
HAL Id: hal-03936776
https://hal.science/hal-03936776

Submitted on 28 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Estrogen Receptor-α Targeting: PROTACs, SNIPERs,
Peptide-PROTACs, Antibody Conjugated PROTACs

and SNIPERs
Arvind Negi, Kavindra Kumar Kesari, Anne Sophie Voisin-Chiret

To cite this version:
Arvind Negi, Kavindra Kumar Kesari, Anne Sophie Voisin-Chiret. Estrogen Receptor-α Targeting:
PROTACs, SNIPERs, Peptide-PROTACs, Antibody Conjugated PROTACs and SNIPERs. Pharma-
ceutics, 2022, 14 (11), pp.2523. �10.3390/pharmaceutics14112523�. �hal-03936776�

https://hal.science/hal-03936776
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Negi, A.; Kesari, K.K.;

Voisin-Chiret, A.S. Estrogen

Receptor-α Targeting: PROTACs,

SNIPERs, Peptide-PROTACs,

Antibody Conjugated PROTACs and

SNIPERs. Pharmaceutics 2022, 14,

2523. https://doi.org/10.3390/

pharmaceutics14112523

Academic Editors: Giovanni Piccoli,

María Pérez-Carrión and

Fabrizia Guarnieri

Received: 20 September 2022

Accepted: 17 November 2022

Published: 19 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Review

Estrogen Receptor-α Targeting: PROTACs, SNIPERs,
Peptide-PROTACs, Antibody Conjugated PROTACs
and SNIPERs
Arvind Negi 1,* , Kavindra Kumar Kesari 1,2,* and Anne Sophie Voisin-Chiret 3,*

1 Department of Bioproduct and Biosystems, Aalto University, 00076 Espoo, Finland
2 Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
3 CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie University

UNICAEN, 14000 Caen, France
* Correspondence: arvind.negi@aalto.fi or arvindnegi2301@gmail.com (A.N.); kavindra.kesari@aalto.fi or

kavindra_biotech@yahoo.co.in (K.K.K.); anne-sophie.voisin@unicaen.fr (A.S.V.-C.)

Abstract: Targeting selective estrogen subtype receptors through typical medicinal chemistry ap-
proaches is based on occupancy-driven pharmacology. In occupancy-driven pharmacology, molecules
are developed in order to inhibit the protein of interest (POI), and their popularity is based on their
virtue of faster kinetics. However, such approaches have intrinsic flaws, such as pico-to-nanomolar
range binding affinity and continuous dosage after a time interval for sustained inhibition of POI.
These shortcomings were addressed by event-driven pharmacology-based approaches, which de-
grade the POI rather than inhibit it. One such example is PROTACs (Proteolysis targeting chimeras),
which has become one of the highly successful strategies of event-driven pharmacology (pharma-
cology that does the degradation of POI and diminishes its functions). The selective targeting of
estrogen receptor subtypes is always challenging for chemical biologists and medicinal chemists.
Specifically, estrogen receptor α (ER-α) is expressed in nearly 70% of breast cancer and commonly
overexpressed in ovarian, prostate, colon, and endometrial cancer. Therefore, conventional hormonal
therapies are most prescribed to patients with ER + cancers. However, on prolonged use, resistance
commonly developed against these therapies, which led to selective estrogen receptor degrader
(SERD) becoming the first-line drug for metastatic ER + breast cancer. The SERD success shows that
removing cellular ER-α is a promising approach to overcoming endocrine resistance. Depending on
the mechanism of degradation of ER-α, various types of strategies of developed.

Keywords: peptide PROTACs; SNIPERs; PORTACs; antibody-based PROTAC conjugate; clinical
PROTACs

1. Introduction

Estrogen receptors (ER) belong to the nuclear superfamily with ligand-dependent
functioning. Estrogen receptors are mainly present in the nucleus and on the plasma
membrane or the phospholipids’ membrane of the cell. The normal homeostasis signaling
of estrogen receptors plays an essential role in growth, development, differentiation, and
regulatory functions associated with the reproductive systems of both females and males.
In 1962, Jenson and Jacobson demonstrated that estradiol binds to the estrogen receptor
(ER) even in the uterus, vagina, and pituitary gland [1]. Any aberration in the signaling of
estrogen receptors leads to various types of endocrine disorders and associated cancers, for
example, breast cancer, endometrial cancer, and osteoporosis, where the estrogen receptor
is a designated clinical target [2]. Most notably, 70% of breast cancers have over-expressed
estrogen receptors (ER+), which display its significance as a therapeutic target in breast
cancer. Estrogens show these activities by binding with the ER that functions as signal
transducers and transcription factors in order to modulate the expression of target genes [3].
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2. Structure of Estrogen Receptors: Specificity of Ligand Binding Domain

ER constitute 12 helices; when an agonist is bound with ER-α in a three-layered
structure, helices 4, 5, 6, 8, and 9 are present at one layer, whereas H1 and H3 are present
on one side. The ERs are mainly classified into three classes (a) ER-α, (b) ER-β (c) ER-γ.
ER-α and ER-β are encoded from ESR1 and ESR2 genes [4]. However, there is no clear
evidence for the genes of ER-γ. The first ER was identified in 1958 by Elwood Jensen and
colleagues, named ER-α. ER is composed of six domains that provide specific functional
roles, those being (a) N-terminal domain (NTD), (b) DNA-binding domain (DBD), (c) ligand
binding domain (LBD), (d) The hinge region, (e) F-domain or C-terminal domain. The six
domains are shown in Figure 1. Ligand-independent activation function (AF-1) encoded
by the N-terminal domain [5] provides a region for protein-protein interaction [6]. The “D”
domain, also known as the hinge region, which follows DBD, contains nuclear localization
signal. It is a flexible region between DBD and LBD, with 36% homology shared between
ER-α and ER-β. A sequence of 40–50 amino acid residues in the D-domain separates the
LBD and DBD, which is necessary for receptor dimerization. C- terminal domain or F-
domain contains 42 amino acids, followed by LBD. The LBD identified various compounds
dissimilar in shape, dimension, conformational and chemical properties. There are two
activation domains, AF-1 and AF-2 located in between NTD and LBD, respectively, that
regulate the transcription of ER. A full transcription of ER is due to synergism between
the two AFs (AF-1 and AF-2 domain) AF-1 domain is hormone-independent, whereas the
AF-2 domain is hormone-dependent. DBD contains two zinc finger motifs that directly
interact with the DNA helix. The F-domain plays an important role in differentiating
the ligands, whether it is an estrogen agonist or antagonist. Ligands such as estradiol or
diethylstilbestrol (DES) act as pure agonists, whereas fulvestrant acts as a pure antagonist.
SRC-1 (steroid receptor coactivator-1)/N-CoA 1 [7], GRIP 1/TIF2/N-CoA 2 attach with
ER-α in a ligand-dependent manner. These proteins behave as co-activators because they
stimulate the transcription of ER-α and other NRs. The amino acid sequence in the H3
helix is Val-355, Leu-354, Ile-358, Lys-362, and Ala-361, whereas sequence in H5 helix is
Glu-375, Val-376, Glu-380 and Leu-379. Leu-372 is present in between H3 and H4 helix of
ER-α. In H12, amino chain is Met-543, Glu-542, Leu-539 and Asp-538. H12 is necessary for
conformational change due to which dimerization takes place. All these helices are present
in binding site of NR box II peptide which is similar to a shallow groove.

The sides and lower surfaces of the groove are entirely hydrophobic except for the
terminations attributed to their charged character. The LBD interacts with Leu-690, Leu-
693, Leu-694, and Ile-689 of the NR box II peptide α by Vander Waals force of attraction.
Compared to ER-β, which was a second estrogen receptor discovered in rat prostate named
ER-β in 1996. Unexpectedly, ER-β was shown opposite effects to ER-α. Both receptors are
distributed unevenly in the organs, such as ER-α encoded by different genes, and are located
on different chromosomes, tissues, and organs. ER-α is found in the endometrium, breast,
ovary, hypothalamus, uterus, skin, guts, and ER-β in ovarian granulosa cells, kidney, brain,
bone, heart, lungs [8], intestinal mucosa, prostate, endothelial cells, adrenal, skin, pituitary
gland. In ER-α, AF-1 domain is very active in the initiation of receptor-gene expression,
whereas in the case of ER-β, this domain is almost inactive under the same conditions. ER-α
and ER-β both receptors are similar in size; they contain approximately 600 and 530 amino
acids, respectively. The DNA binding domain (DBD) possesses a two zinc-finger structure
that plays a significant role in receptors’ dimerization process and receptor binding with
ERE elements and specific DNA sequences [9]. ER-α act as a transcriptional activator on
ERE, which is a palindromic sequence made up of two hexanucleotide sequence, whereas
the ER-β acts as a suppressor, so that the function of ER-α is suppressed by dimerization
with ER-β. When a ligand binds with the estrogen receptor site, heat shock protein (such
as hsp90) will be dissociated from the receptor and then receptor will be activated. After
receptor activation, there is a change in conformation of the site of estrogen receptor due to
which both receptors are bind with each other thus; we can say dimerization process takes
place. After dimerization, it binds with ERE element or on the DNA sequence, transcription
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phenomenon occurs. The region between 91- 121 amino acids is required to generate the
most significant transcription activity, and the region between the 41–150 amino acids is
required for the AF-1 domain.
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Figure 1. (A) Structure of estrogen receptor. (B) The binding site of ER-α.

3. Signaling of ER

The mechanism of action of ER is of the following different types, as shown in Figure 2:

(1) Classical ligand-dependent signaling
(2) DNA-binding independent signaling
(3) Ligand—independent signaling
(4) Non-genomic signaling
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Figure 2. Mechanism of action: when a ligand binds with the ER, which is present on the cell mem-
brane or phospholipid layer, the heat shock proteins associated with it are dissociate. Conformational
changes take place and further proceeds to dimerization. Due to the receptor’s hydrophobicity, it
enters the nucleus and binds with the ERE element on DNA. After that, it activates a variety of genes
such as PTEN, STK 11 followed by the transcription process. Subsequently, translational process
occurs. On the other hand, ligand (estradiol) directly enters into nucleus because of its hydrophobic
nature. Next, the same process is also occurring here.

3.1. Classical Ligand-Dependent

If the ligand is hydrophobic, then ligand crosses the cell membrane and binds with
ER in the nucleus. During binding, the heat shock protein (such as hsp 90, hsp70) will be
dissociated from ER, and the receptor will be activated. Activated ER tries to bind with
another ER present in the nucleus because of the conformational change in the receptor site
then, finally, it will be bind with each other. After binding, it binds to the ERE elements
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present on the DNA sequence. The DNA –bound receptors affect the transcription via
direct or indirect co-factor proteins [10] SRC-1, GRIP-1, TRAP 220, CBP/p300, and p68 RNA
helicase [11]. The interaction between ER and co-activators stabilizes the pre-initiation
step of transcription and smooth the progress of distraction of chromatin at the ERE. The
ERKO mice model is helpful in confirming the ligand-dependent ER signaling through the
ERE-mediated mechanism in in vitro studies.

3.2. Ligand Independent

In the absence of a ligand, ER can be activated by extracellular signals through phos-
phorylation. Extracellular signals involve the EGFR, cell cycle regulators, IGF-1 [12],
peptide growth factors, cytokines, neurotransmitters [13,14], and some analogs of intracel-
lular signals such as 8-bromo-cyclic-adenosine monophosphate that helps to activate the
ER [15]. Protein kinase C (PKC) [16] and protein kinase A (PKA) [17] are the regulators
of cellular phosphorylation that play a significant role in ER activation. These signals in-
crease the target gene response of ER. The activation of ER via growth factor requires AF-1
domain containing N-terminal, whereas intracellular signaling through cAMP requires
AF-2 domain of the receptor. Within the A/B domain, Cyclin A2, CDK-2, Ser-118, Ser-104,
Ser-106, Ser-154, Ser-167 residues are essential targets for the phosphorylation of MAPK
pathway even in the presence of E2, succeeding concern with EGF and IGF. After this, the
receptor will interact with p68 co-activator with RNA helicase and activated the transcrip-
tion. MAPK pathway recruits SRC-1 to N-terminal and stimulates the ER-β murine activity.
Co-activators play a significant role in transcription through the stimulation of ER and
other signaling pathways such as kinase pathway, and growth factors pathway [18].

3.3. ERE-Independent Genomic Signaling of ER

This mechanism activates ER-α through IGF-1 and collagenase expression via receptor
interaction with Jun and Fos at AP-1 binding sites. Various genes having GC-rich promoter
series are triggered via ER-α-Sp1 complex. Both binding domains such as AF-1 and AF-2 of
the receptor are required for the AP-1 responsive element of E2- ER-α activation that binds
and stimulates the activity of SRC-1 and GRIP-1 recruited by Fos/Jun. Interestingly, if the
AF-1 domain is absent in ER-β, that is not able to initiate the transcription of AP-1 regulated
genes. If an agonist is bound with ER, there is a chance of performing different physiological
actions through the regulation of a distinctive gene subset [19]. The interaction between
ER and AP-1 pathways has been reported to be more complicated in in-vitro conditions.
ERKO model is an irreplaceable mechanism that contributes to estrogen signaling.

3.4. Non-Genomic Signaling

In the breast and nervous system, ER shows non-genomic signaling through the
plasma membrane ER that is associated with intracellular signal transferring genetic ma-
terial from one part to another related proteins. It is closely associated with the various
kinase activations such as MAPK, protein kinases [20], Akt. It is mediated by classical
ERs (ER-α and ER-β) that are present on the cell membrane. Through kinase phosphoryla-
tion, they activate nitric oxide synthase [21] in caveolae where ERs are present, as shown
in Figure 3. Caveolae are a particular type of membrane that helps signal transduction
through various signaling molecules. ER-α can affiliate with plasma membrane due to
receptor palmitoylation [22], but they have no trans membrane domain. When plasma
membrane ERs are activated by estrogens, they exist in dimer form [23]. Plasma membrane
ER-α attaches with caveolin-1 protein scaffold as well as various signaling molecules such
as Src kinase [24], Sch [25], Ras [26], PI3–kinase [27], and G-protein [28]. Non-genomic
action of ER is performed by several kinase pathways such as Akt, m-TOR, and MAPK
mediated by phosphorylation. In this signaling, ER is activated by epidermal growth factor
(EGF), and insulin growth factor (IGF) that initiates further a variety of kinase pathways.
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Figure 3. The binding of epidermal growth factor (EGF) with EGFR activates the receptor signaling
due to phosphorylation. It stimulates various intracellular kinases signaling such as PI3K, Ras, MAPK,
mTOR and induces cell division, proliferation, and growth. It interferes with other cellular signaling,
such as IGFR, ER. It shows crosstalk with ER, which is present on the membrane, simultaneously cell
signaling starts and the formation of proteins.

4. Small Molecule Inhibitor Targeting Estrogen Receptor-α

In most of the target organs, ER-α exists as a predominant receptor. Consequently,
various anti-estrogens (the ligands that block ER-α) were developed to treat breast cancer.
Therefore, the primary therapy for ER-α breast cancers is synthetic anti-estrogen drugs.
The present review provides a broad summary and discusses the highlights of discoveries,
SAR studies, and binding interactions of various degraders of ERs reported to date.
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The X-ray cocrystal structures of ER-α in complex with estradiol (PDB id: 1GWR), is
shown in Figure 4 and Table 1. The binding conformation of endogenous ligands or with
synthetically developed compounds revealed that amino acid residues Glu-353 and Arg-394
are conserved amino acids residues that participate in hydrogen bond acceptor/donor
interactions with estradiol or other ligands such as tamoxifen, raloxifene, diethylstilbestrol,
hexahydrocyclopenta[e]chromene, benzothiazine, naphthalene, or indole. As shown in
Figure 4, these compounds also utilize amino acid residues such as Asp-351, His-524, and
Phe-404 for their binding to the ER-α receptor.
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Table 1. Reported X-ray cocrystal structures of ER-α selective inhibitors.

PDB Entry Estrogen Receptor
Isoform Inhibitor Names of Inhibitors Resolution (Å) Reference

3DT3 Estrogen
Receptor-α
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1.84 [32] 
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2.00 [34] 
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6-(4-(methylsulfonyl)phenyl)-5-(4-
(2-(piperidin-1-yl)ethoxy)phe-

noxy)naphthalen-2-ol 
1.90 [35] 

1XQC Estrogen Receptor-α 

 

(S)-1-(4-((R)-octahydro-2H-pyr-
ido[1,2-a]pyrazin-2-yl)phenyl)-2-

phenyl-1,2,3,4-tetrahydroisoquino-
lin-6-ol 
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1XP6 Estrogen Receptor-α 

 

(2S,3R)-2-(4-(2-((3S,4S)-3,4-dime-
thylpyrrolidin-1-yl)ethoxy)phe-

nyl)-3-(4-hydroxyphenyl)-2,3-dihy-
drobenzo[b][1,4]oxathiin-6-ol 

1.70 [37] 

1XPC Estrogen Receptor-α 

 

(2S,3R)-3-(4-hydroxyphenyl)-2-(4-
((R)-2-(pyrrolidin-1-

yl)propoxy)phenyl)-2,3-dihydro-
benzo[b][1,4]oxathiin-6-ol 

1.60 [37] 

1R5K Estrogen Receptor-α 

 

(E)-3-(4-((E)-1,2-diphenylbut-1-en-
1-yl)phenyl)acrylic acid 2.70 [38] 

1SJ0 Estrogen Receptor-α 

 

(2S,3R)-3-(4-hydroxyphenyl)-2-(4-
(2-(piperidin-1-yl)ethoxy)phenyl)-
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(S)-1-(4-((R)-octahydro-2H-
pyrido[1,2-a]pyrazin-2-yl)phenyl)-

2-phenyl-1,2,3,4-
tetrahydroisoquinolin-6-ol

2.05 [36]

1XP6 Estrogen
Receptor-α
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1XPC Estrogen
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1PCG Estrogen Receptor-α 
 

(8R,9S,13S,14S,17S)-13-methyl-
7,8,9,11,12,13,14,15,16,17-decahy-

dro-6H-cyclopenta[a]phenan-
threne-3,17-diol 

2.70 [40] 

1UOM Estrogen Receptor-α 
 

2-phenyl-1-(4-(2-(piperidin-1-
yl)ethoxy)phenyl)-1,2,3,4-tetrahy-

droisoquinolin-6-ol 
2.28 [41] 

1GWQ Estrogen Receptor-α 
 

2-(4-hydroxyphenyl)benzo[b]thio-
phen-6-ol 

2.45 [42] 

1GWR Estrogen Receptor-α 

 

(8R,9S,13S,14S,17S)-13-methyl-
7,8,9,11,12,13,14,15,16,17-decahy-

dro-6H-cyclopenta[a]phenan-
threne-3,17-diol 

2.40 [42] 

1QKU Estrogen Receptor-α 
 

(8R,9S,13S,14S,17S)-13-methyl-
7,8,9,11,12,13,14,15,16,17-decahy-

dro-6H-cyclopenta[a]phenan-
threne-3,17-diol 

3.20 [43] 

3ERD Estrogen Receptor-α 
 

(E)-4,4′-(hex-3-ene-3,4-diyl)diphe-
nol 2.03 [44] 

3ERT Estrogen Receptor-α 
(E)-4-(1-(4-(2-(dimethylamino)eth-
oxy)phenyl)-2-phenylbut-1-en-1-

yl)phenol 
1.90 [44] 

1A52 Estrogen Receptor-α 

 

(8R,9S,13S,14S,17S)-13-methyl-
7,8,9,11,12,13,14,15,16,17-decahy-

dro-6H-cyclopenta[a]phenan-
threne-3,17-diol 

2.80 [45] 

1ERE Estrogen Receptor-α 

 

(8R,9S,13S,14S,17S)-13-methyl-
7,8,9,11,12,13,14,15,16,17-decahy-

dro-6H-cyclopenta[a]phenan-
threne-3,17-diol 

3.10 [46] 

1ERR Estrogen Receptor-α 

 

(6-hydroxy-2-(4-hydroxy-
phenyl)benzo[b]thiophen-3-yl)(4-

(2-(piperidin-1-yl)ethoxy)phe-
nyl)methanone 

2.60 [46] 

5. Strategies for Estrogen Receptor Degradation 
The initial rationale of modulating the estrogen receptor that could provide thera-

peutic benefits in overexpressed ER+ cancers prompted the development of tamoxifen 
(selective estrogen receptor modulator, SERM), which is widely prescribed as adjuvant 
therapy following surgery in ER+ breast cancer 14. Later, more attention to selective ER 
down-regulator (SERD) was provided, which led to the development of fulvestrant, 
which induces ER degradation. The inclusion of fulvestrant exhibited an improved treat-
ment for patients with ER-positive breast cancers with disease progression following tra-
ditional anti-estrogen therapy. The clinical success of fulvestrant showed a promising fu-
ture for selective estrogen receptor degraders. 

A paradigm shift in the way of targeting intracellular proteins by synthetic molecules 
is expanding the field of medicinal chemistry research. Mechanistically, these synthetic 
entities make a ternary complex between a protein of interest (POI) and an E3 ubiquitin 
ligase, leading to the POI ubiquitination and its subsequent degradation through traffick-
ing to the proteasome [47,48]. These chemical entities constitute of (1) a functionality or 

(8R,9S,13S,14S,17S)-13-methyl-
7,8,9,11,12,13,14,15,16,17-

decahydro-6H-
cyclopenta[a]phenanthrene-3,17-

diol

2.70 [40]

1UOM Estrogen
Receptor-α
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5. Strategies for Estrogen Receptor Degradation

The initial rationale of modulating the estrogen receptor that could provide therapeutic
benefits in overexpressed ER+ cancers prompted the development of tamoxifen (selective
estrogen receptor modulator, SERM), which is widely prescribed as adjuvant therapy
following surgery in ER+ breast cancer 14. Later, more attention to selective ER down-
regulator (SERD) was provided, which led to the development of fulvestrant, which induces
ER degradation. The inclusion of fulvestrant exhibited an improved treatment for patients
with ER-positive breast cancers with disease progression following traditional anti-estrogen
therapy. The clinical success of fulvestrant showed a promising future for selective estrogen
receptor degraders.

A paradigm shift in the way of targeting intracellular proteins by synthetic molecules
is expanding the field of medicinal chemistry research. Mechanistically, these synthetic
entities make a ternary complex between a protein of interest (POI) and an E3 ubiquitin
ligase, leading to the POI ubiquitination and its subsequent degradation through trafficking
to the proteasome [47,48]. These chemical entities constitute of (1) a functionality or
substructure or small molecular inhibitors that have affinity for POI, (2) a substructure of
ligand which has an affinity for recognizing the E3 ligase, and (3) a chemical spacer or linker
which tethered (1) and (2). These chemical entities can be called based on their chemical
elements PROTACs (proteolysis targeting chimeras), SNIPERS (specific and nongenetic IAP-
dependent protein erasers), and degronimers [49]. An illustration flow of the mechanism is
displayed in Figure 5. Several successful PROTACs and SNIPERs have been developed in
recent years [50–53].
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proteasomal ubiquitination. Cooperatively plays an essential role in forming a ternary complex,
which suffers from an indigenous issue that leads to the formation of a binary complex rather than
the intended ternary complex (called the “Hooks effect”). It was reproduced with permission from
Lin et al. [54]. Copyright 2020 Elsevier.

5.1. Peptide PROTACs

Prostate cancer is the second most common cancer in men [55,56], while breast can-
cer is the most common among women, representing 14% of female cancer deaths [56].
The pathophysiology of prostate and breast cancer demonstrated an androgen receptor
(AR) [57] and estrogen receptor-α [58,59] hormonal interventions, respectively. Hormonal
and systematic chemotherapies are typically used for metastatic breast and prostate can-
cer [58,59]. Recent clinical studies revealed: (a) 66% of breast cancer expressed ER-α and
70% respond to hormonal therapy, while prolonged therapy leads to complete refractory
cancer even though 30% of refractory tumors show ER-α expression [60], (b) around 85%
prostate cancer patients show a good response towards hormonal therapy initially, eventu-
ally refractory hormonal cancer within 18–24 months [61,62]. On the other hand, hormonal
therapy-resistant cancer shows abrupt signaling where over 50% of cases are linked with
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molecular and cellular change altering the activation of androgen receptors and cancer cells
proliferation even at low serum testosterone levels [63–71].

The initial attempt of a Collaboratory work by Sakamoto et al. conceptualized the
in vitro activity of estrogen PROTACs and androgen PROTACs [72]. They linked IκBα
phosphopeptide to estradiol or dihydrotestosterone (DHT) to recruit ER or AR to SCFβ-
TRCP to facilitate their ubiquitination and degradation [72]. These PROTACs consisted
of a minimal of 10 amino acid residues where the Serine residue was phosphorylated.
Asp-Arg-His-Asp-Phospho(Ser)- Gly-Leu-Asp-Ser-Met was linked to estradiol (in the case
of targeting estrogen receptor) or DHT (for targeting androgen receptor), as shown in
Figure 6A,B. The in vitro studies of Protac-2 (that is targeted for estrogen receptor) pro-
motes the concentration-dependent ubiquitination of ER by SCFβ-TRCP. Initial concentra-
tion (0.1–1 µM) showed an onset of ubiquitination, with a maximum degradation (Dmax)
achieved at 5–10µM. However, at higher concentrations, a hook effect was observed, which
is one of the common limitations of these strategies. In the competent assay, Protac-2 was
tested against IκBα phosphopeptide and estradiol separately. In observation, a 10-times
excess concentration of estradiol or IκBα phosphopeptide completely blocked the ubiquiti-
nation activity of 1 µm Protac-2. In contrast, the simultaneous addition of estradiol and
IκBα phosphopeptide failed to replicate the Protac-2 effect. The addition of a purified yeast
26S proteasome [73] added to ubiquitinated ER (in the presence of SCFβ-TRCP and Proatc-2)
showed the disappearance of high molecular mass ubiquitin complex within 10 min, illus-
trating the ER-ubiquitination of Proatc-2 is proteasomal mediated. The peptidic character
of IκBα limits its cellular penetrability and requires phosphorylation on two serine residues
to be recognized by SCFβ−TRCP, making it susceptive to phosphatases [74].

In order to overcome such limitations of Protac-2 and make it in vivo compatible, the
same researchers replaced the IKBα peptide with a hydroxyproline-containing pentapep-
tide derived from hypoxia-inducible factor-1α (HIF-1α). The hydroxyproline-containing
pentapeptide is not dependent on phosphorylation and is recognized by the VHL ubiquitin
ligase [75–77]. Therefore, Protac-2 was modified into an improved peptide-based PROTAC,
Protac-B, shown in Figure 6C. Further studies using MG132 (a proteasomal inhibitor) block
the ER degradation, confirming the proteasome-dependent degradation of the estrogen
receptor. In cancer cell studies, Protac-B inhibits the cell cycle and cell proliferation in
hormone-dependent breast cancer cell lines (MCF-7, IC50 = 50µM; T47D, IC50 = 16µM), but
no effect was observed on hormone-independent tumor cell line (SKBr3) [75].

In 2004 Kim’s research group from the University of Kentucky reported a cell-permeable
small molecular proteolysis inducer (SMPI), which utilizes the E3 ligase VHL [78]. The
designated SMPI (E2-SMPI) constitute two warheads at two terminals, hypoxia-inducible
factor-1α (HIF-1α) protein-derived octapeptide motif on one side with a role in recognition
of VHL E3 ligase, whereas estradiol on the other side was incorporated to recognize the
estrogen receptor, as shown in Figure 6D [78]. HIF-1α plays a critical role under low oxygen
stress conditions but is rapidly degraded under normal oxygen levels by the ubiquitin
proteasomal pathway. Mechanistically HIF-1α degradation is facilitated by the prolyl
hydroxylation of Pro564 (conserved residue), which is also recognized by the pVHL E3
ligase [79,80]. Therefore, adopting a synthetic peptide that contains hydroxyproline residue
564 of HIF-α would prompt a VHL E3 ligase degradation. In this approach, an octapeptide
containing residue from 561 to 568 and hydroxyproline at position 564, was found to
have enough chemical suitability to be recognized by VHL [79]. When MCF-7 cells were
treated with E2-SMPI for 15 h, a significant ER level was degraded. In order to confirm the
mechanism, an E2-SMPI was modified with its octapeptide hydroxyproline, which was
replaced with alanine E2-SMPI [ProOH→Ala]. No degradation was observed, justifying
the VHL–E2-SMPI mediated degradation of estrogen receptors in MCF-7 cells [78].
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Later, the optimization of HIF-α was reported by authors in 2010, where they reduced
the length of octapeptide to pentapeptide and further switched the point of linker tethering
(C17 to C16 and C7) to estradiol [81]. As shown in Figure 7, the choice of switching the
tethering linker points on estradiol structure is based on the following points: (a) C17 in
E2-SMPI contains an ester linkage which is susceptible to esterase leads to hydrolysis of
PROTAC, (b) geldanamycin tethered at C16 of estradiol showed no change in the interac-
tion of estradiol-estrogen receptor [82,83], suggesting C16 position is optimal for binding
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molecular obese structures such as in this case, (c) C7α position tethering of estradiol also
retained its ER binding [84–86]. In order to provide further support for C7α position teth-
ering, an E2 derivative with a long hydrocarbon tail at the C7α position (fulvestrant) had
reported with potent ER binding affinity. ER degradation studies were performed in MCF-7
cells, where C16α-based ER-peptide PROTAC-13 and -14 with the protected pentapeptide
were found comparatively potent. Similar to C16α-based ER-peptide PROTAC-13 and -14,
C7α-based ER-peptide PROTAC-24 demonstrated ER degradation levels.
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5.2. Non-Peptidic PROTACs

Generic lower in vivo stability is one major drawback of peptide-based PROTACs,
which led researchers to investigate VHL and CRBN-based E3 ligase ligands. In 2014, Glax-
oSmithKline (GSK) patented (WO/2014/108452) PROTACs targeting ER where estradiol
was used as an ER warhead, and VHL ligand was used as an E3 ligase warhead. The
general structure of PROTACs is shown in Figure 8 [87]. Various PEG linkers were used to
conjugate the estradiol and VHL ligand, which resulted in potent VHL-based PROTACs
that displayed degradation of ER-α at 1 µM concentration.
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In 2019, Wang’s research group from the University of Michigan presented VHL and
CRBL-based ER-α PROTACs [88]. Based on the X-ray cocrystal structure [46], authors
found that N, N-diethylamino terminal of raloxifene derivative is solvent exposed and
can be used as a tethering point for PROTAC strategy (as shown in Figure 9B). PROTACs
based on CRBN E3 ligand were found with ineffective degradation activity in the range of
1–1000 nM, whereas VHL E3 ligand-based PROTACs showed ER-α degradation, which led
the authors to focus on the VHL-based PROTACs optimization. Based on their previous
experience developing bromodomain and extra-terminal (BET) degraders PROTACs, the
authors reclaimed the length and chemical composition of the linker is critical to attaining
efficient degradation of targeted protein [89–91]. Therefore, a series of linker-types with hy-
drocarbon chain lengths of three-carbons to nine-carbons were incorporated. Quantitative
cellular ER-α in MCF-7 cells was measured by Western blotting. The synthesized PROTACs
showed similar activities, while ERD-148 had slightly more potency, which led the authors
further to optimize the linker chemical composition of the ERD-148. Incorporating oxygen
atoms in these linkers resulted in PROTACs showing effective ER-α degradation-inducing
ability at 10 and 100 nM in MCF-7 cells. In addition, ERD-148 had limited aqueous solu-
bility because of the incorporation of long hydrocarbon chain hydrobophicity, which was
improved by incorporating heteroatoms (oxygen) in the hydrocarbon chain. ERD-308 was
yielded as the most potent VHL ligand-based ER-α PROTAC. The induced ER degradation
of ERD-308 in T47D ER+ breast cancer cell line was found DC50 = 0.43 nM, while maximum
ER-degradation (>95%) was noted at 5 nM, but at a higher dosage (at 1 µM) hook effect was
observed. Kinetic studies of ER degradation of ERD-308 was investigated in MCF-7 cells.
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At 30 nM, more than 80% ER protein cellular level was reduced in first 1 h after treatment,
and a complete ER degradation was achieved at the 3 h time-point. In contrast, fulvestrant,
a typical SERD, had shown a mild effect on ER cellular level at 1 h and attained maximum
ER degradation (90%) after 24 h of treatment. Similar kinetic data was also obtained for
ERD-308 and fulvestrant in T47D cells. Based on the observation in both the cell lines,
the author concluded that ERD-308 as a fast ER-α degradation kinetics. Furthermore, the
ER-αprotein degradation mechanism was studied by using competitive assays. In those
assays, a significant reduction in degradation activities of ERD-308 (at 30 nM) were noticed
with the addition of raloxifene (1 µM) and 1 µM of the proteasome inhibitor (carfilzomib).
Adding VHL ligand (5 or 10 µM) also reduced the degradation activity of ERD-308. These
studies showed that ERD-308 ER degradation activity is proteasomal mediated. The effect
on cell proliferation of ERD-308 was studied in MCF-7 cells using WST-8 cell proliferation
assay, with raloxifene and fulvestrant used as controls during the experiments. ERD-308
showed IC50 (0.77 nM) and a maximum inhibition Imax of 57.5%. In contrast, fulvestrant
was also found quite potent in the inhibition of cell proliferation with Imax = 43.8%, while
raloxifene was only able to achieve an Imax value of 34.0%. However, as anticipated, the
authors didn’t find not cell proliferation inhibition of ERD-308 in triple-negative breast
cancer cell (MDA-MB-231) and primary human mammary epithelial cells. Using quantita-
tive reverse transcription-polymerase chain reaction analysis, ERD-308 downregulates the
ER-regulated genes (pGR and GREB1) [88].

As clinical studies revealed that somatic mutations (Tyr537Ser (Y537S) and Asp538Gly
(D538G)) in estrogen receptor α (ER-α) ligand-binding domain (LBD) are detected in ~30%
of endocrine-resistant metastatic ER-positive breast cancer patients [92]. These ESR1 muta-
tions lead to the agonist conformation of ER-α, confer an estrogen-independent phenotype,
and aggravate the resistance to antiestrogen drugs [93–96]. In order to investigate the
effectivity of current developed PROTACs, Wang and Rae Coworkers studied the ER-α
degradation in estrogen-independent clones engineered MC7-cells that were expressing the
ESR1 LBD mutations Y537S and D538G [97]. The most potent PROTAC resulted from their
previous study [88], ERD-148 superiorly downregulated the ER-α expression in compared
to fulvestrant in wild-type MCF-7 and CRISPR/cas9 knock-in LBD mutated MCF-7 cells.
The antiproliferation cellular effect of ERD-148 was reversed by 17β-estradiol treatment,
suggesting a reversible competition inhibition of ERD-148, showcasing its ER antagonism.
Importantly, ERD-148 showed minimal non-specific toxicity in estrogen-independent cell
lines (MDA-MB-468 and MDA-MB-231 cells) at concentrations above its ~IC90, indicating
its promising therapeutic role in ER-positive cancers [97].
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6. SNIPERs

SNIPERS work similarly to PROTACs, but because they utilize different E3 ligase pro-
teins, and therefore called IAP-based PROTACs (or, more specifically, SNIPERs). SNIPERs
utilize IAPs (Inhibitors of apoptosis protein) proteins, which are a class of negative regula-
tors for apoptosis in mammalian cells and thereby inhibit cellular apoptosis by inhibiting
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the caspase cascade. There are eight members in the mammalian IAP family: cellular
IAP1 (c-IAP1), X-chromosome-linked IAP (XIAP), cellular IAP2 (c-IAP2), neuronal IAP
(NAIP), ubiquitin-conjugating BIR domain enzyme (BRUCE), survivin, IAP-like protein 2
(ILP2) and melanoma IAP (ML-IAP), as shown in Figure 10 [50,98,99]. These proteins are
a family of antiapoptotic proteins, which have one-to-three baculoviral IAP repeat (BIR)
domains that are of a 70–80 amino acids long motif, as shown in Figure 10 [100–103]. Along
with BIR domains, IAPs also contain a ubiquitin-associated (UBA) and a RING domain in
their structure, as shown in Figure 10. The BIR2 domain of XIAP prevents the activation
of caspase-3 and caspase-7, while the BIR3 domain selectively prevents the activation of
caspase 9 [104]. Interestingly, c-IAP1 and c-IAP2 also interact with caspase-3/9 but don’t
inhibit their activation [105]. However, c-IAP1 and c-IAP2, along with XIAP, possess one
UBA domain that contributes to ubiquitin chain binding [106]. ILP2 possesses RING finger
domain, which assists its interaction with E2 ubiquitin-conjugating enzymes (UBCs), while
BRUCE possesses a UBC domain. In addition, IAPs do their ubiquitylation and associated
proteins. cIAP1, CIAP2, and XIAP (X chromosome-linked IAP) are directly involved in
regulating the caspases cascade and are extensively studied IAPs. IAPs became attractive
targets in devising a novel cancer-targeting approach as reports suggested their overexpres-
sion in multiple malignant cancers commonly related to cell proliferation, drug resistance,
and poor prognosis [107–109]. The retrieved chemical biology of IAPs was exploited in
developing their potent small molecule inhibitors/antagonists as potent anticancer thera-
peutics, while some of them succeeded in reaching the various stages of clinical trials, as
shown in Figure 11 [110–112].
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In addition to their identifications as cancer targets, they also show E3 ligase activity,
which thrives PROTAC development. Bestatin (BS) and its derivative show binding activity
towards the BIR3 domain of IAPs and therefore induce self-ubiquitination-based proteaso-
mal degradation [113]. With such high affinities for IAPs, BS-based compounds (as shown
in Figure 12A) were an easy choice for chemical biologists to adapt their structure to derive
a class of SNIPERs. Natio et al. reported that MeBS could enhance the chemosensitivity
of cancer cells toward apoptosis induced by cancer drugs. Mechanistic studies revealed
that MeBS induces RING-dependent auto-ubiquitylation and proteasomal degradation of
cIAP1 by interacting with the third BIR domain of cIAP1 (as shown in Figure 12B). The
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SAR studies revealed that reduced cIAP1 levels were maintained even with the replace-
ment of methyl carboxylate with bulkier groups, indicating no participation of the methyl
carboxylate group of MeBS during its interaction with cIAP1. Although, structural changes
in the bestatin backbone severely reduced the activity by lowering the cIAP1 expression,
suggesting an active role of bestatin backbone in interaction with cIAP1 [113]. These obser-
vations prompted Natio et al. to extend the molecular frame to devise SNIPERs, where the
position of the methyl group is used as tethered to attach a linker which is further tethered
to molecules that have intrinsic activity for targeted protein, as shown in Figure 12C.
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6.1. Non-Peptidic SNIPERs

In 2011, Hashimoto’s research group from the University of Tokyo (Japan) utilized
the Estrodiol -based SNIPERs to degrade the estrogen receptors [114]. The authors used
an estrone scaffold to functionalize it at the C17 position with bestatin (a ligand of cellular
inhibitor of apoptosis protein 1 (cIAP1), one of the IAPs) through a linear linker [114].
Instead of calling them SNIPERs, authors choose to call them PROTAC-11 and PROTAC-
12. Western blotting estimated the ER levels in MCF-7 cells for PROATC-11, estrone,
bestatin, and PROTAC-12 (a negative control that lacks chemical specificity to bind with
cIAP1). Among these, PROTAC-11 showed a comparatively low level of ER cellular level.
However, in our opinion, the imine functionality with oxygen (marked in a red dotted circle
in Figure 13) makes PROTAC-11 susceptible to hydrolysis at physiological pH; therefore,
PROTACs with these kinds of functionalities would have a shorter half-life and limited
physicochemical properties.

In 2012, Naito and Kurihara, co-workers from the National Institute of Health Sci-
ences Tokyo, Japan, developed SNIPERs (original publication: PROTAC-5, PROTAC-6,
and PROTAC-7) constituting two warheads: 4-hydroxytamoxifen, that recognize the ER
while bestatin moiety recognizes cIAPs [115]. Using an X-ray cocrystal (PDB id: 3ERT)
N, N dimethylamino moiety of 4-hydroxytamoxifen with estrogen receptor, an alkyl teth-
ering was used to join the bestatin moiety with the N, N dimethylamino moiety of 4-
hydroxytamoxifen, as shown as red circle in Figure 14A,B [115]. The authors studied the
dose-response effect on ER-α protein degradation of PROTAC-5, 6, and 7 on MCF-7 breast
cancer cells. By comparing the data produced by Western blotting, ER-α protein was
measured in the MCF-7 cells. The protein ER-α levels were increased with (E/Z)-endoxifen
treatment [116], and reduced levels of ER-α were noticed with 10 or 30 µM of compound
5, 6, or 7 in MCF-7 cells. However, when cells were treated with (E/Z)-endoxifen and
methyl bestatin) together, no change in ER-α protein degradation was observed [113],
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suggesting the PROTAC strategy when (E/Z)-endoxifen tethered with methyl bestatin (at a
concentration of greater than 10 µM) efficiently degrades the cellular ER-α protein. In order
to provide further evidence, a competitive assay against a proteasome inhibitor, MG132,
abrogated the cellular ER-α protein degradation induced by 5, 6, and 7, demonstrating
the proteasomal-mediated degradation of ER-α protein [115]. In our opinion, this study
would be more appealing to chemical biologists if the authors had compared the effect of
configurational isomerization of these SNIPERs on ER-α cellular degradation, as specific
isomers could be more potent than reported values.
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In order to understand the ER-α degradation mechanism of SNIPER(ER)-3 [117]
(reported initially in a previous publication as PROTAC-7 [114]), the authors performed
extensive biochemical studies [117]. In their study, bestatin ((−)-N-[(2S, 3R)-3-amino-2-
hydroxy-4-phenyl-butyryl]-L-leucine) was used as cIAP ligand, which in methyl ester
form can directly interact with BIR3 domain of cIAP1 and triggered auto-ubiquitylation
of cIAP1 and subsequently proteasomal degradation of cIAP1 [113]. SAR studies sug-
gested that the methyl ester version of bestatin (MeBS) degrades cIAP1 irrelevant to the
methylation even onto the other residues [113]. In order to determine the specificity of
these synthetic’s SNIPER-induced ER-α degradation from the cellular degradation (which
takes place after the estrogen binding to its receptor [118]), the authors used MCF-7 cells
precultured in estrogen-depleted serum-containing media for 96 h. Later, treatment with
SNIPER(ER)-3, β-estradiol, 4-OHT, MeBS, and a combination of MeBS and 4-OHT were
performed. By using Western blotting, in the absence of β-estradiol, SNIPER(ER)-3 showed
reduced cellular levs of ER-α protein, while no effect ER-α levels were observed in the
presence of 4-OHT, MeBS, or with their combination (4-OHT, MeBS). Furthermore, cellular
levels of cIAP1 were also decreased by SNIPER(ER)-3 (at 30 µM) as well as MeBS, indicat-
ing the SNIPER(ER)-3 triggered the auto-ubiquitylation and proteasomal degradation of
cIAP1. In addition, a decrease in ER-α cellular level was observed in the presence of β-
estradiol. β-estradiol-induced expression of pS2 mRNA but not the SNIPER(ER)-3, while
SNIPER(ER)-3 inhibit the upregulation of pS2 induced by β-estradiol (same as 4-OHT
did). These mRNA expression studies suggested SNIPER(ER)-3 induced ER-α degrada-
tion is independent rather than activation of ER-α receptor, exemplifying an example of
event-driven pharmacology [117].
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PROTAC-5, 6, and 7. (D) General structure of SNIPER(ER)s where linker of PROTAC-7 (SNIPER(ER)-
3) was replaced with polyethylene glycol (PEG). (E) Molecular structures of IAP ligands.

In order to achieve higher SNIPER effectivity, a collaborative work by Naito co-workers
in 2017 showed utilization of other IAPs protein ligands (as shown in Figure 14D,E). As
SMAC/DIABLO is an endogenous protein partner of IAPs that behaves as an antagonist. It
utilizes its N-terminal IAP binding motif to interact with IAPs. By ligand-based design, the
binding conformation of IAP-binding tetrapeptides of SMAC, and new peptidomimetics as
IAP antagonists were developed. These peptidomimetics showed potent effects and cell
permeability and are in the clinical development phase [119,120]. These IAP antagonists
show a strong affinity toward the BIR domains of IAP proteins than bestatin, which triggers
a rapid autoubiquitylation, followed by proteasomal degradation of IAPs [121–123], and,
therefore, well-suited to improve the predesign of SNIPER(ER)-3 (or PROTAC-7 [114]).
As warheads of estrogen receptors, the following ligands (4-OHT, Raloxifene, estradiol,
lasofoxifene) were used, while MV1 and bestatin were used as IAPs warheads, as shown in
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Figure 14D. SNIPER(ER)-19 (4-OHT-MV1, which had 4-OHT as estrogen receptor warhead
and MV1 as IAP warhead) at 30 nM decreased the ER-α levels in MCF-7 breast cancer cells.
To expand the scope of SNIPERs, various ER-α ligands were combined with IAP antag-
onists using different length linkers, where SNIPER(ER)-20 had the most potent activity.
To achieve a more potent activity, other IAP antagonists were incorporated, which led to
the identification of SNIPER(ER)-87. SNIPER(ER)-87 (DC50 =< 3 nM; Dmax ≈ 100 nM) is
derived from LCL161, showed a more ER-α reduction than SNIPER(ER)-20. The effect
of the length of linker also played a role, as a longer linker containing SNIPER(ER)-87,
SNIPER(ER)-88, later one had ER-α degradation within 1 h after treatment and sustained
for 48 h, while shorter length linker containing SNIPER(ER)-89 had an attenuated degra-
dation activity. In the competent assay, estrogen receptor warhead (4-OHT) and the IAP
antagonist (LCL161 derivative), when treated together, no decrease in the ER-α protein
level was observed in MCF-7 breast cancer cells (IC50 = 15.6 nM), suggesting SNIPER(ER)-
87 as an ideal example of event-driven pharmacology. SNIPER(ER)-87 prevented the
proliferation of ER-positive breast tumor cells (MCF-7, IC50 = 15.6 nM; T47D, IC50 = 9.6
nM) by suppressing the ER-dependent transcriptional activation. Similar to other SNIPERs
and IAP antagonists, SNIPER(ER)-87 reduced the cIAP1 level and, to some extent, levels
of XIAP, suggesting an autoubiquitylation, followed by proteasomal degradation of cIAP.
ER-α degradation proficiency of SNIPER(ER)-87 was measured in vivo using ovarian ER-α
level. Later, SNIPER(ER)-87 (10 or 30 mg/kg body weight) was injected intraperitoneally
into the female BALB/c mice, where a significant reduction of ER-α protein levels in the
ovary was recorded. Later, to evaluate in vivo ER-α knockdown in a tumor model, authors
developed MCF-7 breast tumor xenografts in nude mice, where SNIPER(ER)-87 deceased
the ovarian cellular levels of ER-α.

Encouraged by the proficiency of SNIPER(ER)-87, the authors screened other IAP an-
tagonists in search of gaining more ER-α degradation potency [124]. Therefore, the authors
used IAP antagonists from reported studies [125,126] and screened them for their binding
affinity to XIAP to decrease the ER-α expression in MCF-7 cells, as SNIPER(ER)-87 recruits
XIAP for ER-α degradation [127]. As shown in Figure 15, replacing LC131 with other IAP
antagonists yielded five (SNIPER(ER) (-105, -110, -113, -119, -126) (as shown in Figure 15)
that were either comparable or more potent than SNIPER(ER)-87 for durations of 4 h and
48 h, respectively, as shown in Table 2 [124]. SNIPER(ER)-130 and -131 demonstrated
an abrogated activity despite their potent XIAP affinities, which indicates that increased
XIAP binding is vital to attain an effective ER-α degradation but not the only determinant
to achieving complete degradation activity. However, (SNIPER(ER)-104, -118, -121, -134,
and -136) had not triggered ER-α degradation from 1 nM until 100 nM and exhibited
lower binding affinities to XIAP, as shown in Table 2. While SNIPER-105, -110, and -126
demonstrated more potent ER-α degradation than SNIPER(ER)-87 in ER-α-dependent
breast cancer cell lines (T47D and ZR-75-1). Studied IAP antagonists of the current study
(as shown in Figure 15) were reported to induce proteasomal degradation of cIAP1 and
their respective targeted proteins [117,127–132]. An increasing trend in the binding cIAP1
affinity of SNIPER(ER)-105, -110, -113, -119, and -126 proportionally decreases the cIAP1
levels compared to SNIPER(ER)-87 (as shown in Table 2). Further analysis showed 48
h exposure prolonged exposure potently reduces cellular levels of XIAP in MCF-7 cells
compared to SNIPER(ER)-87. Similarly, prolonged exposure of 48 h, a pronounced reduc-
tion in the cellular level of XIAP with these SNIPER(ER)s in T47D but weaker after 4 h
of exposure. The differential degradation of cIAP1 and XIAP exhibited by SNIPER(ER)s,
indicates a degradation-specific mechanism for these IAPs. As authors previously observed
ER-α degradation of SNIPER(ER)-87 preferentially utilized XIAP [127]. To scrutinize IAP-
specific ER-α degradation of these SNIPER(ER)s, (SNIPER(ER)-105, -110, and -126) were
tested in MCF-7 and T47D cancer cell lines with or without MG132. The authors observed
the anti-ER-α precipitates contained both IAPs (XIAP and cIAP1) in the SNIPER(ER)s
treated cells, while cIAP2 cellular levels were not examined as MCF-7 and T47D cells do
not express cIAP2 under typical cell culture and cIAP1down-regulated conditions. By com-
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paring the cellular XIAP levels with cIAP1 in cell lysates, the authors observed preferential
recruitment of XIAP to ER-α of these SNIPER(ER)s. To consolidate XIAP recruitment-based
ER-α degradation, authors depleted the XIAP using siRNA in MCF-7 and T47D cells,
which results in suppresses the ER-α degradation induced by SNIPER(ER)s. These obser-
vations led authors to consider the SNIPER(ER)-105, -110, and -126 as preferential XIAP
recruiter to ER-α, which in contrast is similar to SNIPER(ER)-87 illustrated mechanisms.
Interesting, similar molecular structure containing SNIPERs (regioisomers), which only
differ in their arene substitutions (highlighted in red color in Figure 15) of IAP antagonist,
SNIPER(ER)-110 (meta-substitution), -113 (para-substitution), and -119 (ortho-substitution).
Meta-substituent version (SNIPER(ER)-110) exhibited higher ER-α degrade activity which
led the authors to choose SNIPER(ER)-110 to study the biochemical mechanism. When
these synthesized SNIPERS tested against ER-α-positive breast tumor cells (MCF-7 and
T47D) and ER-α-negative breast tumor cells (MDA-MB-231), a significant number of MCF-7
cells, but not T47D cells were underwent apoptosis under microscopic analysis, which
later confirmed by flow cytometric analysis and annexin V/propidium iodide (PI) staining.
These observations suggested that SNIPER(ER)-105, SNIPER(ER)-110, and SNIPER(ER)-
126 (at above 50 nM) induce higher apoptosis in MCF-7 cells than SNIPER(ER)-87, but
reasonable apoptosis was not observed in T47D cells [124].

Table 2. In vitro binding affinities (IC50) of synthesized SNIPERs to ER-α and IAPs. The table was
reproduced under the terms of the Creative Commons CC-BY license [124].

SNIPERs
ER-α DC50 IC50 (95% CI) IAP Ligands

4 h 48 h ER-α cIAP1 cIAP2 XIAP Developer Reference

SNIPER(ER)-87 <3 83.0 110 450 960 700 Novartis WO2008016893

SNIPER(ER)-104 >100 ND 61 >1000 >1000 >1000 Novartis WO2012080260

SNIPER(ER)-105 <3 <3 69 5.3 7.2 55 Novartis WO2012080271

SNIPER(ER)-110 <3 7.7 120 74 73 330 Abbott [133]; WO2016169989

SNIPER(ER)-113 <3 13.3 150 85 99 810 Abbott [133]; WO2016169989

SNIPER(ER)-118 >100 ND 230 140 900 >1000 AstraZeneca [125]

SNIPER(ER)-119 4 15.7 200 80 48 700 Abbott [133]; WO2016169989

SNIPER(ER)-121 >100 ND ND 650 >1000 >1000 AstraZeneca [125]

SNIPER(ER)-126 <3 3.7 83 68 200 490 Novartis WO2008016893

SNIPER(ER)-130 36.9 ND 41 68 28 25 Genentech [134]

SNIPER(ER)-131 33.8 ND 80 25 24 140 Genentech [126]

SNIPER(ER)-134 >100 ND 47 550 360 >1000 Abbott [133]

SNIPER(ER)-136 >100 ND 47 890 >1000 >1000 Genentech [134]; WO2006069063

To comprehend the reasoning behind differential apoptosis induced by these SNIPER(ER)-
105, -110, and -126 in MCF-7 cells, but not in T47D cells, and these SNIPERs induce degra-
dation of cIAP1 and XIAP more potently than SNIPER(ER)-87, authors carefully examined
the effects of IAP depletion in MCF-7 and T47D cells. Silencing of cIAP1 and XIAP by
siRNA somewhat reduced the number of MCF-7 cells, while combined silencing (cIAP1
and XIAP) led to nearly 50% decrease in MCF-7 cell number when compared with un-
treated cells and was accompanied by caspase activation. While in T47D cells, similar
IAPs silencing, no observation of reduced cell number and caspases activation was made.
Interestingly, silencing of ER-α in MCF-7 and T47D cells led to decrease the cell numbers in
both cell lines, without caspase activation. Additionally, triple silencing of ER-α, XIAP, and
cIAP1 led an MCF-7 cell number reduction higher than what was observed with T47D cells;
and caspase activation on observed in MCF-7 cells. In contrast, an observation of LCL161
sensitized tumor necrosis factor α (TNFα)-dependent apoptosis in MCF-7 cells, but not
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T47D cells was made. Based on these observations, the authors advocate IAPs dependency
behind MCF-7 cells survival, but not for T47D cells; characterizing IAPs involvement in
the selective apoptosis induction in MCF-7 cells treated to SNIPER(ER)-105, -110, and
-126. However, if an IAP ligand of higher binding affinity is incorporated into SNIPER,
that could induce a significant level of protein knockout and cytotoxicity to cancer cells
requiring IAPs for their survival; these differences can be subsided or largely minimized.
Therefore, these observed differences in those two cell lines could be resulted from their
different needs for IAPs.
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Based on their previous ER-PROTAC experience, GSK patented (WO/2016/169989A1)
SNIPERs using raloxifene derivative [135] and IAP recruiting moiety in 2016, as shown as
Figure 16 [136]. These SNIPERs exhibited more than 50% ER-α degradation below 1 µM
concentration.
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6.2. Peptide-Based SNIPERs

In 2016, Demizu et al. from the National Institute of Health Sciences (Tokyo, Japan)
developed peptide-based SNIPER for estrogen receptor α (ER-α), where MV1 structure was
used to recruit IAP (cIAP1/cIAP2/XIAP) to trigger the ubiquitylation of ER-α [137]. The
rationality behind using a peptide instead of an ER-α-based small heterocyclic molecule,
is small ER-α inhibitor inherited with a weaker to moderate agonistic effect on ER-α
in uterine cancer cells, which can precipitate the risk of endometrial cancer [138,139].
Therefore, in search of newer scaffolds for ER-α inhibitors, peptidomimetic Estrogen
Receptor Modulators (PERM) were identified. The authors utilized the PERM3-R7 as ER-α
warhead and MV1 ligand structure for recruiting the cIAP1. PERM3-R7 is designed on a
PERM3 scaffold, which itself is a LXXLL-like mimetic (where L represents leucine, while X
represents other amino acid residues) of the Steroid Receptor Coactivator 1 (SRC-1) that
binds with the ER-α surface [40,140], while R7 represents a hepta-arginine fragment that
was fitted to PERM3 to enhance the cellular permeability of PERM. In addition, the peptide
nature could allow PERM3-R7 to adopt a stable α-helical conformation to prevent ER-based
transcription and suppresses the expression mRNA of pS2 (an ER-mediated gene whose
expression is upregulated by E2) at the cellular level [141,142].

Based on Western blotting, the estrogen receptor cellular levels were quantified in
MCF-7 cells. Repetition of PEG linker was used to conjugate the PERM-R7 and MV1 ligand
structure, no ER degradation activity for the shorter (PERM-R7 SNIPER-2) and medium
PEG linker-based peptide SNIPERs (PERM-R7 SNIPER-3), as shown in Figure 17. Mean-
while, a longer PEG linker (PERM-R7 SNIPER-4) showed dose-dependent ER-degradation
activity and reduced levels of cIAP1, as shown in Figure 17. Interestingly, when PEG
linkers were replaced with five β-alanine residues, yielded PERM-R7 SNIPER-5 showed
comparatively lower ER-degradation PERM-R7 SNIPER-4 (also showed cytotoxicity effect
at >6.0-µM) but showed no cytotoxicity effects even at higher dosage (20 µM). Furthermore,
the ER degradation for these peptide SNIPERs were found to be proteasomal mediated
as MG132 abrogated their degradation activity. Interestingly, an observation of the re-
duced cellular levels of cIAP1 protein with 1.0 µM PERM-R7 SNIPER-3, suggested that
these peptide SNIPERs activate the autoubiquitylation, followed by proteasomal mediated
cIAP1degradation itself with a pan-IAP ligand (MV-1) as a recruiting warhead, therefore
resulted activities could be cumulative of mixed biochemical events that took place at
cellular levels.
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7. Antibody Drug Conjugates Based PROTACs and SNIPERs

Research collaboration of Genentech teams from the United states of America (South
San Francisco, CA 94080, USA) and China (Shanghai 200131) developed antibody conju-
gates with their own in-house estrogen receptor degraders [143]. Researchers used a tamox-
ifen scaffold (in a 1:1 mixture of E and Z-isomers) for preparing these degraders [144,145],
as enlisted in Table 3. Based on the ligase choice, the 5 and 8 were SNIPERs, as shown
in Figure 18A. Using immunofluorescence (IF) readout in wild-type MCF7 cells and en-
gineered MCF7 cells (that had an over-expressed HER2 onto the cell surface), SNIPER-5
and VHL-PROTAC-6 showed a nearly complete ER-α protein degradation [146]. Modifi-
cation with an epimer of hydroyproline in VHL structure of VHL-PROTAC-6 led to the
formation of VHL-PROTAC-7 (as a negative control), as hydroxylation of proline of VHL
abolishes the adopting conformation binding of such modified VHL structures, as shown
in Figure 18B.
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Table 3. PROTAC and SNIPER used for Antibody Drug Conjugates. Reproduced with permission
from Dragovich et al. [143] Copyright 2020 Elsevier.

MCF7-Neo/HER2 (ER-α) MCF7 Parental (ER-α)

Chemotypes Ligase DC50 (nM) Dmax DC50 (nM) Dmax

fulvestrant - 0.38 ± 0.07 84% 0.45 ± 0.01 87%

SNIPER-5 XIAP 1.6 ± 0.12 85% 0.68 ± 0.13 87%

VHL-PROTAC-6 VHL 4.9 ± 0.57 92% 2.7 ± 0.71 92%

VHL-PROTAC-7 VHL 7.9 ± 0.71 57% 5.2 ± 0.01 54%

SNIPER-8 XIAP 305 ± 103 76% 131 ± 2.1 75%

endoxifen - 1.1 ± 0.37 48% 1.6 ± 0.01 49%
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Interestingly, VHL-PROTAC-7 showed a weak but measurable ER-α degradation
activity compared to its parent molecule VHL-PROTAC-6. To rationalize such observation,
the researcher when tested the exact ER-α warhead (endoxifen, a metabolite of tamoxifen),
showed ER-α degradation effects. However, the authors point out that the degradation
consistency with VHL-PROTAC-7 and endoxifen (ER-α warhead of VHL-PROTAC-7),



Pharmaceutics 2022, 14, 2523 28 of 43

could be resulted from their binary complex formation between ER-α protein itself with
PROTAC through endoxifen (as ER-α warhead). In our understanding, to demonstrate
these presuppositions, authors need to carry out extensive concomitant experiments with
other VHL ligands (which can work as negative control) or molecular probes that can work
as ER-warheads.

Later, the quantitative Western blotting analysis showed concentration-dependent ER-
α degradation in MCF7-neo/HER2 cells of VHL-PROTAC-6. Interestingly a discrepancy
in the degradation between immunofluorescence and Western blotting methods for VHL-
PROTAC-7 and endoxifen was observed. These differences could be originated from weak
ligands triggered changes in ER-α conformational and/or subcellular localization, and that
led to minimize/restrict the recognition of the ER-α detection antibody in the intracellular
microenvironment during immunofluorescence experiments (this issues would be subsided
as cells were lysed after treatment and ER-α protein is fully denatured in Western blotting
method) [147]. Authors developed a control (SNIPER-8) based on SNIPER-5 structure,
where O-benzylation was carried out onto the phenol of tamoxifen of SNIPER-5, as shown
in Figure 18A. SNIPER-8 displayed a poor DC50 value compared to its parent (SNIPER-5),
showcasing relevance of phenolic (-OH) of tamoxifen for its potency, which in our opinion
can be attributed either through physiochemically (by improving polarity) or biophysically
(involved in H-bond acceptor or donor interaction with the target protein).

As the metabolic stability of antibody conjugates is feared to be their main limitation
for their in vivo application among chemical biologists, authors evaluated the SNIPER-5
and VHL-PROTAC-6 towards human liver lysosomes. In this study, the authors assess
their metabolic survivability when exposed to the intracellular lysosomal environment [148].
SNIPER-5 and VHL-PROTAC-6 exhibited reasonable in vitro stability (T1/2 > 24 h), where
a fraction of amide linkage hydrolysis of VHL-PROTAC-6 was observed. In order to
achieve desired antibody-conjugated degrader, authors initially connect a linker (Valine-
Citrulline-para-amino-benzyloxy) to SNIPER-5 to yield 10 (a linker drug molecule). Such
linkers are key modalities commonly employed in bioorthogonal chemistry as they tend
to undergo protease-mediated cleavage in lysosomes, proficiently unloading the drugs
following intracellular antibody delivery [149,150]. In addition, maleimide functionality at
the terminus of these linkers quickly reacted with engineered cysteine residues of mono-
clonal antibodies, yielding the required antibody conjugates [151–154]. However, when
authored attempted to conjugate 10 with an HER2-targetted antibody that contained an
engineered cysteine at LC-K149 site [target drug-antibody ratio (DAR) = 2.0], a high degree
of self-aggregation behavior was observed for formed antibody conjugate [155]. Such
behavior of high degree of self-aggregation might be attributed by the high hydrophobic
character of linker-drug (10) intolerable on the antibody surface [156]. Therefore, purifi-
cation procedures were followed to attain enough pure quantity of antibody conjugate
for biological testing. Interestingly, the choice of a site on mAB was reported to afford
in vivo stable maleimide-derived ADCs that don’t show retro-Michael-related deconjuga-
tion [151,157,158].

In order to rectify such physiochemical limitations with antibody conjugates, the
authors changed the linker tethering point to the phenolic head of tamoxifen of SNIPER-
5, as shown in Figure 19A. In rationality, the para-location of the electron-withdrawing
group assists in releasing the SNIPER-5 during protease-mediated cleavage of 11 (an-
other linker drug molecule similar to 10). To the authors’ surprise, no substitution of
the basic amine of SNIPER-5 was observed. Therefore, this basic amine could be used
as a physiochemical handle by the authors to protonate it, increase the aqueous solubil-
ity, and decrease the self-aggregation of final antibody conjugates [159]. Keeping these
points in mind, the authors prepared a HER2-targeting DAR2 conjugate (HER2-11-lc)
which had shown lesser self-aggregation properties. HER2-11-lc displayed potent ER-α
degradation in MCF7-neo/HER2 cells and far more pronounced than the same linker
used B7H4-targeting control conjugate (B7H4-11-lc) and an unconjugated HER2-targeting
mAb, as shown in Table 4. The ER-α degradation activity reduces when HER2-11-lc ADC
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used in wild-type MCF7 cells, which possesses lesser expressed HER2 receptors on their
surface. Later, when authors studied in vivo pharmacokinetic stability of HER2-11-lc ADC,
where an amide linkage present in the linker of 11 underwent biotransformation after
96 h (intravenous route administration). These outcomes led authors to explore ADCs
devoid of the structure of SNIPER-5, as 11 (linker drug molecule) was a derivative of 5, and
prepared VHL-PROTACs based linker drug molecules (12 and 13) from VHL-PROTAC-6
and VHL-PROTAC-7, respectively, as shown in Figure 19. The derived linker conjugates
of VHL-PROTAC-6 and VHL-PROTAC-7, 12, and 13 had a methanethiosulfonyl (MTS)
disulfide functionality that facilitates the reactive elimination with surface-exposed cys-
teines of engineered monoclonal antibodies, producing desired ADCs [160]. Based on the
literature, upon cellular internalization of these ADCs, lysosomal antibody catabolism,
followed by disulfide reduction and self-immolation to release VHL-PROTAC-6 and VHL-
PROTAC-7 [161,162]. Several ADCs were derived from these VHL-PROTACs based linker
drug molecules (12 and 13). Meanwhile, significantly lower hydrophobic character of
these VHL-PROTACs based linker drug molecules (12 and 13) than SNIPERs based linker
drug molecules (10 and 11) prompted authors to increase conjugation of 12 and 13 with
six surface cysteines containing mAbs, and achieved without tackling a high degree of
self-aggregation [target drug-antibody ratio (DAR) = 6.0]. Compared to the ADC containing
DAR2 (derived from SNIPER-5), newer ADCs would produce more intracellular ER-α
degrader release following ADC-mediated delivery [163–165]; as well as the newer location
of engineered cysteines were introduced (LC-K149, HC-L174, and HC-Y373) [155], that
would be capable of producing disulfide-linked conjugates with relatively good in vivo
stability [157,158].
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The ADC (HER2-12, ER-α DC50 = 0.04 ± 0.007 µg/mL, Dmax = 99%) resulted from
12 exhibited a potent ER-α degradation, comparatively more pronounced effect than its
respective unconjugated HER2 mAb (ER-α DC50 = 0.04 µg/mL, Dmax = 43%) in MCF7-
neo/HER2 cell, as shown in Table 4. In addition, a milder ER-α degradation for the control
conjugate (CD22-12) was observed. However, comparatively, the degradation activity
difference of CD22-12 (ER-α DC50 = 0.51 ± 0.094 µg/mL, Dmax = 90%) and HER2-12
(ER-α DC50 = 0.04 ± 0.007 µg/mL, Dmax = 99%) were less pronounced when compared
to significant difference as observed with previously developed conjugates in the same
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study (HER2-11-lc (ER-α DC50 = 0.11 ± 0.001 µg/mL, Dmax = 81%) and its respective
control conjugate, B7H4-11-lc (ER-α DC50 = 50 ± 23 µg/mL, Dmax = 40%)) in MCF7-
neo/HER2 cell. As these outcomes for HER2-12, HER2 mAb, CD22-12 were received from
immunofluorescence, Western blotting was used for cross-validation. Similar to previously
reported disulfide-containing linker conjugates [146], the disulfide linker of HER2-12 and
CD22-12 exhibited in vitro partial hydrolyzed in experiments. Interestingly, these ADCs
are known to have in vivo stability and preferential pharmacodynamics for targeted versus
non-targeted effects in xenograft tumor models [146], which prompted authors for further
investigation. A similar ER-α degradation profile in MCF7-neo/HER2 cells was observed
for control conjugate, HER2-13 (DC50 = 0.05 ± 0.016 µg/mL; Dmax = 87%) compared to
HER2-12 ADC (DC50 = 0.04 ± 0.007 µg/mL; Dmax = 99%). However, different activity was
noted in wild-type MCF-7 for HER2-13 (DC50 = 0.70± 0.068 µg/mL; Dmax = 51%) compared
to HER2-12 ADC (DC50 = 0.23 ± 0.007 µg/mL; Dmax = 95%). The significant ER-α degra-
dation differences between HER2-12 and HER2-13 in wild-type MCF-7 cells which don’t
express HER2 receptors, reasonably (a) nominal ER-α degradation of HER2-13 in wild-type
of MCF-7 cells, is due to possession of endoxifen-like structure (VHL-PROTAC-7 versus
endoxifen), (b) increases effect of HER2-12 compared to HER2-13 because of additional
VHL-mediated degradation (VHL-PROTAC-6 versus VHL-PROTAC-7). Relative potency
of HER2-13 in MCF-7-neo/HER2 compared to wild-type MCF-7 apparently because of the
synergistic effect of endoxifen-like structure activity as well as HER2-mAb ER-α alterations
(as observed by the authors). Due to these combined effects, accessing the intracellular
release kinetics from HER2-12 in MCF7-neo/HER2 experiments would be difficult.

Table 4. Molecular binding characteristics of PROTAC and SNIPER-based Antibody Drug Conjugates.
Reproduced with permission from Dragovich et al. [143] Copyright 2020 Elsevier.

Conjugate DAR Site MCF7-Neo/HER2 (ER-α) MCF7 Parental (ER-α)

DC50 (nM) Dmax DC50 (nM) Dmax

HER2-10-lc NA LC-K149 ND ND ND ND

HER2-11-lc 2.0 LC-K149 0.11 ± 0.001 81% 22 ± 3.4 71%

B7H4-11-lc 2.3 LC-K149 50 ± 23 40% 43 ± 16 62%

HER2-12 5.9 Multi 0.04 ± 0.007 99% 0.23 ± 0.07 95%

CD22-12 5.7 Multi 0.51 ± 0.094 90% 0.48 ± 0.16 93%

HER2-13 5.9 Multi 0.05 ± 0.016 87% 0.70 ±
0.068 51%

HER2-14 5.6 Multi 0.03 ± 0.002 94% 0.09 ±
0.013 95%

CD22-14 5.9 Multi 4.2 ± 0.078 70% 1.6 ± 0.035 91%

HER2-mAb NA NA 0.04 43% >100 9%

The authors also explored the conjugation of VHL-PROTAC-6 to antibodies using
alternative linkers other than disulfide-based linkers. They used pyrophosphate di-ester
containing linker, which maleimide on one side that could be exploited to conjugate antibod-
ies. The pyrophosphate di-ester functionality was used to functionalize the hydroxyproline
moiety of VHL ligand of VHL-PROTAC-6, to yield 14 (another linker drug molecule). The
yielded ADC must follow a sequential phosphodiesterase activity, phosphatase-mediated
hydrolysis, and lysosomal antibody catabolism to release VHL-PROTAC-6, as shown in
Figure 20. The choice of pyrophosphate di-esters was based on their successful integration
in ADCs containing glucocorticoid payloads [166,167] but also reported to be underutilized
by the submaximal enzymatic activity of phosphatase enzymes [166]. Therefore, before
proceeding to yield the ADC of 14 (HER2-14), the authors study the corresponding cleavage
of secondary phosphate functionality in a lysosomal environment, as shown in Figure 20.
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Interestingly, HER2-14 displayed a potent ER-α degradation activity in MCF7-neo/HER2
cells compared to its respective anti-CD22 ADC and the unconjugated HER2 mAb (as shown in
Table 4). Efficient intracellular delivery of VHL-PROTAC-6 undergoes the expected phos-
phodiesterase cleavage mechanism. As the authors didn’t synthesize the pyrophosphate
di-ester control conjugate derived from VHL-PROTAC-6, therefore were not able to con-
duct a study to differentiate the mechanistic study; therefore, this activity could also be the
outcome of a combined effect due to the possession of endoxifen-like ligand in the structure
and HER2-mAb effects. To the authors surprise, HER2-14 displayed comparatively more
potent ER-α degradation in wild-type MCF7 cells (DC50 = 0.09 ± 0.013 µg/mL, DCmax =
95%) than its similar ADC (HER2-12, DC50 = 0.23 ± 0.007 µg/mL, DCmax = 95%) that did
not over-express the HER-2 surface receptor. In our opinion, it would be more appealing
for chemical biologists to study the cleavage studies of HER2-12 and HER2-14 as both
structures are chemically the same except for their conjugate linker-type differences, where
the former used disulfide linker while the later one used pyrophosphate di-ester linker.

8. Photocaging PROTACs of Estrogen Receptor

Gaining precise control over the biological activity of smaller-sized probes has always
interested chemical biologists and medicinal chemists. However, a light-controlled higher
spatiotemporal resolution has been exploited as chemical biology tools [168] and in photother-
apies [169], where a specific wavelength of light activates the bioactive molecule [170,171].

Deiter’s research group from the Department of Chemistry, University of Pittsburgh,
Pittsburgh, Pennsylvania, USA, developed a coumarin-based photocaged VHL ligand.
Initially, the author investigated an X-ray co-crystal structure (PDB id: 4W9C) to find
a tethering point for a photocleavable group onto the VHL ligand [172]. As shown in
Figure 21A, the author noticed hydroxyproline moiety buried into the binding cleft and
had H-bond interactions with Ser111 and His115, which are critical amino acid residue
interactions to recognize VHL by HIF1-α protein [173–175]. In addition, inverting the hy-
droxyl group stereochemistry of hydroxyproline moiety abolishes all protein degradability
of PROTACs [176,177]. Based on these facts, the authors rationalize the suitability of the
tethering point for the photolabile group in a way that the tethering of the photolabile
group would hinder VHL ligand binding to its VHL E3 ligase and can only be activated
until irradiated (as shown in Figure 21B). The approach showcases an example of precise
spatiotemporal control over photobiology. The author used carbonate tethering to sub-
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stituted hydroxyl group of VHL with a diethylamino coumarin (DEACM) to form ERRα

PROTAC-2 (as shown in Figure 21C). In addition, the authors prepared a version of ERRα

PROTAC-2 that doesn’t have a DEACM photolabile group, ERRα PROTAC-1, as a control
to assist in their biological study and ensure their photocaging PROTAC approach. Both
PROTACs were designed to target an orphan nuclear hormone receptor (estrogen-related
receptor α (ERRα)) [177], typically overexpressed in malignant cancers [178]. Using HPLC
and mass spectrometry, the DEACM caging group cleaved from the ERRα PROTAC 2
after 3 min of irradiation (λ ≤ 405 nm), and released the acidic functional groups with a
pKa < 5 [179].
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VHL ligand. (C) photochemical transformation of ERRα PROTAC-2 to ERRα PROTAC-1.

To understand the photocage PROTAC role of ERRα PROTAC-2, MCF-7 cells were
treated with ERRα PROTAC-1, ERRα PROTAC-2, and DMSO in the absence/presence of
UV radiation (λ = 365 nm, 180 s). After 8 h of incubation, the authors used Western blotting
to measure the extent of ERRα cellular levels. As anticipated, ERRα PROTAC-1 showed
a significant ERRα protein reduction at the cellular level compared to the DMSO-based
sample (used as control), which agrees with the previously reported literature [177]. Impor-
tantly, even a double concentration of ERRα PROTAC-2 compared to ERRα PROTAC-1
in the absence of UV light showed no change in ERRα protein cellular levels, confirming
photocaging of photolabile group prevented the binding conformation towards E3 ligase,
exemplifying an idealistic example of photocaged-PROTACs. To understand the mecha-
nism, competitive assays in the presence of either the proteasome inhibitor (MG132) or
the neddylation inhibitor (MLN4924) prevent the degradation of ERRα PROTAC-2, sug-
gesting the proteasome- and E3 ligase-mediated degradation ability of ERRα PROTAC-2.
Furthermore, incubation of MCF-7 cells with the coumarin caging group fragment released
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during photolysis showed no effects on ERRα levels, demonstrating that the observed
degradation activity was highly mediated by the active, non-caged PROTAC generated via
de-caging.

9. Conclusions

Classical medicinal approaches rely on orthosteric and allosteric inhibitors for direct
target inhibition. Approaches such as (a) preferential protein subtype selectivity [180,181],
or species-specific selectivity [182,183], (b) cyclization or rigidification in inhibitor de-
sign [184–189], (c) targeting heterodimeric proteins or receptors [12,190,191]), (d) identi-
fication of toxicophore to pharmacophore [192–195], (e) repurposing of drugs of clinical
agents [196], (f) inverse screening [197,198]), and (g) exploration of natural phytochem-
icals [199–201] have gained interest in the recent decade. As these approaches focus on
small molecule inhibitors (SMIs) and their related modes of action; therefore, often have
issues that are typical with occupancy-driven pharmacology (shown in Figure 1A), such as (a)
frequent occurrence of resistance after prolonged use and, (b) require a higher degree of
potency to achieve full inhibition of protein of interest (POI). These issues led to drive event-
driven pharmacology, as shown in Figure 1B, to design those molecules that can degrade the
POI (known as protein degradation) and therefore diminish the related protein functions.

Selective targeting of the Estrogen receptor subtype constantly challenges the chemical
biologist and medicinal chemist. However, cell-specific expression of Estrogen receptor
subtypes (α, β, and γ) provides a selectivity handle to an extent (such as selective estrogen
receptor modulators, also called SERMs). Classical approaches attempted were occupancy-
based pharmacology, where the inhibitor (which could be heterocyclic, oligopeptide, or
macrocyclic) shows average binding kinetics and requires continuous dosage administra-
tion. However, because of their continuous targeting nature, these approaches typically
show their intrinsic flaws, where dose-dependent toxicity (off-target as well as on-target)
and the emergence of resistance are the major ones. To minimize such interventions, selec-
tive estrogen receptor degraders (SERDs) were introduced in early 2000, which showed
a significant improvement in ER-positive cancers and were popularized as the first line
of drugs. Such success of SERDs validated the concept of estrogen receptor degradation.
Due to the significant development of various types of protein degradation strategies, the
researcher exploited the other estrogen ligands to functionalized them with additional
activity. The construction of chemical chimeras shows three chemical entities, (a) one
side of the structure contains the active molecules substructure or moiety that has an
affinity to the estrogen receptor, (b) the remaining terminal of chimeras has the potential
to bind the E3 ligase containing protein that recruits the ubiquitin units to the estrogen
receptor, and (c) a chemical spacer or linkers that help to conjugate both the functionalities
together. Various strategies were developed, including nonpeptide- and peptide-based
versions of PROTACs and SNIPERs. However, these strategies undoubtedly bring high
estrogen to subtype-selective but also have their flaws, such as on-target systemic toxicity;
therefore, additional elements were incorporated into the PROTACs and SNIPERs: (a)
Antibody conjugates SNIPERs and PROTACs, (b) Photocaged PROTACs. ADC approach
is fruitful in minimizing the risk of molecular obesity of PROTACs/SNIPER; however,
Photocaged PROTACs provide a handle to chemical biology to control the estrogen receptor
spatiotemporal control.

However, there are certain limitations of peptide and non-peptide PROTACs and
SNIPERs. For example, average lipophilicity, in vitro stability, and molecular obesity. Av-
erage lipophilicity and in vitro stability can be improved with drug delivery systems
(antibody-drug conjugate, nanoencapsulation) [202,203], and synthetic procedures re-
trieved from combinatorial chemistry approaches [204–206]. However, to showcase an
illustration of improved physicochemical properties, a joint venture of Arvinas and Pfizer
developed a series of CRBN-based PROTACs (ARV-110 and ARV-471) that showed high
clinical effectiveness, as shown in Figure 22. ARV-471 is orally bioavailable selectively
ER-targeted PROTAC. In xenograft models, ARV-471 showed more significant ER degra-
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dation and anticancer activity than fulvestrant. In addition, the phase-1 dose-escalation
study demonstrated ARV-471 as a tolerable single agent and showed anticancer bene-
fit in ER+/HER2 breast cancer patients who were previously on hormonal therapy or
cyclin-dependent kinase (CDK)4/6 inhibitor [207].
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