sn (0,T )×Ω e -2sα * (sξ * ) 3-2/ℓ ∂ j t A k ψ (1,σ) 2 dxdt ⩽ C σ∈Sn (0,T )×ω
∆π (i,σ) = 0 in (0, T ) × Ω, (1 ⩽ i ⩽ n).
Using these relations, we apply the operator ∇ 2 ∆ to the two first equations of (4.9) and the corresponding first components give

     ∂ t ∇ 2 ∆ψ (i,σ) 1 -µ σ(i) ∆∇ 2 ∆ψ (i,σ) 1 = ∇ 2 ∆ψ (i+1,σ) 1 in (0, T ) × Ω, (1 ⩽ i ⩽ n -1) ∂ t ∇ 2 ∆ψ (n,σ) 1 -µ σ(n) ∆∇ 2 ∆ψ (n,σ) 1 = σ∈Sn n p=1 β p, σ ∇ 2 ∆ψ (p, σ) 1 in (0, T ) × Ω. ( 4.20) 
Then, we use a Carleman estimate for the heat equation proved in [START_REF] Fernández-Cara | Null controllability of the heat equation with boundary Fourier conditions: the linear case[END_REF]: there exists a constant C > 0 such that for any λ ⩾ C, s ⩾ C(T ℓ + T 2ℓ ), i ∈ {1, . . . , n} and σ ∈ S n ,

(0,T )×Ω e -2sα (sξ) -1 ∇ 3 ∆ψ (i,σ) 1 2 + sξ ∇ 2 ∆ψ (i,σ) 1 2 dxdt ⩽ C   (0,T )×ω0 e -2sα sξ ∇ 2 ∆ψ (i,σ) 1 2 dxdt + (0,T )×∂Ω (sξ * ) -1 e -2sα * ∂∇ 2 ∆ψ (i,σ) 1 ∂n 2 dγ dt + σ∈Sn n p=1 (0,T )×Ω e -2sα (sξ) -2 ∇ 2 ∆ψ (p, σ) 1 2 dxdt   . (4.21) 
Next, we follow a standard method in three steps:

• Step 1 consists in completing the above left-hand side to obtain I(s, ψ (i,σ) ) (see (4.10)).

• Step 2 consists in removing the boundary terms.

• Step 3 consists in removing the local terms that do not appear in (4.19).

Step 1. This step is completely similar to [START_REF] Takahashi | Controllability results for cascade systems of m coupled N -dimensional Stokes and Navier-Stokes systems by N -1 scalar controls[END_REF]. We apply two times a Carleman estimate for the gradient operator (see [START_REF] Coron | Null controllability of the N -dimensional Stokes system with N -1 scalar controls[END_REF]Lemma 3]) to recover ∇∆ψ (

. Then we use the divergence free condition and the boundary conditions of ψ (i,σ) to recover ψ (i,σ) and to deduce

I(s, ψ (i,σ) ) ⩽ C (0,T )×ω0 e -2sα sξ ∇ 2 ∆ψ (i,σ) 1 2 + (sξ) 3 ∇∆ψ (i,σ) 1 2 + (sξ) 5 ∆ψ (i,σ) 1 2 dxdt + (0,T )×∂Ω (sξ * ) -1 e -2sα * ∂∇ 2 ∆ψ (i,σ) 1 ∂n 2 dγ dt + σ∈Sn n p=1 (0,T )×Ω e -2sα (sξ) -2 ∇ 2 ∆ψ (p, σ) 1 2 dxdt   . (4.22)
Step 2. We apply Lemma 4.3: using (4.6), we can check that for s ⩾ T ℓ , then satisfy (4.14). We deduce that Step 3. This step is completely similar to [START_REF] Takahashi | Controllability results for cascade systems of m coupled N -dimensional Stokes and Navier-Stokes systems by N -1 scalar controls[END_REF] and we refer the reader to this article for all the details. The idea is standard and consists in considering cut-off functions in compact support in ω and in several integration by parts to get rid of the terms associated with ∇ 2 ∆ψ (i,σ) 1

σ∈Sn n i=1 θ 1 ψ (i,σ) H 1 (0,T ;L 2 (Ω) 2 ) + θ 1 ψ (i,σ) L 2 (0,T ;H 2 (Ω) 2 ) + θ 2 ψ (i,σ) H 2 (0,T ;L 2 (Ω) 2 ) + θ 2 ψ (i,σ) H 1 (0,T ;H 2 (Ω) 2 ) + θ 2 ψ (i,σ) L 2 (0,T ;H 4 (Ω) 2 ) + θ 3 ψ (i,σ) H 3 (0,T ;L 2 (Ω) 2 ) + θ 3 ψ (i,σ) H 2 (0,T ;H 2 (Ω) 2 ) + θ 3 ψ (i,σ) H 1 (0,T ;H 4 (Ω) 2 ) + θ 3 ψ (i,σ) L 2 (0,T ;H 6 (Ω) 2 ) ⩽ C σ∈Sn n i=1 θ 0 ψ (i,σ) L 2 (
(sξ * ) -1 e -2sα * ∂∇ 2 ∆ψ (i,σ) 1 ∂n 2 dγdt ⩽ C T 0 (sξ * ) -1 e -2sα * ψ (i,σ) H 4 (Ω) 2 ψ (i,σ) H 6 (Ω) 2 + ψ (i,σ) 1/2 H 4 (Ω) 2 ψ (i,σ) 3/2 H 6 (Ω) 2 dt ⩽ C T 0 (sξ * ) -1+ 5 ℓ θ 2 ψ (i,σ) H 4 (Ω) 2 θ 3 ψ (i,σ) H 6 (Ω) 2 + (sξ * ) -1 2 + 11 2ℓ θ 2 ψ (i,σ) 1/2 H 4 (Ω) 2 θ 3 ψ (i,σ) 3/2 H 6 (Ω) 2 dt (4.
and ∇∆ψ

(i,σ) 1
in the right-hand side of (4.26). We only keep the local integral associated with ∆ψ Proof of Theorem 4.1. We start with (4.19) and we now remove in the right-hand side the local terms associated with i ⩾ 2. The proof is again very close to the proof done in [START_REF] Takahashi | Controllability results for cascade systems of m coupled N -dimensional Stokes and Navier-Stokes systems by N -1 scalar controls[END_REF]. First, we introduce a sequence of open sets O i , (0

⩽ i ⩽ n) such that ω =: O n ⋐ O n-1 ⋐ ... ⋐ O i ⋐ ... ⋐ O 0 ⋐ ω and functions ζ i ∈ C 2 c (O i-1 ) such that ζ i ≡ 1 in O i , ζ i ⩾ 0 (1 ⩽ i ⩽ n).
We apply ∆ on (4.9) to deduce

     ∂ t ∆ψ (i,σ) 1 -µ σ(i) ∆ 2 ψ (i,σ) 1 = ∆ψ (i+1,σ) 1 in (0, T ) × Ω, (1 ⩽ i ⩽ n -1, σ ∈ S n ) ∂ t ∆ψ (n,σ) 1 -µ σ(n) ∆ 2 ψ (n,σ) 1 = σ∈Sn n p=1 β p, σ ∆ψ (p, σ) 1 in (0, T ) × Ω, (σ ∈ S n ). (4.27)
Using the above relations, we obtain, for any σ ∈ S n ,

(0,T )× ω e -2sα (sξ) 5 ∆ψ (n,σ) 1 2 dxdt ⩽ (0,T )×On-1 e -2sα ζ n (sξ) 5 ∆ψ (n,σ) 1 2 dxdt = (0,T )×On-1 e -2sα ζ n (sξ) 5 ∆ψ (n,σ) 1 ∂ t ∆ψ (n-1,σ) 1 -µ σ(n-1) ∆ 2 ψ (n-1,σ) 1 dxdt. (4.28)
Let us now estimate the last integral in the above relation. By integrating by parts and by using (4.27), we deduce

(0,T )×On-1 e -2sα ζ n (sξ) 5 ∆ψ (n,σ) 1 ∂ t ∆ψ (n-1,σ) 1 dxdt = - (0,T )×On-1 ζ n ∂ t e -2sα (sξ) 5 ∆ψ (n,σ) 1 ∆ψ (n-1,σ) 1 dxdt - (0,T )×On-1 ζ n e -2sα (sξ) 5   µ σ(n) ∆ 2 ψ (n,σ) 1 + σ∈Sn n p=1 β p, σ ∆ψ (p, σ) 1   ∆ψ (n-1,σ) 1 dxdt. (4.29) 
By integrating by parts, we also find (0,T )×On-1

ζ n e -2sα (sξ) 5 ∆ψ

(n,σ) 1

∆ 2 ψ (n-1,σ) 1 dxdt = (0,T )×On-1 ζ n e -2sα (sξ) 5 ∆ 2 ψ (n,σ) 1 ∆ψ (n-1,σ) 1 dxdt + (0,T )×On-1 ∆ ζ n e -2sα (sξ) 5 ∆ψ (n,σ) 1 ∆ψ (n-1,σ) 1 dxdt + 2 (0,T )×On-1 ∇ ζ n e -2sα (sξ) 5 • ∇∆ψ (n,σ) 1 ∆ψ (n-1,σ) 1 dxdt. (4.30)
Now we estimate the right-hand side of (4.29) and (4.30). Using (4.5), (4.8), we have that for any s ⩾ C T ℓ + T 2ℓ , ∂ t e -2sα s 5 ξ 5 ⩽ Ce -2sα (sξ) 6+1/ℓ , ∆(ζ n e -2sα s 5 ξ 5 ) ⩽ Ce -2sα s 7 ξ 7 , ∇(ζ n e -2sα s 5 ξ 5 ) ⩽ Ce -2sα s 6 ξ 6 .

Thus,

(0,T )×On-1

ζ n ∂ t e -2sα (sξ) 5 ∆ψ (n,σ) 1 ∆ψ (n-1,σ) 1 dxdt ⩽ ε (0,T )×Ω e -2sα s 5 ξ 5 ∆ψ (n,σ) 1 2 dxdt + C ε (0,T )×On-1 e -2sα (sξ) 7+2/ℓ ∆ψ (n-1,σ) 1 2 dx dt, (4.31) (0,T )×On-1 ∆ ζ n e -2sα (sξ) 5 ∆ψ (n,σ) 1 ∆ψ (n-1,σ) 1 dxdt ⩽ ε (0,T )×Ω e -2sα s 5 ξ 5 ∆ψ (n,σ) 1 2 dxdt + C ε (0,T )×On-1 e -2sα s 9 ξ 9 ∆ψ (n-1,σ) 1 2 dx dt, (4.32) (0,T )×On-1 ∇ ζ n e -2sα (sξ) 5 • ∇∆ψ (n,σ) 1 ∆ψ (n-1,σ) 1 dxdt ⩽ ε (0,T )×Ω e -2sα s 3 ξ 3 ∇∆ψ (n,σ) 1 2 dxdt + C ε (0,T )×On-1 e -2sα s 9 ξ 9 ∆ψ (n-1,σ) 1 2 dx dt, (4.33) (0,T )×On-1 ζ n e -2sα (sξ) 5 ∆ 2 ψ (n,σ) 1 ∆ψ (n-1,σ) 1 dxdt ⩽ ε (0,T )×Ω e -2sα sξ ∆ 2 ψ (n,σ) 1 2 dxdt + C ε (0,T )×On-1 e -2sα s 9 ξ 9 ∆ψ (n-1,σ) 1 2 dx dt, (4.34) and 
(0,T )×On-1

ζ n e -2sα (sξ) . This is standard: by integrating by parts, we obtain Then writing (4.9) under the form (3.2) (using (1.5)), we notice that ∂ t ψ (i,σ) i,σ and Aψ (i,σ) i,σ satisfy (4.9) (with different initial conditions). The corresponding relations (4.39) yield the following relation: 

5 ∆ψ (p, σ) 1 ∆ψ (n-1,σ) 1 dxdt ⩽ ε (0,T )×Ω e -2sα (sξ) 5 ∆ψ (p, σ) 1 2 dxdt + C ε (0,T )×On-1 e -2sα ( 

. 4 ) 3 . 3 . 0 ∥R * B * φ∥ 2 U

 43302 Remark If ρ ♯ is bounded by below on some non empty open interval of (0, T ) and if ρ ♭ is bounded, then (3.4) implies an observability inequality ∥φ(T )∥ m dt.(3.5)

e -2κs α s ξ

  applying Proposition 3.2, we deduce (1.14) which implies Theorem 1.3 in a classical way.

θ 0 := (sξ * ) 5 2 3 2 - 1 ℓ 1 2 - 2 ℓ

 53112 e -sα * , θ 1 (t) := (sξ * ) e -sα * , θ 2 (t) := (sξ * ) e -sα * , θ 3 (t) := (sξ * )

25 ) 5 ℓ

 255 Using that ℓ ⩾ 11 and (4.7), we have for any C > 0 and s ⩾ CT 2ℓ , (sξ * ) -1+ ⩽ C4 ℓ -1+ 5 ℓ , (sξ * ) 0 large enough in the above relations, and putting together (4.22), (4.24) and (4.25), we deduce at this step the existence of C > 0 such that for s ⩾ C(T ℓ + T 2ℓ ),

(i,σ) 1 ,

 1 with ω 0 replaced by ω. This concludes the proof of Proposition 4.4. Using Proposition 4.4, we can now prove Theorem 4.1.

  28)-(4.30) with (4.31)-(4.35) yields the existence of a constant C such that for any s ⩾ C and for any ε > 0, proof, we can show by induction that for all k ∈ {2, . . . , n }, (0,T )×O k e -2sα (sξ) 2 n-k+2 +1 ∆ψ proof, we transform the above local terms into local terms of ψ (1,σ) 1

ζ 1 1 ψ( 1 ,σ) 1 dxdtConsidering ( 4 . 8 ) 4 . 4 2 :

 111148442 (sξ) 2 n+1 +1 e -2sα ∆ 2 ψ(1,σ) and using Young's inequality, we deduce the existence of C such that for any s ⩾ C(T ℓ + T 2ℓ ), and for any ε > 0,Combiningthe above estimate and (4.38) implies (4.11) with δ n = 2 n+2 +1. This concludes the proof of Theorem 4.1. Proof of Corollary 4.2 Using Theorem 4.1, we can now show Corollary 4.Proof of Corollary 4.2. We combine (4.24) (with θ 1 defined by (4.23)) and (4.11): σ∈Sn (0,T )×Ω e -2sα * (sξ * ) 3-2/ℓ ∂ t ψ (1,σ) 2 + Aψ (1,σ) 2 dx dt

σ∈Sn ( 0 2 + A 2 ψ ( 1 2 + A 2 ψ ( 1 ( 1 ,σ) 1 2

 022122111 ,T)×Ω e -2sα * (sξ * ) 3-2/ℓ ∂ 2 t ψ (1,σ) 2 + ∂ t Aψ(1,σ) any κ ∈ (0, 1), there exist λ 0 > 0 and s 0 > 0 such that for any λ ⩾ λ 0 and for any s ⩾ s 0 ,e -2s α s ξ δn ⩽ Ce -2κsα * (sξ * ) 3-2/ℓ (4.41)and we deduce from the above estimate, (4.39) and (4.40) thatσ∈Sn (0,T )×Ω e -2sα * (sξ * ) 3-2/ℓ ∂ 2 t ψ (1,σ) 2 + ∂ t Aψ(1,σ) we obtain that for all J ∈ N, there exists C > 0 such thatJ j=0 σ∈Sn (0,T )×Ω e -2sα * (sξ * ) 3-2/ℓ ∂ j t A J-j ψ (1,σ) 2 dxdt ⩽ C σ∈Sn (0,T )×ω e -2κJ-1 s α s ξ δn ψ dx dt. (4.43)

  1, . . . , m).

	Following a standard duality argument (see, for instance, [35, Theorem 11.2.1, p.357]), Theorem 1.1 is a consequence
	of the two following results:
	Lemma 1.2. If Ker K * ̸ = {0}, then (1.11) is not final-state observable: there exists φ 0 ∈ H n , φ 0 ̸ = 0 such that the
	solution φ of (1.12) satisfies φ(T, •) ̸ = 0 and
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Regularity results

Let us consider the "cascade" system (3.2). One can write it as

where ψ := ψ (i,σ) 1⩽i⩽n, σ∈Sn , ψ 0 := ψ (i,σ) 0 1⩽i⩽n, σ∈Sn and where the operator A : D(A) → X is defined as follows:

X := H {1,...,n}×Sn , D(A) := D(A) {1,...,n}×Sn , (Aψ)

We can write A = A 0 + A 1 where

The 

Following the proof of [33, Lemma 2.4], we have the following result:

Then, for any ψ 0 ∈ H {1,...,n}×Sn , the solution ψ of (4.13) satisfies

)

)

with

4.3 Proof of Theorem 4.1.

The proof of the Carleman estimate follows closely the proof of a similar result done in [START_REF] Takahashi | Controllability results for cascade systems of m coupled N -dimensional Stokes and Navier-Stokes systems by N -1 scalar controls[END_REF]. We recall that I(s, ψ) is defined by (4.10). First we show the following result: