
HAL Id: hal-03936759
https://hal.science/hal-03936759

Submitted on 12 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Smoothness Analysis for Probabilistic Programs with
Application to Optimised Variational Inference

Wonyeol Lee, Xavier Rival, Hongseok Yang

To cite this version:
Wonyeol Lee, Xavier Rival, Hongseok Yang. Smoothness Analysis for Probabilistic Programs with
Application to Optimised Variational Inference. Proceedings of the ACM on Programming Languages,
2023, 7, pp.335 - 366. �10.1145/3571205�. �hal-03936759�

https://hal.science/hal-03936759
https://hal.archives-ouvertes.fr

12

Smoothness Analysis for Probabilistic Programs
with Application to Optimised Variational Inference
WONYEOL LEE, Stanford University, USA
XAVIER RIVAL, INRIA Paris, France and ENS, CNRS, and PSL University, Paris, France

HONGSEOK YANG, KAIST, South Korea and Institute for Basic Science (IBS), South Korea

We present a static analysis for discovering differentiable or more generally smooth parts of a given probabilistic

program, and show how the analysis can be used to improve the pathwise gradient estimator, one of the most

popular methods for posterior inference and model learning. Our improvement increases the scope of the

estimator from differentiable models to non-differentiable ones without requiring manual intervention of

the user; the improved estimator automatically identifies differentiable parts of a given probabilistic program

using our static analysis, and applies the pathwise gradient estimator to the identified parts while using a

more general but less efficient estimator, called score estimator, for the rest of the program. Our analysis has a

surprisingly subtle soundness argument, partly due to the misbehaviours of some target smoothness properties

when viewed from the perspective of program analysis designers. For instance, some smoothness properties,

such as partial differentiability and partial continuity, are not preserved by function composition, and this makes

it difficult to analyse sequential composition soundly without heavily sacrificing precision. We formulate five

assumptions on a target smoothness property, prove the soundness of our analysis under those assumptions,

and show that our leading examples satisfy these assumptions.We also show that by using information from our

analysis instantiated for differentiability, our improved gradient estimator satisfies an important differentiability

requirement and thus computes the correct estimate on average (i.e., returns an unbiased estimate) under a

regularity condition. Our experiments with representative probabilistic programs in the Pyro language show

that our static analysis is capable of identifying smooth parts of those programs accurately, and making our

improved pathwise gradient estimator exploit all the opportunities for high performance in those programs.

CCS Concepts: • Software and its engineering→Correctness;Automated static analysis; •Mathemat-
ics of computing→ Bayesian computation;Variational methods.

Additional KeyWords andPhrases: smoothness, static analysis, probabilistic programming, variational inference

ACMReference Format:
Wonyeol Lee, Xavier Rival, and Hongseok Yang. 2023. Smoothness Analysis for Probabilistic Programs with

Application to Optimised Variational Inference. Proc. ACM Program. Lang. 7, POPL, Article 12 (January 2023),
32 pages. https://doi.org/10.1145/3571205

1 INTRODUCTION
Probabilistic programs define models frommachine learning and statistics, and are used to analyse

datasets from a wide range of applications [Bingham et al. 2019; Carpenter et al. 2017; Ge et al. 2018;

Gehr et al. 2016; Goodman et al. 2008; Gordon et al. 2014; Mansinghka et al. 2014; Minka et al. 2014;

Narayananet al. 2016; Salvatier et al. 2016; Siddharth et al. 2017;Tolpin et al. 2016;Tranet al. 2018, 2016;

Authors’ addresses: Wonyeol Lee, Computer Science, Stanford University, USA, wonyeol@cs.stanford.edu; Xavier Rival,

INRIA Paris, France , Département d’Informatique, ENS, CNRS, and PSL University, Paris, France, rival@di.ens.fr; Hongseok

Yang, School of Computing and Kim Jaechul Graduate School of AI, KAIST, South Korea , Discrete Mathematics Group,

Institute for Basic Science (IBS), South Korea, hongseok.yang@kaist.ac.kr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART12

https://doi.org/10.1145/3571205

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

https://doi.org/10.1145/3571205
https://doi.org/10.1145/3571205

12:2 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Wood et al. 2014]. These programs are written in languages with special runtimes, called inference

engines, which can be used to answer probabilistic queries, such as posterior inference and marginal

likelihood estimation, or to learn model parameters in those programs, such as weights of neural

networks. Whether a probabilistic program is useful for, for instance, discovering a hidden pattern in

a given dataset ormaking an accurate prediction largely lies in these inference engines. These engines

should compute accurate approximations or good model parameters within a fixed time budget. It

is, thus, not surprising that substantial research efforts have been made to develop efficient inference

algorithms and their implementations (as inference engines) [Chaganty et al. 2013; Holtzen et al.

2020; Kucukelbir et al. 2015; Mansinghka et al. 2014; Nori et al. 2014; Ritchie et al. 2016a; Schulman

et al. 2015; van deMeent et al. 2018;Wingate et al. 2011a,b;Wingate andWeber 2013; Zhou et al. 2020].

We are concerned with smoothness
1
properties of probabilistic programs, which have been ex-

ploited by performant posterior-inference and model-learning algorithms and engines. For instance,

when probabilistic programs are differentiable (in the sense that they define differentiable unnor-

malised densities), their posteriors can be inferred by Hamiltonian Monte Carlo [Neal 2011], one of

the best performingMCMC algorithms. Also, in that case, their posteriors and model parameters can

be inferred or learnt using the pathwise gradient estimator [Kingma andWelling 2014; Rezende et al.

2014], a popular technique for estimating the gradient of a function using samples. We also point out

that the need for smoothness arises in a broader context of machine learning and computer science;

Lipschitz continuity is one of the desired or at least recommended properties for neural networks

[Arjovsky et al. 2017; Kim et al. 2021], and also differentiability commonly features as a requirement

for pieces of code inside simulation software and cyber physical systems,where differential equations

are used to specify the environment [Platzer 2018].

We present a static analysis that enables optimised posterior inference andmodel learning for prob-

abilistic programs.Wedevelop a static analysis that discovers differentiable ormore generally smooth

parts of given probabilistic programs, and showhow the analysis can be used to improve the pathwise

gradient estimator. Our improvement increases the scope of the estimator from differentiable to

non-differentiable models, without requiring any intervention from the user; the improved estimator

automatically identifies differentiable parts of probabilistic programs using our static analysis, and ap-

plies thepathwisegradientestimator to the identifiedpartswhileusingamoregeneralbut lessefficient

estimator, called score estimator [Ranganath et al. 2014; Williams 1992], for the rest of the programs.

Our static analysis for smoothness has a surprisingly subtle soundness argument, partly due to the

misbehaviours of some target smoothness properties when viewed from the perspective of program

analysis designers. For instance, some smoothness properties, such as partial differentiability and

partial continuity, are not preserved by function composition, and this makes it difficult to analyse

sequential composition soundly without heavily sacrificing precision. In fact, overlooking such

misbehaviours has been a source of errors in published static analyses for continuity [Chaudhuri et al.

2010, 2012].
2
We formulate five assumptions that clearly identify what a smoothness property should

satisfy in order to avoid unsound analysis. Interestingly, these assumptions also determine what

the property is allowed to violate. For instance, they reveal that the smoothness property does not

1
In mathematics, “smoothness” typically refers to the specific property of functions: being infinitely differentiable. In this
paper, we override the term to denote a set of properties of functions describing well-behavedness (e.g., differentiability).
2
The analysis in [Chaudhuri et al. 2010] infers the continuity property for multivariate programs, but it incorrectly joins

two input-variable sets if a program is continuous with respect to each set jointly. Such a rule would hold if separate

per-input-variable continuity were considered, but it does not hold for multivariate joint continuity. Conversely, the

analysis in [Chaudhuri et al. 2012] considers a per-input-variable definition of continuity, but incorrectly assumes that this

per-input-variable continuity is preserved by function composition. These (and other) issues make the two analyses unsound

in several aspects (see §A for details). We do not claim that these unsoundness issues are hard to fix. Instead, our point is

that a similar issue may be introduced easily and remain undetected due to the subtlety in the soundness of a static analysis.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:3

have to be closed under the limits of chains of smooth (partial) functions, although the closure under

such limits, called admissibility, has often been used to justify proof rules about or static analysis

of loops. Dispensing with the admissibility requirement broadens the scope of our program analysis

non-trivially; some useful smoothness properties frommathematics fail to meet the requirement.

Ourvariant of thepathwisegradient estimatorworksbyprogramtransformationandnon-standard

execution. It first transforms given probabilistic programs based on the results of our static analysis.

Then, our estimator executes the transformedprograms according to a standard (sampling) semantics,

and collects sampled values during the execution. Finally, using the collected values, the estimator

executes the original programs according to a non-standard (density) semantics this time. During the

execution, our estimator computes a quantity involving differentiation, which becomes the estimate

of the target gradient.Weprove that our estimator satisfies an important differentiability requirement

and thus, under a regularity condition, it is correct: the computed estimate is unbiased, i.e., it is the

target gradient when averaged over random choices made during execution.

Our static analysis and variant of the pathwise gradient estimator have been implemented for

a subset of the Pyro probabilistic programming language [Bingham et al. 2019]. They have been

successfully applied to the 13 representative Pyro examples, which include advanced models with

deep neural networks, such as attend-infer-repeat [Eslami et al. 2016] and single-cell annotation

using variational inference [Xu et al. 2021]. For each of these examples, Pyro provides a (default)

selective use of the pathwise gradient estimator but without any correctness guarantee. Our analysis

and improved estimator automatically reproduced those uses, and proved that in those use cases, the

estimator satisfies an important differentiability requirement and it is, thus, correct (i.e., unbiased)

under a regularity condition (which needs to be discharged separately).

We summarise the main contributions of the paper:

• Wepresent a programanalysis for smoothness properties such as differentiability, and explain a

subtle soundness argument for the analysis.Our argument identifies five assumptions for target

smoothness properties, which are violated by some well-known smoothness properties and

can help detect and prevent soundness errors in static analyses for smoothness properties (§5).

• We present a gradient estimator for probabilistic programs that improves the well-known

pathwise gradient estimator using our program analysis. We also prove that our estimator

satisfies an important differentiability requirement and it is, thus, correct (namely unbiased)

under a regularity condition (§4 and §6).

• We show that our program analysis and gradient estimator can be successfully applied to rep-

resentative probabilistic programs in Pyro, and can prove that existing unproved optimisations

for these programs satisfy the differentiability requirement (§7).

The appendix (i.e., §A–§I) includes omitted proofs and details, and can be found in [Lee et al. 2022b].

2 INFORMALDESCRIPTIONOF BASIC CONCEPTS ANDOURAPPROACH
We start by describing informally basic concepts and the goal of our approach, which we hope helps

the reader to see the big picture of our technical contributions. To simplify presentation, we use toy

examples in the section. But we emphasise that our approach has been applied to representative

Pyro programs that describe advanced machine-learning models with deep neural networks.

Probabilistic programming and variational inference. In a probabilistic programming lan-

guage (PPL), a program expresses a probabilistic model. As an example, consider the program 𝑐𝑚
in Fig. 1, which describes a probabilistic model of the random variables 𝑧1 and 𝑧2 in R by specifying

their unnormalised density

𝑝𝑐𝑚 (𝑧1, 𝑧2) = N(𝑧1; 0, 5) · N (𝑧2; 𝑧1, 3) · (1[𝑧2>0] · N (0; 1, 1) + 1[𝑧2≤0] · N (0;−2, 1)),

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:4 Wonyeol Lee, Xavier Rival, and Hongseok Yang

𝑐𝑚 =

©«
𝑥1 := sam("z1", distN (0, 5), _𝑦.𝑦);
𝑥2 := sam("z2", distN (𝑥1, 3), _𝑦.𝑦);
if (𝑥2 > 0) {obs(distN (1, 1), 0)}
else {obs(distN (−2, 1), 0)}

ª®®®¬ , 𝑐𝑔 =

(
𝑥1 := sam("z1", distN (\1, 1), _𝑦.𝑦);
𝑥2 := sam("z2", distN (\2, 1), _𝑦.𝑦)

)
.

Fig. 1. A model 𝑐𝑚 and a guide 𝑐𝑔 in a PPL. Here distN (𝑎, 𝑏) is the distribution expression, and denotes the
normal distribution with mean 𝑎 and variance 𝑏.

𝑐 ′𝑔 =

(
𝑥1 := sam("z1", distN (0, 1) , _𝑦.𝑦 + \1);
𝑥2 := sam("z2", distN (0, 1) , _𝑦.𝑦 + \2)

)
, 𝑐 ′′𝑔 =

(
𝑥1 := sam("z1", distN (0, 1) , _𝑦.𝑦 + \1);
𝑥2 := sam("z2", distN (\2, 1), _𝑦.𝑦)

)
.

Fig. 2. A fully (or selectively) reparameterised guide 𝑐 ′𝑔 (or 𝑐
′′
𝑔).

whereN(𝑥 ;𝑎, 𝑏) is the probability density of a normal distribution with mean 𝑎 and variance 𝑏, and

1[𝜑] is the indicator function that returns 1 if 𝜑 holds and 0 otherwise. The first twoN factors in

the equation come from the sample commands (sam) in 𝑐𝑚 . They are called prior distributions, and
describe prior knowledge on two random variables named 𝑧1 and 𝑧2. The last factor comes from the

if and observe commands (if and obs), which express that an unnamed random variable is sampled

and observed to be 0 and its distribution is distN (1, 1) or distN (−2, 1) depending on whether 𝑧2 is
positive or not. This factor is called likelihood, and it states information about 𝑧1 and 𝑧2 that comes

from an observed data point 0. Ignore the third arguments of the sample commands of 𝑐𝑚 for now,

which have no effect on 𝑝𝑐𝑚 ; they will be explained later.

The purpose of writing 𝑐𝑚 in a PPL, calledmodel, is to infer its normalised probability density

𝑝𝑐𝑚 (𝑧1, 𝑧2) ≜ 𝑝𝑐𝑚 (𝑧1, 𝑧2)/
∫
𝑝𝑐𝑚 (𝑧1, 𝑧2) 𝑑𝑧1𝑑𝑧2,

also called normalised posterior density. Intuitively, this normalised density brings together two

types of information about 𝑧1 and 𝑧2, the first from their prior distributions (expressed in the first

and second lines of 𝑐𝑚), and the second from the observed data point 0 that depends on 𝑧1 and 𝑧2
(the third and fourth lines of 𝑐𝑚). This inference task is called posterior inference problem. Among

a wide range of approaches to the problem, we focus on the approach called variational inference,
which forms the core of the recent combination of PPLs and deep learning.

In variational inference, we posit another program 𝑐𝑔, called guide, that is simpler than 𝑐𝑚 and

parameterised by \ . Then, we approximate the normalised density of 𝑐𝑚 by 𝑐𝑔 with an optimal

choice of \ . For instance, consider the program 𝑐𝑔 in Fig. 1. The program specifies the following

already-normalised probability density

𝑝𝑐𝑔,\ (𝑧1, 𝑧2) = N(𝑧1;\1, 1) · N (𝑧2;\2, 1).
It can serve as a guide program for 𝑝𝑐𝑚 . To best approximate 𝑝𝑐𝑚 by 𝑝𝑐𝑔,\ , variational inference aims

at finding \ that minimises some notion of the discrepancy (called KL divergence) between 𝑝𝑐𝑔,\ and

𝑝𝑐𝑚 , or equivalently that maximises the objective functionL (called evidence lower bound):

argmax

\
L(\) forL(\) ≜ E𝑝𝑐𝑔,\ (𝑧1,𝑧2) [𝑓\ (𝑧1, 𝑧2)] with 𝑓\ (𝑧1, 𝑧2) ≜ log(𝑝𝑐𝑚 (𝑧1, 𝑧2)/𝑝𝑐𝑔,\ (𝑧1, 𝑧2)) .

A standard way to solve this optimisation problem is to apply the gradient-ascent algorithm: starting

from an initial value \ (0) of \ , compute \ (𝑡) iteratively by \ (𝑡+1) ≜ \ (𝑡) + [· ∇\L(\ (𝑡)), and return
\ (𝑇) for a sufficiently large𝑇 ∈ N. Here [∈ R>0 denotes a learning rate.

A challenging part in the algorithm is to compute ∇\L(\). An exact computation of the gradient

is mostly intractable due to the expectation inside L, which hinders the gradient from having a

closed-form formula. Hence, in practice, we rather estimate (not exactly compute) the gradient via a

Monte Carlo method: draw a random sample (𝑧1, 𝑧2) from some distribution 𝑞\ , apply some function

𝑔\ to the sample, and use the result as an estimate to the gradient, i.e.,

𝑔\ (𝑧1, 𝑧2) ≈ ∇\L(\) for a sample (𝑧1, 𝑧2) drawn from 𝑞\ (𝑧1, 𝑧2). (1)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:5

An important desired property of such a gradient estimator is unbiasedness, which states that the
estimate is accurate in expectation: E𝑞\ (𝑧1,𝑧2) [𝑔\ (𝑧1, 𝑧2)] = ∇\L(\). The property is necessary for
the algorithm to converge to a local optimum, and is, thus, desired.

Gradient estimators for variational inference: SCE, PGE, and SPGE.A standard estimator for

∇\L(\) is the score estimator (SCE) [Ranganath et al. 2014; Williams 1992], which is unbiased under

mild conditions. It estimates ∇\L(\) by using the recipe in Eq. (1) with 𝑞\ (𝑧1, 𝑧2) = 𝑝𝑐𝑔,\ (𝑧1, 𝑧2) and
𝑔\ (𝑧1, 𝑧2) = 𝑓\ (𝑧1, 𝑧2) · ∇\ log𝑞\ (𝑧1, 𝑧2) .

That is, the estimator draws a sample from the guide distribution 𝑝𝑐𝑔,\ and applies the above𝑔\ to

obtain a gradient estimate.
3
It is applicable to a wide range of model-guide pairs while remaining

unbiased, but it is known to have a large approximation error (i.e., have a large variance).

The pathwise gradient estimator (PGE) [Kingma andWelling 2014; Rezende et al. 2014] is another

standard gradient estimator, which is known to have a smaller approximation error than the SCE

and thus has been a preferred option against the SCE. The PGE requires an additional program 𝑐 ′𝑔
that is a \ -independent reparameterisation of the guide 𝑐𝑔. A program 𝑐 ′ is said to be \ -independent
if the probability densities of the sampled random variables in 𝑐 ′ are \ -independent. It is called a
reparameterisation of 𝑐 if 𝑐 and 𝑐 ′ sample the same set of random variables and they have the same

semantics on those variables in the following sense: when there are 𝑛 random variables, for any

measurable ℎ : R𝑛 → R, we have E𝑝𝑐 (𝑧) [ℎ(𝑣𝑐 (𝑧))] = E𝑝𝑐′ (𝑧) [ℎ(𝑣𝑐′ (𝑧))], where 𝑝𝑐 : R𝑛 → R is the

probability density of all 𝑛 random variables in 𝑐 , and 𝑣𝑐 : R𝑛 → R𝑛 is the so called value function
of 𝑐 , which applies the lambda functions in the third arguments of 𝑐’s sample commands to the

corresponding random variables. For example, 𝑐 ′𝑔 in Fig. 2 is a \ -independent reparameterisation of

𝑐𝑔 for \ = (\1, \2). It has the probability density 𝑝𝑐′𝑔 (𝑧1, 𝑧2) = N(𝑧1; 0, 1) · N (𝑧2; 0, 1), and the value
function 𝑣𝑐′𝑔,\ (𝑧1, 𝑧2) = (𝑧1 + \1, 𝑧2 + \2). Note that 𝑝𝑐′𝑔 does not depend on \ , as required by the \ -
independence of 𝑐𝑔 .We can show this 𝑐 ′𝑔 is a reparameterisation of 𝑐𝑔 in Fig. 1 by using the fact that 𝑣𝑐𝑔
is the identity function and𝑦 = 𝑥 + 𝑎 for 𝑥 drawn fromN(𝑥 ; 0, 1) follows the distributionN(𝑦;𝑎, 1).
Given a reparameterised guide 𝑐 ′𝑔, the PGE estimates ∇\L(\) by again following the recipe in

Eq. (1) this time with 𝑞′(𝑧1, 𝑧2) = 𝑝𝑐′𝑔 (𝑧1, 𝑧2) and

𝑔′
\
(𝑧1, 𝑧2) = ∇\ 𝑓\ (𝑧 ′1, 𝑧 ′2) for (𝑧 ′

1
, 𝑧 ′

2
) = 𝑣𝑐′𝑔,\ (𝑧1, 𝑧2).

This estimator differs from the SCE in two aspects. First, a random sample is drawn from a reparam-

eterised-guide distribution 𝑝𝑐′𝑔 , not from 𝑝𝑐𝑔,\ . Next, the estimation function𝑔′
\
computes the deriv-

ative of 𝑓\ (𝑧 ′1, 𝑧 ′2) with respect to \ and (𝑧 ′1, 𝑧 ′2) (not with respect to \ only), since the argument of

𝑓\ (−) in 𝑔′\ depends on \ via 𝑣𝑐′𝑔,\ .
4

While having a small approximation error, the PGE requires more than the SCE to ensure the

unbiasedness. An important additional requirement for the PGE is that (i) 𝑝𝑐𝑚 (𝑧1, 𝑧2) and 𝑝𝑐𝑔,\ (𝑧1, 𝑧2)
should be differentiable in \ and 𝑧1, 𝑧2 and (ii) 𝑣𝑐′𝑔,\ (𝑧1, 𝑧2) be differentiable in \ for all 𝑧1, 𝑧2. The

requirement is imposed partly to ensure that no differentiation error arises in computing𝑔′
\
. This

differentiability requirement, however, can be easily violated if a model or a guide starts to use

branches or loops. For instance, it is violated by our example in Figs. 1 and 2 as 𝑝𝑐𝑚 (𝑧1, 𝑧2) is not
differentiable in 𝑧2. This violation makes the PGE biased for the example, i.e.,

E𝑞′
\
(𝑧1,𝑧2) [𝑔′\ (𝑧1, 𝑧2)] = (· · · ,

1

3
(\1 − \2)) ≠ (· · · , 1

3
(\1 − \2) + 3

2
N(−\2; 0, 1)) = ∇\L(\),

3
The log term in𝑔\ comes from the well-known log-derivative trick: ∇\𝑞\ (𝑧1, 𝑧2) = 𝑞\ (𝑧1, 𝑧2) · ∇\ log𝑞\ (𝑧1, 𝑧2) .

4
By the chain rule, we have the following for each 𝑖 ∈ {1, 2}:

𝜕𝑓\ (𝑧′1, 𝑧′2)
𝜕\𝑖

=
𝜕𝑓\ (𝑥1, 𝑥2)

𝜕\𝑖

���� (𝑥1,𝑥2,\)
=(𝑧′

1
,𝑧′
2
,\)
+

〈(
𝜕𝑓\ (𝑥1, 𝑥2)

𝜕𝑥1

���� (𝑥1,𝑥2,\)
=(𝑧′

1
,𝑧′
2
,\)
,
𝜕𝑓\ (𝑥1, 𝑥2)

𝜕𝑥2

���� (𝑥1,𝑥2,\)
=(𝑧′

1
,𝑧′
2
,\)

)
,

(
𝜕𝑣𝑐′𝑔,\ (𝑦1, 𝑦2)

𝜕\𝑖

����� (𝑦1,𝑦2,\)
=(𝑧1,𝑧2,\)

)〉
.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:6 Wonyeol Lee, Xavier Rival, and Hongseok Yang

and thus causes the gradient-ascent algorithm to converge to a suboptimal \ : applying the PGE to the

example produces a suboptimal solution \ = (0, 0), whereas the optimal solution is \ ≈ (0.95, 1.52).
The selective pathwise gradient estimator (SPGE) [Schulman et al. 2015] combines the two previous

gradient estimators to alleviate their limitations: one has a large approximation error, and the other

imposes a strong requirement for unbiasedness. The SPGE requires an additional program 𝑐 ′′𝑔 that

is a reparameterisation of the guide 𝑐𝑔 but needs not be \ -independent (unlike the PGE). An instance

of 𝑐 ′′𝑔 for our example is given in Fig. 2, which changes the sample command for 𝑧1 in 𝑐𝑔 but keeps

the one for 𝑧2. Note that the changed sample command for 𝑧1 in 𝑐
′′
𝑔 uses a \ -independent probability

distribution. Typically, 𝑐 ′′𝑔 is obtained by selecting a subset of the random variables in 𝑐𝑔 and changing

the sample commands for the selected variables such that their probability distributions become

\ -independent; the sample commands for the unselected remain as they are. Given 𝑐 ′′𝑔 , the SPGE
estimates ∇\L(\) by following the recipe in Eq. (1) with 𝑞′′\ (𝑧1, 𝑧2) = 𝑝𝑐′′𝑔 ,\ (𝑧1, 𝑧2) and

𝑔′′
\
(𝑧1, 𝑧2) = ∇\ 𝑓\ (𝑧 ′′1 , 𝑧 ′′2) + 𝑓\ (𝑧 ′′1 , 𝑧 ′′2) · ∇\ log𝑞′′\ (𝑧1, 𝑧2) for (𝑧 ′′

1
, 𝑧 ′′

2
) = 𝑣𝑐′′𝑔 ,\ (𝑧1, 𝑧2). (2)

Note that the estimation function𝑔′′
\
consists of two terms, which come from that of the PGE and

the SCE. The second term adjusts the PGE to correctly account for unchanged random variables (e.g.,

𝑧2 in the example of Fig. 2).

By allowing a guide that makes only some selected (not all) random variables \ -independent, the

SPGE offers two advantages at the same time: it achieves a smaller approximation error than the SCE,

and imposes a weaker requirement for unbiasedness than the PGE. In particular, the differentiability

requirement for the SPGE isweaker than that for thePGE,which is as follows for our example in Figs. 1

and 2: (i) 𝑝𝑐𝑚 (𝑧1, 𝑧2) and 𝑝𝑐𝑔,\ (𝑧1, 𝑧2) be differentiable in \ and 𝑧1 (but they may be non-differentiable

in 𝑧2); and (ii) 𝑣𝑐′′𝑔 ,\ (𝑧1, 𝑧2) and 𝑝𝑐′′𝑔 ,\ (𝑧1, 𝑧2) be differentiable in \ for all 𝑧1, 𝑧2. This requirement holds,

and as a result, the SPGE with this 𝑐 ′′𝑔 is unbiased (whereas the PGE with the given 𝑐 ′𝑔 is biased as
seen before). You can find in §B a table summarising and comparing SCE, PGE, and SPGE.

Variable-selection problem for SPGE. To maximize the advantages offered by the SPGE, we

consider the following algorithmic problem:

Definition 2.1 (SPGE Variable-Selection Problem; Informal). Assume that we are given a model 𝑐𝑚 ,

a guide 𝑐𝑔, and a reparameterisation plan 𝜋 , i.e., a map from sample commands to sample commands.

Then, find automatically a large subset 𝑆 of random variables such that if we let 𝑐𝑔
𝜋,𝑆

be the result

of 𝜋-transforming every sample command in 𝑐𝑔 that defines a random variable in 𝑆 , then 𝑐𝑔
𝜋,𝑆

is a

reparameterisationof𝑐𝑔 and (𝑐𝑚, 𝑐𝑔, 𝑐𝑔𝜋,𝑆) satisfies the differentiability requirement for the SPGE. □

An instantiation of the problem for our example is that 𝑐𝑚 and 𝑐𝑔 are programs in Fig. 1 and 𝜋

transforms commands of the form𝑦 := sam(𝑛, distN (𝑒 ′, 1), _𝑦.𝑦) to𝑦 := sam(𝑛, distN (0, 1), _𝑦.𝑦 +𝑒 ′),
while leaving all the other sample commands as they are. In this instantiation, the condition in the

problem is met by 𝑆 = ∅ and 𝑆 = {𝑧1}, and the latter option is preferred due to its size. Note that the
solution 𝑆 = {𝑧1} yields the guide 𝑐 ′′𝑔 in Fig. 2, that is, 𝑐𝑔

𝜋,𝑆
= 𝑐 ′′𝑔 .

Existing PPLs, when applying the SPGE, choose an𝑆 without checking the differentiability require-

ment, and this can make the requirement easily violated. For instance, given a model-guide pair, in

one of its standard settings, Pyro automatically applies the SPGEwith𝑆 being the set of all continuous

random variables in the guide. This choice of 𝑆 , however, does not guarantee the requirement is met.

For our example in Fig. 1, Pyro chooses 𝑆 = {𝑧1, 𝑧2}, but this 𝑆 violates the requirement; due to this,

the SPGE becomes biased and Pyro returns a suboptimal \ = (0, 0).
In the rest of the paper, we will present our solution to the SPGE variable-selection problem. A

core component of our solution is a general static analysis framework for smoothness properties

such as differentiability (§5), which our solution uses to discharge the differentiability requirement

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:7

for the SPGE correctly and automatically. As we briefly mentioned in the introduction, automatically

analysing the smoothness properties of a program in a sound manner is surprisingly subtle. Our

analysis framework identifies five assumptions for smoothness properties, and prove that the analysis

is sound if a target smoothness property satisfies these assumptions.

Our solution for the SPGE variable-selection problem (§6) runs the static analysis on given 𝑐𝑚
and 𝑐𝑔, and computes a maximal set 𝑆 ′ of random variables in which 𝑝𝑐𝑚 and 𝑝𝑐𝑔,\ are differentiable.

Then, it heuristically searches for a subset of 𝑆 ′ starting from 𝑆 ′ itself such that 𝑐𝑔
𝜋,𝑆′

satisfies the

differentiability requirement. For instance, for our example in Fig. 1, our differentiability analysis

infers that𝑝𝑐𝑚 and𝑝𝑐𝑔,\ are differentiable in {𝑧1} and {𝑧1, 𝑧2}, respectively. From this,we set𝑆 ′ = {𝑧1},
run our analysis again on 𝑐𝑔

𝜋,𝑆′
, and get confirmation that 𝑐𝑔

𝜋,𝑆′
meets the requirement, i.e., 𝑝

𝑐𝑔
𝜋,𝑆′ ,\

and 𝑣
𝑐𝑔
𝜋,𝑆′ ,\ are differentiable in \ . Thus, this 𝑆

′
becomes the final result. In fact, this first-round

success appeared in our experiments (§7): our implementation shows on all tested examples that

the initial choice of 𝑆 ′ is indeed valid in the above sense so that no subset search is necessary.
We point out that to mathematically develop and analyse our solution for the SPGE variable-

selection problem,we formalise the SPGE in the PPL setting and formally derive a sufficient condition

for its unbiasedness, which includes the differentiability requirement (§4).

3 SETUP
We use a simple imperative probabilistic programming language, which models the core of popular

imperative PPLs, such as Pyro. Programs in the language describe densities, which are sometimes

unnormalised (i.e., they do not integrate to 1). In this section, we describe the syntax and semantics

of the language, and also variational inference for the language.

Syntax of a simple imperative PPL. Let PVar be a finite set of program variables, Str be a finite
set of strings, and Fn be a set of function symbols that represent measurable maps of type R𝑘 → R.
The language has the following syntax:

Real Expr. 𝑒 ::= 𝑥 | 𝑟 | op(𝑒1, . . . , 𝑒𝑘) Boolean Expr. 𝑏 ::= true | 𝑒1 < 𝑒2 | 𝑏1 ∧ 𝑏2 | ¬𝑏
Name Expr. 𝑛 ::= name(𝛼, 𝑒) Distribution Expr. 𝑑 ::= distN (𝑒, 𝑒 ′)
Command 𝑐 ::= skip | 𝑥 := 𝑒 | 𝑐; 𝑐 ′ | if𝑏 {𝑐} else {𝑐 ′} | while𝑏 {𝑐} | 𝑥 := sam(𝑛,𝑑, _𝑦.𝑒) | obs(𝑑, 𝑟)
Here 𝑥 , 𝑟 , op, and 𝛼 stand for a program variable in PVar, a real number, a function symbol in Fn, and
a string in Str, respectively.

The language has four kinds of expressions,which denotemaps from states to values of appropriate

types.All the real andboolean expressions are standard. Thenameexpressions𝑛 denote the identifiers

of drawn samples (i.e., random variables). They are built by appending an integer (obtained by the

floor of a real) to a string in Str; e.g., name("z", 3.2) denotes the name ("z", 3).5 The distribution
expression distN (𝑒, 𝑒 ′) denotes the normal distribution with mean 𝑒 and variance 𝑒 ′. The language
supports standard commands for imperative computation, and additionally has sample and observe

for probabilistic programming. The sample command 𝑥 := sam(𝑛,𝑑, _𝑦.𝑒) creates a random variable

named 𝑛 by drawing a sample 𝑟 from 𝑑 ; then, it transforms 𝑟 to 𝑒 [𝑟/𝑦] and stores the result in the
program variable 𝑥 . In the programs written by the user of the language, only the identity function

_𝑦.𝑦 appears as the thirdargumentof the sample commands.But asweexplain later,whenaprogramis

constructed fromanother by a gradient estimator, such as the SPGE, itmay contain sample commands

with non-identity function arguments. The observe command obs(𝑑, 𝑟) describes that an unnamed

random variable is drawn from 𝑑 and is immediately observed to have the value 𝑟 . Computationally,

obs(𝑑, 𝑟) calculates the probability density of 𝑑 at 𝑟 and updates a variable that tracks the product of
these probabilities from all the observations, by multiplying the variable with the calculated density.

5
The name construct has the second argument to easily support the sampling of (conditionally) i.i.d. random variables.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:8 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Density semantics of the PPL.6 We use a semantics of our language where commands are inter-

preted as calculators for densities, which may be unnormalised. Commands transform states, but

in so doing, they compute densities of sampled random variables. More precisely, in the semantics,

a command starts with an initial state that fixes not just the values of program variables but also

those of all the random variables that are to be sampled during execution. When the command runs,

it calculates the densities of those random variables at their given initial values, and also computes

the probability density of all the observations, called likelihood. The product of all these densities
and the likelihood becomes the so called unnormalised posterior density.

LetN be the set of natural numbers. Fix𝑁 ∈ Nwith𝑁 ≥ 1. Formally, the semantics uses the states

of the following form:

` ∈ Name ≜ {(𝛼, 𝑖) | 𝛼 ∈ Str, 𝑖 ∈ N ∩ [0, 𝑁)},
𝑎 ∈ AVar ≜ {like} ∪ {pr`, val`, cnt` | ` ∈ Name},
𝑢, 𝑣 ∈ Var ≜ Name ⊎ PVar ⊎ AVar,

𝜎 ∈ St ≜ [Var→ R], St[𝐾] ≜ [𝐾 → R] for𝐾 ⊆ Var.

Here 𝜎 (`) for ` ∈ Name is the initial value of the random variable `, which is used by the sample

command and does not change during execution. For technical simplicity, the set Name has the
restriction that the integer part of a namemust be in [0, 𝑁).7 The set AVar consists of four types of
auxiliary variables. The auxiliary variable like stores the likelihood (i.e., the probability density of
all the observations), and its value is initialised to 1 and changes whenever the observe command

obs(𝑑, 𝑟) runs; the new value becomes the old times the density of the probability distribution 𝑑 at

𝑟 . The other auxiliary variables pr` , val` , and cnt` are associated with a random variable `, standing

for the “prior”, “value”, and “counter” of `. They are initialised withN(𝜎 (`); 0, 1) (i.e., the density
of the standard normal distribution at 𝜎 (`)), 𝜎 (`), and 0, respectively, and get updated by the sample

command𝑥 := sam(𝑛,𝑑, _𝑦.𝑒)where𝑛 denotes `. The command increases cnt` by 1, so as to record the
occurrence of a sampling event for `. Then, it looks up the given value 𝜎 (`) of the random variable `,

transforms the value to 𝑒 [𝜎 (`)/𝑦], and stores the result in𝑥 and val` . Finally, the command computes

the density of the distribution𝑑 at the looked-up value𝜎 (`), andupdatespr` with this density. Theun-
normalisedposteriordensity (i.e., the jointdensityofall the randomvariablesandobservations) is then

obtained by multiplying at the end of program execution the values of like and pr` for all ` ∈ Name.
The formal semantics of expressions is standard, and has the following types:

J𝑒K : St→ R, J𝑏K : St→ B, J𝑛K : St→ Name, J𝑑K : St→ D.

Here B is the set of booleans, i.e., true and false, and D is the set of positive probability-density func-

tions onR, i.e., a subset of [R→ (0,∞)] whose elements are measurable functions that integrate to 1.

The semantics is defined for aminor extension of the set of expressionswhere non-program variables

are allowed to appear, such as (` + 𝑥). The interpretation of expressions is mostly standard. We

6
Our semantics is an instance (or variant) of existing density semantics (e.g., [Lee et al. 2020]), and is different from sampling

semantics (e.g., [Staton et al. 2016]). Although the density semantics and the sampling semantics have different presentations,

they are closely related and equivalent in a formal sense (see, e.g., [Lee et al. 2020]). We use the density semantics instead

of the sampling semantics, because the gradient estimator (§4) of our interest performs computation on (unnormalised)

densities and it is easier for a program analysis (§5) to work with the density semantics than the sampling semantics.

7
This restriction is often respected by probabilistic programs in practice, since they commonly sample random variables

whose number is uniformly bounded over all traces; note, however, that it is not always respected (e.g., by programs from

Bayesian nonparametrics). The uniform bound 𝑁 can often be found by a simple static analysis. This restriction along

with the finiteness of PVar and Str implies the finiteness of Var, and this makes our technical development simpler since

𝜎 ∈ St becomes a function on a finite-dimensional space. Lifting the restriction would make the technical development

more complicated, since this would require St to be isomorphic to [R∞ → R] or⊎𝑘 [R𝑘 → R] and the former (or latter)

choice of Stmakes defining differentiability (or formalising our program analysis) nontrivial; we leave it as future work.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:9

show only the case for the name expressions𝑛 ≡ name(𝛼, 𝑒): Jname(𝛼, 𝑒)K𝜎 ≜ create_name(𝛼, J𝑒K𝜎),
where create_name : Str×R→ Name is an operator converting a string-real pair to a name, defined

by create_name(𝛼, 𝑟) = (𝛼,min{max{⌊𝑟⌋, 0}, 𝑁 − 1}).8
Note that the types of the semantics of expressions imply that the evaluation of an expression

always produces a value of the right type. In particular, it never generates an error. For instance, when

an argument of an operator op or a distribution constructor distN is outside its intended domain

as in log(−3) and distN (0,−2), or when the integer part of a name expression is outside [0, 𝑁) as
in name("z",−1), our semantics does not generate an error. Instead, it returns some pre-chosen

default value of the right type. This slightly unusual way of handling errors is also adopted in our

semantics of commands to be presented shortly, and it lets us avoid the complexity caused by error

handling when we formalise variational inference and develop our program analysis for smoothness

properties.

The formal semantics of commands is also mostly standard with the handling of errors via default

values, although its interpretation of sample and observe commands deserves special attention.

Let ⊥ be an element not in St, and define St⊥ to be the usual lifting of St with ⊥. That is, St⊥ is a
partially-ordered set St ⊎ {⊥} with the following order: for b, b ′ ∈ St⊥, we have b ⊑ b ′ if and only
if b = ⊥ or b = b ′. We write the standard lifting of a function 𝑓 : St→ St⊥ by 𝑓 † : St⊥ → St⊥ (i.e.,
𝑓 † (b) ≜ if (b = ⊥) then b else 𝑓 (b)). The semantics of a command 𝑐 is a map J𝑐K : St→ St⊥, and is
defined inductively as shown below:

JskipK𝜎 ≜ 𝜎,
J𝑥 := 𝑒K𝜎 ≜ 𝜎 [𝑥 ↦→ J𝑒K𝜎],

J𝑐; 𝑐 ′K𝜎 ≜ J𝑐 ′K† (J𝑐K𝜎),
Jif𝑏 {𝑐} else {𝑐 ′}K𝜎 ≜ if (J𝑏K𝜎 = true) then J𝑐K𝜎 else J𝑐 ′K𝜎,

Jwhile𝑏 {𝑐}K𝜎 ≜ (fix 𝐹) (𝜎) where 𝐹 (𝑓) (𝜎) ≜ if (J𝑏K𝜎 = true) then 𝑓 † (J𝑐K𝜎) else 𝜎,
J𝑥 := sam(𝑛,𝑑, _𝑦.𝑒 ′)K𝜎 ≜ 𝜎 [𝑥 ↦→ 𝑟, val` ↦→ 𝑟, pr` ↦→ J𝑑K𝜎 (𝜎 (`)), cnt` ↦→ 𝜎 (cnt`) + 1]

where ` ≜ J𝑛K𝜎 and 𝑟 ≜ J𝑒 ′[`/𝑦]K𝜎,
Jobs(𝑑, 𝑟)K𝜎 ≜ 𝜎 [like ↦→ 𝜎 (like) · J𝑑K𝜎 (𝑟)] .

The interpretation uses the least fixed-point operator fix for continuous maps 𝐹 on the function

space [St → St⊥], where the function space is ordered pointwise and continuity means the one

with respect to this order. It also uses the notation 𝑒 ′[𝑒 ′′/𝑦] to denote the substitution of𝑦 in 𝑒 ′ by
𝑒 ′′. According to this interpretation, 𝑥 := sam(𝑛,𝑑, _𝑦.𝑒 ′) increments the cnt` variable for the name

𝑛 = ` so that the variable, which has 0 initially, records the number of times that the random variable

with the same name 𝑛 is sampled during execution.

Having some cnt` variable increased by 2 or larger at some point of execution is not an intended

behaviour of a command 𝑐 . That is, if 𝑐 is a well-designed command, every random variable with

a fixed name should be sampled at most once during the execution of 𝑐 . This intended behaviour of

commands plays an important role in our results, and we refer to it using the following terminology.

Definition 3.1. An always-terminating command 𝑐 does not have a double-sampling error if for any
𝜎 ∈ St, we have J𝑐K𝜎 (cnt`) − 𝜎 (cnt`) ≤ 1 for all ` ∈ Name. □

Example 3.2 (Density semantics). Consider the following state 𝜎 ∈ St: 𝜎 ≜ [𝑥 ↦→ 0, 𝑦 ↦→ 0, ("a", 0)
↦→ 2, ("b", 0) ↦→ 4, cnt ("a",0) ↦→ 0, cnt ("b",0) ↦→ 0, · · ·],where 𝑥,𝑦 ∈ PVar denote program variables

and ("a", 0), ("b", 0) ∈ Name denote random variables. Note that 𝜎 consists of three parts: the PVar
part says that the values of 𝑥 and 𝑦 are both 0; the Name part says that the values of ("a", 0) and
("b", 0) are 2 and 4; and the AVar part says that ("a", 0) and ("b", 0) have not been sampled yet.

8
There are multiple valid ways to convert a string-real pair to a name (i.e., to define create_name); we choose just one of them.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:10 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Next, consideracommand𝑐 ≡
(
𝑥 := sam(name("a", 0), distN (−3, 1), _𝑧.𝑧); 𝑦 := sam(name("b", 0),

distN (5, 1), _𝑧.𝑧)
)
. Given the command 𝑐 and the input state 𝜎 , our density semantics computes the

following output state 𝜎 ′ ∈ St: 𝜎 ′ ≜ J𝑐K𝜎 = [𝑥 ↦→ 2, 𝑦 ↦→ 4, ("a", 0) ↦→ 2, ("b", 0) ↦→ 4, cnt ("a",0)
↦→ 1, cnt ("b",0) ↦→ 1, pr ("a",0) ↦→ N (2;−3, 1), pr ("b",0) ↦→ N (4; 5, 1), · · ·] . The input/output states 𝜎
and𝜎 ′ illustrate two aspects of our semantics. First, the semantics uses theName part of an input state
to determine the sampled values of sample commands:𝑥 and𝑦 in𝜎 ′ take the values of𝜎 (("a", 0)) = 2

and 𝜎 (("b", 0)) = 4. Second, the semantics records, in the AVar part of an output state, the densities
of sample commands: pr ("a",0) and pr ("b",0) in 𝜎

′
store the densities of the two sample commands

in 𝑐 evaluated at 2 and 4. □

Variational inference.We consider the most common form of variational inference for Pyro-like
PPLswherewe are asked to learn a good approximation of the posterior of a givenmodel, i.e., the con-

ditional distribution of themodel given a dataset. Typically, a parameterised approximate posterior is

given in variational inference, and learning corresponds to finding good values of those parameters.

A popular approach is to measure the quality of parameter values by the so called evidence lower

bound (ELBO), and to optimise ELBO.

To translate what we have described so far to our context, we need to explain a general recipe for

generating a density 𝑝𝑐 for a command 𝑐 , which is in general unnormalised (i.e., does not integrate to

1). The recipe specifies 𝑝𝑐 as follows: for each 𝜎\ ∈ St[\] with \ ⊆ PVar, 𝑝𝑐,𝜎\ : St[Name] → [0,∞)
is defined by

𝑝𝑐,𝜎\ (𝜎𝑛) ≜
{
J𝑐K𝜎 (like) ·∏`∈Name J𝑐K𝜎 (pr`) if J𝑐K𝜎 ∈ St and J𝑐K𝜎 (cnt`) ≤ 1 for all `

0 otherwise

(3)

where 𝜎 = 𝜎0 ⊕ 𝜎\ ⊕ 𝜎𝑛 ∈ St, and the ⊕ operator combines two real-valued maps with disjoint

domains in the standardway.Also,𝜎0 ∈ St[(PVar\\)⊎AVar]maps like to 1, andpr` toN(𝜎𝑛 (`); 0, 1)
and val` to 𝜎𝑛 (`) for every ` ∈ Name, and all other variables to 0. Here St[Name] is understood as
a measurable space constructed by taking the product of the |Name| copies of the measurable space

R and the integral is taken over the uniformmeasure on St[Name] (i.e., the product of the |Name|
copies of the Lebesgue measure on R).
In variational inference in our PPL context, we are given two commands 𝑐𝑚 and 𝑐𝑔, calledmodel

and guide. We assume that (i) these commands always terminate and do not have a double-sampling

error, (ii) some variables \ = {\1, . . . , \𝑘 } ⊆ PVar that only appear in 𝑐𝑔, not in 𝑐𝑚 , are identified as
parameters to be optimised, and (iii) the density 𝑝𝑐𝑔,𝜎\ of the guide 𝑐𝑔 integrates to 1 and defines a

probability distribution.
9
Given the model-guide pair (𝑐𝑚, 𝑐𝑔), a popular approach for variational

inference is to solve the following optimisation problem approximately,

argmax

𝜎\

E𝑝𝑐𝑔,𝜎\ (𝜎𝑛)
[
log(𝑝𝑐𝑚 (𝜎𝑛)/𝑝𝑐𝑔,𝜎\ (𝜎𝑛))

]
, (4)

when the expectation is well-defined for all 𝜎\ . The objective of this optimisation is the ELBO that

we mentioned earlier. Here 𝑝𝑐𝑚 means 𝑝𝑐𝑚,𝜎′\
for some/any 𝜎 ′

\
; the choice of 𝜎 ′

\
does not matter since

𝑐𝑚 does not access the parameters \ and so 𝑝𝑐𝑚,𝜎′\
= 𝑝𝑐𝑚,𝜎′′\

for all 𝜎 ′
\
, 𝜎 ′′
\
∈ St[\].

Often variational inference is applied when the model 𝑐𝑚 is parameterised as well. In those cases,

it asks for finding good parameters of the model 𝑐𝑚 as well as those of the guide 𝑐𝑔. So, an algorithm

for variational inference this time simultaneously learns a good model for given observations and

a good approximate posterior for the learnt model. This more general form of variational inference

9
In practice, one more assumption is required: the set of random variables sampled from the model should be the same as

that from the guide. This assumption can be checked automatically, e.g., by [Lee et al. 2020; Lew et al. 2020]. In this work,

however, this assumption is always satisfied: all random variables in Name are sampled by a sample command or at the

beginning (via initialisation).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:11

can be easily accommodated in our setup.We just need to drop the condition that the parameters

may not appear in 𝑐𝑚 , and to use 𝑝𝑐𝑚,𝜎\ instead of 𝑝𝑐𝑚 in the optimisation objective in Eq. (4):

argmax

𝜎\

L(𝜎\) for L(𝜎\) ≜ E𝑝𝑐𝑔,𝜎\ (𝜎𝑛)
[
log(𝑝𝑐𝑚,𝜎\ (𝜎𝑛)/𝑝𝑐𝑔,𝜎\ (𝜎𝑛))

]
. (5)

The rest of thepaper focuses on this general formof variational inference (often calledmodel learning).

4 SELECTIVE PATHWISEGRADIENT ESTIMATOR
We consider a gradient-based algorithm for the optimisation problem in Eq. (5). The algorithm finds

a good 𝜎\ by repeatedly estimating the gradient of the optimisation objective at the current 𝜎\ ,

grad_est(𝜎\) ≈ ∇\E𝑝𝑐𝑔,𝜎\ (𝜎𝑛)
[
log(𝑝𝑐𝑚,𝜎\ (𝜎𝑛)/𝑝𝑐𝑔,𝜎\ (𝜎𝑛))

]
,

and updating 𝜎\ with the estimate under a learning rate [> 0, that is, 𝜎\ ← 𝜎\ + [· grad_est(𝜎\).
Note that the core of the algorithm lies in the computation of grad_est(𝜎\).
In this section, we describe a particular algorithm for the gradient computation, called selective

pathwise gradient estimator (SPGE), which is often regarded as the algorithm of choice and corre-

sponds to the inference algorithm developed for stochastic computation graphs [Schulman et al.

2015] and implemented for Pyro. Our description of the SPGE takes the often-ignored aspect of

customising the SPGEalgorithm for PPLs seriously, and it is accompaniedwith anovel formal analysis

of the customisation (§4.1 and §4.2). Our analysis clearly identifies information about probabilistic

programs that is useful for this customised SPGE algorithm, and prepares the stage for our program

analysis for smoothness properties in §5 (§4.2 and §4.3).

4.1 Program Transformation
We start by describing a program transformation that changes some sample commands in a given

probabilistic program. This transformation is used crucially by the SPGE.

The key component of the transformation is a partial function 𝜋 called reparameterisation plan,
which has the type NameEx × DistEx × LamEx ⇀ DistEx × LamEx. Here NameEx, DistEx, and
LamEx denote the sets of name expressions, distribution expressions, and lambda expressions of

the form _𝑦.𝑒 , respectively. The plan 𝜋 specifies howwe transform sample commands. Concretely,

assume that we are given 𝑥 := sam(𝑛,𝑑, _𝑦.𝑒). We check whether 𝜋 (𝑛,𝑑, _𝑦.𝑒) is defined or not. If
not, we keep the original sample command. Otherwise, if 𝜋 (𝑛,𝑑, _𝑦.𝑒) is (𝑑 ′, _𝑦 ′.𝑒 ′), we replace the
command with 𝑥 := sam(𝑛,𝑑 ′, _𝑦 ′.𝑒 ′).
A natural extension of this intended transformation of 𝜋 leads to the following program trans-

formation for a general command 𝑐 , denoted by 𝑐𝜋 :

skip
𝜋
≜ skip,

𝑥 := 𝑒𝜋 ≜ 𝑥 := 𝑒,

𝑐; 𝑐 ′
𝜋
≜ 𝑐𝜋 ; 𝑐 ′

𝜋
,

if𝑏 {𝑐} else {𝑐 ′}𝜋 ≜ if𝑏 {𝑐𝜋 } else {𝑐 ′𝜋 },
while 𝑏 {𝑐}𝜋 ≜ while 𝑏 {𝑐𝜋 },

𝑥 := sam(𝑛,𝑑, 𝑙)𝜋 ≜
{
𝑥 := sam(𝑛,𝑑 ′, 𝑙 ′) if ∃(𝑑 ′, 𝑙 ′) . 𝜋 (𝑛,𝑑, 𝑙) = (𝑑 ′, 𝑙 ′)
𝑥 := sam(𝑛,𝑑, 𝑙) otherwise,

obs(𝑑, 𝑟)𝜋 ≜ obs(𝑑, 𝑟).
The transformation recursively traverses 𝑐 , and applies 𝜋 to all the sample commands in 𝑐 . Note that

for any 𝜋 , there exists a total function 𝜋 ′ such that 𝑐𝜋 = 𝑐𝜋
′
for all 𝑐; the 𝜋 ′ coincides with 𝜋 in the

domain of 𝜋 , and outside of this domain, it is the identity function. But such 𝜋 ′ loses information

about the domain of 𝜋 , which plays a crucial role in our formalisation of the SPGE.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:12 Wonyeol Lee, Xavier Rival, and Hongseok Yang

We are primarily interested in semantics-preserving instances of · 𝜋 . The next definition helps
us to identify such instances.

Definition 4.1. A reparameterisation plan 𝜋 is valid if for all 𝑛 ∈ NameEx, 𝑑,𝑑 ′ ∈ DistEx, and
(_𝑦.𝑒), (_𝑦 ′.𝑒 ′) ∈ LamEx such that 𝜋 (𝑛,𝑑, _𝑦.𝑒) = (𝑑 ′, _𝑦 ′.𝑒 ′), the following condition holds: for all
states 𝜎 ∈ St and measurable subsets𝐴 ⊆ R,∫

1[J𝑒 [𝑟/𝑦]K𝜎 ∈𝐴] · J𝑑K𝜎 (𝑟) 𝑑𝑟 =
∫

1[J𝑒′ [𝑟/𝑦′]K𝜎 ∈𝐴] · J𝑑 ′K𝜎 (𝑟) 𝑑𝑟 . □ (6)

The condition says that the distribution obtained by sampling from 𝑑 and applying _𝑦.𝑒 is the

same as that obtained by sampling from 𝑑 ′ and applying _𝑦 ′.𝑒 ′. An example of a widely-used valid

reparameterisation plan maps its input as follows, whenever defined: 𝜋0 (𝑛, distN (𝑒1, 𝑒2), _𝑦.𝑒3) =
(distN (0, 1), _𝑦.𝑒3 [(𝑦×

√
𝑒2+𝑒1)/𝑦]),whereweassume𝑦 doesnot appear in𝑒1 and𝑒2, the substitution

in𝜋0 expresses the composition of two functions_𝑦.𝑒3 and_𝑦.(𝑦×
√
𝑒2+𝑒1), and

√− denotes a square-
root operator that handles non-positive arguments in the same way as distN (𝑒,−) does: if J𝑒2K𝜎 ≤ 0

and JdistN (𝑒1, 𝑒2)K𝜎 = _𝑟 .N(𝑟 ; J𝑒1K𝜎, 𝑟2) for some 𝑟2 > 0, then J
√
𝑒2K𝜎 =

√
𝑟2. The above plan satis-

fies the condition inEq. (6), because𝑦×√𝑟2+𝑟1with a sample𝑦 fromN(0, 1) is distributedbyN(𝑟1, 𝑟2).
We now show that · 𝜋 with a valid 𝜋 preserves semantics. For a command 𝑐 and 𝜎\ ∈ St[\], define

the value function 𝑣𝑐,𝜎\ : St[Name] → St[Name] as follows:

𝑣𝑐,𝜎\ (𝜎𝑛) (`) ≜ let 𝜎 ≜ 𝜎0 ⊕ 𝜎\ ⊕ 𝜎𝑛 in
{
J𝑐K𝜎 (val`) if J𝑐K𝜎 ∈ St and J𝑐K𝜎 (cnt`′) ≤ 1 for all ` ′

0 otherwise

where 𝜎0 ∈ St[(PVar \ \) ⊎ AVar] maps like to 1, and pr` toN(𝜎𝑛 (`); 0, 1) and val` to 𝜎𝑛 (`) for
every ` ∈ Name, and it also maps all the other variables to 0. The value function basically applies the

lambda functions in 𝑐’s sample commands to the corresponding random variables. The next theorem

proves that if 𝜋 is valid, the program transformation · 𝜋 preserves the semantics in the sense that

the integral of a function ℎ remains the same under 𝑐 and 𝑐𝜋 for any 𝑐 . Note that the two integrals

in the theorem are connected via the value functions of 𝑐 and 𝑐𝜋 .

Theorem 4.2. Let 𝜋 be a valid reparameterisation plan, and 𝑐 be a command. Then, for all𝜎\ ∈ St[\]
and all measurableℎ : St[Name] → R, we have∫

𝑑𝜎𝑛

(
𝑝𝑐,𝜎\ (𝜎𝑛) · ℎ(𝑣𝑐,𝜎\ (𝜎𝑛))

)
=

∫
𝑑𝜎𝑛

(
𝑝𝑐𝜋 ,𝜎\ (𝜎𝑛) · ℎ(𝑣𝑐𝜋 ,𝜎\ (𝜎𝑛))

)
where the left integral is defined if and only if the right integral is defined.

Remark4.3. One immediateyet important consequenceof the theorem is that if𝑝𝑐,𝜎\ is aprobability

density, so is 𝑝𝑐𝜋 ,𝜎\ . This consequence will be used in §4.2 and the proof of Theorem 4.5 later. □

4.2 Gradient Estimator via Program Transformation
Let 𝑐 be a command that always terminates and does not have a double-sampling error, and let

𝜎\ ∈ St[\]. We define the partial density function 𝑝 ⟨𝑆 ⟩𝑐,𝜎\ of 𝑐 over a subset 𝑆 ⊆ Name as

𝑝
⟨𝑆 ⟩
𝑐,𝜎\ : St[Name] → (0,∞), 𝑝

⟨𝑆 ⟩
𝑐,𝜎\ (𝜎𝑛) ≜

∏̀
∈𝑆

J𝑐K(𝜎0 ⊕ 𝜎\ ⊕ 𝜎𝑛) (pr`),

where 𝜎0 is set as in the definition of 𝑝𝑐,𝜎\ in Eq. (3). The partial density 𝑝
⟨𝑆 ⟩
𝑐,𝜎\ is essentially the full

density 𝑝𝑐,𝜎\ in Eq. (3) with the omission of the factors not mentioned in 𝑆 . Intuitively, it computes

the density of the random variables in 𝑆 conditioned on the random variables outside of 𝑆 .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:13

The SPGE computes an approximate gradient of the objective L in Eq. (5) using the program

transformation in the previous subsection. Its inputs are a model 𝑐𝑚 , a guide 𝑐𝑔, parameters \ to

optimise, and a reparameterisation plan 𝜋 , where

• 𝑐𝑚 , 𝑐𝑔, and 𝑐𝑔𝜋 always terminate and do not have a double-sampling error, and

• 𝑐𝑔 defines the normalised probability density 𝑝𝑐𝑔,𝜎\ for all 𝜎\ ∈ St[\].
(7)

Given these inputs, the SPGE computes an approximate gradient in three steps. First, it defines the

set rv(𝜋) ⊆ Name of random variables to be reparameterised:

rv(𝜋) ≜ {(𝛼, 𝑖) ∈ Name | (name(𝛼, _), _, _) ∈ dom(𝜋)}
where _ means some existentially quantified (meta) variable. Second, the SPGE transforms the guide

𝑐𝑔 to 𝑐𝑔
𝜋
, and draws a sample �̂�𝑛 from𝑝𝑐𝑔𝜋 ,𝜎\ .

10
Drawing a sample �̂�𝑛 makes sense here since𝑝𝑐𝑔𝜋 ,𝜎\ is

a probability density (i.e., it normalises to 1) by Remark 4.3. Another important point is that drawing

�̂�𝑛 can be done simply by executing 𝑐𝑔
𝜋
in the standard sampling semantics (not in our density

semantics), where each sample command is interpreted as a random draw, not as a density calculator.

Third, the SPGE computes the following approximation of ∇\L(𝜎\) and returns it as a result:
grad_est(𝜎\ ; �̂�𝑛) ≜

(
∇\ log𝑝 ⟨Name\rv (𝜋) ⟩

𝑐𝑔,𝜎\ (𝜎 ′𝑛)
)
· log(𝑝𝑐𝑚,𝜎\ (𝜎 ′𝑛)/𝑝𝑐𝑔,𝜎\ (𝜎 ′𝑛))

− ∇\ log𝑝 ⟨rv (𝜋) ⟩𝑐𝑔,𝜎\ (𝜎
′
𝑛) + ∇\ log𝑝𝑐𝑚,𝜎\ (𝜎 ′𝑛), for 𝜎 ′𝑛 ≜ 𝑣𝑐𝑔𝜋 ,𝜎\ (�̂�𝑛).

(8)

Recall that if a command 𝑐 always terminates, both the partial density 𝑝
⟨𝑆 ⟩
𝑐,𝜎\ (𝜎𝑛) and the full density

𝑝𝑐,𝜎\ (𝜎𝑛) can be computed simply by executing 𝑐 in our semantics and calculating the defining

formulas of both densities from the final state of the execution. Thus, all the terms in grad_est can

be computed by executing 𝑐𝑔 and 𝑐𝑚 according to our density semantics or differentiating the results

of these executions via, for instance, automatic differentiation as done in Pyro. Note that grad_est

applies two non-trivial optimisations, when compared with the (naive) SPGE explained in Eq. (2):

its first term involves a partial density of 𝑐𝑔 instead of the full density of 𝑐𝑔
𝜋
, and its second term

involves (again) a partial density of 𝑐𝑔 instead of the full density of 𝑐𝑔.

Is the SPGE correct in any sense? The answer depends on its inputs. If the inputs satisfy the

requirements that we will explain soon, the result of the SPGE is precisely ∇\L(𝜎\) on average, that
is, ∇\L(𝜎\) = E[grad_est(𝜎\ ; �̂�𝑛)], where the expectation is taken over the sample �̂�𝑛 used by the

SPGE. This property is called unbiasedness, and it plays the crucial role for ensuring that parameters

updated iteratively with estimated gradients converge to a local optimum.

Let us now spell out the requirements on the inputs of the SPGE. To do so, we need to introduce

one further concept for the reparameterisation plans 𝜋 .

Definition 4.4. A reparameterisation plan 𝜋 is simple if for all (𝑛,𝑑, _𝑦.𝑒) and (𝑛′, 𝑑 ′, _𝑦 ′.𝑒 ′) in
NameEx × DistEx × LamEx such that 𝑛 and 𝑛′ have the same string part, we have (𝑛,𝑑, _𝑦.𝑒) ∈
dom(𝜋) ⇐⇒ (𝑛′, 𝑑 ′, _𝑦 ′.𝑒 ′) ∈ dom(𝜋). □

The simplicity is one of the requirements that the SPGE imposes on 𝜋 . It ensures the following

property of the set rv(𝜋), which the SPGE relies on when computing grad_est by Eq. (8): rv(𝜋) (and
Name \ rv(𝜋)) over-approximates the set of random variables that, if sampled, are (and are not)

reparameterised by · 𝜋 . Specifically, it forbids 𝜋 from using any syntax-specific information of the

arguments of a sample command when it decides whether to transform the command or not. All the

requirementsof theSPGE, including the simplicity just explained, are summarised in thenext theorem.

Theorem 4.5. Let 𝑐𝑚 , 𝑐𝑔 , and 𝜋 be the inputs to the SPGE (i.e., they satisfy the assumptions in Eq. (7)).
Suppose that L(𝜎\) and ∇\L(𝜎\) are well-defined for every 𝜎\ ∈ St[\]. Further, assume that every
10
In practice, the SPGE often draws a fixed number of independent samples �̂�

(1)
𝑛 , . . . , �̂�

(𝑀)
𝑛 from 𝑝𝑐𝑔𝜋 ,𝜎\

and computes

1

𝑀

∑𝑀
𝑖=1 grad_est(𝜎\ ; �̂�

(𝑖)
𝑛) as an estimate of ∇\ L(𝜎\) . The presented results hold for this more general case as well.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:14 Wonyeol Lee, Xavier Rival, and Hongseok Yang

sample command in 𝑐𝑔 has _𝑦.𝑦 as its third argument, and 𝑐𝑔 does not have observe commands. Then,
for all 𝜎\ ∈ St[\],

∇\L(𝜎\) = E𝑝𝑐𝑔𝜋 ,𝜎\ (�̂�𝑛) [grad_est(𝜎\ ; �̂�𝑛)] (9)

if 𝜋 satisfies the following requirements:
(R1) 𝜋 is valid and simple.
(R2) The below functions from St[\] × St[Name] to (0,∞) are differentiable in \ ∪ rv(𝜋) jointly:
(𝜎\ , 𝜎𝑛) ↦−→ 𝑝𝑐𝑚,𝜎\ (𝜎𝑛), (𝜎\ , 𝜎𝑛) ↦−→ 𝑝

⟨rv (𝜋) ⟩
𝑐𝑔,𝜎\ (𝜎𝑛), (𝜎\ , 𝜎𝑛) ↦−→ 𝑝

⟨Name\rv (𝜋) ⟩
𝑐𝑔,𝜎\ (𝜎𝑛).

(R3) For all 𝜎𝑛 ∈ St[Name], the below functions on St[\] are differentiable in \ jointly:
𝜎\ ↦−→ 𝑣𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛), 𝜎\ ↦−→ 𝑝

⟨rv (𝜋) ⟩
𝑐𝑔
𝜋 ,𝜎\
(𝜎𝑛), 𝜎\ ↦−→ 𝑝

⟨Name\rv (𝜋) ⟩
𝑐𝑔
𝜋 ,𝜎\

(𝜎𝑛).
(R4) For all 𝜎\ ∈ St[\] and 𝜎𝑛 ∈ St[Name], we have ∇\𝑝 ⟨rv (𝜋) ⟩𝑐𝑔

𝜋 ,𝜎\
(𝜎𝑛) = 0.

(R5) The below equations hold for all 𝜎\ ∈ St[\]:

∇\
∫

𝑑𝜎𝑛

(
𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛)

)
=

∫
𝑑𝜎𝑛∇\

(
𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛)

)
,

∇\
∫

𝑑𝜎𝑛

(
𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛) · log

𝑝𝑐𝑚,𝜎\ (𝜎 ′𝑛)
𝑝𝑐𝑔,𝜎\ (𝜎 ′𝑛)

)
=

∫
𝑑𝜎𝑛 ∇\

(
𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛) · log

𝑝𝑐𝑚,𝜎\ (𝜎 ′𝑛)
𝑝𝑐𝑔,𝜎\ (𝜎 ′𝑛)

)
.

In the second equation, we write 𝜎 ′𝑛 for 𝑣𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛).

To be clear, 𝑓 : St[𝐾] → R𝑛 for 𝐾 ⊆ Var is said to be differentiable in 𝐾 ′ ⊆ 𝐾 jointly if for any

𝜏 ∈ St[𝐾 \ 𝐾 ′], 𝑓 |[𝜏] : St[𝐾 ′] → R𝑛 is (jointly) differentiable, where 𝑓 |[𝜏] (𝜎) ≜ 𝑓 (𝜎 ⊕ 𝜏).
In this work, we focus on the requirements (R2) and (R3) about smoothness. They require that five

density functions of 𝑐𝑚 , 𝑐𝑔 , and 𝑐𝑔
𝜋
, and the value function of 𝑐𝑔

𝜋
be differentiable in certain variables.

Wewill develop a program-analysis framework to check these differentiability requirements soundly

and automatically (§5), and will describe an algorithm to the SPGE variable-selection problem, using

the developed analysis framework (§6). The remaining requirements (R1), (R4), and (R5) are of less

interest in this work. (R1) and (R4) can be guaranteed by simple syntactic checks and our way of

constructing 𝜋 (LemmaD.1). (R5) follows from (R2) and (R3) under a regularity condition on densities

(Theorem D.2) which is usually satisfied in practice; in some cases, however, the condition might

not hold, and we leave it as future work to automatically discharge the condition (which is about

the integrability of local Lipschitz constants of densities) or more generally (R5).
11

We point out that Pyro uses the SPGE in their inference engine, but without checking the above

requirements. In particular, its default option simply uses the 𝜋 that transforms all the continuous

random variables in a guide, and this can easily violate the requirements and make the SPGE biased.

4.3 Local Lipschitzness for Relaxed Requirements
In Theorem 4.5, we considered the requirements (R2) and (R3) about the differentiability of density

and value functions, as a sufficient condition for the unbiasedness of the SPGE. They are, however,

sometimes too strong to hold in practice due to the use of popular non-differentiable functions

(e.g., ReLU). As we will see in §7, the requirements are indeed violated by some representative Pyro

programs even though the conclusion of Theorem 4.5 holds for those programs (i.e., the estimated

gradients by the SPGE for those programs are unbiased).

To validate the unbiasedness of the SPGE for more examples in practice, we consider the following

relaxation of the requirements (R2) and (R3), which changes differentiability to local Lipschitzness:

(R2’) The functions in (R2) are locally Lipschitz in \ ∪ rv(𝜋) jointly.
(R3’) For every 𝜎𝑛 ∈ St[Name], the functions in (R3) are locally Lipschitz in \ jointly.

11
Some sufficient conditions for a regularity condition similar to the one considered here have been studied for certain classes

of model-guide pairs, e.g., in [Lee et al. 2020].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:15

Here 𝑓 : 𝑉 → R𝑚 for𝑉 ⊆ R𝑛 is Lipschitz if there is𝐶 > 0 such that ∥ 𝑓 (𝑥) − 𝑓 (𝑥 ′)∥2 ≤ 𝐶 ∥𝑥 − 𝑥 ′∥2
for all 𝑥, 𝑥 ′ ∈ 𝑉 ; and 𝑓 is locally Lipschitz if for all 𝑥 ∈ R𝑛 , there is an open neighborhood𝑈 ⊆ R𝑛

of 𝑥 such that 𝑓 |𝑈 : 𝑈 → R𝑚 is Lipschitz. Further, 𝑓 : St[𝐾] → R𝑚 for 𝐾 ⊆ Var is locally Lips-
chitz in 𝐾 ′ ⊆ 𝐾 jointly if for any 𝜏 ∈ St[𝐾 \ 𝐾 ′], 𝑓 |[𝜏] : St[𝐾 ′] → R𝑚 is locally Lipschitz, where

𝑓 |[𝜏] (𝜎) ≜ 𝑓 (𝜎 ⊕ 𝜏). Although differentiability does not imply local Lipschitzness, continuous differ-
entiability does. Since most differentiable functions used in practice are continuously differentiable,

asking for (R2’) and (R3’) amounts to relaxing the requirements of (R2) and (R3) in practice.

We choose local Lipschitzness as an alternative to differentiability in (R2) and (R3) for two main

reasons. First, local Lipschitzness is satisfied by most functions used in practice, which can even be

non-differentiable (e.g., ReLU). This would allow us to validate the unbiasedness of the SPGE for

more programs, even when they use non-differentiable functions. Second, using local Lipschitzness

in (R2) and (R3) does not break the results given in §4.2, even though local Lipschitzness is more

practically permissive than differentiability (as explained above). In particular, we have a counterpart

of Theorem 4.5 that uses (R2’) and (R3’) instead of (R2) and (R3):

Theorem 4.6. Consider the setup of Theorem 4.5. Then, for all 𝜎\ ∈ St[\], Eq. (9) holds if 𝜋 satisfies
the requirements (R1), (R2’), (R3’), (R4), and (R5).

We can obtain Theorem 4.6 thanks to three properties of local Lipschitzness: locally Lipschitz func-

tions are closed under function composition, have well-defined gradients almost everywhere, and

satisfy the chain rule almost everywhere in restricted settings (Lemma E.1). Although the latter

two properties are weaker than the corresponding properties of differentiability (i.e., differentiable

functions always have well-definedness gradients and satisfy the chain rule), they are still strong

enough to prove the theorem.

As in §4.2, we focus on the requirements (R2’) and (R3’) and less on (R1), (R4), and (R5). Note that

(R1) and (R4) can be checked syntactically in the same way as discussed in §4.2. On the other hand,

(R5) follows from (R2’) and (R3’) now under two (instead of one) regularity conditions on densities

(Theorem E.2), where the first condition is the one mentioned in §4.2 and the second (new) condition

is about some form of almost-everywhere differentiability of densities. Although we believe that

the two regularity conditions would usually hold in practice, they can be violated in some cases that

involve locally Lipschitz, non-differentiable functions; hence, it would be worthwhile to devise an

automatic way of checking the two conditions or more generally (R5), which we leave as future work.

Because local Lipschitzness property has wider coverage than differentiability in practice while

ensuring that the results in §4.2 remain valid, our implementation and experiments consider the

option of using (R2’) and (R3’) as well as that of using (R2) and (R3); see §5.3–§7 for details.

5 PROGRAMANALYSIS FOR SMOOTHNESS
Recall that our goal is to develop an algorithm for the SPGE variable-selection problem in Defini-

tion 2.1, which asks for finding a large set 𝑆 of random variables with a certain property when given

a model 𝑐𝑚 , a guide 𝑐𝑔, and a reparameterisation plan 𝜋0. When rephrased using the terminologies

that we covered so far, finding such an 𝑆 amounts to finding a restriction 𝜋 of the given 𝜋0 such that

(𝑐𝑚, 𝑐𝑔, 𝜋) satisfies the requirements in Theorem 4.5 (or 4.6). Thus, the key for developing a desired

algorithm for the problem lies in constructing an automaticmethod for proving that the requirements

in Theorem 4.5 (or 4.6), in particular, the smoothness requirements (R2) and (R3) (or (R2’) and (R3’))

are met. In this section, we propose a program analysis for smoothness properties, which can help

find 𝜋 that meets the smoothness requirements, and which, together with the optimiser in the next

section, leads to an algorithm for solving the SPGE variable-selection problem.

We first define a parametric abstraction for smoothness properties (§5.1). We then describe a

program analysis based on this abstraction and prove the soundness of the analysis (§5.2). We finally

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:16 Wonyeol Lee, Xavier Rival, and Hongseok Yang

instantiate the analysis to differentiability and local Lipschitzness (§5.3). The results in this section

are not limited to PPLs, but are applicable to general imperative programming languages.

5.1 Parametric Abstraction for Smoothness Properties
At a high level, our parametric abstraction for smoothness properties is built out of two components.

The first is a predicate over commands that expresses a target smoothness property but in a condi-

tional form. The predicate is parameterised by two sets of variables,𝐾 for the input variables and

𝐿 for the output variables. Intuitively, the predicate holds for a command if conditioning the input

variables outside of 𝐾 to any fixed values and varying only the ones in 𝐾 makes the command a

smooth function on the output variables in 𝐿. Our program analysis tracks a conditional smoothness

property formalised by this predicate, and in so doing, it identifies a smooth part of a given command,

even when the command fails to be so with respect to some variables.

The second component is also a predicate over commands, but it deals with dependency, instead of

smoothness. It is again parameterised by𝐾 and 𝐿, and expresses that to compute the output variables

in 𝐿, a command accesses only the input variables in𝐾 . Our program analysis tracks dependency

formalised by this predicate, so as to achieve high precision, especially when handling sequential

composition. To see this, imagine that we want to check the differentiability of a sequence 𝑐; 𝑐 ′. A
natural approach is to use the chain rule. If the dependency-tracking part of our analysis is missing,

in order to establish that the output on a variable 𝑣 by the sequence is differentiable in an input

variable 𝑢, the analysis should show the output on 𝑣 by the second command 𝑐 ′ is differentiable
in all variables, and the output on any variable by the first command 𝑐 is differentiable in 𝑢. This

requirement on 𝑐 and 𝑐 ′ is too strong. Often, 𝑐 ′ uses only a small number of variables to compute 𝑣 ,

and it is sufficient to require that just on those used variables, 𝑐 should be differentiable in𝑢. Similarly,

𝑐 commonly updates only a small number of variables using 𝑢, and it is enough to require that

just in those𝑢-dependent variables, the second command 𝑐 ′ is differentiable when computing the

output 𝑣 . The dependency-tracking part lets our analysis carry out such reasoning and achieve better

precision. Formally, this means our analysis uses a version of reduced product [Cousot and Cousot

1979] between dependency analysis and the analysis that tracks the target smoothness property.

We now formally describe each of these components as well as their combination.

5.1.1 Family of Smoothness Predicates. Our program analysis assumes that a target smoothness

property is specified in terms of a family of predicates,

𝜙 = (𝜙𝐾,𝐿 : 𝐾, 𝐿 ⊆ Var),
where 𝜙𝐾,𝐿 is a set of partial functions from St[𝐾] to St[𝐿] (i.e., 𝜙𝐾,𝐿 ⊆ [St[𝐾] ⇀ St[𝐿]]).

Example 5.1 (Differentiability). In the instantiation of our program analysis for differentiability,

we use the family𝜙 (𝑑) where for all𝐾, 𝐿 ⊆ Var, a partial function 𝑓 : St[𝐾] → St[𝐿] belongs to𝜙 (𝑑)
𝐾,𝐿

if and only if (i) dom(𝑓) is open and (ii) 𝑓 is (jointly) differentiable in its domain. □

At first, one may wonder why we use a family of 𝜙𝐾,𝐿 predicates instead of a single predicate 𝜙0
over [St→ St⊥]. The reason is that, as mentioned above, the analysis aims at a conditional variant of

the traditional notion of smoothness. For instance, instead of checking that a function 𝑓 : St→ St⊥ is
differentiableonSt\𝑓 −1 ({⊥}), theanalysisprovesdifferentiabilityconditionedoncertainvariablesbe-
ingfixed: ifwefixthe inputvariables inVar\𝐾 andvary just those in𝐾 in the initial state, and lookat the

outputvariables in𝐿 only, then the function 𝑓 becomesdifferentiable, although itmightnotbe sowhen

all input/output variables are considered. To express this, we need thewhole family of𝜙𝐾,𝐿 predicates.

This notion of conditional differentiability is similar to, but not the same as, so called partial

differentiability. Partial differentiability in𝐾 says that, for every 𝑣 ∈ 𝐾 , if we fix all the input vari-
ables except 𝑣 , including those in 𝐾 \ {𝑣}, and consider the output variables in 𝐿 only, 𝑓 becomes

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:17

differentiable.
12
As we will show in Remark 5.12, the set of partially-differentiable functions is not

closed under a certain operator, but we need the closure to ensure that our program analysis is sound.

Our conditional differentiability does not suffer from this issue.

5.1.2 Smoothness Abstraction. Based on the family 𝜙 , we build a predicate Φ that captures the

smoothness of commands. The Φ constrains functions from St to St⊥, unlike 𝜙𝐾,𝐿 . For 𝐾, 𝐿 ⊆ Var
with𝐾 ⊇ 𝐿, define 𝜋𝐾,𝐿 to be the projection from St[𝐾] to St[𝐿].

Definition 5.2. The smoothness abstraction Φ is the predicate over a function 𝑓 ∈ [St→ St⊥] and
variable sets𝐾, 𝐿 ⊆ Var. It is satisfied by (𝑓 , 𝐾, 𝐿) if for all 𝜏 ∈ St[Var \ 𝐾], the predicate 𝜙𝐾,𝐿 holds
for the following partial function 𝑔 : St[𝐾] ⇀ St[𝐿]: dom(𝑔) ≜ {𝜎 ∈ St[𝐾] | 𝑓 (𝜎 ⊕ 𝜏) ∈ St} and
𝑔(𝜎) ≜ (𝜋Var,𝐿 ◦ 𝑓) (𝜎 ⊕ 𝜏) for 𝜎 ∈ dom(𝑔). We denote the satisfaction of Φ by

|= Φ(𝑓 , 𝐾, 𝐿). □

Note that the function𝑔 is constructed from 𝑓 by fixing the Var \ 𝐾 part of the input state to 𝜏 , and

looking at only the 𝐿 part of the output. This construction is precisely the one used in the informal

definition of conditional differentiability described above, and its use reflects the fact that our program

analysis attempts to prove a conditional smoothness property.

5.1.3 Dependency Abstraction. Our abstract domain has a component for tracking dependency

between input-output variables. Dependency here means that a given input variable is used for

computing a given output variable. We define a predicate Δ that has a similar format asΦ. Intuitively,
Δ(𝑓 , 𝐾, 𝐿) holds if and only if the 𝐿 part of the output of 𝑓 depends at most on the𝐾 part of the input

to 𝑓 . To define Δ formally, for 𝐾 ⊆ Var, let ∼𝐾 be the following equivalence relation over states:

𝜎 ∼𝐾 𝜎 ′ if and only if 𝜎 (𝑣) = 𝜎 ′(𝑣) for all 𝑣 ∈ 𝐾 .
Definition 5.3. The dependency abstraction Δ is the predicate on 𝑓 ∈ [St→ St⊥] and𝐾, 𝐿 ⊆ Var

that holds if for all 𝜎, 𝜎 ′ ∈ St with 𝜎 ∼𝐾 𝜎 ′, we have (𝑓 (𝜎) ∈ St ⇐⇒ 𝑓 (𝜎 ′) ∈ St) and (𝑓 (𝜎) ∈
St =⇒ 𝑓 (𝜎) ∼𝐿 𝑓 (𝜎 ′)). We denote the satisfaction of Δ by

|= Δ(𝑓 , 𝐾, 𝐿). □

5.1.4 Combined Abstraction. We bring together the two abstractions that we just defined, and

construct the final abstract domainD♯
used by our program analysis.

Intuitively, each element of D♯
is a predicate on a function 𝑓 ∈ [St → St⊥] expressed by the

conjunction of the following form:

∧𝑚
𝑖=1 Φ(𝑓 , 𝐾𝑖 , 𝐿𝑖) ∧

∧𝑛
𝑗=1 Δ(𝑓 , 𝐾 ′𝑗 , 𝐿′𝑗). A direct but naive way of

implementing this intuition is to letD♯
be the collection of all the constraints of this form, but it

permits too many constraints and leads to a costly program analysis. We take a more economical

alternative that further restricts the allowed form of the constraints. The alternative requires that the

conjunction from above should be constructed out of twomappings 𝑝 and 𝑑 from output variables

to input variable sets, and a set𝑉 of input variables. The 𝑝 component describes smoothness, and

the 𝑑 and𝑉 components dependency. They together encode the constraint∧
𝑣∈Var

Φ(𝑓 , 𝑝 (𝑣), {𝑣}) ∧
∧
𝑢∈Var

Δ(𝑓 , 𝑑 (𝑢), {𝑢}) ∧ Δ(𝑓 ,𝑉 , ∅) .

Thus, a function 𝑓 ∈ [St→ St⊥] satisfies the constraint encoded by 𝑝 ,𝑑 , and𝑉 if (i) for every output

variable 𝑣 , when we fix the values of all the input variables outside of 𝑝 (𝑣), the (partial) function
𝜎 ↦−→ 𝑓 (𝜎) (𝑣) is smooth (e.g., differentiable); (ii) for every output variable𝑢, the (partial) function

𝜎 ↦−→ 𝑓 (𝜎) (𝑢) does not access any variable outside of 𝑑 (𝑢) to compute the value of𝑢; and (iii) the

values of input variables in𝑉 determine whether 𝑓 returns⊥ or not.

12
Conditional differentiability extends partial differentiability in the sense that the latter can be expressed as a conjunction of

the former (but not vice versa): 𝑓 is partially differentiable in𝐾 if andonly if 𝑓 is conditionally differentiable in {𝑣 } for all 𝑣 ∈ 𝐾 .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:18 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Definition 5.4. The abstract domainD♯
consists of triples (𝑝,𝑑,𝑉) ∈ [Var→ P(Var)]2 × P(Var),

called abstract state, such that 𝑝 (𝑣) ⊇ 𝑑 (𝑣)𝑐 and 𝑑 (𝑣) ⊇ 𝑉 for all 𝑣 ∈ Var, where −𝑐 is the standard
operation for set complement. That is,

D♯ ≜ {(𝑝, 𝑑,𝑉) ∈ [Var→ P(Var)]2 × P(Var) | 𝑝 (𝑣) ⊇ 𝑑 (𝑣)𝑐 and 𝑑 (𝑣) ⊇ 𝑉 for all 𝑣 ∈ Var}.
We order abstract states as follows: (𝑝, 𝑑,𝑉) ⊑ (𝑝 ′, 𝑑 ′,𝑉 ′) if and only if𝑉 ⊆ 𝑉 ′ and for all 𝑣 ∈ Var,
𝑝 (𝑣) ⊇ 𝑝 ′(𝑣) and 𝑑 (𝑣) ⊆ 𝑑 ′(𝑣). These abstract states are concretised by𝛾 : D♯ → P([St→ St⊥]):
𝑓 ∈ 𝛾 (𝑝,𝑑,𝑉) ⇐⇒ |= Δ(𝑓 ,𝑉 , ∅), |= Φ(𝑓 , 𝑝 (𝑣), {𝑣}), and |= Δ(𝑓 , 𝑑 (𝑣), {𝑣}) for all 𝑣 ∈ Var. □ (10)

Note that the definition of D♯
contains two conditions. The first condition 𝑝 (𝑣) ⊇ 𝑑 (𝑣)𝑐 comes

from our assumption that if a function does not depend on a variable𝑢, it is smooth in𝑢. This and

other assumptions of the analysis will be explained shortly in §5.2.2. The other condition 𝑑 (𝑣) ⊇ 𝑉
originates from the relationship that if Δ(𝑓 , 𝐾, {𝑣}) holds, so does Δ(𝑓 , 𝐾, ∅).

Example 5.5 (Differentiability). Consider the setup of Example 5.1 and the program 𝑐 ≡ (𝑦 :=

𝑥 ∗ 𝑥 ; if (𝑥 ≥ 0) {𝑠 := 1} else {𝑠 := −1}). Let (𝑝,𝑑,𝑉) be the smallest abstract state that describes

the program. In this program, 𝑠 is not differentiable in 𝑥 , but𝑦 is. So, 𝑝 (𝑠) = Var \ {𝑥} ⊇ {𝑦, 𝑠} and
𝑝 (𝑦) = Var ⊇ {𝑥,𝑦, 𝑠}. Note that 𝑝 (𝑠) contains the input variables 𝑠 and𝑦 because by not depending
on those input variables, the output 𝑠 is differentiable in those variables. For the dependency part,

we have 𝑑 (𝑠) = 𝑑 (𝑦) = {𝑥} and𝑉 = ∅. □

5.2 Parametric Static ProgramAnalysis
Our program analysis is based on abstract interpretation [Cousot and Cousot 1977], and computes an

approximation of the concrete semantics J𝑐K of a given command 𝑐 using the abstract domainD♯
. We

formalise this computation by the abstract semantics of 𝑐 , which defines J𝑐K♯ ∈ D♯
by induction on

the structure of commands, and over-approximates J𝑐K in the sense of the concretization𝛾 in Eq. (10).

5.2.1 Analysis Definition. Fig. 3 shows the abstract semantics of J𝑐K♯. The overall structure of the
semantics follows the standard compositional semantics of an imperative language. For instance, the

abstract semantics of sequential composition is defined in terms of those of constituent commands,

and the semantics of a loop is the least fixed point of a monotone operator overD♯
. However, the

specifics of the semantics include non-standard details, and we spell them out by going through the

defining clauses of J𝑐K♯.
The definition of JskipK♯ formalises the effect of skip on smoothness and dependency. The def-

inition says that skip computes each output variable 𝑣 in a smooth manner in all input variables,

and in so doing, it creates the dependency between the variable 𝑣 to itself at the input state. The𝑉

part of JskipK♯ is the empty set since skip always terminates.

The next case is 𝑥 := 𝑒 . Its abstract semantics records the smoothness and dependency information

of the updated variable 𝑥 by analysing the expression 𝑒 . For the smoothness part, the semantics

invokes the subroutine L𝑒M♯ that computes anunder-approximation of the set of variables inwhich the

expression 𝑒 is smooth (and thus over-approximates the smoothness property of 𝑒).13 For the depen-

dency part, J𝑥 := 𝑒K♯ computes the set of all the free variables of 𝑒 so as to get an over-approximation

of all variables thatmay affect the value of𝑒 . For variables other than𝑥 , J𝑥 := 𝑒K♯ behaves like JskipK♯.
The abstract semantics of a sequence 𝑐; 𝑐 ′ composes those of the sub-commands 𝑐 and 𝑐 ′. It uses

the liftings 𝑓∪, 𝑓∩ : P(Var) → P(Var) of functions 𝑓 of type Var → P(Var), which are defined

as follows: 𝑓∪ (𝑉) ≜
⋃
𝑣∈𝑉 𝑓 (𝑣) and 𝑓∩ (𝑉) ≜

⋂
𝑣∈𝑉 𝑓 (𝑣). The abstract semantics J𝑐; 𝑐 ′K♯ constructs

13
The subroutine L𝑒M♯ ⊆ Var is defined inductively on 𝑒 , and differs for different target smoothness properties. For instance, if

the target property is differentiability,wehave L𝑟M♯ ≜ L𝑥M♯ ≜ Var, L𝑒1 + 𝑒2M♯ ≜ L𝑒1M♯∩L𝑒2M♯ , LReLU(𝑒)M♯ ≜ Var∩fv (𝑒)𝑐 , etc.
On the other hand, if the target property is local Lipschitzness, the subroutine changes for some cases: e.g., LReLU(𝑒)M♯ ≜ L𝑒M♯ .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:19

JskipK♯ ≜ (_𝑣.Var, _𝑣 .{𝑣}, ∅),
J𝑥 := 𝑒K♯ ≜ ((_𝑣. 𝑣 ≡𝑥 ? L𝑒M♯ : Var), (_𝑣. 𝑣 ≡𝑥 ? fv(𝑒) : {𝑣}), ∅),
J𝑐; 𝑐 ′K♯ ≜ let (𝑝, 𝑑,𝑉) ≜ J𝑐K♯ and (𝑝 ′, 𝑑 ′,𝑉 ′) ≜ J𝑐 ′K♯ in (𝑝 ′′, 𝑑 ′′,𝑉 ′′)

where 𝑝 ′′(𝑣) ≜ (𝑉 ∪ 𝑝∩ (𝑑 ′(𝑣))𝑐 ∪ 𝑑∪ (𝑝 ′(𝑣)𝑐))𝑐 ,
𝑑 ′′(𝑣) ≜ 𝑉 ∪ 𝑑∪ (𝑑 ′(𝑣)), and𝑉 ′′ ≜ 𝑉 ∪ 𝑑∪ (𝑉 ′),

Jif𝑏 {𝑐} else {𝑐 ′}K♯ ≜ let (𝑝, 𝑑,𝑉) ≜ J𝑐K♯ and (𝑝 ′, 𝑑 ′,𝑉 ′) ≜ J𝑐 ′K♯ in (𝑝 ′′, 𝑑 ′′,𝑉 ′′)
where 𝑝 ′′(𝑣) ≜ fv(𝑏)𝑐 ∩ 𝑝 (𝑣) ∩ 𝑝 ′(𝑣),

𝑑 ′′(𝑣) ≜ fv(𝑏) ∪ 𝑑 (𝑣) ∪ 𝑑 ′(𝑣), and𝑉 ′′ ≜ fv(𝑏) ∪𝑉 ∪𝑉 ′,
Jwhile𝑏 {𝑐}K♯ ≜ let (𝑝, 𝑑,𝑉) ≜ J𝑐K♯ in fix 𝐹 ♯

where 𝐹 ♯ (𝑝0, 𝑑0,𝑉0) ≜ (𝑝 ′, 𝑑 ′,𝑉 ′),
𝑝 ′(𝑣) ≜ fv(𝑏)𝑐 ∩ (𝑉 ∪ 𝑝∩ (𝑑0 (𝑣))𝑐 ∪ 𝑑∪ (𝑝0 (𝑣)𝑐))𝑐 ,
𝑑 ′(𝑣) ≜ fv(𝑏) ∪ (𝑉 ∪ 𝑑∪ (𝑑0 (𝑣))) ∪ {𝑣}, and𝑉 ′ ≜ fv(𝑏) ∪ (𝑉 ∪𝑑∪ (𝑉0)),

Jobs(distN (𝑒1, 𝑒2), 𝑟)K♯ ≜ (𝑝, 𝑑, ∅)
where 𝑝 (𝑣) ≜ (𝑣 ≡ like) ? Llike × pdfN (𝑟 ; 𝑒1, 𝑒2)M♯ : Var,

and 𝑑 (𝑣) ≜ (𝑣 ≡ like) ? {like} ∪ fv(𝑒1) ∪ fv(𝑒2) : {𝑣},
J𝑥 := sam(𝑛, distN (𝑒1, 𝑒2), _𝑦.𝑒 ′)K♯ ≜ (𝑝, 𝑑, ∅) for 𝑛 = name(𝛼, 𝑟) with 𝑟 ∈ R

where ` ≜ create_name(𝛼, 𝑟),

𝑝 (𝑣) ≜

L𝑒 ′[`/𝑦]M♯ if 𝑣 ∈ {𝑥, val`}
LpdfN (`; 𝑒1, 𝑒2)M♯ if 𝑣 ≡ pr`
Lcnt` + 1M♯ if 𝑣 ≡ cnt`
Var otherwise,

and 𝑑 (𝑣) ≜

fv(𝑒 ′[`/𝑦]) if 𝑣 ∈ {𝑥, val`}
{`} ∪ fv(𝑒1) ∪ fv(𝑒2) if 𝑣 ≡ pr`
{𝑣} otherwise,

J𝑥 := sam(𝑛, distN (𝑒1, 𝑒2), _𝑦.𝑒 ′)K♯ ≜ (𝑝,𝑑, ∅) for 𝑛 = name(𝛼, 𝑒) with 𝑒 ∉ R

where 𝑝 (𝑣) ≜

fv(𝑒)𝑐 ∩⋂

`=(𝛼,_) ∈Name L𝑒 ′[`/𝑦]M♯ if 𝑣 ≡ 𝑥
fv(𝑒)𝑐 ∩ L𝑒 ′[`/𝑦]M♯ if 𝑣 ≡ val` for ` = (𝛼, _)
fv(𝑒)𝑐 ∩ LpdfN (`; 𝑒1, 𝑒2)M♯ if 𝑣 ≡ pr` for ` = (𝛼, _)
fv(𝑒)𝑐 ∩ Lcnt` + 1M♯ if 𝑣 ≡ cnt` for ` = (𝛼, _)
Var otherwise,

and 𝑑 (𝑣) ≜

fv(𝑒) ∪⋃

`=(𝛼,_) ∈Name fv(𝑒 ′[`/𝑦]) if 𝑣 ≡ 𝑥
fv(𝑒) ∪ {val`} ∪ fv(𝑒 ′[`/𝑦]) if 𝑣 ≡ val` for ` = (𝛼, _)
fv(𝑒) ∪ {pr`, `} ∪ fv(𝑒1) ∪ fv(𝑒2) if 𝑣 ≡ pr` for ` = (𝛼, _)
fv(𝑒) ∪ {cnt`} if 𝑣 ≡ cnt` for ` = (𝛼, _)
{𝑣} otherwise.

Fig. 3. Abstract semantics of commands defining J𝑐K♯ ∈ D♯ .

the dependency part 𝑑 ′′ by composing 𝑑 from J𝑐K♯ and 𝑑 ′ from J𝑐 ′K♯ after lifting the former. Note

the inclusion of the set 𝑉 in the definition of 𝑑 ′′. This is to account for the case that 𝑑 ′(𝑣) in the

definition is the empty set; in that case,𝑑∪ (𝑑 ′(𝑣)) is empty as well and does not have any information

about termination. The smoothness part 𝑝 ′′ of J𝑐; 𝑐 ′K♯ is more involved, and implements the intuition

described briefly in §5.1. In order to conclude that input variables in𝑉0 together smoothly affect an

output variable 𝑣 in the computation of 𝑐; 𝑐 ′, the 𝑝 ′′ considers the intermediate state after the first

command 𝑐 , and forms two groups of variables at that intermediate state: 𝑑 ′(𝑣) and 𝑝 ′(𝑣)𝑐 . Note that

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:20 Wonyeol Lee, Xavier Rival, and Hongseok Yang

the desired smoothness property for the input variables in𝑉0 and the output variable 𝑣 may fail if

the first command 𝑐 uses some variable𝑢0 ∈ 𝑉0 non-smoothly to update a variable𝑢 ′
0
in 𝑑 ′(𝑣), or it

uses some variable 𝑢1 ∈ 𝑉0 to compute the value of a variable 𝑢 ′
1
∈ 𝑝 ′(𝑣)𝑐 . In the former case, the

non-smoothness of 𝑐 causes an issue, and in the latter case, the non-smoothness of 𝑐 ′ causes an issue.
The 𝑝 ′′ collects the input variables that avoid these two failure modes and also do not influence the

termination of the sequence. As we show in our soundness theorem, doing so is sufficient because

it amounts to using a version of chain rule for the target smoothness property.

The abstract semantics of an if command conservatively assumes that any variable in its condition

𝑏 may affect the value of any output variable (by influencing whether the true or false branch of the

command gets executed) and this influence is potentially non-smooth. For every output variable

𝑣 , the smooth set 𝑝 ′′(𝑣) for the if command implements this assumption by excluding free variables

in 𝑏, and the computed dependency set does the same but this time by including free variables in 𝑏.

The abstract semantics of a loop computes the least fixed point of a monotone operator 𝐹 ♯ : D♯ →
D♯

using the standard Kleene iteration. The operator 𝐹 ♯ describes the effect of one iteration of the

loop, and it is derived from the standard loop unrolling and our abstract semantics of sequencing

and the if command.

The abstract semantics of an observe command obs(distN (𝑒1, 𝑒2), 𝑟) uses the fact that the com-

mand has the same concrete semantics as the assignment like := like × pdfN (𝑟 ; 𝑒1, 𝑒2), where pdfN
is the density function of the normal distribution. The semantics computes (𝑝, 𝑑,𝑉) according to
that of the assignment, which we explained earlier.

The final case is the abstract semantics of a sample command. The semantics performs a case

analysis on the first argument of sam. If it is a constant expression not involving any variables, then
the abstract semantics constructs the name ` of the sampled random variable, and updates 𝑝 , 𝑑 , and

𝑉 according to the concrete semantics of the command. Otherwise, the abstract semantics acknowl-

edges that the precise name ` of the random variable cannot be known statically, and performs so

calledweak update by joining two pieces of information before and after the update of the command

in the concrete semantics. Note that the abstract semantics does not require the third argument

of sam should be the identity function. The ability of dealing with a general function in the third

argument is needed since our analysis is intended to be applied to programs after the transformation

of the SPGE, which may introduce such an argument.

The abstract semantics is well-defined under the following relatively weak assumption:

Assumption 1 (Expression analysis and free variables). L𝑒M♯ ⊇ fv(𝑒)𝑐 for all expressions 𝑒 .
This assumption is satisfied by the instantiations of the semantics with differentiability and local

Lipschitzness, which are used in our implementation. It will be assumed in the rest of the paper.

Theorem 5.6. If Assumption 1 holds, then for all commands 𝑐 , we have J𝑐K♯ ∈ D♯, that is, when we
let (𝑝,𝑑,𝑉) ≜ J𝑐K♯, we have 𝑝 (𝑣) ⊇ 𝑑 (𝑣)𝑐 and 𝑑 (𝑣) ⊇ 𝑉 for all variables 𝑣 ∈ Var.

Example 5.7 (Differentiability). Consider the differentiability property and the example program of

Example 5.5. Let (𝑝1, 𝑑1,𝑉1) and (𝑝2, 𝑑2,𝑉2) be the results of analysing the first assignment command

𝑦 := 𝑥 ∗ 𝑥 and the following if command of the program. Then,

(𝑝1, 𝑑1,𝑉1) = (_𝑣.Var, _𝑣 . (𝑣≡𝑦) ? {𝑥} : {𝑣}, ∅), (𝑝2, 𝑑2,𝑉2) = (_𝑣.{𝑥}𝑐 , _𝑣 . (𝑣≡𝑠) ? {𝑥} : {𝑥, 𝑣}, {𝑥}).
Let (𝑝,𝑑,𝑉) be the analysis result for the entire program. Then,

𝑝 (𝑣) =
(
𝑉1 ∪ (𝑝1)∩ (𝑑2 (𝑣))𝑐 ∪ (𝑑1)∪ (𝑝2 (𝑣)𝑐)

)𝑐
= 𝑑1 (𝑥)𝑐 = {𝑥}𝑐 , 𝑉 = 𝑉1 ∪ (𝑑1)∪ (𝑉2) = {𝑥}.

Also,𝑑 (𝑣) = 𝑉1 ∪ (𝑑1)∪ (𝑑2 (𝑣)) = {𝑥}. As shown in Fig. 3, the variable 𝑥 that may affect the condition

expression of the if command is removed from the smoothness sets, and 𝑝 (𝑠) = 𝑝 (𝑦) = {𝑥}𝑐 . Note
that this result is conservative with respect to𝑦. □

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:21

5.2.2 Analysis Soundness and Assumptions. The soundness of our analysis states that for every
command 𝑐 , its abstract semantics J𝑐K♯ ∈ D♯

over-approximates the concrete semantics J𝑐K via 𝛾 :
J𝑐K ∈ 𝛾 (J𝑐K♯). The soundness is conditioned on Assumption 1 and six new assumptions. One of the

new assumptions is about the soundness of L𝑒M♯. The remaining five assumptions are concerned with

the predicate family for the target smoothness property𝜙 = (𝜙𝐾,𝐿 : 𝐾, 𝐿 ⊆ Var), and say that certain
canonical operators are smooth according to 𝜙 so that using them in the abstract semantics should

not cause an issue. In this subsection, we present the six assumptions one by one, and sketch how

those assumptions are related to the soundness.

We start with the assumption that the analysis of each expression L𝑒M♯ under-approximates the

set of variables in which the evaluation of 𝑒 is smooth (and thus over-approximates the smoothness

property of 𝑒).

Assumption 2 (Expression analysis soundness). For all expressions 𝑒 , variables 𝑥 , subsets
𝐾, 𝐿 ⊆ Var, and states 𝜏 ∈ St[Var \ 𝐾] such that 𝐾 = L𝑒M♯ and 𝐿 = {𝑥}, if we let 𝑔 : St[𝐾] → St[𝐿]
be the function defined by 𝑔(𝜎) ≜ [𝑥 ↦→ J𝑒K(𝜎 ⊕ 𝜏)], the function 𝑔 satisfies 𝜙𝐾,𝐿 (i.e., 𝑔 ∈ 𝜙𝐾,𝐿).

This assumption is used in our soundness argument whenever the abstract semantics uses L𝑒M♯ for
computing smoothness information about an expression 𝑒 .

The next two assumptions assert the smoothness of the standard operators on the product spaces.

Assumption 3 (Projection). For all𝐾, 𝐿 ⊆ Varwith𝐾 ⊇ 𝐿, the projection 𝜋𝐾,𝐿 satisfies 𝜙𝐾,𝐿 .

Assumption 4 (Pairing). For all 𝐾, 𝐿,𝑀 ⊆ Var with 𝐿 ∩ 𝑀 = ∅, if 𝑓 ∈ 𝜙𝐾,𝐿 and 𝑔 ∈ 𝜙𝐾,𝑀 ,
we have ⟨𝑓 , 𝑔⟩ ∈ 𝜙𝐾,𝐿∪𝑀 , where ⟨𝑓 , 𝑔⟩ is the pairing of two partial functions: ⟨𝑓 , 𝑔⟩(𝜎) ≜ if (𝜎 ∈
dom(𝑓) ∩ dom(𝑔)) then 𝑓 (𝜎) ⊕ 𝑔(𝜎) else undefined.

Note that St[𝐿 ∪𝑀] is isomorphic to St[𝐿] × St[𝑀], the product space that we referred to above.
The assumptions say that the projection is smooth, and the pairing of smooth functions is smooth.

Our analysis uses Assumption 3 to deal with variables not modified by a command. For instance,

when analysing an assignment 𝑥 := 𝑒 , the analysis uses Assumption 3 and concludes that on every

output variable 𝑣 other than 𝑥 , the assignment is smooth in all the input variables. Assumption 4 is

used to justify the handling of a sequence 𝑐 ; 𝑐 ′ by our analysis, in particular, the part that the analysis
combines smoothness information over multiple output variables after the first command 𝑐 .

The projection and pairing assumptions are about how shrinking and expanding output variables

affect the target smoothness property. The next restriction assumption is about shrinking the input

variables. It validates the weakening of the 𝐾 part of |= Φ(𝑓 , 𝐾, 𝐿), and is used in the abstract

semantics of 𝑐; 𝑐 ′ (and other composite commands).

Assumption 5 (Restriction). For all𝐾,𝐾 ′, 𝐿 ⊆ Varwith𝐾 ⊇ 𝐾 ′, and 𝜏 ∈ St[𝐾 \ 𝐾 ′], if 𝑓 ∈ 𝜙𝐾,𝐿 ,
then we have 𝑔 ∈ 𝜙𝐾 ′,𝐿 , where 𝑔(𝜎) ≜ if (𝜎 ⊕ 𝜏 ∈ dom(𝑓)) then 𝑓 (𝜎 ⊕ 𝜏) else undefined.

The following assumption says that the function composition preserves smoothness. It is related

to the chain rule for differentiation, and used to justify the abstract semantics of a sequence 𝑐; 𝑐 ′.

Assumption6 (Composition). Forall𝐾, 𝐿,𝑀 ⊆ Var, if 𝑓 ∈ 𝜙𝐾,𝐿 and𝑔 ∈ 𝜙𝐿,𝑀 ,wehave𝑔◦𝑓 ∈ 𝜙𝐾,𝑀 ,
where𝑔 ◦ 𝑓 is the standard composition of two partial functions: (𝑔 ◦ 𝑓) (𝜎) ≜ if (𝜎 ∈ dom(𝑓) ∧ 𝑓 (𝜎) ∈
dom(𝑔)) then 𝑔(𝑓 (𝜎)) else undefined.

The final assumption lets the analysis infer smoothness information about the completely-

undefined function. It is used to justify the handling of loops by our analysis.

Assumption 7 (Strictness). For all𝐾, 𝐿 ⊆ Var, we have (_𝜎 ∈ St[𝐾] .undefined) ∈ 𝜙𝐾,𝐿 .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:22 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Theorem 5.8 (Soundness). If Assumptions 1–7 hold, the analysis computes the sound abstraction
of the concrete semantics of commands in the following sense: for all commands 𝑐 ,

J𝑐K ∈ 𝛾 (J𝑐K♯).

Remark 5.9. A standard method for proving a property of a loop or more generally a recursively

defined function is so called Scott induction. In this method, we view a property as a set T of state

transformers and a loop as the least fixed point of a continuous function 𝐹 on state transformers.

Then, we prove the three conditions: (i) T contains the least state transformer, (ii) it is closed under

the least upper bound of any increasing sequence of state transformers, and (iii) T is preserved by 𝐹 .

The first and second conditions are called strictness and admissibility, respectively, and these three

conditions imply that the least fixed point of 𝐹 belongs to T .
Our soundness proof for the loop case deviates slightly from this standardmethod. If it followed the

method instead, we would need, in addition to the strictness assumption, the following assumption,

which corresponds to the second admissibility condition:

Assumption 8 (Admissibility). Let𝐾, 𝐿 ⊆ Var, and order partial functions in [St[𝐾] ⇀ St[𝐿]]
by the inclusion of the graphs of partial functions. Then, for every increasing sequence {𝑓𝑛 : St[𝐾] ⇀
St[𝐿]}𝑛∈N (i.e., the graph of 𝑓𝑛+1 includes that of 𝑓𝑛 for all 𝑛 ∈ N), if every 𝑓𝑛 satisfies 𝜙𝐾,𝐿 , so does the
least upper bound 𝑓∞ of the sequence (defined by its graph being the union of the graphs of all 𝑓𝑛’s).

The inclusion of this admissibility assumption would, then, limit the applicability of our program

analysis, since some well-known smoothness properties, such as (global) Lipschitz continuity and

local boundedness, do not satisfy the assumption, although they satisfy our five assumptions (As-

sumptions 3–7) (see Table 2). On the plus side, the inclusion of the admissibility assumption could

enable our analysis to handle loops more accurately, possibly by tracking the impact of the boolean

condition of each loop on smoothness more precisely. Our soundness proof avoids the admissibility

assumption by exploiting the fact that our analysis handles loop conditions conservatively: our

analysis drops all the variables that loop conditions may depend on from the set of smooth variables,

so that it avoids finding too precise inductive predicates that can break soundness.
14 □

5.3 Instantiations
Our program analysis requires that the family of smoothness predicates should satisfy Assump-

tions 3–7. Although these assumptions are violated by some smoothness properties, such as partial

differentiability and partial continuity, they are met by our leading example 𝜙 (𝑑) for differentiability
(Example 5.1), and also by the predicate family 𝜙 (𝑙) for local Lipschitzness, which is used in our

implementation. Recall the definitions of the predicate families 𝜙 (𝑑) and 𝜙 (𝑙) : for all𝐾, 𝐿 ⊆ Var,

𝜙
(𝑑)
𝐾,𝐿
≜ {𝑓 : St[𝐾] ⇀ St[𝐿] | dom(𝑓) is open and 𝑓 is (jointly) differentiable in its domain},

𝜙
(𝑙)
𝐾,𝐿
≜ {𝑓 : St[𝐾] ⇀ St[𝐿] | dom(𝑓) is open, and for all 𝜎 ∈ dom(𝑓), there are𝐶 > 0 and

an open𝑂 ⊆ dom(𝑓) s.t. 𝜎 ∈ 𝑂 and ∥ 𝑓 (𝜎0) − 𝑓 (𝜎1)∥2 ≤ 𝐶 ∥𝜎0 − 𝜎1∥2 for all 𝜎0, 𝜎1 ∈ 𝑂}.

Theorem 5.10. Both 𝜙 (𝑑) and 𝜙 (𝑙) satisfy Assumptions 3–7.

Remark 5.11. The requirement of open domain in 𝜙 (𝑑) is sometimes too constraining and hurts

the accuracy of the analysis. It can, however, be relaxed, and we can generalise 𝜙 (𝑑) to the following

14
Tobeprecise, our analysis doesnot require theadmissibility assumption,notbecauseourabstract domain isfinite, but because

given a loop, our analysis finds an inductive predicate that is “sufficiently admissible” in the sense that it is closed under the

least upper bound of any chain that matters for soundness: the chain should be definable by some loop. More details are in §F.4.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:23

Table 1. Failure cases of the composition assumption. For each given 𝜙 , we have 𝑓 , 𝑔 ∈ 𝜙 but 𝑔 ◦ 𝑓 ∉ 𝜙 , where
𝑓 and 𝑔 are interpreted as (total or partial) functions from St[𝐾] to St[𝐿]. Let 𝑐1 ≡ (𝑦 = 𝑥2; 𝑧 = 𝑔(𝑦)) and
𝑐2 ≡ (𝑦 = 𝑥 ; 𝑧 = 𝑔(𝑥,𝑦)). Then, for each 𝑖-th 𝜙 , J𝑐𝑖K♯ incorrectly concludes that 𝑧 is smooth with respect to 𝑥 .

𝜙 𝑓 𝑔

𝜙
(𝑑′′)
𝐾,𝐿

𝑓 (𝑥) = 𝑥2 defined on R 𝑔(𝑥) = 1[𝑥>0] defined on [0, 1]

𝜙
(pd)
𝐾,𝐿

, 𝜙
(pc)
𝐾,𝐿

𝑓 (𝑥) = (𝑥, 𝑥) defined on R 𝑔(𝑥,𝑦) =
{
𝑥𝑦/(𝑥2 + 𝑦2) if (𝑥,𝑦) ≠ (0, 0)
0 otherwise

defined on R2

predicate family𝜙 (𝑑
′)
, which corresponds to the standard definition of differentiability on amanifold

with boundary in differential geometry [Lee 2012, Chapter 2]:

𝜙
(𝑑′)
𝐾,𝐿
≜ {𝑓 : St[𝐾] ⇀ St[𝐿] | for all 𝜎 ∈ dom(𝑓), there exist an open𝑈 ⊆ St[𝐾] and 𝑔 : 𝑈 → St[𝐿]

such that 𝜎 ∈ 𝑈 , 𝑓 = 𝑔 on𝑈 ∩ dom(𝑓), and 𝑔 is (jointly) differentiable}.
Note the weakening of open-domain requirement in𝜙 (𝑑

′)
: the open domain𝑈 in the above definition

does not have to be included in dom(𝑓). The family 𝜙 (𝑑
′)
satisfies Assumptions 3–7, and can lead to

a more permissive instantiation of our program analysis than the family 𝜙 (𝑑) , especially in handling
atomic commands, such as assignment, sample, and observe. We point out that 𝜙 (𝑑

′)
does not satisfy

Assumption 8 (i.e., the admissibility assumption), while𝜙 (𝑑) does satisfy it. As a result, if the handling
of loops in our analysis is changed such that loop conditions are analysed more accurately, the

analysis may remain sound only for 𝜙 (𝑑) , not for 𝜙 (𝑑
′)
, as explained in Remark 5.9. □

Remark 5.12. At this point, the reader might feel that Assumptions 3–7 are satisfied by nearly all

smoothness properties. This impression is not accurate. For instance, the composition assumption

does not hold for the notions of differentiability of partial functions formalised by the following

𝜙 (𝑑
′′)
and 𝜙 (pd) , nor for the partial continuity formalised by 𝜙 (pc) :

𝜙
(𝑑′′)
𝐾,𝐿
≜ {𝑓 : St[𝐾] ⇀ St[𝐿] | 𝑓 is (jointly) differentiable in the interior of its domain},

𝜙
(pd)
𝐾,𝐿
≜ {𝑓 : St[𝐾] ⇀ St[𝐿] | dom(𝑓) is open, and for all 𝑣 ∈ 𝐾 , 𝑓 is partially differentiable in 𝑣},

𝜙
(pc)
𝐾,𝐿
≜ {𝑓 : St[𝐾] ⇀ St[𝐿] | dom(𝑓) is open, and for all 𝑣 ∈ 𝐾 , 𝑓 is partially continuous in 𝑣}.

Table 1 contains counterexamples that show the failure of the composition assumption for these

predicate families. In fact, when instantiated with these families, our program analysis is not sound.

The same table shows example programs and incorrect conclusions derived by our analysis.

Table 2 shows more target smoothness properties frommathematics, and whether each property

satisfies Assumptions 3–7 (and Assumption 8). Recall that our program analysis does not require

Assumption 8 for soundness; the table shows the assumption just for reference. The target properties

from “cont.” to “real analytic” in the table (and three more) satisfy Assumptions 3–7, so that our

analysis can be immediately applied to those target properties while remaining sound. □

6 ALGORITHMFOR THE SPGE VARIABLE-SELECTION PROBLEM
We now put together the results from §4 and §5 to formally define and soundly (yet approximately)

solve the SPGE variable-selection problem.We start with the formal definition of the problem:

Definition 6.1 (SPGE Variable-Selection Problem; Formal). Assume we are given a model 𝑐𝑚 , a guide

𝑐𝑔, and a (initial) simple reparameterisation plan 𝜋0 such that 𝑐𝑚 , 𝑐𝑔, and 𝑐𝑔
𝜋
always terminate and

have no double-sampling errors for all 𝜋 ⊑ 𝜋0. Here we write 𝜋 ⊑ 𝜋 ′ if the graph of 𝜋 is included in

that of 𝜋 ′. Given these 𝑐𝑚 , 𝑐𝑔, and 𝜋0, find a reparameterisation plan 𝜋 ⊑ 𝜋0 such that (i) 𝜋 is simple

and satisfies (R2) and (R3) in §4.2, and (ii) |rv(𝜋) | is maximised. We say that 𝜋 is a sound solution if
it satisfies (i), and an optimal solution if it satisfies (i) and (ii). □

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:24 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Table 2. Various well-known target smoothness properties from mathematics, and whether each of them
satisfies Assumptions 3–7 (and Assumption 8). Here “cont.” and “diff.” denote “continuous” and “differentiable”.
The properties above the double horizontal line are defined such that they include the open-domain requirement
as in 𝜙 (𝑑) and 𝜙 (𝑙) , and the properties below the line are defined without the open-domain requirement.

Target smoothness property A3 (proj.) A4 (pair.) A5 (rest.) A6 (comp.) A7 (stri.) A8 (admi.)

cont. (C0) ◦ ◦ ◦ ◦ ◦ ◦
locally Lipschitz (= 𝜙 (𝑙)) ◦ ◦ ◦ ◦ ◦ ◦
uniformly cont. ◦ ◦ ◦ ◦ ◦ ×
Lipschitz cont. ◦ ◦ ◦ ◦ ◦ ×
diff. (= 𝜙 (𝑑)) ◦ ◦ ◦ ◦ ◦ ◦
continuously diff. (C1) ◦ ◦ ◦ ◦ ◦ ◦
smooth (C∞) ◦ ◦ ◦ ◦ ◦ ◦
real analytic (C𝜔) ◦ ◦ ◦ ◦ ◦ ◦
partially cont. (= 𝜙 (𝑝𝑐)) ◦ ◦ ◦ × ◦ ◦
partially diff. (= 𝜙 (𝑝𝑑)) ◦ ◦ ◦ × ◦ ◦
almost-everywhere cont. ◦ ◦ × × ◦ ◦
almost-everywhere diff. ◦ ◦ × × ◦ ◦
coordinatewise non-decreasing ◦ ◦ ◦ ◦ ◦ ◦
locally bounded ◦ ◦ ◦ ◦ ◦ ×
bounded × ◦ ◦ ◦ ◦ ×
Borel measurable ◦ ◦ ◦ ◦ ◦ ◦
locally integrable ◦ ◦ × × ◦ ×
integrable × ◦ × × ◦ ×

The input 𝜋0 in the problem is a newcomer. It fixes a semantics-preserving transformation for all

the sample commands. Typically, 𝜋0 is defined on the entireNameEx×DistEx× LamEx, and remains

fixed across all input model-guide pairs (𝑐𝑚, 𝑐𝑔). More importantly, it is valid so that the change of

any sample command by 𝜋0 preserves the semantics of the command when we take into account

both the second distribution argument and the third lambda argument of the sample command. The

validity of 𝜋0 is inherited by any sound solution 𝜋 of the SPGE variable-selection problem since

validity as a property on reparameterisation plans is down-closed with respect to the ⊑ order. In our
setup, 𝜋0 is fixed to be the following reparameterisation plan from §4.1:

𝜋0 (𝑛, distN (𝑒1, 𝑒2), _𝑦.𝑒3) ≜ (distN (0, 1), _𝑦.𝑒3 [(𝑦 ×
√
𝑒2 + 𝑒1)/𝑦]) (11)

for all 𝑛 ∈ NameEx and expressions 𝑒1, 𝑒2, and 𝑒3.
As an example of the SPGE variable-selection problem, consider the problem for the 𝜋0 in

Eq. (11) and the model-guide pair (𝑐𝑚, 𝑐𝑔) given in Fig. 1, where "zi" in the figure is interpreted

as name("zi", 0). Then, as discussed in §2, the problem has the following optimal solution: 𝜋 ≜
𝜋0 |𝑆 ×DistEx× LamEx for 𝑆 ≜ {name(𝛼, 𝑒) ∈ NameEx | 𝛼 . "z2"}.

We present an algorithm for computing a sound (yet possibly suboptimal) solution to the problem.

(1) By running our program analysis instantiatedwith differentiability (described in §5.2 and §5.3),

compute (p𝑚, d𝑚,V𝑚) ≜ J𝑐𝑚K♯ and (p𝑔, d𝑔,V𝑔) ≜ J𝑐𝑔K♯, where we use p, d, and V for the

output of the analysis to distinguish them from densities 𝑝 and distributions 𝑑 .

(2) Using p𝑚 and p𝑔, check

\ ⊆ 𝐾, where𝐾 ≜ p𝑚 (like) ∩
⋂

`∈Name

p𝑚 (pr`) ∩
⋂

`∈Name

p𝑔 (pr`). (12)

If the check fails, return anerrormessage that our analysis cannot discharge (R2) forany𝜋 , since
the analysis concludes that the density function of 𝑐𝑚 or 𝑐𝑔 can be non-differentiable in \ (even

when rv(𝜋) = ∅). If the check passes, initialise the set of reparameterised random variables by

𝑆 ≜ {(𝛼, 𝑖) ∈ Name | for all 𝑖 ′ ∈ N, (𝛼, 𝑖 ′) ∈ Name =⇒ (𝛼, 𝑖 ′) ∈ 𝐾}.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:25

(3) Using 𝑆 and 𝜋0, construct a reparameterisation plan 𝜋 ⊑ 𝜋0 by 𝜋 ≜ 𝜋0 [𝑆], where 𝜋0 [𝑆] (𝑛,𝑑, 𝑙)
is 𝜋0 (𝑛,𝑑, 𝑙) if (𝑛,𝑑, 𝑙) ∈ dom(𝜋0), 𝑛 = name(𝛼, _), and (𝛼, _) ∈ 𝑆 ; otherwise, it is undefined.

(4) By running the differentiability analysis on 𝑐𝑔
𝜋
, compute (p𝑔, d𝑔,V𝑔) ≜ J𝑐𝑔𝜋 K♯ and check

\ ⊆
⋂

`∈Name

p𝑔 (pr`) ∩
⋂

`∈Name

p𝑔 (val`). (13)

If thecheckpasses, return𝜋 as theoutputof thealgorithm. Ifnot, update𝑆 by𝑆\{(𝛼, 𝑖) ∈ Name}
after choosing some (𝛼, _) ∈ 𝑆 , and then repeat the above procedure (from the step (3), the

point where we construct 𝜋 using 𝑆) until 𝑆 becomes empty.

Our algorithm computes a sound solution (in the sense stated in Definition 6.1), partly because

of the soundness of our program analysis:

Theorem 6.2. Let 𝑐𝑚 , 𝑐𝑔, and 𝜋0 be the inputs to the SPGE variable-selection problem. If the above
algorithm returns 𝜋 for (𝑐𝑚, 𝑐𝑔, 𝜋0), then 𝜋 is a sound solution for the problem.

We point out that the theorem holds for the local Lipschitzness case as well (in addition to the dif-

ferentiability case). That is, if the above algorithm runs our program analysis instantiated with local

Lipschitzness (instead of differentiability), and if it returns an output 𝜋 , then 𝜋 is a sound solution

to the SPGE variable-selection problem that uses (R2’) and (R3’) (instead of (R2) and (R3)).

Our algorithm solves the problem only approximately: there is no formal guarantee that it always

computes an optimal solution. The suboptimality may arise due to two approximations: the over-

approximation of our program analysis when it computes differentiability (or local Lipschitzness)

information, and the heuristic choices made by our algorithm when the algorithm computes the

random-variable set 𝑆 . We demonstrate, however, that our algorithm finds optimal solutions for all

the benchmarks in §7.

Our algorithm calls our program analysis at most |{𝛼 ∈ Str | (𝛼, _) ∈ 𝑆0}| + 2 times, where 𝑆0 is

the initial value of 𝑆 (i.e., the set of random variables whose sample commands are to be transformed)

in the algorithm. However, for all the benchmarks in §7, our algorithm terminated with the initial set

𝑆0 and thus called our analysis only 3 times (on the model, the guide, and the reparameterised guide

according to 𝑆0). Based on these results and our intuition on the algorithm, we conjecture that our

algorithm always terminates with the initial set 𝑆0 under amild condition on 𝜋0 and our analysis (e.g.,

L𝑒M♯ is computed inductively on 𝑒). Since the conjecture is still open, our algorithmmight not succeed

in the first iteration, and if so, it continues to search for a sound solution greedily. Note that there are

many other ways to continue the search and our algorithm uses just one of them (as it is linear-time).

7 EXPERIMENTAL EVALUATION
In our experiments, we consider two research questions. First, can the analysis proposed in §5 be

instantiated and implemented so that it can produce meaningful smoothness results on real-world

probabilistic programs? Second, can the algorithm proposed in §6 find near-optimal solutions to the

SPGE variable-selection problem on real-world probabilistic programs? To assess the two questions,

we have implemented a static smoothness analyser for Pyro programs based on §5, and a variable

selector based on §6 which (approximately) solves the variable-selection problem.
15
Our analyser

and variable selector are implemented in OCaml, and support a subset of the Pyro PPL and two

smoothness properties: differentiability and local Lipschitzness.

Implementation.Although the analysis described in §5 may look simple when considering a basic

PPL, real-world PPLs such as Pyro are of a much higher degree of complexity. First, they provide

a large panel of continuous/discrete probability distributions for sample and observe commands, and

15
Our implementation is available at https://github.com/wonyeol/smoothness-analysis and [Lee et al. 2022a].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

https://github.com/wonyeol/smoothness-analysis

12:26 Wonyeol Lee, Xavier Rival, and Hongseok Yang

library functions for tensors and neural networks. Second, programs in real-world PPLsmay fail to be

smooth for reasons other than if-else andwhile commands. In particular, values sampled fromdiscrete

distributions, and arguments to operators and distribution constructors that are well-defined only on

a strict subset of values,may induce non-smoothness. A straightforward treatment of thesewill result

in an overly conservative analysis, treating far too many variables as potentially non-smooth. Third,

Pyro programs typically rely on tensors (of large, statically unknown size) to deal with large datasets,

and it is generally infeasible to reason about each (real-valued) element of tensors individually. In

the following, we discuss how our static analyser addresses these issues and provides sound, useful

information about smoothness of Pyro programs.

Distributions and library functions.Our analyser supports 17 distributions (continuous or discrete).
Each distribution is characterized by a pair (𝑏, 𝑎) for a boolean 𝑏 and an array of booleans 𝑎, where
𝑏 (or 𝑎𝑖) denotes whether its probability density is differentiable or locally Lipschitz with respect

to the sampled value (or the 𝑖-th argument) of the distribution. For example, a normal distribution

is described by (true,[true,true]) (assuming that the second argument is positive) and a Poisson

distribution by (false,[true]). Similarly, the analyser supports a large number of PyTorch/Pyro

library functions for tensors and neural networks, and assumes the correct smoothness information

about them. For instance, the ReLU function is considered locally Lipschitz but not differentiable.

Refining smoothness information based on safety pre-analysis.Although the expression x/y is generally

non-smooth with respect to y (even if it is well-defined for y=0), if more information is available, for

instance that y always lies in range [1, 10], we can safely consider it smoothwith respect to both x and

y. Likewise, the density of a normal distribution is generally non-smoothwith respect to the standard

deviation argument 𝜎 (even if it is well-defined for 𝜎 ≤ 0), so more precise smoothness information

can be produced when 𝜎 is known to be always positive. Thus, establishing precise smoothness

information requires to first establish safety properties related to program operations. To achieve

this, our tool actually performs two analyses in sequence: (i) a safety pre-analysis infers ranges over

all numerical variables and marks each argument to an operator or a distribution constructor as

either “safe” or “potentially unsafe”; (ii) the program analysis formalised in §5 utilises information

computed in the first phase to produce precise smoothness information. The first phase boils down

to a forward abstract interpretation based on basic abstract domains like intervals and signs [Cousot

and Cousot 1977]. It logs safety information for each program statement just like static analyses

for runtime errors and undefined behaviors [Blanchet et al. 2003]. As formalised in §5.2, the second

analysis is compositional. Due to their different nature, the two analyses need to be done in sequence.

Tensors. Pyro programs commonly use nested loops and indexed tensors. As the number of scalar

values in each tensor is often statically unknown (or known but huge), treating each scalar as a

separate variable is not feasible; sowe rely on a conservative summarisation of tensors. Intuitively,we

treat all scalars in a tensor as a “block”: e.g., when density might not be smooth with respect to some

scalar(s) of a tensor, the analysis conservatively concludes that it might not be smooth with respect

to all scalars in the tensor. In our experiments, this abstraction does not result in any precision loss.

Evaluation.We evaluated our analyser and variable selector on 13 representative Pyro examples

from the Pyro webpage [Uber AI Labs 2022] that use standard SVI engines and contain explicitly

written model-guide pairs (without AutoGuide). They include advanced models with deep neural

networks such as attend-infer-repeat [Eslami et al. 2016] and single-cell annotation using variational

inference [Xu et al. 2021]. Additionally, we included the example in Fig. 1, for which Pyro offers an

unsound reparameterisation plan. Table 3 lists half of these 14 Pyro examples with their code size

and conceptual complexity (see §I for the rest). Experiments were performed on a Macbook Pro with

2.3GHz Core i9 and 32GB RAM.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:27

Table 3. Subset of Pyro examples used in experiments and their key features (see §I for the rest). The last
five columns show the total number of code lines (excluding comments), loops, sample commands, observe
commands, and learnable parameters (declared explicitly by pyro.param or implicitly by a neural network
module). Each number is the sum of the counts in the model and guide.

Name Probabilistic model LoC while sam obs param

spnor Splitting normal example in Fig. 1 16 0 2 1 2

sgdef Deep exponential family 105 0 12 1 12

dmm DeepMarkov model 112 3 2 1 13

mhmm HiddenMarkov models 137 1 5 5 12

scanvi Single-cell annotation using variational inference 147 0 7 2 21

air Attend-infer-repeat 174 2 6 1 16

cvae Conditional variational autoencoder 205 0 2 1 15

Table 4. Results of smoothness analyses. “Manual” and “Ours” denote the number of continuous random
variables and learnable parameters in which the density of the program is smooth, computed by hand and
by our analyser. “Time” denotes the runtime of our analyser in seconds. “#CRP” denotes the total number
of continuous random variables and learnable parameters in the program. -m and -g denote model and guide.
We consider {(𝛼, 𝑖) ∈ Name} as one random variable for each 𝛼 ∈ Name. See §I for the rest of results.

Differentiable Locally Lipschitz

Name Manual Ours Time Manual Ours Time #CRP

spnor-m 1 1 0.006 1 1 0.009 2

spnor-g 4 4 0.007 4 4 0.008 4

sgdef-m 6 6 0.003 6 6 0.006 6

sgdef-g 18 18 0.016 18 18 0.015 18

dmm-m 4 4 0.014 10 10 0.016 10

dmm-g 4 4 0.026 5 5 0.020 5

mhmm-m 10 10 0.063 10 10 0.075 10

mhmm-g 6 6 0.007 6 6 0.008 6

scanvi-m 6 6 0.032 12 12 0.032 12

scanvi-g 8 8 0.052 15 15 0.058 15

air-m 1 1 0.108 4 4 0.105 4

air-g 3 3 0.075 15 15 0.072 16

cvae-m 3 3 0.025 8 8 0.027 8

cvae-g 5 5 0.031 9 9 0.023 9

Smoothness analyser.We assess our smoothness analyser on the 14 Pyro examples for differentiability

and local Lipschitzness (§5.3), and show a subset of results in Table 4 (see §I for the rest). The results

demonstrate that our analysis can cope successfullywith real-worldPyroprograms. First, our analysis

is accurate. For all examples, the analysis identifies the exact ground-truth set of random variables

and parameters in which the density of the program is differentiable (or locally Lipschitz). In many of

them, information computed by the pre-analysis is required to achieve these exact results; e.g., some

examples (e.g., dpmm and air) require precise information about which distribution arguments can be

proved to be always in the proper range of values. Second, the runtime of our analysis is low. Typical

probabilistic programming applications are not of a very large size, and conceptual complexity is

generally the main issue, thus the analysis performance presents no scalability concern.

We draw two more observations from the results. First, for spnor-m and air-g, the density of each

program is not locally Lipschitz in one continuous random variable. These non-local-Lipschitznesses

arise as follows: for the former, the random variable ("z2" in Fig. 1) is used in the branch condition

of an if-else command that contains observe commands, thereby creating discontinuity; and for the

latter, the random variable ("z_where") is passed into the denominator of a division operator, thereby

causing a division-by-zero error for some value.

Second, for all the other examples, the density is locally Lipschitz in all continuous random vari-

ables and parameters, but is often non-differentiable in many parameters (and continuous random

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:28 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Table 5. Results of variable selections. “Ours-Time” denote the runtime of our variable selector in seconds.
“Ours-Sound” and “Pyro \Ours” denote the number of random variables in the example that are in 𝜋ours , and
that are in 𝜋0 but not in 𝜋ours , respectively, where 𝜋ours and 𝜋0 denote the reparameterisation plans given by our
variable selector and by Pyro. “Pyro \Ours” is partitioned into “Sound” and “Unsound”: the latter denotes the
number of random variables that make (R2’) or (R3’) violated when added to 𝜋ours , and the former denotes the
number of the rest. “#CR” and “#DR”denote the total number of continuous anddiscrete randomvariables in the
example. We consider {(𝛼, 𝑖) ∈ Name} as one random variable for each 𝛼 ∈ Name. See §I for the rest of results.

Ours Pyro \Ours
Name Time Sound Sound Unsound #CR #DR

spnor 0.021 1 0 1 2 0

sgdef 0.034 6 0 0 6 0

dmm 0.054 1 0 0 1 0

mhmm 0.083 2 0 0 2 1

scanvi 0.143 3 0 0 3 1

air 0.247 1 0 1 2 1

cvae 0.063 1 0 0 1 0

variables too); see, for instance, scanvi and cvae. Due to this, the requirement (R2) is not satisfied for

these examples even with the empty reparameterisation plan (corresponding to the score estimator);

that is, if we use the differentiability requirements (R2) and (R3) to validate the unbiasedness of

gradient estimators, even the score estimator cannot be validated for these examples. Frommanual

inspection, we checked that the non-differentiabilities from these examples all arise by the use of

locally Lipschitz but non-differentiable operators (e.g., relu and grid_sample). Since many practical

models (and guides) use locally Lipschitz but non-differentiable operators, this observation strongly

suggests that a right smoothness requirement for validating gradient estimators is not differentiability

(which has been used as a standard requirement), but rather local Lipschitzness (e.g., (R2’) and (R3’)).

Variable selector. To evaluate our variable selector, we consider the SPGE variable-selection problem

with local Lipschitzness requirements, i.e., the problem that uses (R2’) and (R3’) in §4.3 instead of

(R2) and (R3) in §4.2. We do not consider the original problem (with differentiability requirements),

since for many examples the differentiability requirements are not satisfied even by the empty

reparameterisation plan (i.e., score estimator) as observed above. For an initial reparameterisation

plan 𝜋0 for the problem, we use the plan given by Pyro’s default variable selector: it is defined for

all continuous random variables and applies standard reparameterisations (e.g., Eq. (11) for a normal

distribution). In this settings, we apply our variable selector to the problem on the 14 Pyro examples.

Table 5 displays the results (only for 7 examples; see §I for the rest) and compares themwith 𝜋0.

The resultsdemonstrate that forall examples, ourvariable selectorfinds theoptimal reparameterisa-

tion planwith a small runtime.We also observe that for all cases, it terminates in the first iteration and

calls our smoothness analyser only three times, as mentioned in §6. Note that the reparameterisation

plan given by Pyro is also optimal for all but two examples.We emphasise, however, that our variable

selector not only finds a reparameterisation plan but also verifies the local Lipschitzness requirements

(R2’) and (R3’), whereas Pyro’s default variable selector does not do so. Indeed, for two examples,

Pyro’s reparameterisation plan is unsound as it violates the local Lipschitzness requirements. Hence,

these results should be interpreted as: for all but two examples, our variable selector (and smoothness

analyser) successfully verifies that the default gradient estimator used by Pyro satisfies important

smoothness-related preconditions for unbiasedness, namely the local Lipschitzness requirements.

The two examples for which Pyro becomes unsound are spnor and air. Recall that they have two

continuous random variables (one for each) in which their densities are not locally Lipschitz. The

unsoundness of Pyro on these examples stems precisely from the fact that it reparameterises the

two non-locally-Lipschitz random variables without checking any local Lipschitzness requirements.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:29

8 RELATEDWORK
The high-level idea of using program transformation for improved posterior inference and model

learning in PPLs has been explored previously [Claret et al. 2013; Gorinova et al. 2020; Nori et al.

2014; Ritchie et al. 2016b; Schulman et al. 2015]. In particular, Schulman et al. [2015] proposed a

method for implementing the SPGE for stochastic computation graphs via graph transformation,

and this method was adopted in the implementation of the same estimator in Pyro and also in our

work. However, the method lacks a formal analysis on the implemented estimator especially in

the context of probabilistic programs; it does not have a version of Theorem 4.5, which formally

identifies requirements for the unbiasedness of the estimator. Also, the method does not check

the required smoothness properties of given probabilistic programs. Our work fills in these gaps.

Gorinova et al. [2020] proposed an automatic technique to transform models in a PPL using the

same or closely-related transformation of sample commands in the SPGE. The work is, however,

concerned with transforming models and taming their posterior distributions, while ours focuses on

transforming guides. Also, the work does not check smoothness properties of transformed models

that are required for running efficient inference algorithms, such as HamiltonianMonte Carlo, on

those models, while our work checks those properties using our program analysis.

Program analyses or type systems for PPLs have been developed to detect common errors [Lee et al.

2020; Lew et al. 2020; Wang et al. 2021], infer important probabilistic properties such as conditional

independence [Gorinova et al. 2022], or automatically plan inference algorithms [WebPPL 2019] as

in our work. In particular,WebPPL runs a simple program analysis (checking if there are interleaving

sample and observe commands) to decide if it is worth applying sequential Monte Carlo.

The smoothness properties computed by our program analysis, such as differentiability and local

Lipschitzness, fall in the scope of hyperliveness in the hierarchy of hyperproperties [Clarkson and
Schneider 2008]. Intuitively, hyperliveness properties are those that cannot be refuted based on any

finite counterexample (i.e.,madeoffinitely-manyfinite execution traces), andcounterexamples fordif-

ferentiabilityand localLipschitzness should indeedrequire infinitely-manyexecution tracesdue to the

use of limit or all neighbouring inputs in their definitions. Not somany analyses have considered such

hyperliveness properties. Among those, the most relevant to our work are the continuity analyses of

Chaudhuri et al. [2010, 2012]. It uses aprogramabstraction that is rather similar toours, but their analy-

ses suffer from soundness issues, partly due to the incorrect joining of continuity sets [Chaudhuri et al.

2010]andalso toanunsoundrule for sequential composition[Chaudhurietal. 2012] (see§Afordetails).

We do not claim that these issues are difficult to fix.Our point is just that developing programanalyses

for smoothness properties requires special care. Chaudhuri et al.’s work focuses on proving smooth-

ness properties of control software, or revealing the unexpected continuity of discrete algorithms. On

the other hand, our program analysis is designed to assist variational inference and model learning

for probabilistic programs. Barthe et al. [2020] proposed a refinement type system, which considers

a higher-order functional language and ensures that every typable first-order program is continuous

in all variables. On the other hand, our program analysis considers a first-order imperative language

and can prove that a program is continuous in some (not necessarily all) variables. Other existing

program analyses for smoothness properties include [Laurel et al. 2022] which over-approximates

the Clarke generalised Jacobian, and [Mangal et al. 2020] which proves probabilistic Lipschitzness.

ACKNOWLEDGMENTS
We thank Hangyeol Yu for helping us prove Theorems 4.2 and 4.5, and anonymous reviewers for

giving constructive comments. Lee was supported by Samsung Scholarship. Yang was supported

by the Engineering Research Center Program through the National Research Foundation of Korea

(NRF) funded by the Korean Government MSIT (NRF-2018R1A5A1059921) and also by the Institute

for Basic Science (IBS-R029-C1). Rival was supported by the French ANR VeriAMOS project.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:30 Wonyeol Lee, Xavier Rival, and Hongseok Yang

REFERENCES
Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative Adversarial Networks. In International

Conference on Machine Learning (ICML). 214–223.
Gilles Barthe, Raphaëlle Crubillé, Ugo Dal Lago, and Francesco Gavazzo. 2020. On the Versatility of Open Logical Relations

- Continuity, Automatic Differentiation, and a Containment Theorem. In European Symposium on Programming (ESOP).
56–83. https://doi.org/10.1007/978-3-030-44914-8_3

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh,

Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Probabilistic Programming. Journal
of Machine Learning Research 20, 28 (2019), 1–6.

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. 2003. A Static Ana-

lyzer for Large Safety Critical Software. In Programming Languages, Design and Implementation (PLDI). 196–207.
https://doi.org/10.1145/781131.781153

Vladimir I. Bogachev. 2007. Measure Theory (first ed.). Springer. https://doi.org/10.1007/978-3-540-34514-5
Bob Carpenter, Andrew Gelman, MatthewHoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang

Guo, Peter Li, and Allen Riddell. 2017. Stan: A Probabilistic Programming Language. Journal of Statistical Software 76,
1 (2017), 1–32. https://doi.org/10.18637/jss.v076.i01

Arun Tejasvi Chaganty, Aditya V. Nori, and Sriram K. Rajamani. 2013. Efficiently Sampling Probabilistic Programs via

Program Analysis. InArtificial Intelligence and Statistics (AISTATS). 153–160.
Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. 2010. Continuity analysis of programs. In Principles of

Programming Languages (POPL). 57–70. https://doi.org/10.1145/1706299.1706308
Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. 2012. Continuity and robustness of programs. Commun.

ACM 55, 8 (2012), 107–115. https://doi.org/10.1145/2240236.2240262

Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon, and Johannes Borgström. 2013. Bayesian inference

using data flow analysis. In Foundations of Software Engineering (FSE). 92–102. https://doi.org/10.1145/2491411.2491423
M. R. Clarkson and F. B. Schneider. 2008. Hyperproperties. In Computer Security Foundations (CSF). 51–65.

https://doi.org/10.1109/CSF.2008.7

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of

Programs by Construction or Approximation of Fixpoints. In Principles of Programming Languages (POPL). 238–252.
https://doi.org/10.1145/512950.512973

Patrick Cousot and Radhia Cousot. 1979. Systematic design of program analysis frameworks. In Principles of Programming
Languages (POPL). 269–282. https://doi.org/10.1145/567752.567778

S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Koray Kavukcuoglu, and Geoffrey E.

Hinton. 2016. Attend, Infer, Repeat: Fast Scene Understanding with Generative Models. In Neural Information Processing
Systems (NIPS). 3233–3241.

Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: A Language for Flexible Probabilistic Inference. In Artificial
Intelligence and Statistics (AISTATS). 1682–1690.

Timon Gehr, Sasa Misailovic, and Martin T. Vechev. 2016. PSI: Exact Symbolic Inference for Probabilistic Programs. In

Computer Aided Verification (CAV). 62–83. https://doi.org/10.1007/978-3-319-41528-4_4
Noah Goodman, VikashMansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenenbaum. 2008. Church: a language

for generative models. In Uncertainty in Artificial Intelligence (UAI). 220–229.
Andrew D. Gordon, Thore Graepel, Nicolas Rolland, Claudio Russo, Johannes Borgstrom, and John Guiver. 2014. Tabular:

A Schema-driven Probabilistic Programming Language. In Principles of Programming Languages (POPL). 321–334.
https://doi.org/10.1145/2578855.2535850

Maria I. Gorinova, Andrew D. Gordon, Charles Sutton, and Matthijs Vákár. 2022. Conditional Independence by Typing. ACM
Trans. Program. Lang. Syst. 44, 1 (2022), 4:1–4:54. https://doi.org/10.1145/3490421

Maria I. Gorinova, Dave Moore, andMatthew D. Hoffman. 2020. Automatic Reparameterisation of Probabilistic Programs.

In International Conference on Machine Learning (ICML). 3648–3657.
Steven Holtzen, Guy Van den Broeck, and Todd D. Millstein. 2020. Scaling exact inference for discrete probabilistic programs.

Proc. ACM Program. Lang. 4, OOPSLA (2020), 140:1–140:31. https://doi.org/10.1145/3428208

Hyunjik Kim, George Papamakarios, and Andriy Mnih. 2021. The Lipschitz Constant of Self-Attention. In International
Conference on Machine Learning (ICML). 5562–5571.

Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In International Conference on Learning
Representations (ICLR).

Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, and David M. Blei. 2015. Automatic Variational Inference in Stan. In

Neural Information Processing Systems (NIPS). 568–576.
Jacob Laurel, Rem Yang, Gagandeep Singh, and Sasa Misailovic. 2022. A dual number abstraction for static analysis of Clarke

Jacobians. Proc. ACM Program. Lang. 6, POPL (2022), 1–30. https://doi.org/10.1145/3498718

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

https://doi.org/10.1007/978-3-030-44914-8_3
https://doi.org/10.1145/781131.781153
https://doi.org/10.1007/978-3-540-34514-5
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1145/1706299.1706308
https://doi.org/10.1145/2240236.2240262
https://doi.org/10.1145/2491411.2491423
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1007/978-3-319-41528-4_4
https://doi.org/10.1145/2578855.2535850
https://doi.org/10.1145/3490421
https://doi.org/10.1145/3428208
https://doi.org/10.1145/3498718

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:31

JohnM. Lee. 2012. Introduction to Smooth Manifolds (second ed.). Springer. https://doi.org/10.1007/978-1-4419-9982-5
Wonyeol Lee, Xavier Rival, and Hongseok Yang. 2022a. Artifact for the Paper “Smoothness Analysis for Probabilistic

Programs with Application to Optimised Variational Inference”. https://doi.org/10.5281/zenodo.7246597

Wonyeol Lee, Xavier Rival, and Hongseok Yang. 2022b. Smoothness Analysis for Probabilistic Programs with Application

to Optimised Variational Inference. arXiv:2208.10530 (2022). https://doi.org/10.48550/ARXIV.2208.10530
Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. 2020. Towards verified stochastic variational inference for

probabilistic programs. Proc. ACM Program. Lang. 4, POPL (2020), 16:1–16:33. https://doi.org/10.1145/3371084
Alexander K. Lew, Marco F. Cusumano-Towner, Benjamin Sherman, Michael Carbin, and Vikash K. Mansinghka. 2020. Trace

types and denotational semantics for sound programmable inference in probabilistic languages. Proc. ACM Program.
Lang. 4, POPL (2020), 19:1–19:32. https://doi.org/10.1145/3371087

Ravi Mangal, Kartik Sarangmath, Aditya V. Nori, and Alessandro Orso. 2020. Probabilistic Lipschitz Analysis of Neural

Networks. In Static Analysis Symposium (SAS). 274–309. https://doi.org/10.1007/978-3-030-65474-0_13
Vikash K. Mansinghka, Daniel Selsam, and Yura N. Perov. 2014. Venture: a higher-order probabilistic programming platform

with programmable inference. arXiv:1404.0099 (2014). https://doi.org/10.48550/ARXIV.1404.0099
T. Minka, J.M. Winn, J.P. Guiver, S. Webster, Y. Zaykov, B. Yangel, A. Spengler, and J. Bronskill. 2014. Infer.NET 2.6.

https://dotnet.github.io/infer/.

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic inference

by program transformation in Hakaru (system description). In Functional and Logic Programming (FLOPS). 62–79.
https://doi.org/10.1007/978-3-319-29604-3_5

Radford M. Neal. 2011. MCMC Using Hamiltonian Dynamics. In Handbook of Markov Chain Monte Carlo. 113–162.
https://doi.org/10.1201/b10905

Aditya V. Nori, Chung-Kil Hur, Sriram K. Rajamani, and Selva Samuel. 2014. R2: An Efficient MCMC Sampler for Probabilistic

Programs. InAAAI Conference on Artificial Intelligence (AAAI). 2476–2482. https://doi.org/10.1609/aaai.v28i1.9060
André Platzer. 2018. Logical Foundations of Cyber-Physical Systems. Springer. https://doi.org/10.1007/978-3-319-63588-0
Rajesh Ranganath, Sean Gerrish, and David M. Blei. 2014. Black Box Variational Inference. In Artificial Intelligence and

Statistics (AISTATS). 814–822.
Danilo Jimenez Rezende, Shakir Mohamed, and DaanWierstra. 2014. Stochastic Backpropagation and Approximate Inference

in Deep Generative Models. In International Conference on Machine Learning (ICML). 7344–7353.
Daniel Ritchie, Paul Horsfall, and Noah D. Goodman. 2016a. Deep Amortized Inference for Probabilistic Programs.

arXiv:1610.05735 (2016). https://doi.org/10.48550/ARXIV.1610.05735
Daniel Ritchie, Andreas Stuhlmüller, and Noah D. Goodman. 2016b. C3: Lightweight Incrementalized MCMC for Probabilistic

Programs using Continuations and Callsite Caching. InArtificial Intelligence and Statistics (AISTATS). 28–37.
John Salvatier, Thomas V.Wiecki, and Christopher Fonnesbeck. 2016. Probabilistic programming in Python using PyMC3.

PeerJ Comput. Sci. 2 (2016), e55. https://doi.org/10.7717/peerj-cs.55
John Schulman,NicolasHeess, TheophaneWeber, and PieterAbbeel. 2015. Gradient EstimationUsing Stochastic Computation

Graphs. In Neural Information Processing Systems (NIPS). 3528–3536.
N. Siddharth, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Noah D. Goodman, Pushmeet Kohli, FrankWood,

and Philip Torr. 2017. Learning Disentangled Representations with Semi-Supervised Deep Generative Models. InNeural
Information Processing Systems (NIPS). 5927–5937.

Sam Staton, Hongseok Yang, Frank D. Wood, Chris Heunen, and Ohad Kammar. 2016. Semantics for probabilistic

programming: higher-order functions, continuous distributions, and soft constraints. In Logic in Computer Science (LICS).
525–534. https://doi.org/10.1145/2933575.2935313

David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank D. Wood. 2016. Design and Implementation of

Probabilistic Programming Language Anglican. In Implementation and Application of Functional Programming Languages
(IFL). 6:1–6:12. https://doi.org/10.1145/3064899.3064910

Dustin Tran, Matthew D. Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, and Alexey Radul. 2018. Simple,

Distributed, and Accelerated Probabilistic Programming. In Neural Information Processing Systems (NeurIPS). 7609–7620.
Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja R. Rudolph, Dawen Liang, and David M. Blei. 2016. Edward: A library

for probabilistic modeling, inference, and criticism. arXiv:1610.09787 (2016). https://doi.org/10.48550/ARXIV.1610.09787
Uber AI Labs. 2022. Pyro examples. http://pyro.ai/examples/. Version used: June 18, 2022.

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. 2018. An Introduction to Probabilistic

Programming. arXiv:1809.10756 (2018). https://doi.org/10.48550/ARXIV.1809.10756
DiWang, Jan Hoffmann, and ThomasW. Reps. 2021. Sound probabilistic inference via guide types. In Programming Language

Design and Implementation (PLDI). 788–803. https://doi.org/10.1145/3453483.3454077
WebPPL. 2019. https://github.com/probmods/webppl/blob/v0.9.15/src/header.wppl#L510.

Ronald J. Williams. 1992. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning.

Machine Learning 8, 3-4 (1992), 229–256. https://doi.org/10.1007/BF00992696

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

https://doi.org/10.1007/978-1-4419-9982-5
https://doi.org/10.5281/zenodo.7246597
https://doi.org/10.48550/ARXIV.2208.10530
https://doi.org/10.1145/3371084
https://doi.org/10.1145/3371087
https://doi.org/10.1007/978-3-030-65474-0_13
https://doi.org/10.48550/ARXIV.1404.0099
https://dotnet.github.io/infer/
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1201/b10905
https://doi.org/10.1609/aaai.v28i1.9060
https://doi.org/10.1007/978-3-319-63588-0
https://doi.org/10.48550/ARXIV.1610.05735
https://doi.org/10.7717/peerj-cs.55
https://doi.org/10.1145/2933575.2935313
https://doi.org/10.1145/3064899.3064910
https://doi.org/10.48550/ARXIV.1610.09787
http://pyro.ai/examples/
https://doi.org/10.48550/ARXIV.1809.10756
https://doi.org/10.1145/3453483.3454077
https://github.com/probmods/webppl/blob/v0.9.15/src/header.wppl#L510
https://doi.org/10.1007/BF00992696

12:32 Wonyeol Lee, Xavier Rival, and Hongseok Yang

David Wingate, Noah D. Goodman, Andreas Stuhlmüller, and Jeffrey Mark Siskind. 2011a. Nonstandard Interpretations

of Probabilistic Programs for Efficient Inference. In Neural Information Processing Systems (NIPS). 1152–1160.
David Wingate, Andreas Stuhlmüller, and Noah D. Goodman. 2011b. Lightweight Implementations of Probabilistic

Programming Languages Via Transformational Compilation. InArtificial Intelligence and Statistics (AISTATS). 770–778.
DavidWingate and TheophaneWeber. 2013. Automated Variational Inference in Probabilistic Programming. arXiv:1301.1299

(2013). https://doi.org/10.48550/ARXIV.1301.1299

Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. 2014. A New Approach to Probabilistic Programming

Inference. InArtificial Intelligence and Statistics (AISTATS). 1024–1032.
Chenling Xu, Romain Lopez, Edouard Mehlman, Jeffrey Regier, Michael I Jordan, and Nir Yosef. 2021. Probabilistic

harmonization and annotation of single-cell transcriptomics data with deep generative models. Molecular systems biology
17, 1 (2021), e9620. https://doi.org/10.15252/msb.20209620

YuanZhou,HongseokYang, YeeWhyeTeh, andTomRainforth. 2020. Divide, Conquer, andCombine: aNew Inference Strategy

for Probabilistic Programs with Stochastic Support. In International Conference on Machine Learning (ICML). 11534–11545.

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

https://doi.org/10.48550/ARXIV.1301.1299
https://doi.org/10.15252/msb.20209620

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:33

A DEFERREDRESULTS IN §1
A.1 Unsoundness of Continuity Analyses in [Chaudhuri et al. 2010, 2012]
The continuity analysis in [Chaudhuri et al. 2010] considers joint continuity, whereas the continuity

analysis in [Chaudhuri et al. 2012] considers partial continuity. That is, given a command 𝑐 , an output

variable 𝑣 of 𝑐 , and some input variables𝑢1, . . . , 𝑢𝑚 to 𝑐 , the former analyses whether 𝑣 is continuous

in {𝑢1, . . . , 𝑢𝑚} jointly, whereas the latter analyses whether 𝑣 is continuous in𝑢𝑖 separately for every
1 ≤ 𝑖 ≤ 𝑚.

Join and Sequence rules. The former analysis contains a rule called Join [Chaudhuri et al. 2010,

Figure 3], and the latter analysis contains a rule called Sequence [Chaudhuri et al. 2012, Figure 1].

The two rules can be rewritten (with some simplifications) as follows, in terms of functions between

R𝑛 : for any 𝑓 , 𝑔 : R𝑛 → R𝑛 and 𝑆, 𝑆 ′,𝑇 ,𝑈 ⊆ {1, . . . , 𝑛},
For each 𝑗 ∈ 𝑇 , 𝑓𝑗 is continuous in {𝑥𝑖 | 𝑖 ∈ 𝑆}
For each 𝑗 ∈ 𝑇 , 𝑓𝑗 is continuous in {𝑥𝑖 | 𝑖 ∈ 𝑆 ′}

For each 𝑗 ∈ 𝑇 , 𝑓𝑗 is continuous in {𝑥𝑖 | 𝑖 ∈ 𝑆 ∪ 𝑆 ′}
(Join)

For each 𝑗 ∈ 𝑇 , 𝑓𝑗 is continuous in 𝑥𝑖 for each 𝑖 ∈ 𝑆
For each 𝑘 ∈ 𝑈 , 𝑔𝑘 is continuous in𝑦 𝑗 for each 𝑗 ∈ 𝑇

For each 𝑘 ∈ 𝑈 , (𝑔 ◦ 𝑓)𝑘 is continuous in 𝑥𝑖 for each 𝑖 ∈ 𝑆
(Sequence)

where 𝑓 and 𝑔 are functions of variables 𝑥1, . . . , 𝑥𝑛 and𝑦1, . . . , 𝑦𝑛 , respectively, andℎ𝑖 ≜ proj𝑖 ◦ ℎ for
ℎ : R𝑛 → R𝑛 and 𝑖 ∈ {1, . . . , 𝑛} denotes the 𝑖-th component of ℎ. As mentioned above, the Join rule

analyses joint continuity, while the Sequence rule analyses partial continuity. Further, the Join rule

says that joint continuity is preserved under the union of input variables, while the Sequence rule

says that partial continuity is preserved under the composition of functions.

The two rules, however, are unsound with the following counterexamples. Let ℎ : R2 → R2
be

the function

ℎ(𝑥1, 𝑥2) ≜
{
(𝑥1𝑥2/(𝑥21 + 𝑥22), 𝑥2) if (𝑥1, 𝑥2) ≠ (0, 0)
(0, 𝑥2) otherwise.

Note thatℎ1 is continuous in 𝑥1 and in 𝑥2 separately, but not in {𝑥1, 𝑥2} jointly. First, for the Join rule,
consider the following 𝑓 : R2 → R2

and 𝑆, 𝑆 ′,𝑇 ⊆ {1, 2}:
𝑓 (𝑥1, 𝑥2) ≜ ℎ(𝑥1, 𝑥2), 𝑆 ≜ {1}, 𝑆 ′ ≜ {2}, 𝑇 ≜ {1, 2}.

Then, the premise of the Join rule holds, and so the conclusion of the rule must hold. But this is not
the case since 𝑓1 = ℎ1 is not continuous in {𝑥1, 𝑥2}. Hence, the Join rule is unsound. Next, for the

Sequence rule, consider the following 𝑓 , 𝑔 : R2 → R2
and 𝑆,𝑇 ,𝑈 ⊆ {1, 2}:

𝑓 (𝑥1, 𝑥2) ≜ (𝑥1, 𝑥1), 𝑔(𝑥1, 𝑥2) ≜ ℎ(𝑥1, 𝑥2), 𝑆 ≜ 𝑇 ≜ 𝑈 ≜ {1, 2}.
Then, thepremiseof theSequence ruleholds, and so the conclusionof the rulemusthold. But this isnot
the case since (𝑔◦ 𝑓)1 is not continuous in𝑥1 (due to (𝑔◦ 𝑓)1 (𝑥1, 𝑥2) = 1[𝑥1≠0] · 12). Hence, the Sequence
rule is unsound. These counterexamples show that joint continuity is not preserved under the union
of input variables, and partial continuity is not preserved under the composition of functions.

The two aforementioned counterexamples can be easily translated into programs: the first becomes

𝑐1 ≡ (𝑧 := ℎ1 (𝑥,𝑦)) and the second becomes 𝑐2 ≡ (𝑦 := 𝑥 ; 𝑧 := ℎ1 (𝑥,𝑦)), where 𝑥 , 𝑦, and 𝑧 are
program variables and ℎ1 is the binary operator defined above. The analysis in [Chaudhuri et al.

2010] deduces that in 𝑐1, 𝑧 is continuous in 𝑥 and 𝑦 (jointly), and the analysis in [Chaudhuri et al.

2012] deduces that in 𝑐2, 𝑧 is continuous in 𝑥 (separately). Both deductions, however, are incorrect

as seen above, and the two analyses are thus unsound.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:34 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Sequence rule (again). Both of the two analyses in [Chaudhuri et al. 2010, 2012] contain the Se-

quence rule (discussed above) which has the following rule as an instance: for all variables 𝑣0, 𝑣1, 𝑣2
that are not necessarily distinct, and for all commands 𝑐1, 𝑐2,

In 𝑐1, 𝑣1 is continuous in 𝑣0
In 𝑐2, 𝑣2 is continuous in 𝑣1

In (𝑐1; 𝑐2), 𝑣2 is continuous in 𝑣0
The above instance of the Sequence rule is, however, unsound because it incorrectly handles

the dependencies between variables. For instance, consider commands 𝑐1 ≡ (if (𝑥 < 0) {𝑦 :=

0} else {𝑦 := 1}) and 𝑐2 ≡ (𝑧 := 𝑥 +𝑦), and variables 𝑣0 ≡ 𝑥 , 𝑣1 ≡ 𝑥 , and 𝑣2 ≡ 𝑧. Then, in (𝑐1; 𝑐2), 𝑧 is
not continuous in 𝑥 (because 𝑧 after (𝑐1; 𝑐2) is 𝑥 if 𝑥 < 0, and is 𝑥 + 1 if 𝑥 ≥ 0). However, the premise

of the above rule holds for this case, and so the rule incorrectly concludes that 𝑧 is continuous in 𝑥

under (𝑐1; 𝑐2), by ignoring the dependency of 𝑧 on𝑦 (which is discontinuous in 𝑥).

Loop rule. The analysis in [Chaudhuri et al. 2010] contains a rule called Simple-loop (Figure 5 in

the paper) to analyse loops, and the analysis in [Chaudhuri et al. 2012] contains a rule called Loop

(Figure 1 in the paper) which is essentially the same as the Simple-loop rule.

The two rules, however, incorrectly assume that (joint or partial) continuity without any restric-

tion on the domain of functions satisfies the admissibility assumption discussed in Remark 5.9;

and this in turn makes the rules unsound. To illustrate the unsoundness, consider a command

𝑐 ≡ (while (0 < 𝑥 < 1) {𝑐 ′}) with 𝑐 ′ ≡ (𝑦 := 𝑦 + 𝑓 (𝑥); 𝑥 := 𝑔(𝑥)), where 𝑓 and𝑔 are the continuous
operators defined by:

𝑓 (𝑥) ≜

𝑥 if 0 < 𝑥 ≤ 1/2
1 − 𝑥 if 1/2 < 𝑥 ≤ 1

0 otherwise,

𝑔(𝑥) ≜

0 if 𝑥 ≤ 0

2𝑥 if 0 < 𝑥 ≤ 1/2
1 otherwise.

Then, the premises of the two rules are satisfied, mainly because 𝑥 and 𝑦 after 𝑐 ′ are continuous
jointly in 𝑥 and𝑦 before 𝑐 ′, and 𝑥 and𝑦 do not change in 𝑐 ′ if 𝑥 = 0 or 𝑥 = 1 (i.e., at the “boundary”

of the loop condition of 𝑐). Hence, the two rules conclude that 𝑥 and 𝑦 after 𝑐 are continuous in 𝑥

and𝑦 before 𝑐 (jointly or separately). However, this is an unsound conclusion because in 𝑐 ,𝑦 is not
continuous in 𝑥 at 𝑥 = 0: we have𝑦 ′ = 𝑦 if 𝑥 = 0, but𝑦 ′→ 𝑦 + 1 as 𝑥 → 0

+
(more precisely,𝑦 ′ = 𝑦 if

𝑥 ≤ 0 or 𝑥 ≥ 1, and𝑦 ′ = 𝑦 + (1− 𝑥) if 0 < 𝑥 < 1), where 𝑥 ′ and𝑦 ′ denote the values of 𝑥 and𝑦 after 𝑐 .

B DEFERREDRESULTS IN §2
B.1 Table Summarising §2

Table 6. Gradient estimators for variational inference, and requirements for each estimator. “Req.” denotes
“Requirement” and “diff.” denotes “differentiable”. Recall that 𝑓\ (𝑧) ≜ log(𝑝𝑐𝑚 (𝑧)/𝑝𝑐𝑔,\ (𝑧)).

SCE PGE SPGE

Setup 𝑞\ (𝑧) 𝑝𝑐𝑔,\ (𝑧) 𝑝𝑐′𝑔 (𝑧) 𝑝𝑐′′𝑔 ,\ (𝑧)
𝑣\ (𝑧) 𝑧 𝑣𝑐′𝑔,\ (𝑧) 𝑣𝑐′′𝑔 ,\ (𝑧)
𝑔\ (𝑧) 𝑓\ (𝑣\ (𝑧)) · ∇\ log𝑞\ (𝑧) ∇\

(
𝑓\ (𝑣\ (𝑧))

)
∇\

(
𝑓\ (𝑣\ (𝑧))

)
+ 𝑓\ (𝑣\ (𝑧)) · ∇\ log𝑞\ (𝑧)

Req. 𝑞\ (𝑧) diff. in \ – diff. in \

𝑣\ (𝑧) – diff. in \ diff. in \

𝑝𝑐𝑚 (𝑧) – diff. in \ and 𝑧 diff. in \ and “selected” 𝑧𝑖 ’s

𝑝𝑐𝑔,\ (𝑧) – diff. in \ and 𝑧 diff. in \ and “selected” 𝑧𝑖 ’s

Table 6 compares key aspects of the three gradient estimators (SCE, PGE, and SPGE) explained in §2.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:35

C DEFERREDRESULTS IN §4.1
C.1 Proof of Theorem 4.2
We introduce several definitions, state lemmas, and prove Theorem 4.2 using the lemmas. We prove

the lemmas in §C.2 and §C.3.

Recall the partition Var = PVar ⊎ Name ⊎ AVar of Var. We use the following letters to denote the

values of each part: 𝜎𝑝 ∈ St[PVar], 𝜎𝑛 ∈ St[Name], and 𝜎𝑎 ∈ St[AVar]. Based on the partition, we
define the next functions:

prs(𝑐) : St[PVar] × St[Name] × St[AVar] → [0,∞),

prs(𝑐) (𝜎𝑝 , 𝜎𝑛, 𝜎𝑎) ≜

J𝑐K(𝜎𝑝 ⊕ 𝜎𝑛 ⊕ 𝜎𝑎) (like)
·∏`∈Name J𝑐K(𝜎𝑝 ⊕ 𝜎𝑛 ⊕ 𝜎𝑎) (pr`)

if noerr (𝑐, 𝜎𝑝 ⊕ 𝜎𝑛 ⊕ 𝜎𝑎)

0 otherwise,

vals(𝑐) : St[PVar] × St[Name] × St[AVar] → St[Name],

vals(𝑐) (𝜎𝑝 , 𝜎𝑛, 𝜎𝑎) ≜
{
_` ∈ Name. J𝑐K(𝜎𝑝 ⊕ 𝜎𝑛 ⊕ 𝜎𝑎) (val`) if noerr (𝑐, 𝜎𝑝 ⊕ 𝜎𝑛 ⊕ 𝜎𝑎)
_` ∈ Name. 0 otherwise,

where noerr (𝑐, 𝜎) is a predicate for a command 𝑐 and 𝜎 ∈ St, defined by
noerr (𝑐, 𝜎) ⇐⇒ J𝑐K𝜎 ∈ St ∧

(
∀` ∈ Name. J𝑐K𝜎 (cnt`) − 𝜎 (cnt`) ≤ 1

)
.

The predicate noerr (𝑐, 𝜎) says that 𝑐 terminates for 𝜎 without a double-sampling error. The functions

prs and vals generalise the density function 𝑝 and the value function 𝑣 , respectively; in particular,
they do not assume a particular initial state 𝜎0 used in Eq. (3). We consider the generalisation of 𝑝

and 𝑣 so as to enable inductive proofs.

Although generalising 𝑝 and 𝑣 , the functions prs and vals are not sufficient to enable inductive

proofs since their inputs and outputs contain some unnecessary parts, which stops induction from

working well (especially in the sequential composition case): namely, the part of St[Name] that is
not read during execution, and the part of St[AVar] that is not updated during execution. To exclude
those unnecessary parts, we first define the set of substates of St[Name] as follows:

b𝑛 ∈ St□ [Name] ≜
⋃

𝐾⊆Name

St[𝐾] .

Based on these substates, we define the next functions:

prs□ (𝑐) : St[PVar] × St□ [Name] → [0,∞),

prs□ (𝑐) (𝜎𝑝 , b𝑛) ≜

J𝑐K(𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (like)
·∏`∈dom(b𝑛) J𝑐K(𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (pr`)

if ∃𝜎𝑟 . used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛)

0 otherwise,

vals□ (𝑐) : St[PVar] × St□ [Name] → St□ [Name],

vals□ (𝑐) (𝜎𝑝 , b𝑛) ≜
{
_` ∈ dom(b𝑛). J𝑐K(𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (val`) if ∃𝜎𝑟 . used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛)
_` ∈ dom(b𝑛). 0 otherwise,

pvars□ (𝑐) : St[PVar] × St□ [Name] → St[PVar],

pvars□ (𝑐) (𝜎𝑝 , b𝑛) ≜
{
_𝑥 ∈ PVar. J𝑐K(𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (𝑥) if ∃𝜎𝑟 . used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛)
_𝑥 ∈ PVar. 0 otherwise,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:36 Wonyeol Lee, Xavier Rival, and Hongseok Yang

where used (𝑐, 𝜎, b𝑛) is a predicate for a command 𝑐 , 𝜎 ∈ St, and b𝑛 ∈ St□ [Name], defined by

used (𝑐, 𝜎, b𝑛) ⇐⇒ noerr (𝑐, 𝜎) ∧
(
𝜎 (like) = 1

)
∧

(
b𝑛 = 𝜎 |dom(b𝑛)

)
∧

(
dom(b𝑛) = {` ∈ Name | J𝑐K𝜎 (cnt`) − 𝜎 (cnt`) = 1}

)
.

The predicate used (𝑐, 𝜎, b𝑛) says that 𝑐 terminates for 𝜎 without a double-sampling error, like is
initialised to 1 in 𝜎 , and b𝑛 is theName part of 𝜎 that is sampled during the execution of 𝑐 from 𝜎 .

By using used (−,−,−), the three functions do not take the unnecessary part of a state as an input,
and do not return the unnecessary part of a state in the output. The three functions are well-defined.

Lemma C.1. prs□, vals□, and pvars□ are well-defined, i.e., they do not depend on the choice of 𝜎𝑟 .

We now state two main lemmas for Theorem 4.2. The first lemma describes how prs and vals are
connected with prs□ and vals□. The second lemma says that a particular integral involving prs□,
vals□, and pvars□ is the same for 𝑐 and 𝑐𝜋 if a reparameterisation plan 𝜋 is valid.

Lemma C.2. Let 𝑐 be a command, and 𝑓𝑖 : R→ R for 𝑖 ∈ {1, 2, 3} be measurable functions such that
𝑓1 (𝑟) ≥ 0 for all 𝑟 ∈ R. Define 𝑓∗ : St[Name] → St[AVar] by

𝑓∗ (𝜎𝑛) (𝑎) ≜

1 if 𝑎 ≡ like
𝑓1 (𝜎𝑛 (`)) if 𝑎 ≡ pr` for ` ∈ Name

𝑓2 (𝜎𝑛 (`)) if 𝑎 ≡ val` for ` ∈ Name
𝑓3 (𝜎𝑛 (`)) if 𝑎 ≡ cnt` for ` ∈ Name.

Then, for all 𝜎𝑝 ∈ St[PVar] and all measurableℎ : St[Name] → R,∫
𝑑𝜎𝑛

(
prs(𝑐) (𝜎𝑝 , 𝜎𝑛, 𝑓∗ (𝜎𝑛)) · ℎ

(
vals(𝑐) (𝜎𝑝 , 𝜎𝑛, 𝑓∗ (𝜎𝑛))

))
=

∫
𝑑b𝑛

(
prs□ (𝑐) (𝜎𝑝 , b𝑛) · 𝑔

(
vals□ (𝑐) (𝜎𝑝 , b𝑛)

))
where the integral on the LHS is defined if and only if the one on the RHS is defined, and the function
𝑔 : St□ [Name] → R is defined by

𝑔(b ′′𝑛) =
∫

𝑑b ′𝑛

(
1[dom(b′′𝑛)⊎dom(b′𝑛)=Name] ·

(∏
`∈dom(b′𝑛)

𝑓1 (b ′𝑛 (`))
)
· ℎ

(
b ′′𝑛 ⊕ _` ∈ dom(b ′𝑛). 𝑓2 (b ′𝑛 (`))

))
.

(14)

Lemma C.3. Let 𝑐 be a command and 𝑔 : St[PVar] × St□ [Name] → R be a measurable function.
Then, for all 𝜎𝑝 ∈ St[PVar],∫

𝑑b𝑛

(
prs□ (𝑐) (𝜎𝑝 , b𝑛) · 𝑔

(
pvars□ (𝑐) (𝜎𝑝 , b𝑛), vals□ (𝑐) (𝜎𝑝 , b𝑛)

))
=

∫
𝑑b𝑛

(
prs□ (𝑐

𝜋) (𝜎𝑝 , b𝑛) · 𝑔
(
pvars□ (𝑐

𝜋) (𝜎𝑝 , b𝑛), vals□ (𝑐𝜋) (𝜎𝑝 , b𝑛)
))

where the integral on the LHS is defined if and only if the one on the RHS is defined.

We now prove Theorem 4.2 using these two lemmas.

Proof of Theorem 4.2. Let𝜋 be a valid reparameterisation plan, 𝑐 be a command,𝜎\ ∈ St[\], and
ℎ : St[Name] → R be a measurable function. Suppose that the integral on the LHS of Theorem 4.2

is defined. Recall that for a given 𝜎𝑛 ∈ St[Name], the definitions of 𝑝 and 𝑣 (in §3 and §4.1) use the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:37

initial state 𝜎 ≜ 𝜎\ ⊕ 𝜎𝑛 ⊕ 𝜎0 ∈ St, where 𝜎0 ∈ St[(PVar \ \) ∪ AVar] depends on 𝜎𝑛 and has the
following definition:

𝜎0 (𝑣) ≜

0 if 𝑣 ∈ PVar \ \
1 if 𝑣 ≡ like
N(𝜎𝑛 (`); 0, 1) if 𝑣 ≡ pr` for ` ∈ Name

𝜎𝑛 (`) if 𝑣 ≡ val` for ` ∈ Name
0 if 𝑣 ≡ cnt` for ` ∈ Name.

The initial state 𝜎 can be re-expressed as

𝜎 = 𝜎𝑝 ⊕ 𝜎𝑛 ⊕ 𝑓∗ (𝜎𝑛) (15)

using the following 𝜎𝑝 ∈ St[PVar] and 𝑓∗ : St[Name] → St[AVar]:

𝜎𝑝 (𝑥) ≜
{
𝜎\ (𝑥) if 𝑥 ∈ \
0 if 𝑥 ∈ PVar \ \,

𝑓∗ (𝜎𝑛) (𝑎) ≜

1 if 𝑎 ≡ like
𝑓1 (𝜎𝑛 (`)) if 𝑎 ≡ pr` for ` ∈ Name

𝑓2 (𝜎𝑛 (`)) if 𝑎 ≡ val` for ` ∈ Name
𝑓3 (𝜎𝑛 (`)) if 𝑎 ≡ cnt` for ` ∈ Name,

where 𝑓1 (𝑟) ≜ N(𝑟 ; 0, 1), 𝑓2 (𝑟) ≜ 𝑟 , and 𝑓3 (𝑟) ≜ 0. Using this, we get the desired equation:∫
𝑑𝜎𝑛

(
𝑝𝑐,𝜎\ (𝜎𝑛) · ℎ

(
𝑣𝑐,𝜎\ (𝜎𝑛)

))
=

∫
𝑑𝜎𝑛

(
prs(𝑐) (𝜎𝑝 , 𝜎𝑛, 𝑓∗ (𝜎𝑛)) · ℎ

(
vals(𝑐) (𝜎𝑝 , 𝜎𝑛, 𝑓∗ (𝜎𝑛))

))
=

∫
𝑑b𝑛

(
prs□ (𝑐) (𝜎𝑝 , b𝑛) · 𝑔

(
vals□ (𝑐) (𝜎𝑝 , b𝑛)

))
=

∫
𝑑b𝑛

(
prs□ (𝑐

𝜋) (𝜎𝑝 , b𝑛) · 𝑔
(
vals□ (𝑐𝜋) (𝜎𝑝 , b𝑛)

))
=

∫
𝑑𝜎𝑛

(
prs(𝑐𝜋) (𝜎𝑝 , 𝜎𝑛, 𝑓∗ (𝜎𝑛)) · ℎ

(
vals(𝑐𝜋) (𝜎𝑝 , 𝜎𝑛, 𝑓∗ (𝜎𝑛))

))
=

∫
𝑑𝜎𝑛

(
𝑝𝑐𝜋 ,𝜎\ (𝜎𝑛) · ℎ

(
𝑣𝑐𝜋 ,𝜎\ (𝜎𝑛)

))
where𝑔 : St□ [Name] → R is defined as Eq. (14). The first equality holds by Eq. (15) and the definition

of 𝑝𝑐,𝜎\ , 𝑣𝑐,𝜎\ , prs, and vals. The second equality holds by Lemma C.2 (applied to 𝑐). The third equality

follows from Lemma C.3. The fourth equality holds by Lemma C.2 (applied to 𝑐𝜋). The fifth equality

holds by Eq. (15) and the definitions of 𝑝𝑐𝜋 ,𝜎\ , 𝑣𝑐𝜋 ,𝜎\ , prs, and vals. Note that the same equational

reasoning with the reverse direction can be used to prove the claimed equation of the theoremwhen

the integral on the RHS of the equation is defined. □

C.2 Proofs of Lemmas C.1 and C.2
Proof of Lemma C.1. Let 𝑐 be a command, 𝜎𝑝 ∈ St[PVar], and b𝑛 ∈ St□ [Name]. Consider

𝜎𝑟 ∈ St[Var \ (dom(𝜎𝑝) ∪ dom(b𝑛))] such that used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛). We want to show that

prs□ (𝑐) (𝜎𝑝 , b𝑛), vals□ (𝑐) (𝜎𝑝 , b𝑛), and pvars□ (𝑐) (𝜎𝑝 , b𝑛) do not depend on the choice of 𝜎𝑟 . To do so,
consider𝜎 ′𝑟 ∈ St[Var\ (dom(𝜎𝑝) ∪dom(b𝑛))] such that used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕𝜎 ′𝑟 , b𝑛). Let𝜎 ≜ 𝜎𝑝 ⊕ b𝑛 ⊕𝜎𝑟

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:38 Wonyeol Lee, Xavier Rival, and Hongseok Yang

and 𝜎 ′ ≜ 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎 ′𝑟 . Then, it suffices to show that

J𝑐K𝜎 (like) ·∏`∈dom(b𝑛) J𝑐K𝜎 (pr`) = J𝑐K𝜎 ′(like) ·∏`∈dom(b𝑛) J𝑐K𝜎
′(pr`),

J𝑐K𝜎 (val`) = J𝑐K𝜎 ′(val`) for all ` ∈ dom(b𝑛),
J𝑐K𝜎 (𝑥) = J𝑐K𝜎 ′(𝑥) for all 𝑥 ∈ PVar.

(16)

Since used (𝑐, 𝜎, b𝑛) and used (𝑐, 𝜎 ′, b𝑛), we have 𝜎 (like) = 1 = 𝜎 ′(like) and so 𝜎 |𝑉 = 𝜎 ′ |𝑉 for

𝑉 = PVar ∪ dom(b𝑛) ∪ {like}. Using this and used (𝑐, 𝜎, b𝑛), we can apply Lemma C.6-(3) and -

(4) to get J𝑐K𝜎 (𝑣) = J𝑐K𝜎 ′(𝑣) for all 𝑣 ∈ PVar ∪ {like} ∪ {pr`, val` | ` ∈ dom(b𝑛)}. Hence, we obtain
the desired equations in Eq. (16). □

Proof of Lemma C.2. Let 𝑐 be a command, ℎ : St[Name] → R be a measurable function,

𝑓∗ : St[Name] → St[AVar] be the functiondefined in the statement of this lemma, and𝜎𝑝 ∈ St[PVar].
We first prove that the following equations hold for any measurableℎ′ : St[Name] → R:∫
𝑑𝜎𝑛

(
1[noerr (𝑐,𝜎𝑝 ⊕𝜎𝑛⊕𝑓∗ (𝜎𝑛))] · ℎ′(𝜎𝑛)

)
=

∫
𝑑𝜎𝑛

(
1[noerr (𝑐,𝜎𝑝 ⊕𝜎𝑛⊕𝑓∗ (𝜎𝑛))] · ℎ′(𝜎𝑛) ·

∑
𝐾⊆Name

1[used (𝑐,𝜎𝑝 ⊕𝜎𝑛⊕𝑓∗ (𝜎𝑛),𝜎𝑛 |𝐾)]
)

=
∑

𝐾⊆Name

∫
𝑑𝜎𝑛

(
1[used (𝑐,𝜎𝑝 ⊕𝜎𝑛⊕𝑓∗ (𝜎𝑛),𝜎𝑛 |𝐾)] · 1[noerr (𝑐,𝜎𝑝 ⊕𝜎𝑛⊕𝑓∗ (𝜎𝑛))] · ℎ′(𝜎𝑛)

)
=

∑
𝐾⊆Name

∫
[𝐾→R]

𝑑b𝑛

∫
[Name\𝐾→R]

𝑑b ′𝑛

(
1[used (𝑐,𝜎𝑝 ⊕(b𝑛⊕b′𝑛) ⊕𝑓∗ (b𝑛⊕b′𝑛),b𝑛)]

· 1[noerr (𝑐,𝜎𝑝 ⊕(b𝑛⊕b′𝑛) ⊕𝑓∗ (b𝑛⊕b′𝑛))] · ℎ
′(b𝑛 ⊕ b ′𝑛)

)
=

∑
𝐾⊆Name

∫
[𝐾→R]

𝑑b𝑛

(∑
𝐿⊆Name

∫
[𝐿→R]

𝑑b ′𝑛

(
1[dom(b𝑛)⊎dom(b′𝑛)=Name] · 1[used (𝑐,𝜎𝑝 ⊕(b𝑛⊕b′𝑛) ⊕𝑓∗ (b𝑛⊕b′𝑛),b𝑛)]

· 1[noerr (𝑐,𝜎𝑝 ⊕(b𝑛⊕b′𝑛) ⊕𝑓∗ (b𝑛⊕b′𝑛))] · ℎ
′(b𝑛 ⊕ b ′𝑛)

))
=

∫
𝑑b𝑛

∫
𝑑b ′𝑛

(
1[dom(b𝑛)⊎dom(b′𝑛)=Name] · 1[used (𝑐,𝜎𝑝 ⊕(b𝑛⊕b′𝑛) ⊕𝑓∗ (b𝑛⊕b′𝑛),b𝑛)]

· 1[noerr (𝑐,𝜎𝑝 ⊕(b𝑛⊕b′𝑛) ⊕𝑓∗ (b𝑛⊕b′𝑛))] · ℎ
′(b𝑛 ⊕ b ′𝑛)

)
.

All of these equations mean that one side of the equation is defined if and only if the other side

is defined, and when both sides are defined, they are the same. The first equality holds because

noerr (𝑐, 𝜎𝑝 ⊕ 𝜎𝑛 ⊕ 𝑓∗ (𝜎𝑛)) implies that there exists a unique 𝐾 ⊆ Name with used (𝑐, 𝜎𝑝 ⊕ 𝜎𝑛 ⊕
𝑓∗ (𝜎𝑛), 𝜎𝑛 |𝐾); here we use 𝑓∗ (𝜎𝑛) (like) = 1. The second equality holds sinceName is finite. The third
equality holds because St[Name] is isomorphic to [𝐾 → R] × [Name \𝐾 → R]. The fourth equality
holds since b ′𝑛 ∈ [𝐿 → R] with 𝐿 ≠ Name \𝐾 implies 1[dom(b𝑛)⊎dom(b′𝑛)=Name] = 0. The fifth equality

holds by the definition of St□ [Name] and its underlying measure.

Using this result, we obtain the desired equation:∫
𝑑𝜎𝑛

(
prs(𝑐) (𝜎𝑝 , 𝜎𝑛, 𝑓∗ (𝜎𝑛)) · ℎ

(
vals(𝑐) (𝜎𝑝 , 𝜎𝑛, 𝑓∗ (𝜎𝑛))

))
=

∫
𝑑𝜎𝑛

(
1[noerr (𝑐,𝜎𝑝 ⊕𝜎𝑛⊕𝑓∗ (𝜎𝑛))] · prs(𝑐) (𝜎𝑝 , 𝜎𝑛, 𝑓∗ (𝜎𝑛)) · ℎ

(
vals(𝑐) (𝜎𝑝 , 𝜎𝑛, 𝑓∗ (𝜎𝑛))

))
=

∫
𝑑b𝑛

∫
𝑑b ′𝑛

(
1[dom(b𝑛)⊎dom(b′𝑛)=Name] · 1[used (𝑐,𝜎𝑝 ⊕(b𝑛⊕b′𝑛) ⊕𝑓∗ (b𝑛⊕b′𝑛),b𝑛)]

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:39

· 1[noerr (𝑐,𝜎𝑝 ⊕(b𝑛⊕b′𝑛) ⊕𝑓∗ (b𝑛⊕b′𝑛))]

· prs(𝑐) (𝜎𝑝 , b𝑛 ⊕ b ′𝑛, 𝑓∗ (b𝑛 ⊕ b ′𝑛)) · ℎ
(
vals(𝑐) (𝜎𝑝 , b𝑛 ⊕ b ′𝑛, 𝑓∗ (b𝑛 ⊕ b ′𝑛))

))
=

∫
𝑑b𝑛

∫
𝑑b ′𝑛

(
1[dom(b𝑛)⊎dom(b′𝑛)=Name] · 1[used (𝑐,𝜎𝑝 ⊕(b𝑛⊕b′𝑛) ⊕𝑓∗ (b𝑛⊕b′𝑛),b𝑛)]

· prs(𝑐) (𝜎𝑝 , b𝑛 ⊕ b ′𝑛, 𝑓∗ (b𝑛 ⊕ b ′𝑛)) · ℎ
(
vals(𝑐) (𝜎𝑝 , b𝑛 ⊕ b ′𝑛, 𝑓∗ (b𝑛 ⊕ b ′𝑛))

))
=

∫
𝑑b𝑛

∫
𝑑b ′𝑛

(
1[dom(b𝑛)⊎dom(b′𝑛)=Name] · 1[used (𝑐,𝜎𝑝 ⊕(b𝑛⊕b′𝑛) ⊕𝑓∗ (b𝑛⊕b′𝑛),b𝑛)]

· prs□ (𝑐) (𝜎𝑝 , b𝑛) ·
(∏
`∈dom(b′𝑛)

𝑓1 (b ′𝑛 (`))
)
· ℎ

(
vals□ (𝑐) (𝜎𝑝 , b𝑛) ⊕

(
_` ∈ dom(b ′𝑛). 𝑓2 (b ′𝑛 (`))

)))
=

∫
𝑑b𝑛

∫
𝑑b ′𝑛

(
1[dom(b𝑛)⊎dom(b′𝑛)=Name]

· prs□ (𝑐) (𝜎𝑝 , b𝑛) ·
(∏
`∈dom(b′𝑛)

𝑓1 (b ′𝑛 (`))
)
· ℎ

(
vals□ (𝑐) (𝜎𝑝 , b𝑛) ⊕

(
_` ∈ dom(b ′𝑛). 𝑓2 (b ′𝑛 (`))

)))
=

∫
𝑑b𝑛

(
prs□ (𝑐) (𝜎𝑝 , b𝑛) ·

∫
𝑑b ′𝑛

(
1[dom(vals□ (𝑐) (𝜎𝑝 ,b𝑛))⊎dom(b′𝑛)=Name] ·

(∏
`∈dom(b′𝑛)

𝑓1 (b ′𝑛 (`))
)

· ℎ
(
vals□ (𝑐) (𝜎𝑝 , b𝑛) ⊕

(
_` ∈ dom(b ′𝑛). 𝑓2 (b ′𝑛 (`))

))))
=

∫
𝑑b𝑛

(
prs□ (𝑐) (𝜎𝑝 , b𝑛) · 𝑔

(
vals□ (𝑐) (𝜎𝑝 , b𝑛)

))
where 𝑔 : St□ [Name] → R is defined as in the statement of this lemma, and each equation again

means that one side of it is defined if and only if the other side is defined, and when both sides are

defined, they are the same. The first and third equalities hold because prs(𝑐) (𝜎𝑝 , 𝜎𝑛, 𝑓∗ (𝜎𝑛)) ≠ 0

implies 1[noerr (𝑐,𝜎𝑝 ⊕𝜎𝑛⊕𝑓∗ (𝜎𝑛))] = 1. The second equality uses the equation that we have shown in the

previous paragraph. The fourth equality holds because of the following reason: if

1[dom(b𝑛)⊎dom(b′𝑛)=Name] · 1[used (𝑐,𝜎𝑝 ⊕b𝑛⊕𝜎𝑟 ,b𝑛)] = 1 for 𝜎𝑟 ≜ b
′
𝑛 ⊕ 𝑓∗ (b𝑛 ⊕ b ′𝑛),

then

prs(𝑐) (𝜎𝑝 , b𝑛 ⊕ b ′𝑛, 𝑓∗ (b𝑛 ⊕ b ′𝑛)) = J𝑐K(𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (like) ·
∏
`∈Name J𝑐K(𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (pr`)

= J𝑐K(𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (like) ·
∏
`∈dom(b𝑛) J𝑐K(𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (pr`)

·∏`∈Name\dom(b𝑛) (𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (pr`)
= prs□ (𝑐) (𝜎𝑝 , b𝑛) ·

∏
`∈Name\dom(b𝑛) (𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (pr`)

= prs□ (𝑐) (𝜎𝑝 , b𝑛) ·
∏
`∈dom(b′𝑛) 𝑓1 (b

′
𝑛 (`))

and

vals(𝑐) (𝜎𝑝 , b𝑛 ⊕ b ′𝑛, 𝑓∗ (b𝑛 ⊕ b ′𝑛)) = _` ∈ Name. J𝑐K(𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (val`)
=

(
_` ∈ dom(b𝑛). J𝑐K(𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (val`)

)
⊕

(
_` ∈ Name \ dom(b𝑛). (𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (val`)

)
= vals□ (𝑐) (𝜎𝑝 , b𝑛) ⊕

(
_` ∈ Name \ dom(b ′𝑛). (𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (val`)

)
= vals□ (𝑐) (𝜎𝑝 , b𝑛) ⊕

(
_` ∈ dom(b ′𝑛). 𝑓2 (b ′𝑛 (`))

)
.

These equalities for prs(𝑐) and vals(𝑐) themselves hold for the below reasons:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:40 Wonyeol Lee, Xavier Rival, and Hongseok Yang

• The first equalities hold by used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛) and the definitions of prs(𝑐) and vals(𝑐).
• The second equalities hold by LemmaC.6-(2), which is applicable since used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕𝜎𝑟 , b𝑛).
• The third equalities hold by used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕𝜎𝑟 , b𝑛) and the definitions of prs□ (𝑐) and vals□ (𝑐).
• The fourth equalities hold by dom(b𝑛) ⊎ dom(b ′𝑛) = Name and the definition of 𝑓∗.

Returning back to the main equations, we point out that the fifth equality comes from the next fact:(
1[dom(b𝑛)⊎dom(b′𝑛)=Name] · prs□ (𝑐) (𝜎𝑝 , b𝑛)

)
≠ 0 =⇒ 1[used (𝑐,𝜎𝑝 ⊕(b𝑛⊕b′𝑛) ⊕𝑓∗ (b𝑛⊕b′𝑛),b𝑛)] = 1.

The justification for this implication is given below:

• If the premise holds, then there exists𝜎𝑟 such that used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕𝜎𝑟 , b𝑛). Since𝜎𝑟 (like) = 1 =

𝑓∗ (−)(like),𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 and𝜎𝑝 ⊕ (b𝑛 ⊕ b ′𝑛) ⊕ 𝑓∗ (b𝑛 ⊕ b ′𝑛) coincide on PVar∪ dom(b𝑛) ∪ {like}.
Thus, Lemma C.7 gives the conclusion.

Again back to the main equations, we note that the sixth equality holds since

dom(b𝑛) = dom(vals□ (𝑐) (𝜎𝑝 , b𝑛)),

and the seventh equality follows from the definition of 𝑔. This completes the proof. □

Lemma C.4. For all commands 𝑐 and states 𝜎 ∈ St such that J𝑐K𝜎 ∈ St, we have

J𝑐K𝜎 (cnt`) ≥ 𝜎 (cnt`) and J𝑐K𝜎 (`) = 𝜎 (`)

for all ` ∈ Name.

Proof. We prove the lemma by induction on the structure of 𝑐 . Let 𝜎 ∈ St such that J𝑐K𝜎 ∈ St.

Cases 𝑐 ≡ skip, or 𝑐 ≡ (𝑥 := 𝑒), or 𝑐 ≡ obs(𝑑, 𝑟). In these cases, J𝑐K𝜎 (cnt`) = 𝜎 (cnt`) and
J𝑐K𝜎 (`) = ` for all `. The claim of the lemma, thus, follows.

Case 𝑐 ≡ (𝑥 := sam(𝑛,𝑑, _𝑦.𝑒 ′)). Let ` ≜ J𝑛K𝜎 , 𝑝 ≜ J𝑑K𝜎 , and 𝑟 ≜ J𝑒 ′[`/𝑦]K𝜎 . Then,

J𝑐K𝜎 = 𝜎 [𝑥 ↦→ 𝑟, val` ↦→ 𝑟, pr` ↦→ 𝑝 (𝑟), cnt` ↦→ 𝜎 (cnt`) + 1] .

Thus, the claim of the lemma follows.

Case 𝑐 ≡ (𝑐 ′; 𝑐 ′′). Pick ` ∈ Name. Then,

J𝑐 ′; 𝑐 ′′K𝜎 (`) = J𝑐 ′′K(J𝑐 ′K𝜎) (`) = J𝑐 ′K𝜎 (`) = 𝜎 (`).

Here the second and third equalities use induction hypothesis on 𝑐 ′ and 𝑐 ′′, respectively. Also,

J𝑐 ′; 𝑐 ′′K𝜎 (cnt`) − 𝜎 (cnt`) =
(
J𝑐 ′′K(J𝑐 ′K𝜎) (cnt`) − J𝑐 ′K𝜎 (cnt`)

)
+

(
J𝑐 ′K𝜎 (cnt`) − 𝜎 (cnt`)

)
≥ 0.

The inequality here uses induction hypothesis on 𝑐 ′ and 𝑐 ′′.

Case 𝑐 ≡ (if 𝑏 {𝑐 ′} else {𝑐 ′′}). Assume that J𝑏K𝜎 = true. We will prove the claims of the lemma

under this assumption. The other case of J𝑏K = false can be proved similarly. Pick ` ∈ Name. Then,
by induction hypothesis on 𝑐 ′,

J𝑐K𝜎 (`) = J𝑐 ′K𝜎 (`) = 𝜎 (`) and J𝑐K𝜎 (cnt`) = J′K𝜎 (cnt`) ≥ 𝜎 (cnt`).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:41

Case 𝑐 ≡ (while 𝑏 {𝑐 ′}). Let T be the following subset of [St→ St⊥]:

𝑓 ∈ T ⇐⇒ ∀𝜎 ∈ St.
(
𝑓 (𝜎) ≠ ⊥ =⇒ ∀` ∈ Name. 𝑓 (𝜎) (`) = 𝜎 (`) ∧ 𝑓 (𝜎) (cnt`) ≥ 𝜎 (cnt`)

)
.

Let 𝐹 be the operator on [St → St⊥] whose least fixed point becomes the semantics of the loop 𝑐 .

The desired conclusion follows if we show that T contains _𝜎.⊥ and is closed under taking the limit

of a chain in T , and 𝐹 preserves T . The least element _𝜎.⊥ belongs to T since there are no states

𝜎 with (_𝜎.⊥)(𝜎) ≠ ⊥. Consider an increasing sequence 𝑓0, 𝑓1, . . . in T , and let 𝑓∞ ≜
⊔
𝑛∈N 𝑓𝑛 . Pick

𝜎 such that 𝑓∞ (𝜎) ≠ ⊥. Then, 𝑓∞ (𝜎) = 𝑓𝑚 (𝜎) for some𝑚 ∈ N. Since 𝑓𝑚 ∈ T , we have

𝑓𝑚 (𝜎) (`) = 𝜎 (`) and 𝑓𝑚 (𝜎) (cnt`) ≥ 𝜎 (cnt`)

for all ` ∈ Name. Since 𝑓𝑚 (𝜎) = 𝑓∞ (𝜎), we also have, for every ` ∈ Name, 𝑓∞ (𝜎) (`) = 𝜎 (`) and
𝑓∞ (𝜎) (cnt`) ≥ 𝜎 (cnt`), as desired. It remains to show that 𝐹 (𝑓) ∈ T for all 𝑓 ∈ T . Pick 𝑓 ∈ T and

𝜎 ∈ St such that 𝐹 (𝑓) (𝜎) ∈ St. If J𝑏K𝜎 = false, we have 𝐹 (𝑓) (𝜎) = 𝜎 , and the claims of the lemma

follow. Otherwise, 𝐹 (𝑓) (𝜎) = 𝑓 (J𝑐 ′K𝜎). Pick ` ∈ Name. Then, by induction hypothesis on 𝑐 ′ and the
membership 𝑓 ∈ T ,

𝐹 (𝑓) (𝜎) (`) = 𝑓 (J𝑐 ′K𝜎) (`) = J𝑐 ′K𝜎 (`) = 𝜎 (`),
and

𝐹 (𝑓) (𝜎) (cnt`) = 𝑓 (J𝑐 ′K𝜎) (cnt`) ≥ J𝑐 ′K𝜎 (cnt`) ≥ 𝜎 (cnt`).
We have just shown that 𝐹 (𝑓) ∈ T , as desired. □

Definition C.5. Define used− as the predicate used but without the condition that like should be
1. That is, for all commands 𝑐 , states 𝜎 ∈ St, and b𝑛 ∈ St□ [Name],

used− (𝑐, 𝜎, b𝑛) ⇐⇒ J𝑐K𝜎 ∈ St ∧
(
J𝑐K𝜎 (cnt`) − 𝜎 (cnt`) ≤ 1 for all ` ∈ Name

)
∧ b𝑛 = 𝜎 |dom(b𝑛)
∧ dom(b𝑛) = {` ∈ Name | J𝑐K𝜎 (cnt`) − 𝜎 (cnt`) = 1}.

Lemma C.6. Let 𝑐 be a command, 𝜎0, 𝜎1 ∈ St, and b𝑛 ∈ St□ [Name]. Suppose that used− (𝑐, 𝜎0, b𝑛)
and 𝜎1 |𝑉 = 𝜎0 |𝑉 for𝑉 ≜ PVar ∪ dom(b𝑛). Then, the following properties hold:
(1) J𝑐K𝜎1 ∈ St.
(2) J𝑐K𝜎1 (𝑎) = 𝜎1 (𝑎) for all 𝑎 ∈ {pr`, val`, cnt` | ` ∈ Name \ dom(b𝑛)}.
(3) J𝑐K𝜎1 (𝑣) = J𝑐K𝜎0 (𝑣) for all 𝑣 ∈ PVar ∪ {pr`, val` | ` ∈ dom(b𝑛)}.
(4) J𝑐K𝜎1 (like) = J𝑐K𝜎0 (like), if 𝜎0 (like) = 𝜎1 (like).
(5) J𝑐K𝜎1 (𝑎) − 𝜎1 (𝑎) = J𝑐K𝜎0 (𝑎) − 𝜎0 (𝑎) for all 𝑎 ∈ {cnt` | ` ∈ Name}.

Proof. For 𝜎 ′
0
, 𝜎 ′

1
∈ St and b ′𝑛 ∈ St□ [Name], write

𝜎 ′
0
∼b′𝑛 𝜎

′
1

to mean that 𝜎 ′
0
|𝑉 = 𝜎 ′

1
|𝑉 for𝑉 ≜ PVar ∪ dom(b ′𝑛). Note that using this notation, we can write the

conditions of the lemma as follows:

used− (𝑐, 𝜎0, b𝑛) ∧ 𝜎0 ∼b𝑛 𝜎1.

We will prove, by induction on the structure of 𝑐 , that these conditions imply the five properties

claimed by the lemma. Our proof will sometimes use a simple observation that the five properties

claimed by the lemma and the relationship 𝜎0 ∼b𝑛 𝜎1 imply used− (𝑐, 𝜎1, b𝑛). One consequence of the
observation is that if our lemma holds, its five properties also hold with 𝜎0 and 𝜎1 swapped. We will

often use this consequence.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:42 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Case 𝑐 ≡ skip. In this case, J𝑐K𝜎0 = 𝜎0 and J𝑐K𝜎1 = 𝜎1. From these equalities, the claimed prop-

erties (1), (2), (4) and (5) follow. For the remaining property (3), we note that dom(b𝑛) = ∅ and the
property, thus, follows from 𝜎0 ∼b𝑛 𝜎1.

Case 𝑐 ≡ (𝑥 := 𝑒). In this case, J𝑐K𝜎0 = 𝜎0 [𝑥 ↦→ J𝑒K𝜎0] and J𝑐K𝜎1 = 𝜎1 [𝑥 ↦→ J𝑒K𝜎1]. The results
are not⊥, and they are identical to the pre-states 𝜎0 and 𝜎1 as far as auxiliary variables in AVar are
concerned. Also, expressions in commands do not depend on variables other than program variables,

so that 𝜎0 ∼b𝑛 𝜎1 gives J𝑒K𝜎0 = J𝑒K𝜎1 and J𝑐K𝜎0 (𝑥) = J𝑐K𝜎1 (𝑥) for all 𝑥 ∈ PVar. From all of these

observations, the claimed properties (1)–(5) follow.

Case 𝑐 ≡ (𝑥 := sam(𝑛,𝑑, _𝑦.𝑒 ′)). Since 𝜎0 (𝑥) = 𝜎1 (𝑥) for all 𝑥 ∈ PVar, we have J𝑛K𝜎0 = J𝑛K𝜎1
and J𝑑K𝜎0 = J𝑑K𝜎1. Let ` ≜ J𝑛K𝜎0, 𝑝 ≜ J𝑑K𝜎0, and 𝑟 ≜ J𝑒 ′[`/𝑦]K𝜎0. By the semantics of the sample

commands, we have

J𝑐K𝜎0 = 𝜎0 [𝑥 ↦→ 𝑟, val` ↦→ 𝑟, pr` ↦→ 𝑝 (𝜎0 (`)), cnt` ↦→ 𝜎0 (cnt`) + 1] .

Since used− (𝑐, 𝜎0, b𝑛) holds, we have b𝑛 = 𝜎0 |{` } , which in turn implies 𝜎0 (`) = 𝜎1 (`) because
𝜎0 ∼b𝑛 𝜎1. Thus, J𝑒 ′[`/𝑦]K𝜎1 = J𝑒 ′[`/𝑦]K𝜎0 = 𝑟 , and

J𝑐K𝜎1 = 𝜎1 [𝑥 ↦→ J𝑒 ′[`/𝑦]K𝜎1, val` ↦→ J𝑒 ′[`/𝑦]K𝜎1, pr` ↦→ 𝑝 (𝜎1 (`)), cnt` ↦→ 𝜎1 (cnt`) + 1]
= 𝜎1 [𝑥 ↦→ 𝑟, val` ↦→ 𝑟, pr` ↦→ 𝑝 (𝜎0 (`)), cnt` ↦→ 𝜎1 (cnt`) + 1] .

The RHS of the last equality implies that the five properties claimed by the lemma hold.

Case 𝑐 ≡ obs(𝑑, 𝑟). We have J𝑑K𝜎0 = J𝑑K𝜎1 since 𝜎0 (𝑥) = 𝜎1 (𝑥) for all 𝑥 ∈ PVar. Let 𝑝 ≜ J𝑑K𝜎0.
Then,

J𝑐K𝜎0 = 𝜎0 [like ↦→ 𝜎0 (like) · 𝑝 (𝑟)] and J𝑐K𝜎1 = 𝜎1 [like ↦→ 𝜎1 (like) · 𝑝 (𝑟)] .

Also, dom(b𝑛) = ∅ since used− (𝑐, 𝜎0, b𝑛) holds. Fromwhat we have proved and also the agreement

of 𝜎0 and 𝜎1 on program variables, the five properties claimed by the lemma follow.

Case 𝑐 ≡ (𝑐 ′; 𝑐 ′′). Since J𝑐K𝜎0 = J𝑐 ′′K† (J𝑐 ′K𝜎0) ∈ St, we have J𝑐 ′K𝜎0 ∈ St. Let

𝜎 ′
0
≜ J𝑐 ′K𝜎0,

𝑁0 ≜ {` ∈ Name | J𝑐 ′′K𝜎 ′
0
(cnt`) − 𝜎0 (cnt`) = 1},

𝑁 ′
0
≜ {` ∈ Name | 𝜎 ′

0
(cnt`) − 𝜎0 (cnt`) = 1}.

Then, 𝑁0 = dom(b𝑛) because used− (𝑐 ′; 𝑐 ′′, 𝜎0, b𝑛) holds. We will prove the following facts:

(1) 𝑁 ′
0
⊆ 𝑁0.

(2) Let b ′𝑛 ≜ b𝑛 |𝑁 ′
0

, and b ′′𝑛 ≜ b𝑛 |(𝑁0\𝑁 ′
0
) . Then, used− (𝑐 ′, 𝜎0, b ′𝑛) and used− (𝑐 ′′, 𝜎 ′0, b ′′𝑛) hold.

(3) J𝑐 ′K𝜎1 ∈ St.
(4) Let 𝜎 ′

1
≜ J𝑐 ′K𝜎1. Then, 𝜎 ′0 ∼b′′𝑛 𝜎 ′1.

These four facts imply the five properties claimed by the lemma. Here is the reason. Note that

𝜎0 ∼b′𝑛 𝜎1 since dom(b ′𝑛) = 𝑁 ′0 ⊆ 𝑁0 = dom(b𝑛). This relationship between 𝜎0 and 𝜎1 and the second
fact let us use induction hypothesis on (𝑐 ′, b ′𝑛, 𝜎0, 𝜎1). Also, the second and fourth facts allow us to

use induction hypothesis on (𝑐 ′′, b ′′𝑛 , 𝜎 ′0, 𝜎 ′1). We can derive the five properties fromwhat we get from

these two applications of induction hypothesis:

(1) By induction hypothesis on (𝑐 ′′, b ′′𝑛 , 𝜎 ′0, 𝜎 ′1), we have J𝑐 ′; 𝑐 ′′K𝜎1 = J𝑐 ′′K𝜎 ′
1
∈ St.

(2) For all 𝑎 ∈ {pr`, val`, cnt` | ` ∈ Name \ dom(b𝑛)},

J𝑐 ′; 𝑐 ′′K𝜎1 (𝑎) = J𝑐 ′′K𝜎 ′
1
(𝑎) = 𝜎 ′

1
(𝑎) = J𝑐 ′K𝜎1 (𝑎) = 𝜎1 (𝑎).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:43

The second equality comes from induction hypothesis on (𝑐 ′′, b ′′𝑛 , 𝜎 ′0, 𝜎 ′1) and dom(b ′′𝑛) ⊆
dom(b𝑛), and the fourth equality from induction hypothesis on (𝑐 ′, b ′𝑛, 𝜎0, 𝜎1) and dom(b ′𝑛) ⊆
dom(b𝑛).

(3) For all 𝑣 ∈ PVar ∪ {pr`, val` | ` ∈ dom(b ′′𝑛)}, by induction hypothesis on (𝑐 ′′, b ′′𝑛 , 𝜎 ′0, 𝜎 ′1),

J𝑐 ′; 𝑐 ′′K𝜎1 (𝑣) = J𝑐 ′′K𝜎 ′
1
(𝑣) = J𝑐 ′′K𝜎 ′

0
(𝑣) = J𝑐 ′; 𝑐 ′′K𝜎0 (𝑣).

Also, for all 𝑎 ∈ {pr`, val` | ` ∈ dom(b ′𝑛)}, we have 𝑎 ∈ {pr`, val` | ` ∈ Name \ dom(b ′′𝑛)},
and we can calculate:

J𝑐 ′; 𝑐 ′′K𝜎1 (𝑎) = J𝑐 ′′K𝜎 ′
1
(𝑎) = 𝜎 ′

1
(𝑎)

= J𝑐 ′K𝜎1 (𝑎) = J𝑐 ′K𝜎0 (𝑎)
= 𝜎 ′

0
(𝑎) = J𝑐 ′′K𝜎 ′

0
(𝑎) = J𝑐 ′; 𝑐 ′′K𝜎0 (𝑎).

The secondequalityuses inductionhypothesis on (𝑐 ′′, b ′′𝑛 , 𝜎 ′0, 𝜎 ′1), and the fourth comes fromthe

induction hypothesis on (𝑐 ′, b ′𝑛, 𝜎0, 𝜎1). The sixth equality follows from induction hypothesis

applied to (𝑐 ′′, b ′′𝑛 , 𝜎 ′0, 𝜎 ′1) and again to the same tuple but with 𝜎 ′
0
and 𝜎 ′

1
swapped.

(4) If 𝜎0 (like) = 𝜎1 (like), by induction hypothesis on (𝑐 ′, b ′𝑛, 𝜎0, 𝜎1),
𝜎 ′
0
(like) = J𝑐 ′K𝜎0 (like) = J𝑐 ′K𝜎1 (like) = 𝜎 ′1 (like),

which in turn implies, by induction hypothesis on (𝑐 ′′, b ′′𝑛 , 𝜎 ′0, 𝜎 ′1),
J𝑐 ′; 𝑐 ′′K𝜎0 (like) = J𝑐 ′′K𝜎 ′

0
(like) = J𝑐 ′′K𝜎 ′

1
(like) = J𝑐 ′; 𝑐 ′′K𝜎1 (like).

(5) For all 𝑎 ∈ {cnt` | ` ∈ Name},
J𝑐 ′; 𝑐 ′′K𝜎1 (𝑎) − 𝜎1 (𝑎) = J𝑐 ′; 𝑐 ′′K𝜎1 (𝑎) − J𝑐 ′K𝜎1 (𝑎) + J𝑐 ′K𝜎1 (𝑎) − 𝜎1 (𝑎)

= J𝑐 ′′K𝜎 ′
1
(𝑎) − 𝜎 ′

1
(𝑎) + J𝑐 ′K𝜎1 (𝑎) − 𝜎1 (𝑎)

= J𝑐 ′′K𝜎 ′
0
(𝑎) − 𝜎 ′

0
(𝑎) + J𝑐 ′K𝜎0 (𝑎) − 𝜎0 (𝑎)

= J𝑐 ′; 𝑐 ′′K𝜎0 (𝑎) − 𝜎0 (𝑎).
The only non-trivial inequality is the third one, and it follows from induction hypothesis on

(𝑐 ′, b ′𝑛, 𝜎0, 𝜎1) and (𝑐 ′′, b ′′𝑛 , 𝜎 ′0, 𝜎 ′1).
We prove the four facts as follows:

(1) Let ` ∈ 𝑁 ′
0
. Since used− (𝑐 ′; 𝑐 ′′, 𝜎0, b𝑛), we have

J𝑐 ′′K𝜎 ′
0
(`) − 𝜎0 (`) = J𝑐 ′; 𝑐 ′′K𝜎0 − 𝜎0 (`) ≤ 1.

Also, by Lemma C.4 and the definition of 𝑁 ′
0
,

J𝑐 ′′K𝜎 ′
0
(`) − 𝜎0 (`) ≥ 𝜎 ′0 (`) − 𝜎0 (`) = 1.

Thus, J𝑐 ′′K𝜎 ′
0
(`) − 𝜎0 (`) = 1, which implies that ` ∈ 𝑁0, as desired.

(2) We should show that used− (𝑐 ′, 𝜎0, b ′𝑛) and used− (𝑐 ′′, 𝜎 ′0, b ′′𝑛) hold. The conjuncts in the defini-
tion of used− (𝑐 ′, 𝜎0, b ′𝑛) except the second follow immediately from used− (𝑐 ′; 𝑐 ′′, 𝜎0, b𝑛) and the
definition of b𝑛 . For the remaining second conjunct, we use LemmaC.4 and used− (𝑐 ′; 𝑐 ′′, 𝜎0, b𝑛),
and prove the conjunct as shown below: for all ` ∈ Name,

J𝑐 ′K𝜎0 (cnt`) − 𝜎0 (cnt`) ≤ J𝑐 ′′K(J𝑐 ′K𝜎0) (cnt`) − 𝜎0 (cnt`) ≤ 1.

For used− (𝑐 ′′, 𝜎 ′0, b ′′𝑛), we first note that the first and third conjuncts in its definition are direct
consequences of used− (𝑐 ′; 𝑐 ′′, 𝜎0, b𝑛) and the definition of b ′′𝑛 . We prove the second conjunct

in the definition as follows: for all ` ∈ Name,

J𝑐 ′′K𝜎 ′
0
(cnt`) − 𝜎 ′0 (cnt`) = J𝑐 ′; 𝑐 ′′K𝜎0 (cnt`) − J𝑐 ′Kcnt0 (cnt`)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:44 Wonyeol Lee, Xavier Rival, and Hongseok Yang

≤ J𝑐 ′; 𝑐 ′′K𝜎0 (cnt`) − cnt0 (cnt`)
≤ 1.

Thefirst inequality uses LemmaC.4, and the second comes fromused− (𝑐 ′; 𝑐 ′′, 𝜎0, b𝑛). It remains

to show the fourth conjunct in the definition of used− (𝑐 ′′, 𝜎 ′0, b ′′𝑛), which we do below: for all
` ∈ Name,

J𝑐 ′′K𝜎 ′
0
(cnt`) − 𝜎 ′0 (cnt`) = 1

⇐⇒ J𝑐 ′′K𝜎 ′
0
(cnt`) − 𝜎 ′0 (cnt`) = 1 ∧ 𝜎 ′

0
(cnt`) − 𝜎0 (cnt`) = 0

⇐⇒ ` ∈ 𝑁0 ∧ ` ∉ 𝑁 ′0
⇐⇒ ` ∈ dom(b ′′𝑛).

The first equivalence comes from LemmaC.4 and J𝑐 ′′K𝜎 ′
0
(cnt`) −𝜎0 (cnt`) ≤ 1, which holds be-

cause of used− (𝑐 ′; 𝑐 ′′, 𝜎0, b𝑛). The second equivalence follows from the definitions of𝑁0 and𝑁
′
0
.

(3) Since 𝜎0 ∼b𝑛 𝜎1 implies 𝜎0 ∼b′𝑛 𝜎1 and we have used− (𝑐 ′, 𝜎0, b ′𝑛), we can apply induction

hypothesis to (𝑐 ′, b ′𝑛, 𝜎0, 𝜎1), and get J𝑐 ′K𝜎1 ∈ St.
(4) We continue our reasoning in the previous item, and derive from induction hypothesis on

(𝑐 ′, b ′𝑛, 𝜎0, 𝜎1) the fact that for all 𝑥 ∈ PVar,
𝜎 ′
0
(𝑥) = J𝑐 ′K𝜎0 (𝑥) = J𝑐 ′K𝜎1 (𝑥) = 𝜎 ′1 (𝑥).

Also, for all ` ∈ dom(b ′′𝑛),
𝜎 ′
0
(`) = 𝜎0 (`) = 𝜎1 (`) = 𝜎 ′1 (`),

where the first and third equalities come from Lemma C.4, and the second equality follows

from the assumption that 𝜎0 ∼b𝑛 𝜎1.

Case 𝑐 ≡ (if 𝑏 {𝑐 ′} else 𝑐 ′′). Assume that J𝑏K𝜎0 = true. Then, J𝑐K𝜎0 = J𝑐 ′K𝜎0. We prove the five

properties claimed by the lemma under this assumption. The proof for the other possibility, namely,

J𝑏K𝜎0 = false is similar. Since 𝜎0 ∼b𝑛 𝜎1, the states 𝜎0 and 𝜎1 coincide for the values of program
variables. Thus, J𝑏K𝜎1 = true, and J𝑐K𝜎1 = J𝑐 ′K𝜎1. Since J𝑐K𝜎0 = J𝑐 ′K𝜎0 as well, it suffices to show

the five properties claimed by the lemma for (𝑐 ′, 𝜎0, 𝜎1, b𝑛). This sufficient condition follows from

induction hypothesis on (𝑐 ′, 𝜎0, 𝜎1, b𝑛), since used− (𝑐, 𝜎0, b𝑛) and J𝑏K𝜎0 = true imply used− (𝑐 ′, 𝜎0, b𝑛).

Case 𝑐 ≡ (while 𝑏 {𝑐 ′}). Consider the version of used− where the first parameter can be a state

transformer 𝑓 : St→ St⊥, instead of a command. Similarly, consider the version of the five properties

claimed by the lemma where we use a state transformer 𝑓 : St→ St⊥, again instead of a command.

We denote both versions by used− (𝑓 , 𝜎 ′′0 , b ′′𝑛) and 𝜑 (𝑓 , b ′′𝑛 , 𝜎 ′′0 , 𝜎 ′′1). Let T be the subset of St→ St⊥
defined by

𝑓 ∈ T ⇐⇒ ∀𝜎 ′′
0
, 𝜎 ′′

1
∈ St.∀b ′′𝑛 ∈ St□ .

((
used− (𝑓 , 𝜎 ′′0 , b ′′𝑛) ∧ 𝜎 ′′0 ∼b′′𝑛 𝜎

′′
1

)
=⇒ 𝜑 (𝑓 , b ′′𝑛 , 𝜎 ′′0 , 𝜎 ′′1)

)
,

and 𝐹 : [St→ St⊥] → [St→ St⊥] be the following operator used in the semantics of the loop J𝑐K:

𝐹 (𝑓) (𝜎) ≜ if (J𝑏K𝜎 = true) then 𝑓 † (J𝑐 ′K𝜎) else 𝜎.
Wewill show thatT contains _𝜎.⊥ and is closed under taking the least upper bound of an increasing

chain in [St→ St⊥], and the operator 𝐹 preserves T . These three conditions imply that J𝑐K is in T ,
which in turn gives the five properties claimed by the lemma.

The first condition holds simply because used− ((_𝜎.⊥), 𝜎 ′′0 , b ′′𝑛) is false for all 𝜎 ′′0 and b ′′𝑛 . To prove
the closure under the least upper bound of a chain, consider an increasing sequence 𝑓0, 𝑓1, . . . in T .
Let 𝑓∞ ≜

⊔
𝑛∈N 𝑓𝑛 . Consider 𝜎

′′
0
, 𝜎 ′′

1
∈ St and b ′′𝑛 ∈ St□ such that 𝜎 ′′0 ∼b′′𝑛 𝜎 ′′1 and used− (𝑓∞, 𝜎 ′′0 , b ′′𝑛).

We should show that 𝜑 (𝑓∞, b ′′𝑛 , 𝜎 ′′0 , 𝜎 ′′1) holds. By the definition of 𝑓∞, there exists𝑚 ∈ N such that

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:45

𝑓∞ (𝜎0) = 𝑓𝑚 (𝜎0). Then, the assumption used− (𝑓∞, 𝜎 ′′0 , b ′′𝑛) implies used− (𝑓𝑚, 𝜎 ′′0 , b ′′𝑛). This in turn

gives 𝜑 (𝑓𝑚, b ′′𝑛 , 𝜎 ′′0 , 𝜎 ′′1) because 𝑓𝑚 ∈ T . By what we have proved and the definition of 𝑓∞, we have
𝑓𝑚 (𝜎 ′′0) = 𝑓∞ (𝜎 ′′0) ∈ St and 𝑓𝑚 (𝜎 ′′1) = 𝑓∞ (𝜎 ′′1) ∈ St.

Thus, 𝜑 (𝑓𝑚, b ′′𝑛 , 𝜎 ′′0 , 𝜎 ′′1) entails 𝜑 (𝑓∞, b ′′𝑛 , 𝜎 ′′0 , 𝜎 ′′1), as desired. It remains to show that 𝐹 (𝑓) ∈ T for

all 𝑓 ∈ T . Pick 𝑓 ∈ T . We first replay our proof for the sequential-composition case after view-

ing 𝑓 † ◦ J𝑐 ′K as the sequential composition of 𝑐 ′ and 𝑓 . This replay, then, gives the membership

𝑓 † ◦ J𝑐 ′K ∈ T . Next, we replay our proof for the if case on 𝐹 (𝑓) after viewing 𝑓 † ◦ J𝑐 ′K as the true
branch and _𝜎. 𝜎 = JskipK as the false branch. This replay implies the required 𝐹 (𝑓) ∈ T . □

Lemma C.7. Let 𝑐 be a command, 𝜎, 𝜎 ′ ∈ St, and b𝑛 ∈ St□ [Name].
• If 𝜎 |𝑉 = 𝜎 ′ |𝑉 for𝑉 ≜ PVar ∪ dom(b𝑛) ∪ {like}, then used (𝑐, 𝜎, b𝑛) implies used (𝑐, 𝜎 ′, b𝑛).
• If 𝜎 |𝑈 = 𝜎 ′ |𝑈 for𝑈 ≜ PVar ∪ dom(b𝑛), then used− (𝑐, 𝜎, b𝑛) implies used− (𝑐, 𝜎 ′, b𝑛).

Proof. Assumethesettings in thestatementof this lemma.For thefirst claim,assumeused (𝑐, 𝜎, b𝑛).
Then, by the definition of used and noerr ,

J𝑐K𝜎 ∈ St ∧
(
∀` ∈ Name. J𝑐K𝜎 (cnt`) − 𝜎 (cnt`) ≤ 1

)
∧

(
𝜎 (like) = 1

)
∧

(
b𝑛 = 𝜎 |dom(b𝑛)

)
∧

(
dom(b𝑛) = {` ∈ Name | J𝑐K𝜎 (cnt`) − 𝜎 (cnt`) = 1}

)
.

From this and Lemma C.6 (which is applicable since used (𝑐, 𝜎, b𝑛) and 𝜎 |𝑉 = 𝜎 ′ |𝑉), we obtain
J𝑐K𝜎 ′ ∈ St ∧

(
∀` ∈ Name. J𝑐K𝜎 ′(cnt`) − 𝜎 ′(cnt`) ≤ 1

)
∧

(
𝜎 ′(like) = 1

)
∧

(
b𝑛 = 𝜎 ′ |dom(b𝑛)

)
∧

(
dom(b𝑛) = {` ∈ Name | J𝑐K𝜎 ′(cnt`) − 𝜎 ′(cnt`) = 1}

)
.

Note that we have the first clause by Lemma C.6-(1), the second and fifth clauses by Lemma C.6–(5),

and the third and fourth clauses by 𝜎 |𝑉 = 𝜎 ′ |𝑉 . Hence, used (𝑐, 𝜎 ′, b𝑛) holds. The proof of the second
claim is exactly the same except thatwe apply LemmaC.6 to𝜎 |𝑈 = 𝜎 ′ |𝑈 to prove only the four clauses

of used that exclude 𝜎 ′(like) = 1. □

C.3 Proof of LemmaC.3
Proof of Lemma C.3. We prove this lemma by induction on the structure of 𝑐 . Let𝑔 : St[PVar] ×

St□ [Name] → R be ameasurable function and𝜎𝑝 ∈ St[PVar]. In this proof, each equation involving
integrals means (otherwise noted) that one side of the equation is defined if and only if the other

side is defined, and when both sides are defined, they are the same.

Case 𝑐 ≡ skip, 𝑐 ≡ (𝑥 := 𝑒), or 𝑐 ≡ obs(𝑑, 𝑟). In this case, 𝑐𝜋 ≡ 𝑐 so the desired equation holds.

Case 𝑐 ≡ (𝑥 := sam(𝑛,𝑑, _𝑦.𝑒)). If (𝑛,𝑑, _𝑦.𝑒) ∉ dom(𝜋), then 𝑐𝜋 ≡ 𝑐 and thus the desired

equation holds. So assume that 𝜋 (𝑛,𝑑, _𝑦.𝑒) = (𝑑 ′, _𝑦 ′.𝑒 ′) for some 𝑑 ′ and _𝑦 ′.𝑒 ′. Then, 𝑐𝜋 ≡ (𝑥 :=

sam(𝑛,𝑑 ′, _𝑦 ′.𝑒 ′)).
First, by the validity of 𝜋 , for all states 𝜎 ∈ St and measurable subsets𝐴 ⊆ R,∫

1[J𝑒 [𝑟/𝑦]K𝜎 ∈𝐴] · J𝑑K𝜎 (𝑟) 𝑑𝑟 =
∫

1[J𝑒′ [𝑟/𝑦′]K𝜎 ∈𝐴] · J𝑑 ′K𝜎 (𝑟) 𝑑𝑟,

where both sides are always defined. Using this and the monotone convergence theorem, we can

show that for all measurable 𝑓 : R→ R,∫
𝑓 (J𝑒 [𝑟/𝑦]K𝜎) · J𝑑K𝜎 (𝑟) 𝑑𝑟 =

∫
𝑓 (J𝑒 ′[𝑟/𝑦 ′]K𝜎) · J𝑑 ′K𝜎 (𝑟) 𝑑𝑟 . (17)

Next, choose any 𝜎𝑟0 ∈ St[Var \ PVar]. Since fv(𝑛) ⊆ PVar, there exists ` ∈ Name such that

J𝑛K(𝜎𝑝 ⊕ 𝜎𝑟) = ` for all 𝜎𝑟 ∈ St[Var \ PVar] .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:46 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Using this and fv(𝑒), fv(𝑑) ⊆ PVar, we obtain the following: for any 𝜎𝑟 ∈ St[Var \ PVar],

J𝑐K(𝜎𝑝 ⊕ 𝜎𝑟) (like) = 1,

J𝑐K(𝜎𝑝 ⊕ 𝜎𝑟) (pr`) = J𝑑K(𝜎𝑝 ⊕ 𝜎𝑟) (𝜎𝑟 (`)) = J𝑑K(𝜎𝑝 ⊕ 𝜎𝑟0) (𝜎𝑟 (`)),
J𝑐K(𝜎𝑝 ⊕ 𝜎𝑟) (val`) = J𝑒 [𝜎𝑟 (`)/𝑦]K(𝜎𝑝 ⊕ 𝜎𝑟) = J𝑒 [𝜎𝑟 (`)/𝑦]K(𝜎𝑝 ⊕ 𝜎𝑟0),
J𝑐K(𝜎𝑝 ⊕ 𝜎𝑟) (cnt`) = 1, J𝑐K(𝜎𝑝 ⊕ 𝜎𝑟) (cnt`′) = 0 for ` ′ . `,

J𝑐K(𝜎𝑝 ⊕ 𝜎𝑟) |PVar = 𝜎𝑝 [𝑥 ↦→ J𝑒 [𝜎𝑟 (`)/𝑦]K(𝜎𝑝 ⊕ 𝜎𝑟0)] .

This implies that for any b𝑛 ∈ St□ [Name], if prs□ (𝑐) (𝜎𝑝 , b𝑛) ≠ 0, then

dom(b𝑛) = {`},
prs□ (𝑐) (𝜎𝑝 , b𝑛) = 1 · J𝑑K(𝜎𝑝 ⊕ 𝜎𝑟0) (b𝑛 (`)),

pvars□ (𝑐) (𝜎𝑝 , b𝑛) = 𝜎𝑝 [𝑥 ↦→ J𝑒 [b𝑛 (`)/𝑦]K(𝜎𝑝 ⊕ 𝜎𝑟0)],
vals□ (𝑐) (𝜎𝑝 , b𝑛) = [` ↦→ J𝑒 [b𝑛 (`)/𝑦]K(𝜎𝑝 ⊕ 𝜎𝑟0)] .

Note that the same equations hold for 𝑐𝜋 , except that we replace 𝑑 , 𝑒 , and𝑦 in the RHS of the above

equations by 𝑑 ′, 𝑒 ′, and𝑦 ′. Using these, we obtain:∫
𝑑b𝑛

(
prs□ (𝑐) (𝜎𝑝 , b𝑛) · 𝑔

(
pvars□ (𝑐) (𝜎𝑝 , b𝑛), vals□ (𝑐) (𝜎𝑝 , b𝑛)

))
=

∫
[{` }→R]

𝑑b𝑛

(
J𝑑K(𝜎𝑝 ⊕ 𝜎𝑟0) (b𝑛 (`)) · 𝑔

(
J𝑒 [b𝑛 (`)/𝑦]K(𝜎𝑝 ⊕ 𝜎𝑟0)

))
=

∫
R
𝑑𝑟

(
J𝑑K(𝜎𝑝 ⊕ 𝜎𝑟0) (𝑟) · 𝑔

(
J𝑒 [𝑟/𝑦]K(𝜎𝑝 ⊕ 𝜎𝑟0)

))
=

∫
R
𝑑𝑟

(
J𝑑 ′K(𝜎𝑝 ⊕ 𝜎𝑟0) (𝑟) · 𝑔

(
J𝑒 ′[𝑟/𝑦 ′]K(𝜎𝑝 ⊕ 𝜎𝑟0)

))
=

∫
[{` }→R]

𝑑b𝑛

(
J𝑑 ′K(𝜎𝑝 ⊕ 𝜎𝑟0) (b𝑛 (`)) · 𝑔

(
J𝑒 ′[b𝑛 (`)/𝑦 ′]K(𝜎𝑝 ⊕ 𝜎𝑟0)

))
=

∫
𝑑b𝑛

(
prs□ (𝑐

𝜋) (𝜎𝑝 , b𝑛) · 𝑔
(
pvars□ (𝑐

𝜋) (𝜎𝑝 , b𝑛), vals□ (𝑐𝜋) (𝜎𝑝 , b𝑛)
))

where 𝑔 : R→ R is defined as 𝑔(𝑟) = 𝑔(𝜎𝑝 [𝑥 ↦→ 𝑟], [` ↦→ 𝑟]). Here the first and fifth equalities use
the equations proven above, the second and fourth equalities use that [{`} → R] is isomorphic to

R, and the third equality uses Eq. (17). This proves the desired equation.

Case 𝑐 ≡ (if 𝑏 {𝑐 ′} else 𝑐 ′′). In this case, since fv(𝑏) ⊆ PVar and 𝑐𝜋 ≡ if 𝑏 {𝑐 ′𝜋 } else 𝑐 ′′𝜋 , we
have only two subcases:

• For all 𝜎𝑟 ∈ St[Var \ PVar], J𝑐K(𝜎𝑝 ⊕ 𝜎𝑟) = J𝑐 ′K(𝜎𝑝 ⊕ 𝜎𝑟) and J𝑐𝜋 K(𝜎𝑝 ⊕ 𝜎𝑟) = J𝑐 ′𝜋 K(𝜎𝑝 ⊕ 𝜎𝑟).
• For all𝜎𝑟 ∈ St[Var \PVar], J𝑐K(𝜎𝑝 ⊕ 𝜎𝑟) = J𝑐 ′′K(𝜎𝑝 ⊕ 𝜎𝑟) and J𝑐𝜋 K(𝜎𝑝 ⊕ 𝜎𝑟) = J𝑐 ′′𝜋 K(𝜎𝑝 ⊕ 𝜎𝑟).

If the first subcase holds, we have∫
𝑑b𝑛

(
prs□ (𝑐) (𝜎𝑝 , b𝑛) · 𝑔

(
pvars□ (𝑐) (𝜎𝑝 , b𝑛), vals□ (𝑐) (𝜎𝑝 , b𝑛)

))
=

∫
𝑑b𝑛

(
prs□ (𝑐 ′) (𝜎𝑝 , b𝑛) · 𝑔

(
pvars□ (𝑐 ′) (𝜎𝑝 , b𝑛), vals□ (𝑐 ′) (𝜎𝑝 , b𝑛)

))
=

∫
𝑑b𝑛

(
prs□ (𝑐 ′

𝜋) (𝜎𝑝 , b𝑛) · 𝑔
(
pvars□ (𝑐 ′

𝜋) (𝜎𝑝 , b𝑛), vals□ (𝑐 ′
𝜋) (𝜎𝑝 , b𝑛)

))
Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:47

=

∫
𝑑b𝑛

(
prs□ (𝑐

𝜋) (𝜎𝑝 , b𝑛) · 𝑔
(
pvars□ (𝑐

𝜋) (𝜎𝑝 , b𝑛), vals□ (𝑐𝜋) (𝜎𝑝 , b𝑛)
))

where the second equality is by IH on 𝑐 ′. If the second subcase holds, we obtain a similar equation

by IH on 𝑐 ′′. Hence, the desired equation holds in all subcases.

Case 𝑐 ≡ (𝑐 ′; 𝑐 ′′). In this case, we obtain the following equation:∫
𝑑b𝑛

(
prs□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b𝑛) · 𝑔

(
pvars□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b𝑛), vals□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b𝑛)

))
=

∫
𝑑b ′𝑛

(
prs□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) ·

∫
𝑑b ′′𝑛

(
prs□ (𝑐 ′′)

(
pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛

)
· 1[dom(b′𝑛)∩dom(b′′𝑛)=∅]

· 𝑔
(
pvars□ (𝑐 ′′)

(
pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛

)
, vals□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) ⊕ vals□ (𝑐 ′′)

(
pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛

))))
=

∫
𝑑b ′𝑛

(
prs□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) · 𝑔′

(
pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), vals□ (𝑐 ′) (𝜎𝑝 , b ′𝑛)

))
where 𝑔′(𝜎 ′𝑝 , b̂ ′𝑛) ≜

∫
𝑑b ′′𝑛

(
prs□ (𝑐 ′′) (𝜎 ′𝑝 , b ′′𝑛) · 1[dom(b̂′𝑛)∩dom(b′′𝑛)=∅]

· 𝑔
(
pvars□ (𝑐 ′′) (𝜎 ′𝑝 , b ′′𝑛), b̂ ′𝑛 ⊕ vals□ (𝑐 ′′) (𝜎 ′𝑝 , b ′′𝑛)

))
=

∫
𝑑b ′𝑛

(
prs□ (𝑐 ′

𝜋) (𝜎𝑝 , b ′𝑛) · 𝑔′
(
pvars□ (𝑐 ′

𝜋) (𝜎𝑝 , b ′𝑛), vals□ (𝑐 ′
𝜋) (𝜎𝑝 , b ′𝑛)

))
· · · (∗)

where thefirstequality is fromLemmaC.9, thesecondequalityusesdom(b ′𝑛) = dom(vals□ (𝑐 ′) (𝜎𝑝 , b ′𝑛)),
and the third equality is by IH on 𝑐 ′. We now analyse 𝑔′(𝜎 ′𝑝 , b̂ ′𝑛) as follows:

𝑔′(𝜎 ′𝑝 , b̂ ′𝑛)

=

∫
𝑑b ′′𝑛

(
prs□ (𝑐 ′′) (𝜎 ′𝑝 , b ′′𝑛) · 1[dom(b̂′𝑛)∩dom(b′′𝑛)=∅] · 𝑔

(
pvars□ (𝑐 ′′) (𝜎 ′𝑝 , b ′′𝑛), b̂ ′𝑛 ⊕ vals□ (𝑐 ′′) (𝜎 ′𝑝 , b ′′𝑛)

))
=

∫
𝑑b ′′𝑛

(
prs□ (𝑐 ′′) (𝜎 ′𝑝 , b ′′𝑛) · 𝑔′′

(
pvars□ (𝑐 ′′) (𝜎 ′𝑝 , b ′′𝑛), vals□ (𝑐 ′′) (𝜎 ′𝑝 , b ′′𝑛)

))
where 𝑔′′(𝜎 ′′𝑝 , b̂ ′′𝑛) ≜ 1[dom(b̂′𝑛)∩dom(b̂′′𝑛)=∅] · 𝑔

(
𝜎 ′′𝑝 , b̂

′
𝑛 ⊕ b̂ ′′𝑛

)
=

∫
𝑑b ′′𝑛

(
prs□ (𝑐 ′′

𝜋) (𝜎 ′𝑝 , b ′′𝑛) · 𝑔′′
(
pvars□ (𝑐 ′′

𝜋) (𝜎 ′𝑝 , b ′′𝑛), vals□ (𝑐 ′′
𝜋) (𝜎 ′𝑝 , b ′′𝑛)

))
=

∫
𝑑b ′′𝑛

(
prs□ (𝑐 ′′

𝜋) (𝜎 ′𝑝 , b ′′𝑛) · 1[dom(b̂′𝑛)∩dom(b′′𝑛)=∅] · 𝑔
(
pvars□ (𝑐 ′′

𝜋) (𝜎 ′𝑝 , b ′′𝑛), b̂ ′𝑛 ⊕ vals□ (𝑐 ′′
𝜋) (𝜎 ′𝑝 , b ′′𝑛)

))
where the second and fourth equalities use dom(b ′′𝑛) = dom(vals□ (𝑐 ′′) (𝜎 ′𝑝 , b ′′𝑛)), and the third equal-
ity is by IH on 𝑐 ′′. Using this, we obtain the following equation for the main quantity (∗):

(∗) =
∫

𝑑b ′𝑛

(
prs□ (𝑐 ′

𝜋) (𝜎𝑝 , b ′𝑛) ·
∫

𝑑b ′′𝑛

(
prs□ (𝑐 ′′

𝜋)
(
pvars□ (𝑐 ′

𝜋) (𝜎𝑝 , b ′𝑛), b ′′𝑛
)
· 1[dom(b′𝑛)∩dom(b′′𝑛)=∅]

· 𝑔
(
pvars□ (𝑐 ′′

𝜋)
(
pvars□ (𝑐 ′

𝜋) (𝜎𝑝 , b ′𝑛), b ′′𝑛
)
,

vals□ (𝑐 ′
𝜋) (𝜎𝑝 , b ′𝑛) ⊕ vals□ (𝑐 ′′

𝜋)
(
pvars□ (𝑐 ′

𝜋) (𝜎𝑝 , b ′𝑛), b ′′𝑛
))))

=

∫
𝑑b𝑛

(
prs□ (𝑐 ′

𝜋
; 𝑐 ′′

𝜋) (𝜎𝑝 , b𝑛) · 𝑔
(
pvars□ (𝑐 ′

𝜋
; 𝑐 ′′

𝜋) (𝜎𝑝 , b𝑛), vals□ (𝑐 ′
𝜋
; 𝑐 ′′

𝜋) (𝜎𝑝 , b𝑛)
))

where the first equality uses dom(b ′𝑛) = dom(vals□ (𝑐 ′) (𝜎𝑝 , b ′𝑛)), and the second equality is by

Lemma C.9, as we did above. By 𝑐 ′; 𝑐 ′′
𝜋 ≡ 𝑐 ′𝜋 ; 𝑐 ′′𝜋 , we get the desired equation.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:48 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Case 𝑐 ≡ (while 𝑏 {𝑐 ′}). In this case, 𝑐𝜋 ≡ (while 𝑏 {𝑐 ′𝜋 }). Without loss of generality, assume

that 𝑔 is a nonnegative function; we can prove the general case of 𝑔 directly from the nonnegative

case of 𝑔, by considering the nonnegative part and the negative part of 𝑔 separately.

Consider the version of prs□ (−), pvars□ (−), and vals□ (−), where the parameter can be a state

transformer 𝑓 : St→ St⊥, instead of a command.We denote the versions by prs□ (𝑓), pvars□ (𝑓), and
vals□ (𝑓). Define T ⊆ [St→ St⊥]2 and𝑇 : [St→ St⊥]2 → [St→ St⊥]2 by

(𝑓 , 𝑓) ∈ T ⇐⇒
∫

𝑑b𝑛𝐺𝑔′,𝜎′𝑝 (𝑓) (b𝑛) =
∫

𝑑b𝑛𝐺𝑔′,𝜎′𝑝 (𝑓) (b𝑛)

for all measurable 𝑔′ : St[PVar] × St□ [Name] → R≥0 and 𝜎
′
𝑝 ∈ St[PVar],

𝑇 (𝑓 , 𝑓) ≜ (𝐹 (𝑓), 𝐹 (𝑓)),

where𝐺𝑔′,𝜎′𝑝 (𝑓) ∈ St□ [Name] → R≥0 and 𝐹, 𝐹 : [St→ St⊥] → [St→ St⊥] are defined by

𝐺𝑔′,𝜎′𝑝 (𝑓) (b𝑛) ≜ prs□ (𝑓) (𝜎 ′𝑝 , b𝑛) · 𝑔′
(
pvars□ (𝑓) (𝜎 ′𝑝 , b𝑛), vals□ (𝑓) (𝜎 ′𝑝 , b𝑛)

)
,

𝐹 (𝑓) (𝜎) ≜ if (J𝑏K𝜎 = true) then (𝑓 † ◦ J𝑐 ′K) (𝜎) else 𝜎,

𝐹 (𝑓) (𝜎) ≜ if (J𝑏K𝜎 = true) then (𝑓 † ◦ J𝑐 ′𝜋 K) (𝜎) else 𝜎.

Note that 𝐹 and 𝐹 are the operators used in the semantics of the loops J𝑐K and J𝑐𝜋 K, respectively. We

will show that T contains (_𝜎.⊥, _𝜎.⊥), the operator𝑇 preserves T , and T is closed under taking

the least upper bound of an increasing chain in [St → St⊥]2, where the order on [St → St⊥]2 is
defined as: (𝑓0, 𝑓0) ⊑ (𝑓1, 𝑓1) ⇐⇒ 𝑓0 ⊑ 𝑓1 ∧ 𝑓0 ⊑ 𝑓1 . These three conditions imply (J𝑐K, J𝑐𝜋 K) ∈ T ,
which in turn proves the desired equation:∫

𝑑b𝑛

(
prs□ (𝑐) (𝜎𝑝 , b𝑛) · 𝑔

(
pvars□ (𝑐) (𝜎𝑝 , b𝑛), vals□ (𝑐) (𝜎𝑝 , b𝑛)

))
=

∫
𝑑b𝑛𝐺𝑔,𝜎𝑝 (J𝑐K) (b𝑛)

=

∫
𝑑b𝑛𝐺𝑔,𝜎𝑝 (J𝑐𝜋 K) (b𝑛)

=

∫
𝑑b𝑛

(
prs□ (𝑐

𝜋) (𝜎𝑝 , b𝑛) · 𝑔
(
pvars□ (𝑐

𝜋) (𝜎𝑝 , b𝑛), vals□ (𝑐𝜋) (𝜎𝑝 , b𝑛)
))
,

where the second equality follows from (J𝑐K, J𝑐𝜋 K) ∈ T .
The first condition holds simply because𝐺𝑔′,𝜎′𝑝 (_𝜎.⊥)(b𝑛) = 0 for all𝑔′, 𝜎 ′𝑝 , and b𝑛 . To show the

second condition, pick (𝑓 , 𝑓) ∈ T . Our goal is to show𝑇 (𝑓 , 𝑓) ∈ T . We first replay our proof for

the sequential-composition case on (𝑓 † ◦ J𝑐 ′K, 𝑓 † ◦ J𝑐 ′𝜋 K), after viewing 𝑓 † ◦ J𝑐 ′K and 𝑓 † ◦ J𝑐 ′𝜋 K as
the sequential composition of 𝑐 ′ and 𝑓 , and of 𝑐 ′

𝜋
and 𝑓 , respectively. This replay, then, gives the

membership (𝑓 † ◦ J𝑐 ′K, 𝑓 † ◦ J𝑐 ′𝜋 K) ∈ T . Next, we replay our proof for the if case on (𝐹 (𝑓), 𝐹 (𝑓)),
after viewing 𝑓 † ◦ J𝑐 ′K and 𝑓 † ◦ J𝑐 ′𝜋 K as the true branches, and _𝜎. 𝜎 = JskipK as the false branch.
This replay implies the required𝑇 (𝑓 , 𝑓) = (𝐹 (𝑓), 𝐹 (𝑓)) ∈ T .

To show the third condition, consider an increasing sequence {(𝑓𝑘 , 𝑓𝑘)}𝑘∈N inT . Let 𝑓∞ ≜
⊔
𝑘∈N 𝑓𝑘

and 𝑓 ∞ ≜
⊔
𝑘∈N 𝑓𝑘 . Consider a measurable 𝑔′ : St[PVar] × St□ [Name] → R≥0 and 𝜎 ′𝑝 ∈ St[PVar].

We should show that

∫
𝑑b𝑛𝐺𝑔′,𝜎′𝑝 (𝑓∞) (b𝑛) =

∫
𝑑b𝑛𝐺𝑔′,𝜎′𝑝 (𝑓∞) (b𝑛). Since {𝑓𝑘 }𝑘∈N is increasing, for

any 𝜎 ∈ St, 𝑓𝑘 (𝜎) ∈ St implies that 𝑓𝑘′ (𝜎) = 𝑓𝑘 (𝜎) ∈ St for all 𝑘 ′ ≥ 𝑘 . Hence, {𝐺𝑔′,𝜎′𝑝 (𝑓𝑘)}𝑘∈N is a

pointwise increasing sequence: for all b𝑛 ∈ St□ [Name],
0 ≤ 𝐺𝑔′,𝜎′𝑝 (𝑓𝑘) (b𝑛) ≤ 𝐺𝑔′,𝜎′𝑝 (𝑓𝑘+1) (b𝑛) for all 𝑘 ∈ N.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:49

Also, by the definition of 𝑓∞, for any 𝜎 ∈ St, there exists 𝐾 ∈ N such that 𝑓∞ (𝜎) = 𝑓𝐾 (𝜎); thus,
𝐺𝑔′,𝜎′𝑝 (𝑓∞) is the pointwise limit of {𝐺𝑔′,𝜎′𝑝 (𝑓𝑘)}𝑘∈N: for all b𝑛 ∈ St□ [Name],

𝐺𝑔′,𝜎′𝑝 (𝑓∞) (b𝑛) = lim

𝑘→∞
𝐺𝑔′,𝜎′𝑝 (𝑓𝑘) (b𝑛).

Note that the corresponding results hold for 𝑓∞ and 𝑓𝑘 . Using these results, we finally obtain the

following as desired:∫
𝑑b𝑛𝐺𝑔′,𝜎′𝑝 (𝑓∞) (b𝑛) = lim

𝑘→∞

∫
𝑑b𝑛𝐺𝑔′,𝜎′𝑝 (𝑓𝑘) (b𝑛)

= lim

𝑘→∞

∫
𝑑b𝑛𝐺𝑔′,𝜎′𝑝 (𝑓𝑘) (b𝑛) =

∫
𝑑b𝑛𝐺𝑔′,𝜎′𝑝 (𝑓∞) (b𝑛) .

The first and third equalities follow from the monotone convergence theorem, applied to the above

results. The second equality holds since (𝑓𝑘 , 𝑓𝑘) ∈ T . This completes the proof of the while case. □

Lemma C.8. Let 𝑐 be a command, 𝜎0, 𝜎1 ∈ St, and 𝑟0 ∈ R. Suppose that 𝜎1 (like) = 𝜎0 (like) · 𝑟0 and
𝜎1 |𝑉 = 𝜎0 |𝑉 for𝑉 ≜ Var \ {like}. If J𝑐K𝜎0 ∈ St, then

J𝑐K𝜎1 ∈ St, J𝑐K𝜎1 (like) = J𝑐K𝜎0 (like) · 𝑟0, (J𝑐K𝜎1) |𝑉 = (J𝑐K𝜎0) |𝑉 .

Proof. Let𝑉 ≜ Var \ {like}. Pick an arbitrary command 𝑐 . We prove the lemma by induction

on the structure of 𝑐 . Let 𝜎0, 𝜎1 ∈ St and 𝑟0 ∈ R such that J𝑐K𝜎0 ∈ St, 𝜎1 (like) = 𝜎0 (like) · 𝑟0, and
𝜎1 |𝑉 = 𝜎0 |𝑉 . We should show that J𝑐K𝜎1 ∈ St, J𝑐K𝜎1 (like) = J𝑐K𝜎0 (like) · 𝑟0, and J𝑐K𝜎1 |𝑉 = J𝑐K𝜎0 |𝑉 .

Case 𝑐 ≡ skip. In this case, what we need to prove is identical to the assumption on (𝜎0, 𝜎1, 𝑟0).

Case 𝑐 ≡ (𝑥 := 𝑒). By the semantics of the assignments, we have J𝑐K𝜎1 ∈ St, and

J𝑐K𝜎1 (like) = 𝜎1 (like) = 𝜎0 (like) · 𝑟0 = J𝑐K𝜎0 (like) · 𝑟0.

The last requirement also holds since J𝑒K𝜎0 = J𝑒K𝜎1 and 𝜎0 |𝑉 = 𝜎1 |𝑉 .

Case 𝑐 ≡ (𝑥 := sam(𝑛,𝑑, _𝑦.𝑒 ′). By the semantics of the sample commands, we have J𝑐K𝜎1 ∈ St.
Also, the assignments do not change the value of like, so that J𝑐K𝜎1 (like) = 𝜎1 (like) = 𝜎0 (like) · 𝑟0 =
J𝑐K𝜎0 (like) · 𝑟0. It remains to show that J𝑐K𝜎0 |𝑉 = J𝑐K𝜎1 |𝑉 . Since 𝜎0 |𝑉 = 𝜎1 |𝑉 , we have J𝑛K𝜎0 = J𝑛K𝜎1
and J𝑑K𝜎0 = J𝑑K𝜎1. Let ` ≜ J𝑛K𝜎0. Then, by the same reason, J𝑒 ′[`/𝑦]K𝜎0 = J𝑒 ′[`/𝑦]K𝜎1. Let
𝑓 ≜ J𝑑K𝜎0 and 𝑟 ≜ J𝑒 ′[`/𝑦]K𝜎0. We prove the required equality as follows:

J𝑐K𝜎0 |𝑉 = 𝜎0 [𝑥 ↦→ 𝑟, val` ↦→ 𝑟, pr` ↦→ 𝑓 (𝜎0 (`)), cnt` ↦→ 𝜎0 (cnt`) + 1] |𝑉
= 𝜎1 [𝑥 ↦→ 𝑟, val` ↦→ 𝑟, pr` ↦→ 𝑓 (𝜎0 (`)), cnt` ↦→ 𝜎0 (cnt`) + 1] |𝑉
= 𝜎1 [𝑥 ↦→ 𝑟, val` ↦→ 𝑟, pr` ↦→ 𝑓 (𝜎1 (`)), cnt` ↦→ 𝜎1 (cnt`) + 1] |𝑉
= J𝑐K𝜎1 |𝑉 .

Case 𝑐 ≡ (obs(𝑑, 𝑟)). By the semantics of the observe commands, we have J𝑐K𝜎1 ∈ St. Also, the
observe commands do not change any variable except like. So, J𝑐K𝜎0 |𝑉 = 𝜎0 |𝑉 = 𝜎1 |𝑉 = J𝑐K𝜎1 |𝑉 . The
remaining requirement for like can be proved as follows:

J𝑐K𝜎1 (like) = 𝜎1 (like) · J𝑑K𝜎1 (𝑟) = 𝜎0 (like) · 𝑟0 · J𝑑K𝜎1 (𝑟) = 𝜎0 (like) · 𝑟0 · J𝑑K𝜎0 (𝑟) = J𝑐K𝜎0 (like) · 𝑟0 .

Case 𝑐 ≡ (𝑐 ′; 𝑐 ′′). We have J𝑐 ′K𝜎0 ∈ St and J𝑐 ′′K(J𝑐 ′K𝜎0) ∈ St. We apply induction hypothesis

first to (𝑐 ′, 𝜎0, 𝜎1, 𝑟0), and then to (𝑐 ′′, J𝑐 ′K𝜎0, J𝑐 ′K𝜎1, 𝑟0). Then, we get the requirements of the lemma.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:50 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Case 𝑐 ≡ (if 𝑏 {𝑐 ′} else {𝑐 ′′}). We deal with the case that J𝑏K𝜎0 = true. The other case of
J𝑏K𝜎0 = false can be proved similarly. Since J𝑏K𝜎0 = true, we have J𝑐 ′K𝜎0 = J𝑐K𝜎0 ∈ St. Thus, we can
apply induction hypothesis to 𝑐 ′. If we do so, we get

J𝑐 ′K𝜎1 ∈ St, J𝑐 ′K𝜎1 (like) = J𝑐 ′K𝜎0 (like) · 𝑟0, and J𝑐 ′K𝜎1 |𝑉 = J𝑐 ′K𝜎0 |𝑉 .
This gives the desired conclusion because J𝑏K𝜎1 = J𝑏K𝜎0 = true and so J𝑐K𝜎1 = J𝑐 ′K𝜎1, and
J𝑐K𝜎0 = J𝑐 ′K𝜎0.

Case 𝑐 ≡ (while𝑏 {𝑐 ′}). Let 𝐹 be the operator on [St→ St⊥] such that J𝑐K is the least fixed point
of 𝐹 . Define a subset T of [St → St⊥] as follows: a function 𝑓 ∈ [St → St⊥] is in T if and only if

for all 𝜎 ′
0
, 𝜎 ′

1
∈ St such that 𝜎 ′

1
|𝑉 = 𝜎 ′

0
|𝑉 and 𝜎 ′

1
(like) = 𝜎 ′

0
(like) · 𝑟0, we have

𝑓 (𝜎 ′
0
) ≠ ⊥ =⇒

(
𝑓 (𝜎 ′

1
) ≠ ⊥ ∧ 𝑓 (𝜎 ′

1
) |𝑉 = 𝑓 (𝜎 ′

0
) |𝑉 ∧ 𝑓 (𝜎 ′1) (like) = 𝑓 (𝜎 ′0) (like) · 𝑟0

)
.

The set T contains the least function _𝜎.⊥, and is closed under the least upper bound of any chain
in [St→ St⊥]. It is also closed under 𝐹 . This 𝐹 -closure follows essentially from our arguments for

sequential composition, if command, and skip, and induction hypothesis on 𝑐 ′. What we have shown

for T implies that T contains the least fixed point of 𝐹 , which gives the desired property for 𝑐 . □

Lemma C.9. Let 𝑐 ′, 𝑐 ′′ be commands and𝑔 : St[PVar] × St□ [Name] → R be a measurable function.
Then, for any 𝜎𝑝 ∈ St[PVar],∫

𝑑b𝑛

(
prs□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b𝑛) · 𝑔

(
pvars□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b𝑛), vals□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b𝑛)

))
=

∫
𝑑b ′𝑛

(
prs□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) ·

∫
𝑑b ′′𝑛

(
prs□ (𝑐 ′′) (pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛) · 1[dom(b′𝑛)∩dom(b′′𝑛)=∅]

· 𝑔
(
pvars□ (𝑐 ′′) (pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛), vals□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) ⊕ vals□ (𝑐 ′′) (pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛)

)))
.

Proof. Let 𝑐 ′, 𝑐 ′′ be commands, 𝑔 : St[PVar] × St□ [Name] → R a measurable function, and

𝜎𝑝 ∈ St[PVar]. In this proof, each equation involving integrals means (otherwise noted) that one

side of the equation is defined if and only if the other side is defined, and when both sides are defined,

they are the same.

First, to convert a single-integral on b𝑛 to a double-integral on b
′
𝑛 and b

′′
𝑛 as in the desired equation,

we show the following claim: for any measurable 𝑓 : St□ [Name] → St and ℎ : St□ [Name] → R
such that 𝑓 (b𝑛) |dom(b𝑛) = b𝑛 for all b𝑛 ∈ St□ [Name], we have∫

𝑑b𝑛

(
1[used (𝑐′;𝑐′′,𝑓 (b𝑛),b𝑛)] · ℎ(b𝑛)

)
=

∑
𝐾⊆Name

∫
[𝐾→R]

𝑑b𝑛

(
1[used (𝑐′;𝑐′′,𝑓 (b𝑛),b𝑛)] · ℎ(b𝑛)

)
=

∑
𝐾⊆Name

∫
[𝐾→R]

𝑑b𝑛

(
1[used (𝑐′;𝑐′′,𝑓 (b𝑛),b𝑛)] · ℎ(b𝑛) ·

∑
𝐿⊆𝐾

1[used (𝑐′,𝑓 (b𝑛),b𝑛 |𝐿)]
)

=
∑

𝐾⊆Name

∑
𝐿⊆𝐾

∫
[𝐾→R]

𝑑b𝑛

(
1[used (𝑐′,𝑓 (b𝑛),b𝑛 |𝐿)] · 1[used (𝑐′;𝑐′′,𝑓 (b𝑛),b𝑛)] · ℎ(b𝑛)

)
=

∑
𝐾⊆Name

∑
𝐿⊆𝐾

∫
[𝐿→R]

𝑑b ′𝑛

∫
[𝐾\𝐿→R]

𝑑b ′′𝑛

(
1[used (𝑐′,𝑓 (b′𝑛⊕b′′𝑛),b′𝑛)] · 1[used (𝑐′;𝑐′′,𝑓 (b′𝑛⊕b′′𝑛),b′𝑛⊕b′′𝑛)] · ℎ(b

′
𝑛 ⊕ b ′′𝑛)

)
=

∑
𝐿′⊆Name

∑
𝑀′⊆Name
𝐿′∩𝑀′=∅

∫
[𝐿′→R]

𝑑b ′𝑛

∫
[𝑀′→R]

𝑑b ′′𝑛

(
1[used (𝑐′,𝑓 (b′𝑛⊕b′′𝑛),b′𝑛)] · 1[used (𝑐′;𝑐′′,𝑓 (b′𝑛⊕b′′𝑛),b′𝑛⊕b′′𝑛)] · ℎ(b

′
𝑛 ⊕ b ′′𝑛)

)
Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:51

=
∑

𝐿′⊆Name

∫
[𝐿′→R]

𝑑b ′𝑛

(∑
𝑀′⊆Name

∫
[𝑀′→R]

𝑑b ′′𝑛

(
1[dom(b′𝑛)∩dom(b′′𝑛)=∅] · 1[used (𝑐′,𝑓 (b′𝑛⊕b′′𝑛),b′𝑛)]

· 1[used (𝑐′;𝑐′′,𝑓 (b′𝑛⊕b′′𝑛),b′𝑛⊕b′′𝑛)] · ℎ(b
′
𝑛 ⊕ b ′′𝑛)

))
=

∫
𝑑b ′𝑛

∫
𝑑b ′′𝑛

(
1[dom(b′𝑛)∩dom(b′′𝑛)=∅] · 1[used (𝑐′,𝑓 (b′𝑛⊕b′′𝑛),b′𝑛)] · 1[used (𝑐′;𝑐′′,𝑓 (b′𝑛⊕b′′𝑛),b′𝑛⊕b′′𝑛)] · ℎ(b

′
𝑛 ⊕ b ′′𝑛)

)
.

The first equality uses the definition of St□ [Name] and its measure. The second equality uses that

used (𝑐 ′; 𝑐 ′′, 𝜎, b𝑛) implies a unique existence of 𝐿 ⊆ dom(b𝑛) such that used (𝑐 ′, 𝜎, b𝑛 |𝐿); we already
showed the existence of such 𝐿 in the proof of Lemma C.6 (for the sequential composition case), and

the uniqueness follows from the definition of used. The third equality uses that𝐾 is finite, and the

fourth equality uses that [𝐾 → R] is isomorphic to [𝐿 → R] × [𝐾 \ 𝐿 → R] for any 𝐿 ⊆ 𝐾 . The fifth
equality holds uses that {(𝐿, 𝐾 \𝐿) | 𝐾 ⊆ Name, 𝐿 ⊆ 𝐾} = {(𝐿′, 𝑀 ′) | 𝐿′, 𝑀 ′ ⊆ Name, 𝐿′∩𝑀 ′ = ∅}.
The sixth equality uses thatName is finite, dom(b ′𝑛) = 𝐿′, and dom(b ′′𝑛) = 𝑀 ′. The seventh equality
uses the definition of St□ [Name] and its measure.

Second, to decompose prs□ (𝑐 ′; 𝑐 ′′), pvars□ (𝑐 ′; 𝑐 ′′), and vals□ (𝑐 ′; 𝑐 ′′) as in the desired equation, we
show the following claim. Suppose that𝜎 ∈ St and b ′𝑛, b ′′𝑛 ∈ St□ [Name]withdom(b ′𝑛)∩dom(b ′′𝑛) = ∅
satisfy used (𝑐 ′; 𝑐 ′′, 𝜎, b ′𝑛 ⊕ b ′′𝑛) and used (𝑐 ′, 𝜎, b ′𝑛). Then, we first get
prs□ (𝑐 ′; 𝑐 ′′) (𝜎 |PVar, b ′𝑛 ⊕ b ′′𝑛) = J𝑐 ′; 𝑐 ′′K𝜎 (like) ·∏`∈dom(b′𝑛⊕b′′𝑛) J𝑐

′
; 𝑐 ′′K𝜎 (pr`)

= J𝑐 ′′K(J𝑐 ′K𝜎) (like)
·∏`∈dom(b′𝑛) J𝑐

′′K(J𝑐 ′K𝜎) (pr`) ·
∏
`∈dom(b′′𝑛) J𝑐

′′K(J𝑐 ′K𝜎) (pr`)
= J𝑐 ′K𝜎 (like) · J𝑐 ′′K

(
(J𝑐 ′K𝜎) [like ↦→ 1]

)
(like)

·∏`∈dom(b′𝑛) J𝑐
′K𝜎 (pr`) ·

∏
`∈dom(b′′𝑛) J𝑐

′′K
(
(J𝑐 ′K𝜎) [like ↦→ 1]

)
(pr`)

= prs□ (𝑐 ′) (𝜎 |PVar, b ′𝑛) · prs□ (𝑐 ′′)
(
(J𝑐 ′K𝜎) [like ↦→ 1] |PVar, b ′′𝑛

)
= prs□ (𝑐 ′) (𝜎 |PVar, b ′𝑛) · prs□ (𝑐 ′′)

(
pvars□ (𝑐 ′) (𝜎 |PVar, b ′𝑛), b ′′𝑛

)
.

Here is the proof of each equality.

• The first equality uses used (𝑐 ′; 𝑐 ′′, 𝜎, b ′𝑛 ⊕ b ′′𝑛).
• The second equality uses noerr (𝑐 ′; 𝑐 ′′, 𝜎), which comes from used (𝑐 ′; 𝑐 ′′, 𝜎,−).
• The third equality comes from Lemma C.8, Lemma C.6-(2), and Lemma C.6-(3). The two appli-

cations of Lemma C.6 are valid since used− (𝑐 ′′, J𝑐 ′K𝜎, b ′′𝑛) and dom(b ′𝑛) ∩ dom(b ′′𝑛) = ∅, where
the first predicate follows from used (𝑐 ′; 𝑐 ′′, 𝜎, b ′𝑛 ⊕ b ′′𝑛) and used (𝑐 ′, 𝜎, b ′𝑛) by the claim in the

proof of Lemma C.6 (for the sequential composition case).

• The fourth equality uses that used (𝑐 ′, 𝜎, b ′𝑛) and used (𝑐 ′′, (J𝑐 ′K𝜎) [like ↦→ 1], b ′′𝑛), where the
second predicate follows from used− (𝑐 ′′, J𝑐 ′K𝜎, b ′′𝑛) and Lemma C.7.

• The fifth equality uses (J𝑐 ′K𝜎) [like ↦→ 1] |PVar = (J𝑐 ′K𝜎) |PVar = pvars□ (𝑐 ′) (𝜎 |PVar, b ′𝑛), where
the second part of the equation comes from used (𝑐 ′, 𝜎, b ′𝑛).

By the same argument so far (except that pr` and × are replaced by val` and ⊕), we next get

vals□ (𝑐 ′; 𝑐 ′′) (𝜎 |PVar, b ′𝑛 ⊕ b ′′𝑛) = vals□ (𝑐 ′) (𝜎 |PVar, b ′𝑛) ⊕ vals□ (𝑐 ′′)
(
pvars□ (𝑐 ′) (𝜎 |PVar, b ′𝑛), b ′′𝑛

)
.

By a similar argument, we lastly get

pvars□ (𝑐 ′; 𝑐 ′′) (𝜎 |PVar, b ′𝑛 ⊕ b ′′𝑛) = J𝑐 ′; 𝑐 ′′K𝜎 |PVar
= J𝑐 ′′K(J𝑐 ′K𝜎) |PVar
= J𝑐 ′′K

(
(J𝑐 ′K𝜎) [like ↦→ 1]

)
|PVar

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:52 Wonyeol Lee, Xavier Rival, and Hongseok Yang

= pvars□ (𝑐 ′′)
(
(J𝑐 ′K𝜎) [like ↦→ 1] |PVar, b ′′𝑛

)
= pvars□ (𝑐 ′′)

(
pvars□ (𝑐 ′) (𝜎 |PVar, b ′𝑛), b ′′𝑛

)
.

Here is the proof of each equality.

• The first equality uses used (𝑐 ′; 𝑐 ′′, 𝜎, b ′𝑛 ⊕ b ′′𝑛).
• The second equality uses noerr (𝑐 ′; 𝑐 ′′, 𝜎) (shown above).
• The third equality uses used− (𝑐 ′′, J𝑐 ′K𝜎, b ′′𝑛) (shown above) and Lemma C.6-(3).

• The fourth equality uses used (𝑐 ′′, (J𝑐 ′K𝜎) [like ↦→ 1], b ′′𝑛) (shown above).
• The fifth equality uses (J𝑐 ′K𝜎) [like ↦→ 1] |PVar = pvars□ (𝑐 ′) (𝜎 |PVar, b ′𝑛) (shown above).

Third, to remove some indicator terms that will appear in our derivation, we show the next

claim: for any 𝜎 ∈ St and b ′𝑛, b
′′
𝑛 ∈ St□ [Name] with dom(b ′𝑛) ∩ dom(b ′′𝑛) = ∅, used− (𝑐 ′, 𝜎, b ′𝑛) and

used− (𝑐 ′′, J𝑐 ′K𝜎, b ′′𝑛) imply used− (𝑐 ′; 𝑐 ′′, 𝜎, b ′𝑛 ⊕ b ′′𝑛). Assume the premise. Then, we have

J𝑐 ′K𝜎 ∈ St ∧ b ′𝑛 = 𝜎 |dom(b′𝑛)
∧

(
∀` ∈ Name. J𝑐 ′K𝜎 (cnt`) − 𝜎 (cnt`) ≤ 1

)
∧ dom(b ′𝑛) = {` ∈ Name | J𝑐 ′K𝜎 ′(cnt`) − 𝜎 (cnt`) = 1},

J𝑐 ′′K(J𝑐 ′K𝜎) ∈ St ∧ b ′′𝑛 = (J𝑐 ′K𝜎) |dom(b′′𝑛)
∧

(
∀` ∈ Name. J𝑐 ′′K(J𝑐 ′K𝜎) (cnt`) − J𝑐 ′K𝜎 (cnt`) ≤ 1

)
∧ dom(b ′′𝑛) = {` ∈ Name | J𝑐 ′′K(J𝑐 ′K𝜎) (cnt`) − J𝑐 ′K𝜎 (cnt`) = 1}.

We should show

J𝑐 ′; 𝑐 ′′K𝜎 ∈ St ∧ b ′𝑛 ⊕ b ′′𝑛 = 𝜎 |dom(b′𝑛⊕b′′𝑛)
∧

(
∀` ∈ Name. J𝑐 ′; 𝑐 ′′K𝜎 (cnt`) − 𝜎 (cnt`) ≤ 1

)
∧ dom(b ′𝑛 ⊕ b ′′𝑛) = {` ∈ Name | J𝑐 ′; 𝑐 ′′K𝜎 ′(cnt`) − 𝜎 (cnt`) = 1}.

We obtain the four clauses as follows. The first clause follows from J𝑐 ′′K(J𝑐 ′K𝜎) ∈ St. The second
clause comes from b ′𝑛 = 𝜎 |dom(b′𝑛) and b ′′𝑛 = (J𝑐 ′K𝜎) |dom(b′′𝑛) = 𝜎 |dom(b′′𝑛) , where the last equality comes

from Lemma C.4. The third and fourth clauses hold by the following:

J𝑐 ′; 𝑐 ′′K𝜎 (cnt`) − 𝜎 (cnt`)
= J𝑐 ′′K(J𝑐 ′K𝜎) (cnt`) − 𝜎 (cnt`)

=

J𝑐 ′K𝜎 (cnt`) − 𝜎 (cnt`) = 1 if ` ∈ dom(b ′𝑛)
J𝑐 ′′K(J𝑐 ′K𝜎) (cnt`) − J𝑐 ′K𝜎 (cnt`) = 1 if ` ∈ dom(b ′′𝑛)
𝜎 (cnt`) − 𝜎 (cnt`) = 0 if ` ∈ Name \ (dom(b ′𝑛) ∪ dom(b ′′𝑛)) .

• Thefirst case uses LemmaC.6-(2) (applied toused− (𝑐 ′′, J𝑐 ′K𝜎, b ′′𝑛) and dom(b ′𝑛) ∩dom(b ′′𝑛) = ∅)
and the fourth clause of used− (𝑐 ′, 𝜎, b ′𝑛).
• The second case uses Lemma C.6-(2) (applied to used− (𝑐 ′, 𝜎, b ′𝑛) and dom(b ′𝑛) ∩ dom(b ′′𝑛) = ∅)
and the fourth clause of used− (𝑐 ′′, J𝑐 ′K𝜎, b ′′𝑛).
• The third case uses Lemma C.6-(2) (applied to used− (𝑐 ′′, J𝑐 ′K𝜎, b ′′𝑛) and used− (𝑐 ′, 𝜎, b ′𝑛)).

Finally, we put the three results together. Define 𝑓 : St□ [Name] → St as 𝑓 (b𝑛) ≜ 𝜎𝑝 ⊕ b𝑛 ⊕ (_𝑣 ∈
Var \ (PVar ∪ dom(b𝑛)) . 1). Then, we obtain the desired equation as follows:∫

𝑑b𝑛

(
prs□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b𝑛) · 𝑔

(
pvars□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b𝑛), vals□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b𝑛)

))
=

∫
𝑑b𝑛

(
1[used (𝑐′;𝑐′′,𝑓 (b𝑛),b𝑛)] · prs□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b𝑛) · 𝑔

(
pvars□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b𝑛), vals□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b𝑛)

))
Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:53

=

∫
𝑑b ′𝑛

∫
𝑑b ′′𝑛

(
1[dom(b′𝑛)∩dom(b′′𝑛)=∅] · 1[used (𝑐′,𝑓 (b′𝑛⊕b′′𝑛),b′𝑛)] · 1[used (𝑐′;𝑐′′,𝑓 (b′𝑛⊕b′′𝑛),b′𝑛⊕b′′𝑛)]

· prs□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b ′𝑛 ⊕ b ′′𝑛) · 𝑔
(
pvars□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b ′𝑛 ⊕ b ′′𝑛), vals□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b ′𝑛 ⊕ b ′′𝑛)

))
=

∫
𝑑b ′𝑛

∫
𝑑b ′′𝑛

(
1[dom(b′𝑛)∩dom(b′′𝑛)=∅] · 1[used (𝑐′,𝑓 (b′𝑛⊕b′′𝑛),b′𝑛)] · 1[used (𝑐′;𝑐′′,𝑓 (b′𝑛⊕b′′𝑛),b′𝑛⊕b′′𝑛)]

· prs□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) · prs□ (𝑐 ′′)
(
pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛

)
· 𝑔

(
pvars□ (𝑐 ′′)

(
pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛

)
, vals□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) ⊕ vals□ (𝑐 ′′)

(
pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛

)))
=

∫
𝑑b ′𝑛

∫
𝑑b ′′𝑛

(
1[dom(b′𝑛)∩dom(b′′𝑛)=∅] · prs□ (𝑐

′) (𝜎𝑝 , b ′𝑛) · prs□ (𝑐 ′′)
(
pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛

)
· 𝑔

(
pvars□ (𝑐 ′′)

(
pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛

)
, vals□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) ⊕ vals□ (𝑐 ′′)

(
pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛

)))
.

The first equality uses that prs□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b𝑛) ≠ 0 implies 1[used (𝑐′;𝑐′′,𝑓 (b𝑛),b𝑛)] = 1:

• Sinceprs□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b𝑛) ≠ 0, there is𝜎𝑟 ∈ St[Var\(PVar∪dom(b𝑛))] suchthatused (𝑐 ′; 𝑐 ′′, 𝜎𝑝⊕
b𝑛 ⊕ 𝜎𝑟 , b𝑛). Note (𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) |𝑉 = 𝑓 (b𝑛) |𝑉 for𝑉 = PVar ∪ dom(b𝑛) ∪ {like}. From these

and Lemma C.7, we get used (𝑐 ′; 𝑐 ′′, 𝑓 (b𝑛), b𝑛).
The second and third equalities use the first and second results we proved above, respectively.

The fourth equality uses the next claim: prs□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) · prs□ (𝑐 ′′)
(
pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛

)
≠ 0 and

dom(b ′𝑛) ∩ dom(b ′′𝑛) = ∅ imply 1[used (𝑐′,𝑓 (b′𝑛⊕b′′𝑛),b′𝑛)] · 1[used (𝑐′;𝑐′′,𝑓 (b′𝑛⊕b′′𝑛),b′𝑛⊕b′′𝑛)] = 1. We prove the

claim using the third result we proved above:

• Assume the premise. From prs□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) ≠ 0, there is 𝜎 ′𝑟 ∈ St[Var \ (PVar ∪ dom(b ′𝑛))]
such that used (𝑐 ′, 𝜎𝑝 ⊕ b ′𝑛 ⊕ 𝜎 ′𝑟 , b ′𝑛). Note (𝜎𝑝 ⊕ b ′𝑛 ⊕ 𝜎 ′𝑟) |𝑉 ′ = 𝑓 (b ′𝑛 ⊕ b ′′𝑛) |𝑉 ′ for𝑉 ′ = PVar ∪
dom(b ′𝑛) ∪ {like}. From these and Lemma C.7, we get used (𝑐 ′, 𝑓 (b ′𝑛 ⊕ b ′′𝑛), b ′𝑛) as desired.
• Fromprs□ (𝑐 ′′)

(
pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛

)
≠ 0, there is𝜎 ′′𝑟 ∈ St[Var\ (PVar∪dom(b ′′𝑛))] such that

used (𝑐 ′′, pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) ⊕ b ′′𝑛 ⊕ 𝜎 ′′𝑟 , b ′′𝑛).
Since used (𝑐 ′, 𝑓 (b ′𝑛 ⊕ b ′′𝑛), b ′𝑛), we have J𝑐 ′K(𝑓 (b ′𝑛 ⊕ b ′′𝑛)) ∈ St and pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) =

pvars□ (𝑐 ′) (𝑓 (b ′𝑛 ⊕ b ′′𝑛) |PVar, b ′𝑛) = J𝑐 ′K(𝑓 (b ′𝑛 ⊕ b ′′𝑛)) |PVar; also, by LemmaC.4, b ′′𝑛 = J𝑐 ′K(𝑓 (b ′𝑛 ⊕
b ′′𝑛)) |dom(b′′𝑛) . Thus,

(pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) ⊕ b ′′𝑛 ⊕ 𝜎 ′′𝑟) |𝑉 ′′ = J𝑐K(𝑓 (b ′𝑛 ⊕ b ′′𝑛)) |𝑉 ′′

for𝑉 ′′ = PVar∪ dom(b ′′𝑛). From these and LemmaC.7, we get used− (𝑐 ′′, J𝑐 ′K(𝑓 (b ′𝑛 ⊕ b ′′𝑛)), b ′′𝑛).
• From dom(b ′𝑛) ∩ dom(b ′′𝑛) = ∅, used− (𝑐 ′, 𝑓 (b ′𝑛 ⊕ b ′′𝑛), b ′𝑛), and used− (𝑐 ′′, J𝑐 ′K(𝑓 (b ′𝑛 ⊕ b ′′𝑛)), b ′′𝑛),
we can apply the third result proved above, and get used− (𝑐 ′; 𝑐 ′′, 𝑓 (b ′𝑛 ⊕ b ′′𝑛), b ′𝑛 ⊕ b ′′𝑛). Since
𝑓 (b ′𝑛 ⊕ b ′′𝑛) (like) = 1, we get used (𝑐 ′; 𝑐 ′′, 𝑓 (b ′𝑛 ⊕ b ′′𝑛), b ′𝑛 ⊕ b ′′𝑛) as desired.

This completes the proof. □

D DEFERREDRESULTS IN §4.2
D.1 Deferred Statements and Their Proofs
Lemma D.1. Let 𝑐 be a command and 𝜋 be a simple reparameterisation plan. Suppose that for all

𝑛 ∈ NameEx, 𝑑,𝑑 ′ ∈ DistEx, and (_𝑦.𝑒) ∈ LamEx such that 𝜋 (𝑛,𝑑, _𝑦.𝑒) = (𝑑 ′, _), we have
𝑑 ′ = distN (𝑟 ′1, 𝑟 ′2) for some 𝑟 ′

1
, 𝑟 ′

2
∈ R. (18)

Further, assume that for all 𝜎𝑛 ∈ St[Name], the function
𝜎\ ∈ St[\] ↦−→ 𝑝

⟨rv (𝜋) ⟩
𝑐𝜋 ,𝜎\

(𝜎𝑛) (19)

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:54 Wonyeol Lee, Xavier Rival, and Hongseok Yang

is continuous. Then, for all 𝜎\ ∈ St[\] and 𝜎𝑛 ∈ St[Name],
∇\𝑝 ⟨rv (𝜋) ⟩𝑐𝜋 ,𝜎\

(𝜎𝑛) = 0. (20)

Proof. Consider𝑐 and𝜋 that satisfies the given conditions. Fix𝜎𝑛 ∈ St[Name]. Let 𝑓 : St[\] → R
be the function in Eq. (19). Suppose that Eq. (20) does not hold. Then, 𝑓 is not a constant function.

On the one hand, since 𝑓 is continuous (by assumption) and not constant, the image of 𝑓 over its

domain (i.e., 𝑓 (St[\]) ⊆ R) is an uncountable set. This can be shown as follows: since the image of

a connected set over a continuous function is connected, 𝑓 (St[\]) is a connected set in R; since 𝑓
is not constant, 𝑓 (St[\]) contains at least two points; since 𝑓 (St[\]) is connected, it should contain
a non-empty interval, so it should be an uncountable set.

On the other hand, since 𝜋 is simple and satisfies Eq. (18), and since 𝑐 has only finitelymany sample

commands, 𝑓 (St[\]) is a finite set. So this contradicts to that 𝑓 (St[\]) is an uncountable set. Hence,
𝑓 should satisfy Eq. (20). □

Theorem D.2. Let 𝑓 : R × R𝑛 → R be a measurable function that satisfies the next three conditions:
• For all 𝑥 ∈ R𝑛 , 𝑓 (−, 𝑥) : R→ R is differentiable.
• For all \ ∈ R,

∫
R𝑛
𝑓 (\, 𝑥) 𝑑𝑥 is finite.

• For all \ ∈ R, there is an open𝑈 ⊆ R such that \ ∈ 𝑈 and
∫

R𝑛
Lip

(
𝑓 (−, 𝑥) |𝑈

)
𝑑𝑥 is finite.

Here Lip(𝑔) for a function 𝑔 : 𝑉 → R with𝑉 ⊆ R denotes the smallest Lipschitz constant of 𝑔:

Lip(𝑔) ≜ sup

𝑟,𝑟 ′∈𝑉 , 𝑟≠𝑟 ′

|𝑔(𝑟 ′) − 𝑔(𝑟) |
|𝑟 ′ − 𝑟 | ∈ R ∪ {∞}.

Then, for all \ ∈ R, both sides of the following are well-defined and equal:

∇\
∫

R𝑛
𝑓 (\, 𝑥) 𝑑𝑥 =

∫
R𝑛
∇\ 𝑓 (\, 𝑥) 𝑑𝑥

where ∇\ denotes the partial differentiation operator with respect to \ .

Proof. This theorem follows from Theorem E.2 due to the following: the first condition of this

theorem implies the first and second conditions of Theorem E.2 (as differentiability implies continu-

ity); the second and third conditions of this theorem are identical to the third and fourth conditions

of Theorem E.2; and the conclusion of this theorem is identical to that of Theorem E.2. □

D.2 Proof of Theorem 4.5
The proof of Theorem 4.5 relies on the following two lemmas, which are proven in §D.3. The first

lemma states that if a command contains no observe commands, then its (full) density function can

be decomposed into its partial density functions over 𝑆 andName \ 𝑆 for any 𝑆 ⊆ Name. The second
lemma states that if 𝜋 is simple and 𝑐 uses only _𝑦.𝑦 as the third argument of its sample commands,

then the partial density function of 𝑐𝜋 over non-transformed random variables (i.e., variables in

Name \ rv(𝜋)) is connected to that of 𝑐 via the value function of 𝑐𝜋 .

Lemma D.3. Let 𝑐 be a command. If 𝑐 does not contain observe commands, then, for all 𝑆 ⊆ Name,
𝜎\ ∈ St[\], and 𝜎𝑛 ∈ St[Name],

𝑝𝑐,𝜎\ (𝜎𝑛) = 𝑝
⟨𝑆 ⟩
𝑐,𝜎\ (𝜎𝑛) · 𝑝

⟨Name\𝑆 ⟩
𝑐,𝜎\ (𝜎𝑛).

LemmaD.4. Let 𝑐 be a command and 𝜋 be a reparameterisation plan. Suppose that every sample com-
mand in𝑐 has_𝑦.𝑦 as its third argument. Then, for all𝜎\ ∈ St[\] and𝜎𝑛 ∈ St[Name], if𝑝𝑐𝜋 ,𝜎\ (𝜎𝑛) > 0,
then

𝑝
⟨Name\rv (𝜋) ⟩
𝑐𝜋 ,𝜎\

(𝜎𝑛) = 𝑝 ⟨Name\rv (𝜋) ⟩
𝑐,𝜎\ (𝑣𝑐𝜋 ,𝜎\ (𝜎𝑛)) .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:55

We now prove Theorem 4.5 using the two lemmas.

Proof of Theorem 4.5. Let 𝑆 = rv(𝜋). Before starting the main derivation of the selective gradi-

ent estimator, we show the differentiability of several functionswhich are to be used in the derivation.

From (R2) and (R3), the next functions over St[\] are differentiable for all 𝜎𝑛 by the preservation of
differentiability under function composition:

𝜎\ ↦−→ 𝑝𝑐𝑚,𝜎\ (𝑣𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛)), 𝜎\ ↦−→ 𝑝
⟨𝑆 ⟩
𝑐𝑔,𝜎\ (𝑣𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛)), 𝜎\ ↦−→ 𝑝

⟨Name\𝑆 ⟩
𝑐𝑔,𝜎\ (𝑣𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛)),

𝜎\ ↦−→ 𝑝
⟨𝑆 ⟩
𝑐𝑔
𝜋 ,𝜎\
(𝜎𝑛), 𝜎\ ↦−→ 𝑝

⟨Name\𝑆 ⟩
𝑐𝑔
𝜋 ,𝜎\

(𝜎𝑛).
From this, the next functions over St[\] are also differentiable for all 𝜎𝑛 by Lemma D.3 with 𝑐𝑔 and

𝑐𝑔
𝜋
and by the fact that the multiplication of differentiable functions is differentiable:

𝜎\ ↦−→ 𝑝𝑐𝑔,𝜎\ (𝑣𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛)), 𝜎\ ↦−→ 𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛).
These differentiability results are required in the below proof to apply several gradients rules (e.g.,

∇\ (𝑓 (\) + 𝑔(\)) = ∇\ 𝑓 (\) + ∇\𝑔(\)) which may fail for non-differentiable functions.

Fix 𝜎\ ∈ St[\]. Using the above differentiability results, we derive the selective gradient estimator

as follows, where we write 𝜎 ′𝑛 for 𝑣𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛):
∇\L\

= ∇\
∫

𝑑𝜎𝑛

(
𝑝𝑐𝑔,𝜎\ (𝜎𝑛) · log

𝑝𝑐𝑚,𝜎\ (𝜎𝑛)
𝑝𝑐𝑔,𝜎\ (𝜎𝑛)

)
= ∇\

∫
𝑑𝜎𝑛

(
𝑝
𝑐𝑔
𝜋 ,𝜎\
(𝜎𝑛) · log

𝑝𝑐𝑚,𝜎\ (𝜎 ′𝑛)
𝑝𝑐𝑔,𝜎\ (𝜎 ′𝑛)

)
=

∫
𝑑𝜎𝑛 ∇\

(
𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛) · log

𝑝𝑐𝑚,𝜎\ (𝜎 ′𝑛)
𝑝𝑐𝑔,𝜎\ (𝜎 ′𝑛)

)
=

∫
𝑑𝜎𝑛

(
∇\ 𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛) · log

𝑝𝑐𝑚,𝜎\ (𝜎 ′𝑛)
𝑝𝑐𝑔,𝜎\ (𝜎 ′𝑛)

+ 𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛) · ∇\ log

𝑝𝑐𝑚,𝜎\ (𝜎 ′𝑛)
𝑝𝑐𝑔,𝜎\ (𝜎 ′𝑛)

)
=

∫
𝑑𝜎𝑛 𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛)

(
∇\ log𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛) · log

𝑝𝑐𝑚,𝜎\ (𝜎 ′𝑛)
𝑝𝑐𝑔,𝜎\ (𝜎 ′𝑛)

− ∇\ log𝑝𝑐𝑔,𝜎\ (𝜎 ′𝑛) + ∇\ log𝑝𝑐𝑚,𝜎\ (𝜎 ′𝑛)
)

=

∫
𝑑𝜎𝑛 𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛)

[(
∇\ log𝑝 ⟨𝑆 ⟩𝑐𝑔

𝜋 ,𝜎\
(𝜎𝑛) + ∇\ log𝑝 ⟨Name\𝑆 ⟩

𝑐𝑔
𝜋 ,𝜎\

(𝜎𝑛)
)
· log 𝑝𝑐𝑚,𝜎\ (𝜎

′
𝑛)

𝑝𝑐𝑔,𝜎\ (𝜎 ′𝑛)

−
(
∇\ log𝑝 ⟨𝑆 ⟩𝑐𝑔,𝜎\ (𝜎

′
𝑛) + ∇\ log𝑝

⟨Name\𝑆 ⟩
𝑐𝑔,𝜎\ (𝜎 ′𝑛)

)
+ ∇\ log𝑝𝑐𝑚,𝜎\ (𝜎 ′𝑛)

]
=

∫
𝑑𝜎𝑛 𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛)

[(
0 + ∇\ log𝑝 ⟨Name\𝑆 ⟩

𝑐𝑔
𝜋 ,𝜎\

(𝜎𝑛)
)
· log 𝑝𝑐𝑚,𝜎\ (𝜎

′
𝑛)

𝑝𝑐𝑔,𝜎\ (𝜎 ′𝑛)

−
(
∇\ log𝑝 ⟨𝑆 ⟩𝑐𝑔,𝜎\ (𝜎

′
𝑛) + 0

)
+ ∇\ log𝑝𝑐𝑚,𝜎\ (𝜎 ′𝑛)

]
=

∫
𝑑𝜎𝑛 𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛)

(
∇\ log𝑝 ⟨Name\𝑆 ⟩

𝑐𝑔 ,𝜎\
(𝜎 ′𝑛) · log

𝑝𝑐𝑚,𝜎\ (𝜎 ′𝑛)
𝑝𝑐𝑔,𝜎\ (𝜎 ′𝑛)

− ∇\ log𝑝 ⟨𝑆 ⟩𝑐𝑔,𝜎\ (𝜎
′
𝑛) + ∇\ log𝑝𝑐𝑚,𝜎\ (𝜎 ′𝑛)

)
.

We justify key steps of the above derivation below.

• The second equality comes from Theorem 4.2 and the fact that 𝑣𝑐𝑔,𝜎\ is the identity function

(since the third argument of every sample command in 𝑐𝑔 is the identity function _𝑦.𝑦).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:56 Wonyeol Lee, Xavier Rival, and Hongseok Yang

• The third equality holds because differentiation there commutes with integration by (R5).

• The fourth comes from the product rule for differentiation: ∇\ (𝑓 (\) · 𝑔(\)) = ∇\ 𝑓 (\) · 𝑔(\) +
𝑓 (\) ·∇\𝑔(\) for all differentiable 𝑓 and𝑔.Here 𝑓 and𝑔 in theoriginal equationaredifferentiable
because differentiability is preserved under division and log for positive-valued functions.

• The fifth equality holds because∇\ 𝑓 (\) = 𝑓 (\) · ∇\ log 𝑓 (\) for all differentiable and positive-
valued 𝑓 .

• The sixth equality follows from Lemma D.3 applied to 𝑐𝑔 and 𝑐𝑔
𝜋
(both of which do not

contain observe commands), and from the linearity of differentiation: ∇\ (𝑓 (\) + 𝑔(\)) =
∇\ 𝑓 (\) + ∇\𝑔(\) for all differentiable 𝑓 and 𝑔. Here 𝑓 and 𝑔 in the original equation are

differentiable because differentiability is preserved under log for positive-valued functions.

• The seventh equality follows from (R4) and

E𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛)
[
∇\ log𝑝 ⟨Name\𝑆 ⟩

𝑐𝑔,𝜎\ (𝜎 ′𝑛)
]
= 0. (21)

The proof of Eq. (21) will be given after we complete this justification of the derivation.

• The last equality comes from Lemma D.4 applied to 𝑐𝑔.

The only remaining part is to prove Eq. (21). We derive the equation as follows:∫
𝑑𝜎𝑛

(
𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛) · ∇\ log𝑝

⟨Name\𝑆 ⟩
𝑐𝑔,𝜎\ (𝜎 ′𝑛)

)
=

∫
𝑑𝜎𝑛

(
𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛) · ∇\ log𝑝

⟨Name\𝑆 ⟩
𝑐𝑔
𝜋 ,𝜎\

(𝜎𝑛)
)

=

∫
𝑑𝜎𝑛

(
𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛) ·

(
∇\ log𝑝 ⟨Name\𝑆 ⟩

𝑐𝑔
𝜋 ,𝜎\

(𝜎𝑛) + ∇\ log𝑝 ⟨𝑆 ⟩𝑐𝑔
𝜋 ,𝜎\
(𝜎𝑛)

))
=

∫
𝑑𝜎𝑛

(
𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛) · ∇\ log𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛)

)
=

∫
𝑑𝜎𝑛 ∇\𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛)

= ∇\
∫

𝑑𝜎𝑛 𝑝𝑐𝑔𝜋 ,𝜎\ (𝜎𝑛)

= ∇\ 1 = 0.

Here is the justification of the above derivation:

• The first equality comes from Lemma D.4 applied to 𝑐𝑔.

• The second equality follows from (R4).

• The third equality holds because of Lemma D.3 applied to 𝑐𝑔
𝜋
(which does not contain ob-

serve commands), and the linearity of differentiation: ∇\ (𝑓 (\) + 𝑔(\)) = ∇\ 𝑓 (\) + ∇\𝑔(\)
for all differentiable 𝑓 and 𝑔. Here 𝑓 and 𝑔 in the original equation are differentiable because

differentiability is preserved under log for positive-valued functions.

• The fourth equality holds because ∇\ 𝑓 (\) = 𝑓 (\) · ∇\ log 𝑓 (\) for all differentiable and
positive-valued 𝑓 .

• The fifth equality uses (R5), which states the commutativity between differentiation and

integration in the equality.

• The six equality comes from that 𝑝𝑐𝑔𝜋 ,𝜎\ is a probability density by Remark 4.3.

This completes the proof. □

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:57

D.3 Proofs of Lemmas D.3 and D.4
We define the partial density version of prs ⟨𝑆 ⟩□ (𝑐) for 𝑆 ⊆ Name:

prs ⟨𝑆 ⟩□ (𝑐) : St[PVar] × St□ [Name] → [0,∞),

prs ⟨𝑆 ⟩□ (𝑐) (𝜎𝑝 , b𝑛) ≜
{∏

`∈dom(b𝑛)∩𝑆 J𝑐K(𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟) (pr`) if ∃𝜎𝑟 . used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛)
0 otherwise.

prs ⟨𝑆 ⟩□ (𝑐) enjoys many of the properties that prs□ (𝑐) has. For instance, prs
⟨𝑆 ⟩
□ (𝑐) is a well-defined

function (i.e., its value does not depend on the choice of 𝜎𝑟), as prs□ (𝑐) does. Since the proof of those
properties of prs ⟨𝑆 ⟩□ (𝑐) would be almost identical to that of prs□ (𝑐), we will use them in the following

proofs without explicitly (re)proving them.

Proof of Lemma D.3. Let 𝑐 be a command that has no observe commands. Let 𝑆 ⊆ Name,
𝜎\ ∈ St[\], and 𝜎𝑛 ∈ St[Name]. We set 𝜎0 as in the definition of 𝑝𝑐,𝜎\ in Eq. (3) (as a function

of𝜎𝑛). Let𝜎 = 𝜎\ ⊕𝜎𝑛 ⊕𝜎0. If noerr (𝑐, 𝜎) does not hold, then the LHS and RHS of the desired equation
become zero, so the equation holds. If noerr (𝑐, 𝜎) holds, we get the desired equation as follows:

𝑝
⟨𝑆 ⟩
𝑐,𝜎\ (𝜎𝑛) · 𝑝

⟨Name\𝑆 ⟩
𝑐,𝜎\ (𝜎𝑛) =

(
J𝑐K𝜎 (like) ·∏`∈𝑆 J𝑐K𝜎 (pr`)

)
·
(
J𝑐K𝜎 (like) ·∏`∈Name\𝑆 J𝑐K𝜎 (pr`)

)
=

(
J𝑐K𝜎 (like)

)
2 ·∏`∈Name J𝑐K𝜎 (pr`)

= J𝑐K𝜎 (like) · 𝑝𝑐,𝜎\ (𝜎𝑛)
= 𝜎 (like) · 𝑝𝑐,𝜎\ (𝜎𝑛)
= 𝑝𝑐,𝜎\ (𝜎𝑛).

The second last equality uses Lemma D.5, and the last equality uses 𝜎 (like) = 1 (which holds by the

definition of 𝜎0). This completes the proof. □

Proof of Lemma D.4. Consider a command 𝑐 , a reparameterisation plan 𝜋 , 𝜎\ ∈ St[\], and
𝜎𝑛 ∈ St[Name]. Assume that all the sample commands of 𝑐 have _𝑦.𝑦 as their third arguments, and

𝑝𝑐𝜋 ,𝜎\ (𝜎𝑛) > 0.

We first define several objects and make observations on them. Let 𝑆 ≜ Name \ rv(𝜋). Define
𝑓∗ : St[Name] → St[AVar] to be the function for constructing an initial state:

𝑓∗ (𝜎𝑛) (𝑣) ≜

𝑓pr (𝜎𝑛 (`)) if 𝑣 ≡ pr` for some `

𝑓val (𝜎𝑛 (`)) if 𝑣 ≡ val` for some `

𝑓cnt (𝜎𝑛 (`)) if 𝑣 ≡ cnt` for some `

1 if 𝑣 ≡ like,

where 𝑓val (𝑟) ≜ 𝑟 , 𝑓pr (𝑟) ≜ N(𝑟 ; 0, 1), and 𝑓cnt (𝑟) ≜ 0. Define initial states 𝜎, 𝜎 ∈ St for 𝑝𝑐𝜋 ,𝜎\ (𝜎𝑛)
and 𝑝𝑐,𝜎\ (𝑣𝑐𝜋 ,𝜎\ (𝜎𝑛)), respectively, as

𝜎 ≜ 𝜎𝑝 ⊕ 𝜎𝑛 ⊕ 𝑓∗ (𝜎𝑛), 𝜎 ≜ 𝜎𝑝 ⊕ 𝑣𝑐𝜋 ,𝜎\ (𝜎𝑛) ⊕ 𝑓∗ (𝑣𝑐𝜋 ,𝜎\ (𝜎𝑛)),

where 𝜎𝑝 ≜ 𝜎\ ⊕ (_𝑣 ∈ PVar \ \ . 0) ∈ St[PVar]. Then, the assumption 𝑝𝑐𝜋 ,𝜎\ (𝜎𝑛) > 0 implies

noerr (𝑐𝜋 , 𝜎) by the definition of 𝑝 . From this, 𝜎 (like) = 1, and the definition of used, there exists
b𝑛 ∈ St□ [Name] such that used (𝑐𝜋 , 𝜎, b𝑛). From this, we have

𝜎 = 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , used (𝑐𝜋 , 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛),

for some 𝜎𝑟 . Next, let

b𝑛 ≜ vals□ (𝑐𝜋) (𝜎𝑝 , b𝑛).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:58 Wonyeol Lee, Xavier Rival, and Hongseok Yang

We can apply Lemma D.6 to used (𝑐𝜋 , 𝜎, b𝑛), since all the sample commands of 𝑐 have _𝑦.𝑦 in their

third arguments (by assumption). The application of the lemma gives:

∀𝜎 ′𝑟 ∈ St[Var \ (PVar ∪ dom(b𝑛))] . 𝜎 ′𝑟 (like) = 1 =⇒ used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎 ′𝑟 , b𝑛),

prs ⟨𝑆 ⟩□ (𝑐𝜋) (𝜎𝑝 , b𝑛) = prs ⟨𝑆 ⟩□ (𝑐) (𝜎𝑝 , b𝑛),

where the for-all part comes from Lemma C.7.

We now show two claims. The first claims is: there exists 𝜎𝑟 such that

𝜎 = 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛).

By the definition of 𝜎 , it suffices to show that b𝑛 =
(
𝑣𝑐𝜋 ,𝜎\ (𝜎𝑛)

)
|dom(b𝑛) . This indeed holds as fol-

lows: for any ` ∈ dom(b𝑛), b𝑛 (`) = vals□ (𝑐𝜋) (𝜎𝑝 , b𝑛) (`) = J𝑐𝜋 K𝜎 (val`) = 𝑣𝑐𝜋 ,𝜎\ (𝜎𝑛) (`),where the
second equality uses used (𝑐𝜋 , 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛). The second claim is: for all ` ∈ 𝑆 \ dom(b𝑛),

𝜎 (pr`) = 𝜎 (pr`).

Here is the proof of the claim: 𝜎 (pr`) = 𝑓pr (𝜎 (`)) = 𝑓pr (𝑣𝑐𝜋 ,𝜎\ (𝜎𝑛) (`)) = 𝑓pr (J𝑐𝜋 K𝜎 (val`)) =

𝑓pr (𝜎 (val`)) = 𝑓pr (𝜎 (`)); and 𝜎 (pr`) = 𝑓pr (𝜎 (`)); here the second last equality in the first equation
uses Lemma C.6-(2) with ` ∉ dom(b𝑛) and used (𝑐𝜋 , 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛), and the last equality in the first
equation uses 𝑓val (𝑟) = 𝑟 .

Based on the observations made so far, we show the desired equation as follows:

𝑝
⟨𝑆 ⟩
𝑐𝜋 ,𝜎\
(𝜎𝑛) =

∏
`∈𝑆∩dom(b𝑛)

J𝑐𝜋 K𝜎 (pr`) ·
∏

`∈𝑆\dom(b𝑛)

J𝑐𝜋 K𝜎 (pr`)

= prs ⟨𝑆 ⟩□ (𝑐𝜋) (𝜎𝑝 , b𝑛) ·
∏

`∈𝑆\dom(b𝑛)

𝜎 (pr`)

= prs ⟨𝑆 ⟩□ (𝑐) (𝜎𝑝 , b𝑛) ·
∏

`∈𝑆\dom(b𝑛)
𝜎 (pr`)

=
∏

`∈𝑆∩dom(b𝑛)
J𝑐K𝜎 (pr`) ·

∏
`∈𝑆\dom(b𝑛)

J𝑐K𝜎 (pr`)

= 𝑝
⟨𝑆 ⟩
𝑐,𝜎\ (𝑣𝑐𝜋 ,𝜎\ (𝜎𝑛)) .

Thefirst and last equalities areby thedefinitionof𝑝 . The secondequalityusesused (𝑐𝜋 , 𝜎𝑝⊕b𝑛⊕𝜎𝑟 , b𝑛)
and Lemma C.6-(2) with ` ∉ dom(b𝑛). The third equality uses dom(b𝑛) = dom(b𝑛), the observation
made in the first paragraph, and the second claim in the above. The fourth equality uses the first

claim in the above, and Lemma C.6-(2) with ` ∉ dom(b𝑛). □

Lemma D.5. Let 𝑐 be a command and 𝜎 ∈ St. If 𝑐 has no observe commands and J𝑐K𝜎 ∈ St, then

J𝑐K𝜎 (like) = 𝜎 (like).

Proof. Let 𝑐 be a command that does not contain an observe command. We show the claim of

the lemma by induction on the structure of 𝑐 . Pick 𝜎 ∈ St such that J𝑐K𝜎 ∈ St. We will show that

J𝑐K𝜎 (like) = 𝜎 (like).

Case 𝑐 ≡ skip. In this case, J𝑐K𝜎 (like) = 𝜎 (like) by the definition of the semantics.

Case 𝑐 ≡ (𝑥 := 𝑒). Again, J𝑐K𝜎 (like) = 𝜎 (like) by the definition of the semantics.

Case𝑐 ≡ (𝑥 := sam(𝑛,𝑑, _𝑦.𝑒 ′). Oncemore, J𝑐K𝜎 (like) = 𝜎 (like) by thedefinitionof the semantics.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:59

Case 𝑐 ≡ (𝑐 ′; 𝑐 ′′). We have J𝑐 ′K𝜎 ∈ St and J𝑐 ′′K(J𝑐 ′K𝜎) ∈ St. We apply induction hypothesis first

to (𝑐 ′, 𝜎), and again to (𝑐 ′, J𝑐 ′K𝜎). The first application gives J𝑐 ′K𝜎 (like) = 𝜎 (like), and the second
J𝑐 ′; 𝑐 ′′K𝜎 (like) = J𝑐 ′K𝜎 (like). The desired conclusion follows from these two equalities.

Case 𝑐 ≡ (if 𝑏 {𝑐 ′} else {𝑐 ′′}). We deal with the case that J𝑏K𝜎 = true. The other case of
J𝑏K𝜎 = false can be proved similarly. Since J𝑏K𝜎 = true, we have J𝑐 ′K𝜎 = J𝑐K𝜎 ∈ St. Thus, we can
apply induction hypothesis to 𝑐 ′. If we do so, we get J𝑐 ′K𝜎 (like) = 𝜎 (like). This gives the desired
conclusion because J𝑐K𝜎 = J𝑐 ′K𝜎 .

Case 𝑐 ≡ (while𝑏 {𝑐 ′}). Let 𝐹 be the operator on [St→ St⊥] such that J𝑐K is the least fixed point
of 𝐹 . Define a subset T of [St→ St⊥] as follows:

𝑓 ∈ T ⇐⇒
(
∀𝜎 ′ ∈ St. 𝑓 (𝜎 ′) ∈ St =⇒ 𝑓 (𝜎 ′) (like) = 𝜎 ′(like).

)
The set T contains the least function _𝜎.⊥, and is closed under the least upper bound of any chain
in [St→ St⊥]. It is also closed under 𝐹 . This 𝐹 -closure follows essentially from our arguments for

sequential composition, if command, and skip, and induction hypothesis on 𝑐 ′. What we have shown

for T implies that T contains the least fixed point of 𝐹 , which gives the desired property for 𝑐 . □

Lemma D.6. Let 𝑐 be a command and 𝜋 be a reparameterisation plan. Suppose that every sample
command in 𝑐 has _𝑦.𝑦 as its third argument. Then, for all 𝜎𝑝 ∈ St[PVar] and b𝑛 ∈ St□ [Name], if
used (𝑐𝜋 , 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛) for some 𝜎𝑟 , then

∃𝜎𝑟 . used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛),

pvars□ (𝑐
𝜋) (𝜎𝑝 , b𝑛) = pvars□ (𝑐) (𝜎𝑝 , b𝑛),

prs ⟨Name\rv (𝜋) ⟩
□ (𝑐𝜋) (𝜎𝑝 , b𝑛) = prs ⟨Name\rv (𝜋) ⟩

□ (𝑐) (𝜎𝑝 , b𝑛),
where

b𝑛 ≜ vals□ (𝑐𝜋) (𝜎𝑝 , b𝑛).

Proof. Fix a reparameterisation plan 𝜋 . The proof proceeds by induction on the structure of 𝑐 . Let

𝜎𝑝 ∈ St[PVar], and b𝑛 ∈ St□ [Name]. Assume that𝑐 uses only_𝑦.𝑦 in the third argument of its sample

commands, and used (𝑐𝜋 , 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛) for some 𝜎𝑟 . Let 𝜎 ≜ 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 and 𝑆 ≜ Name \ rv(𝜋).
Then, we simply have used (𝑐𝜋 , 𝜎, b𝑛).

Cases 𝑐 ≡ skip, 𝑐 ≡ (𝑥 := 𝑒), or 𝑐 ≡ obs(𝑑, 𝑟). In this case, J𝑐K𝜎 (cnt`) = 𝜎 (cnt`) for all 𝜎 ∈ St
and ` ∈ Name. So dom(b𝑛) = dom(b𝑛) = ∅ and thus b𝑛 = b𝑛 . We also know 𝑐𝜋 ≡ 𝑐 . From these, all

of the three conclusions follow immediately.

Case 𝑐 ≡ (𝑥 := sam(𝑛,𝑑, _𝑦.𝑒)). Since fv(𝑛) ⊆ PVar, there exists ` ∈ Name such that J𝑛K(𝜎𝑝 ⊕
𝜎𝑟) = ` for all 𝜎𝑟 ∈ St[Var \ PVar]. So, for all 𝜎𝑟 ∈ St[Var \ PVar] and ` ′ ∈ Name \ {`},

J𝑐K(𝜎𝑝 ⊕ 𝜎𝑟) (cnt`′) =
{
(𝜎𝑝 ⊕ 𝜎𝑟) (cnt`′) + 1 if ` ′ = `

(𝜎𝑝 ⊕ 𝜎𝑟) (cnt`′) otherwise.
(22)

From this, we get dom(b𝑛) = dom(b𝑛) = {`}. Further, by assumption, we get 𝑒 ≡ 𝑦. We now prove

the three conclusions based on these observations and case analysis on (𝑛,𝑑, _𝑦.𝑒).
First, assume (𝑛,𝑑, _𝑦.𝑒) ∉ dom(𝜋). Then, 𝑐𝜋 ≡ 𝑐 and

b𝑛 = vals□ (𝑐𝜋) (𝜎𝑝 , b𝑛) = [` ↦→ J𝑐𝜋 K𝜎 (val`)] = [` ↦→ J𝑒 [𝜎 (`)/𝑦]K𝜎] = [` ↦→ b𝑛 (`)] = b𝑛,
where the second last equality uses 𝑒 ≡ 𝑦. Hence, the three conclusions clearly hold.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:60 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Next, assume (𝑛,𝑑, _𝑦.𝑒) ∈ dom(𝜋). Suppose that 𝜋 (𝑛,𝑑, _𝑦.𝑒) = (𝑑, _𝑦.𝑒). Then, 𝑐𝜋 ≡ (𝑥 :=

sam(𝑛,𝑑, _𝑦.𝑒)) and

b𝑛 = vals□ (𝑐𝜋) (𝜎𝑝 , b𝑛) = [` ↦→ J𝑐𝜋 K𝜎 (val`)] = [` ↦→ J𝑒 [𝜎 (`)/𝑦]K𝜎] = [` ↦→ J𝑒 [b𝑛 (`)/𝑦]K𝜎] .
Since Eq. (22) holds also for J𝑐𝜋 K, and since dom(b𝑛) = {`}, we get the first conclusion:

used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛).
To prove the second conclusion, let 𝜎 = 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 . Then, for all 𝑣 ∈ PVar,

pvars□ (𝑐
𝜋) (𝜎𝑝 , b𝑛) (𝑣) = J𝑐𝜋 K𝜎 (𝑣) =

{
J𝑒 [𝜎 (`)/𝑦]K𝜎 = J𝑒 [b𝑛 (`)/𝑦]K𝜎 if 𝑣 ≡ 𝑥
𝜎 (𝑣) = 𝜎𝑝 (𝑣) otherwise,

pvars□ (𝑐) (𝜎𝑝 , b𝑛) (𝑣) = J𝑐K𝜎 (𝑣) =
{
J𝑒 [𝜎 (`)/𝑦]K𝜎 = b𝑛 (`) = J𝑒 [b𝑛 (`)/𝑦]K𝜎 if 𝑣 ≡ 𝑥
𝜎 (𝑣) = 𝜎𝑝 (𝑣), otherwise,

where the second equation uses 𝑒 ≡ 𝑦. Hence, the second conclusion holds. For the third conclusion,
let 𝑛 = name(𝛼, _). Then, ` = (𝛼, _) ∈ {(𝛼, 𝑖) ∈ Name | 𝑖 ∈ N} ⊆ rv(𝜋). Thus, dom(b𝑛) ∩ 𝑆 =

dom(b𝑛) ∩ 𝑆 = {`} ∩ 𝑆 = {`} ∩ (Name \ rv(𝜋)) = ∅. From this, we get the third conclusion:

prs ⟨𝑆 ⟩□ (𝑐𝜋) (𝜎𝑝 , b𝑛) = 1 = prs ⟨𝑆 ⟩□ (𝑐) (𝜎𝑝 , b𝑛).

Case 𝑐 ≡ (𝑐 ′; 𝑐 ′′). First, we make several observations necessary to prove the conclusion. By

used (𝑐𝜋 , 𝜎, b𝑛), we have J𝑐 ′𝜋 K𝜎 ∈ St and J𝑐 ′′𝜋 K(J𝑐 ′𝜋 K𝜎) ∈ St. Let

𝜎 ′ ≜ J𝑐 ′𝜋 K𝜎, 𝜎 ′′ ≜ J𝑐 ′′𝜋 K𝜎 ′, 𝜎 ′𝑝 ≜ 𝜎
′ |PVar, 𝜎 ′′𝑝 ≜ 𝜎

′′ |PVar.

Then, by used (𝑐𝜋 , 𝜎, b𝑛) and the claim in the proof of Lemma C.6 (for the sequential composition

case), there exist b ′𝑛 and b
′′
𝑛 such that

b𝑛 = b ′𝑛 ⊕ b ′′𝑛 , used (𝑐 ′𝜋 , 𝜎, b ′𝑛), used− (𝑐 ′′
𝜋
, 𝜎 ′, b ′′𝑛).

By the latter two, we can apply induction to (𝑐 ′, 𝜎𝑝 , b ′𝑛) and (𝑐 ′′, 𝜎 ′𝑝 , b ′′𝑛), and IH gives the following:

pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) = pvars□ (𝑐 ′
𝜋) (𝜎𝑝 , b ′𝑛) [By IH on 𝑐 ′]

=
(
J𝑐 ′𝜋 K(𝜎 [like ↦→ 1])

)
|PVar [By used (𝑐 ′𝜋 , 𝜎, b ′𝑛)]

= (J𝑐 ′𝜋 K𝜎) |PVar = 𝜎 ′ |PVar = 𝜎 ′𝑝 , [By Lemma C.6-(3)]

pvars□ (𝑐 ′′) (𝜎 ′𝑝 , b ′′𝑛) = pvars□ (𝑐 ′′
𝜋) (𝜎 ′𝑝 , b ′′𝑛) [By IH on 𝑐 ′′]

=
(
J𝑐 ′′𝜋 K(𝜎 ′[like ↦→ 1])

)
|PVar [By used− (𝑐 ′′

𝜋
, 𝜎 ′, b ′′𝑛)]

= (J𝑐 ′′𝜋 K𝜎 ′) |PVar = 𝜎 ′′ |PVar = 𝜎 ′′𝑝 , [By Lemma C.6-(3)]

where

b ′𝑛 ≜ vals□ (𝑐 ′
𝜋) (𝜎𝑝 , b ′𝑛), b ′′𝑛 ≜ vals□ (𝑐 ′′

𝜋) (𝜎 ′𝑝 , b ′′𝑛).
By the former equation, we get

b𝑛 = vals□ (𝑐𝜋) (𝜎𝑝 , b𝑛)

= vals□ (𝑐 ′
𝜋
; 𝑐 ′′

𝜋) (𝜎𝑝 , b ′𝑛 ⊕ b ′′𝑛) [By b𝑛 = b ′𝑛 ⊕ b ′′𝑛]

= vals□ (𝑐 ′
𝜋) (𝜎𝑝 , b ′𝑛) ⊕ vals□ (𝑐 ′′

𝜋) (pvars□ (𝑐 ′
𝜋) (𝜎𝑝 , b ′𝑛), b ′′𝑛)

= vals□ (𝑐 ′
𝜋) (𝜎𝑝 , b ′𝑛) ⊕ vals□ (𝑐 ′′

𝜋) (𝜎 ′𝑝 , b ′′𝑛) [By the former equation]

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:61

= b ′𝑛 ⊕ b ′′𝑛

where the third equality uses used (𝑐 ′𝜋 , 𝜎, b ′𝑛), used (𝑐 ′
𝜋
; 𝑐 ′′

𝜋
, 𝜎, b ′𝑛 ⊕ b ′′𝑛), and the second claim in the

proof of Lemma C.9.

We now show the first conclusion. By IH on (𝑐 ′, 𝜎𝑝 , b ′𝑛) and (𝑐 ′′, 𝜎 ′𝑝 , b ′′𝑛), we get

∃𝜎 ′𝑟 . used (𝑐 ′, 𝜎𝑝 ⊕ b ′𝑛 ⊕ 𝜎 ′𝑟 , b ′𝑛), ∃𝜎 ′′𝑟 . used (𝑐 ′′, 𝜎 ′𝑝 ⊕ b ′′𝑛 ⊕ 𝜎 ′′𝑟 , b ′′𝑛).

Let

𝜎 ≜ 𝜎𝑝 ⊕ (b ′𝑛 ⊕ b ′′𝑛) ⊕ 𝜎 ′𝑟 |dom(𝜎′𝑟)\dom(b′′𝑛) .
Then, J𝑐 ′K𝜎 ∈ St by used (𝑐 ′, 𝜎𝑝 ⊕ b ′𝑛 ⊕ 𝜎 ′𝑟 , b ′𝑛) and Lemma C.6-(1), and we have

𝜎 |PVar = 𝜎𝑝 , (J𝑐 ′K𝜎) |PVar = (J𝑐 ′K(𝜎𝑝 ⊕ b ′𝑛 ⊕ 𝜎 ′𝑟)) |PVar [By Lemma C.6-(3)]

= pvars(𝑐 ′) (𝜎𝑝 , b ′𝑛) = 𝜎 ′𝑝 , [By the above]

𝜎 |dom(b′𝑛) = b
′
𝑛, (J𝑐 ′K𝜎) |dom(b′′𝑛) = 𝜎 |dom(b′′𝑛) = b

′′
𝑛 . [By Lemma C.4]

By these, used (𝑐 ′, 𝜎𝑝 ⊕ b ′𝑛 ⊕ 𝜎 ′𝑟 , b ′𝑛), used (𝑐 ′′, 𝜎 ′𝑝 ⊕ b ′′𝑛 ⊕ 𝜎 ′′𝑟 , b ′′𝑛), and Lemma C.7, we get

used (𝑐 ′, 𝜎, b ′𝑛), used− (𝑐 ′′, J𝑐 ′K𝜎, b ′′𝑛).

By these and the third claim in the proof of Lemma C.9, we get

used (𝑐 ′; 𝑐 ′′, 𝜎, b ′𝑛 ⊕ b ′′𝑛).

By this and Lemma C.7, we get the following as desired, since b𝑛 = b ′𝑛 ⊕ b ′′𝑛 (shown in the above) and

𝜎 = 𝜎𝑝 ⊕ (b ′𝑛 ⊕ b ′′𝑛) ⊕ 𝜎𝑟 for some 𝜎𝑟 :

used (𝑐, 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 , b𝑛).

Next, we show the second conclusion as follows:

pvars□ (𝑐
𝜋) (𝜎𝑝 , b𝑛) = (J𝑐𝜋 K𝜎) |PVar [By used (𝑐𝜋 , 𝜎, b𝑛)]

=
(
J𝑐 ′′𝜋 K(J𝑐 ′𝜋 K𝜎)

)
|PVar

= 𝜎 ′′ |PVar = 𝜎 ′′𝑝 ,
pvars□ (𝑐) (𝜎𝑝 , b𝑛) = pvars□ (𝑐 ′; 𝑐 ′′) (𝜎𝑝 , b ′𝑛 ⊕ b ′′𝑛) [By b𝑛 = b ′𝑛 ⊕ b ′′𝑛]

= pvars□ (𝑐 ′′) (pvars□ (𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛)
= pvars□ (𝑐 ′′) (𝜎 ′𝑝 , b ′′𝑛) = 𝜎 ′′𝑝 , [By the above]

where the second last equality uses used (𝑐 ′, 𝜎, b ′𝑛), used (𝑐 ′; 𝑐 ′′, 𝜎, b ′𝑛 ⊕ b ′′𝑛), and the second claim in

the proof of Lemma C.9.

Lastly, we show the third conclusion as follows:

prs ⟨𝑆 ⟩□ (𝑐𝜋) (𝜎𝑝 , b𝑛) = prs ⟨𝑆 ⟩□ (𝑐 ′; 𝑐 ′′
𝜋) (𝜎𝑝 , b ′𝑛 ⊕ b ′′𝑛) [By b𝑛 = b ′𝑛 ⊕ b ′′𝑛]

= prs ⟨𝑆 ⟩□ (𝑐 ′
𝜋) (𝜎𝑝 , b ′𝑛) · prs ⟨𝑆 ⟩□ (𝑐 ′′

𝜋) (pvars(𝑐 ′𝜋) (𝜎𝑝 , b ′𝑛), b ′′𝑛)
= prs ⟨𝑆 ⟩□ (𝑐 ′

𝜋) (𝜎𝑝 , b ′𝑛) · prs ⟨𝑆 ⟩□ (𝑐 ′′
𝜋) (pvars(𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛) [By IH on 𝑐 ′]

= prs ⟨𝑆 ⟩□ (𝑐 ′) (𝜎𝑝 , b ′𝑛) · prs
⟨𝑆 ⟩
□ (𝑐 ′′) (pvars(𝑐 ′) (𝜎𝑝 , b ′𝑛), b ′′𝑛) [By IH on 𝑐 ′ and 𝑐 ′′]

= prs ⟨𝑆 ⟩□ (𝑐) (𝜎𝑝 , b ′𝑛 ⊕ b ′′𝑛)
= prs ⟨𝑆 ⟩□ (𝑐) (𝜎𝑝 , b𝑛). [By b𝑛 = b ′𝑛 ⊕ b ′′𝑛]

Here the second andfifth equalities use the second claim in the proof of LemmaC.9with the following:

used (𝑐 ′𝜋 , 𝜎, b ′𝑛), used (𝑐 ′
𝜋
; 𝑐 ′′

𝜋
, 𝜎, b ′𝑛 ⊕ b ′′𝑛), used (𝑐 ′, 𝜎, b ′𝑛), and used (𝑐 ′; 𝑐 ′′, 𝜎, b ′𝑛 ⊕ b ′′𝑛).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:62 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Case 𝑐 ≡ (if 𝑏 {𝑐 ′} else {𝑐 ′′}). In this case, 𝑐𝜋 ≡ (if 𝑏 {𝑐 ′𝜋 } else {𝑐 ′′𝜋 }). Since fv(𝑏) ⊆ PVar,
J𝑏K(𝜎𝑝 ⊕𝜎𝑟) is constant for all𝜎𝑟 ∈ St[Var\PVar].Without loss of generality, assume J𝑏K(𝜎𝑝 ⊕𝜎𝑟) =
true. Then, J𝑐K(𝜎𝑝 ⊕𝜎𝑟) = J𝑐 ′K(𝜎𝑝 ⊕𝜎𝑟) and J𝑐𝜋 K(𝜎𝑝 ⊕𝜎𝑟) = J𝑐 ′𝜋 K(𝜎𝑝 ⊕𝜎𝑟) for all𝜎𝑟 ∈ St[Var\PVar].
Hence, by IH on (𝑐 ′, 𝜎𝑝 , b𝑛), we get the three conclusions directly.

Case 𝑐 ≡ (while 𝑏 {𝑐 ′}). In this case, 𝑐𝜋 ≡ (while 𝑏 {𝑐 ′𝜋 }). Consider the version of prs□ (−)
where the parameter can be a state transformer 𝑓 : St → St⊥, instead of a command. Similarly,

consider the version of the three conclusions where we use two state transformers 𝑓 , 𝑓 : St→ St⊥,
again instead of a command. We denote the versions by prs□ (𝑓) and 𝜑 (𝑓 , 𝑓 , 𝜎𝑝 , b𝑛). We write 𝑓 ∼ 𝑓
if prs□ (𝑓) (𝜎𝑝 , b𝑛) > 0 implies 𝜑 (𝑓 , 𝑓 , 𝜎𝑝 , b𝑛) for all 𝜎𝑝 ∈ St[PVar] and b𝑛 ∈ St□ [Name]. Further, we
define 𝐹𝜋

′
: [St→ St⊥] → [St→ St⊥] as

𝐹𝜋
′ (𝑓) (𝜎) ≜ if (J𝑏K𝜎 = true) then (𝑓 † ◦ J𝑐 ′𝜋

′
K) (𝜎) else 𝜎.

Note that 𝐹𝜋 and 𝐹𝜋0 are the operators used in the semantics of the loops J𝑐𝜋 K and J𝑐K, respectively,
where 𝜋0 denotes the empty reparameterisation plan. We will show three claims: _𝜎.⊥ ∼ _𝜎.⊥; if
𝑓 ∼ 𝑓 , then 𝐹𝜋 (𝑓) ∼ 𝐹𝜋0 (𝑓); and if increasing sequences {𝑓𝑘 }𝑘∈N and {𝑓𝑘 }𝑘∈N satisfy 𝑓𝑘 ∼ 𝑓𝑘 for all
𝑘 ∈ N, then 𝑓∞ ∼ 𝑓∞ holds for 𝑓∞ =

⊔
𝑘∈N 𝑓𝑘 and 𝑓∞ =

⊔
𝑘∈N 𝑓𝑘 . These three claims imply J𝑐𝜋 K ∼ J𝑐K,

which in turn proves the desired three conclusions.

The first claim holds simply because prs□ (_𝜎.⊥)(−,−) is always 0. To show the second claim,

consider 𝑓 , 𝑓 : St→ St⊥ such that 𝑓 ∼ 𝑓 . We first replay our proof for the sequential-composition

case on (𝑓 , 𝑓) after viewing 𝑓 † ◦ J𝑐 ′𝜋 K and 𝑓 † ◦ J𝑐 ′K as the sequential composition of 𝑐 ′
𝜋
and 𝑓 , and of

𝑐 ′ and 𝑓 , respectively. This replay, then, gives the relationship 𝑓 † ◦ J𝑐 ′𝜋 K ∼ 𝑓 † ◦ J𝑐 ′K. Next, we replay
our proof for the if case on (𝐹𝜋 (𝑓), 𝐹𝜋0 (𝑓)), after viewing 𝑓 † ◦ J𝑐 ′𝜋 K and 𝑓 † ◦J𝑐 ′K as the true branches,
and _𝜎. 𝜎 = JskipK as the false branch. This replay implies the required relationship 𝐹𝜋 (𝑓) ∼ 𝐹𝜋0 (𝑓).
To show the third condition, consider increasing sequences {𝑓𝑘 }𝑘∈N and {𝑓𝑘 }𝑘∈N such that

𝑓𝑘 ∼ 𝑓𝑘 for all 𝑘 ∈ N. Let 𝑓∞ =
⊔
𝑘∈N 𝑓𝑘 and 𝑓∞ =

⊔
𝑘∈N 𝑓𝑘 . Consider any 𝜎𝑝 and b𝑛 such that

prs□ (𝑓∞) (𝜎𝑝 , b𝑛) > 0. We should show 𝜑 (𝑓∞, 𝑓∞, 𝜎𝑝 , b𝑛). Pick any 𝜎𝑟 ∈ St[Var \ (PVar ∪ dom(b𝑛))]
with 𝜎𝑟 (like) = 1. Let 𝜎 = 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 and 𝜎 = 𝜎𝑝 ⊕ b𝑛 ⊕ 𝜎𝑟 . Note that the value of each term in

𝜑 (· · ·) (i.e., used (· · ·), pvars□ (· · ·), and prs
⟨𝑆 ⟩
□ (· · ·)) is independent of the choice of𝜎𝑟 by LemmaC.7

and the well-definedness of pvars□ and prs
⟨𝑆 ⟩
□ . Since the two given sequences are increasing, there

exists 𝐾 ∈ N such that 𝑓∞ (𝜎) = 𝑓𝐾 (𝜎) and 𝑓∞ (𝜎) = 𝑓𝐾 (𝜎). From this and prs□ (𝑓∞) (𝜎𝑝 , b𝑛) > 0,

we have prs□ (𝑓𝐾) (𝜎𝑝 , b𝑛) > 0. This in turn gives 𝜑 (𝑓𝐾 , 𝑓𝐾 , 𝜎𝑝 , b𝑛) since 𝑓𝐾 ∼ 𝑓𝐾 . Lastly, again by

𝑓∞ (𝜎) = 𝑓𝐾 (𝜎) and 𝑓∞ (𝜎) = 𝑓𝐾 (𝜎), we obtain 𝜑 (𝑓∞, 𝑓∞, 𝜎𝑝 , b𝑛) as desired. □

E DEFERREDRESULTS IN §4.3
E.1 Deferred Statements and Their Proofs

Lemma E.1. Let 𝑓 , 𝑔 : R𝑛 → R be locally Lipschitz functions. Then, the following differentiation rules
hold for almost every 𝑥 ∈ R𝑛 :

∇(𝑓 + 𝑔) (𝑥) = ∇𝑓 (𝑥) + ∇𝑔(𝑥),
∇(𝑓 · 𝑔) (𝑥) = ∇𝑓 (𝑥) · 𝑔(𝑥) + 𝑓 (𝑥) · ∇𝑔(𝑥),
∇ log 𝑓 (𝑥) = 1/𝑓 (𝑥) · ∇𝑓 (𝑥),

where for the third rule we assume 𝑓 (𝑦) > 0 for all𝑦 ∈ R𝑛 .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:63

Proof. Note that the three functions + : R2 → R, · : R2 → R, and log : R>0 → R are all

differentiable. Hence, applying Lemma E.4 produces the claim. □

Theorem E.2. Let 𝑓 : R × R𝑛 → R be a measurable function that satisfies the next four conditions:

• For all 𝑥 ∈ R𝑛 , 𝑓 (−, 𝑥) : R→ R is continuous.
• For all \ ∈ R, ∇\ 𝑓 (\, 𝑥) is well-defined for almost all 𝑥 ∈ R𝑛 .
• For all \ ∈ R,

∫
R𝑛
𝑓 (\, 𝑥) 𝑑𝑥 is finite.

• For all \ ∈ R, there is an open𝑈 ⊆ R such that \ ∈ 𝑈 and
∫

R𝑛
Lip

(
𝑓 (−, 𝑥) |𝑈

)
𝑑𝑥 is finite.

Here ∇\ (−) and Lip(−) are defined as in Theorem D.2, and “almost all” is with respect to the Lebesgue
measure. Then, for all \ ∈ R, both sides of the following are well-defined and equal:

∇\
∫

R𝑛
𝑓 (\, 𝑥) 𝑑𝑥 =

∫
R𝑛
∇\ 𝑓 (\, 𝑥) 𝑑𝑥 .

Proof. Before starting the main proof, we show that for any open𝑈 ′ ⊆ R, the following function
𝐿 : R𝑛 → R ∪ {∞} is measurable:

𝐿(𝑥) ≜ Lip

(
𝑓 (−, 𝑥) |𝑈 ′

)
.

Define𝑉 ⊆ R2
and ℓ : 𝑉 × R𝑛 → R as

𝑉 ≜ {𝑣 ∈ 𝑈 ′ ×𝑈 ′ | 𝑣1 ≠ 𝑣2} ⊆ R2, ℓ (𝑣, 𝑥) ≜ |𝑓 (𝑣1, 𝑥) − 𝑓 (𝑣2, 𝑥) ||𝑣1 − 𝑣2 |
.

Let𝑉 ′ be a countable, dense subset of𝑉 . Then, for all 𝑥 ∈ R𝑛 ,

𝐿(𝑥) = sup

𝑣∈𝑉
ℓ (𝑣, 𝑥) = sup

𝑣′∈𝑉 ′
ℓ (𝑣 ′, 𝑥),

where the first equality is by the definition of Lip(−), and the second equality holds since ℓ (−, 𝑥) :
𝑉 → R is continuous for all 𝑥 ∈ R𝑛 by the first condition of this theorem. Since 𝐿 is the supremum

of countably many measurable functions {ℓ (𝑣 ′,−) : R𝑛 → R | 𝑣 ′ ∈ 𝑉 ′}, 𝐿 itself is a measurable

function as desired. Note that the measurability of 𝐿 ensures that the integral

∫
R𝑛
𝐿(𝑥) 𝑑𝑥 in the

fourth condition of this theorem is well-defined (as a value in R ∪ {∞}).
We now start the main proof. Pick any \ ′ ∈ R. Define 𝑔 : R \ {\ ′} → R as

𝑔(\) ≜
∫

R𝑛

𝑓 (\, 𝑥) − 𝑓 (\ ′, 𝑥)
\ − \ ′ 𝑑𝑥,

where 𝑔(\) is finite by the third condition of this theorem. Then,(
∇\

∫
R𝑛
𝑓 (\, 𝑥) 𝑑𝑥

)���
\=\ ′

= lim

\→\ ′
1

\ − \ ′
(∫

R𝑛
𝑓 (\, 𝑥) 𝑑𝑥 −

∫
R𝑛
𝑓 (\ ′, 𝑥) 𝑑𝑥

)
= lim

\→\ ′
𝑔(\),

where each equality denotes that LHS is well-defined if and only if RHS is well-defined, and if so,

LHS and RHS are equal. Here the first equality is from the definition of ∇\ , and the second equality
from the third condition of this theorem. Note that the following are equivalent for any 𝑟 ∈ R:

(i) lim\→\ ′ 𝑔(\) = 𝑟 .
(ii) For any {\𝑖 }𝑖∈N ⊆ R \ {\ ′}, lim𝑖→∞ \𝑖 = \ ′ implies lim𝑖→∞ 𝑔(\𝑖) = 𝑟 .

So it suffices to show that (ii) holds with an appropriate choice of 𝑟 .

To do so, consider {\𝑖 }𝑖∈N ⊆ R \ {\ ′} such that lim𝑖→∞ \𝑖 = \ ′. Defineℎ𝑖 : R𝑛 → R as

ℎ𝑖 (𝑥) ≜
𝑓 (\𝑖 , 𝑥) − 𝑓 (\ ′, 𝑥)

\𝑖 − \ ′
.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:64 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Then, 𝑔(\𝑖) =
∫

R𝑛
ℎ𝑖 (𝑥) 𝑑𝑥 by the definition of ℎ𝑖 , and lim𝑖→∞ ℎ𝑖 (𝑥) = (∇\ 𝑓 (\, 𝑥)) |\=\ ′ for almost

all 𝑥 ∈ R𝑛 by the second condition of this theorem. So, if the dominated convergence theorem is

applicable to lim𝑖→∞
∫

R𝑛
ℎ𝑖 (𝑥) 𝑑𝑥 , we would have

lim

𝑖→∞
𝑔(\𝑖) = lim

𝑖→∞

∫
R𝑛
ℎ𝑖 (𝑥) 𝑑𝑥 =

∫
R𝑛

(
∇\ 𝑓 (\, 𝑥)

)���
\=\ ′

𝑑𝑥,

where each equality denotes that both LHS and RHS are well-defined and are equal. Therefore, it suf-

fices to show that the preconditions of the dominated convergence theorem for lim𝑖→∞
∫

R𝑛
ℎ𝑖 (𝑥) 𝑑𝑥

are satisfied.

We show that the preconditions indeed hold, which concludes the proof:

• “ℎ𝑖 is measurable for all 𝑖 ∈ N”: This holds by the measurability of 𝑓 .

• “lim𝑖→∞ ℎ𝑖 (𝑥) = (∇\ 𝑓 (\, 𝑥)) |\=\ ′ for almost all 𝑥 ∈ R𝑛”: This was already shown above.
• “There exist𝐻 : R𝑛 → R ∪ {∞} and 𝐼 ∈ N such that (a)

∫
R𝑛
𝐻 (𝑥) 𝑑𝑥 is finite, and (b) for all

𝑖 ≥ 𝐼 , |ℎ𝑖 (𝑥) | ≤ 𝐻 (𝑥) for almost all 𝑥 ∈ R𝑛”: By the fourth condition of this theorem, there is

an open𝑈 ⊆ R such that \ ′ ∈ 𝑈 and

∫
R𝑛

Lip(𝑓 (−, 𝑥) |𝑈) 𝑑𝑥 is finite. Let𝐻 : R𝑛 → R ∪ {∞} be

𝐻 (𝑥) ≜ Lip

(
𝑓 (−, 𝑥) |𝑈

)
.

Then, (a) clearly holds since

∫
R𝑛
Lip(𝑓 (−, 𝑥) |𝑈) 𝑑𝑥 is finite. Further, (b) holds as follows: by

lim𝑖→∞ \𝑖 = \ ′ and𝑈 being an open neighborhood of \ ′, there is 𝐼 ∈ N such that \𝑖 ∈ 𝑈 for

all 𝑖 ≥ 𝐼 ; therefore, for all 𝑖 ≥ 𝐼 ,

|ℎ𝑖 (𝑥) | =
|𝑓 (\𝑖 , 𝑥) − 𝑓 (\ ′, 𝑥) |

|\𝑖 − \ ′ |
≤ Lip

(
𝑓 (−, 𝑥) |𝑈

)
= 𝐻 (𝑥) for all 𝑥 ∈ R𝑛,

where the inequality holds by the definition of Lip(−) with \𝑖 , \ ′ ∈ 𝑈 and \𝑖 ≠ \
′
. □

Remark E.3. The second condition (∗) of TheoremE.2 is weaker than the following, corresponding

condition (∗′) of a standard theorem for interchanging differentiation and integral (e.g., [Bogachev

2007, Corollary 2.8.7]): “for almost all 𝑥 ∈ R𝑛 , ∇\ 𝑓 (\, 𝑥) is well-defined for all \ ∈ R.” The difference
arises fromwhether a proof uses the mean value theorem or not: a proof of the standard theorem

finds the function𝐻 for the dominated convergence theorem, by applying the mean value theorem

which requires the stronger condition (∗′); the proof of Theorem E.2 finds𝐻 not by applying the

mean value theorem (but by using the fourth condition of the theorem), so the weaker condition (∗)
is sufficient for the proof. In this sense, Theorem E.2 is close to [Bogachev 2007, Exercise 2.12.68]. □

Lemma E.4. Let 𝑓 : 𝑋1 → 𝑋2 and𝑔 : 𝑋2 → 𝑋3 for some open sets𝑋𝑖 ⊆ R𝑛𝑖 . Suppose that 𝑓 is locally
Lipschitz and 𝑔 is differentiable. Then, 𝑔 ◦ 𝑓 : 𝑋1 → 𝑋3 is differentiable almost everywhere and the
chain rule for 𝑔 ◦ 𝑓 holds almost everywhere, i.e.,

𝐷 (𝑔 ◦ 𝑓) (𝑥) = 𝐷 (𝑔) (𝑓 (𝑥)) · 𝐷 (𝑓) (𝑥)

for almost every 𝑥 ∈ 𝑋1. Here we use the Lebesgue measure as an underlying measure.

Proof. Since local Lipschitzness is preserved under a function composition, 𝑔 ◦ 𝑓 is locally Lip-
schitz and thus differentiable almost everywhere. Since 𝑓 is also differentiable almost everywhere

and 𝑔 is differentiable everywhere, the set

𝑈 = 𝑋1 \ {𝑥 ∈ 𝑋1 | (𝑔 ◦ 𝑓 is differentiable at 𝑥)
∧ (𝑔 is differentiable at 𝑓 (𝑥))
∧ (𝑓 is differentiable at 𝑥)}

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:65

has Lebesgue measure zero. Note that the differentiability of 𝑔 is importantly used here; if𝑔 is non-

differentiable even at a point,𝑈 can have positive measure. The chain rule for𝑔 ◦ 𝑓 holds for each
𝑥 ∈ 𝑈 and this concludes the proof. □

E.2 Proof of Theorem 4.6
Proof of Theorem 4.6. The proof is essentially the same as the proof of Theorem 4.5, except that

we invoke the following properties of local Lipschitzness (instead of differentiability): the compo-

sition of locally Lipschitz functions is again locally Lipschitz, and the differentiation rules for +, ×,
and 𝑙𝑜𝑔 hold almost everywhere for locally Lipschitz functions (Lemma E.1). □

F DEFERREDRESULTS IN §5.2
F.1 Proof of Theorem 5.6

Proof of Theorem 5.6. We prove the theorem by induction on the structure of 𝑐 . Let (𝑝, 𝑑,𝑉) ≜
J𝑐K♯, and pick 𝑣 ∈ Var. We have to show that 𝑝 (𝑣) ⊇ 𝑑 (𝑣)𝑐 and 𝑑 (𝑣) ⊇ 𝑉 . We call these two

requirements as conditions (i) and (ii).

Case 𝑐 ≡ skip. In this case, 𝑝 (𝑣) = Var and𝑉 = ∅, fromwhich the conditions (i) and (ii) follow.

Case 𝑐 ≡ 𝑥 := 𝑒. In this case,𝑉 = ∅. So, the condition (ii) holds. For the proof of the condition (i),
we do case analysis on 𝑣 . If 𝑣 is the updated variable 𝑥 , we have 𝑝 (𝑣) = L𝑒M♯ and 𝑑 (𝑣) = fv(𝑒). Since
L𝑒M♯ ⊇ fv(𝑒)𝑐 , the condition holds. If 𝑣 is different from 𝑥 , then 𝑝 (𝑣) is Var, and so it includes 𝑑 (𝑣)𝑐 .

Case 𝑐 ≡ obs(distN (𝑒1, 𝑒2), 𝑟). The proof of this case is similar to the one for the assignments.

Since𝑉 = ∅, the condition (ii) holds. If 𝑣 is the variable like, then

𝑝 (𝑣) = Llike × pdfN (𝑟 ; 𝑒1, 𝑒2)M♯ ⊇ fv(like × pdfN (𝑟 ; 𝑒1, 𝑒2))𝑐 =
(
{like} ∪ fv(𝑒1) ∪ fv(𝑒2)

)𝑐
= 𝑑 (𝑣)𝑐 .

So, the condition (i) holds in this case. If 𝑣 is not the variable like, then 𝑝 (𝑣) = Var, fromwhich the

condition (i) follows.

Case 𝑐 ≡ 𝑥 := sam(name(𝛼, 𝑒), distN (𝑒1, 𝑒2), _𝑦.𝑒 ′). In this case,𝑉 = ∅, fromwhich the condition

(ii) follows. We do case analysis on whether 𝑒 is a real constant 𝑟 or not. During the case analysis,

we use the assumption that fv(𝑒)𝑐 ⊆ L𝑒M♯ for all 𝑒 , without mentioning it explicitly.

First,wedealwith the case that𝑒 ≡ 𝑟 . Let ` ≜ create_name(𝛼, 𝑟). If𝑣 is noneof𝑥 ,val` ,pr` , and cnt` ,
wehave𝑝 (𝑣) = Var,whichgives the condition (i). If𝑣 ∈ {𝑥, val`},weprove the condition (i) as follows:

𝑑 (𝑣)𝑐 = fv(𝑒 ′[`/𝑦])𝑐 ⊆ L𝑒 ′[`/𝑦]M♯ = 𝑝 (𝑣).

If 𝑣 ≡ pr` , we calculate the condition (i) as follows:

𝑑 (pr`)𝑐 = ({`} ∪ fv(𝑒1) ∪ fv(𝑒2))𝑐 = fv(pdfN (`; 𝑒1, 𝑒2))𝑐 ⊆ LpdfN (`; 𝑒1, 𝑒2)M♯ = 𝑝 (pr`).

If 𝑣 ≡ cnt` , we derive the condition (i) as follows:

𝑑 (cnt`)𝑐 = {cnt`}𝑐 = fv(cnt` + 1)𝑐 ⊆ Lcnt` + 1M♯ = 𝑝 (cnt`).

Next, we handle the case that 𝑒 is not a real constant. If 𝑣 is none of 𝑥 , val` , pr` , and cnt` for some

` = (𝛼, _), we have 𝑝 (𝑣) = Var, which implies the condition (i). If 𝑣 ≡ 𝑥 , we show the condition (i)

as follows:

𝑝 (𝑣) =
(
fv(𝑒)𝑐 ∩

⋂
`=(𝛼,_) ∈Name

L𝑒 ′[`/𝑦]M♯
)
⊇

(
fv(𝑒) ∪

⋃
`=(𝛼,_) ∈Name

fv(𝑒 ′[`/𝑦])
)𝑐

= 𝑑 (𝑣)𝑐 .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:66 Wonyeol Lee, Xavier Rival, and Hongseok Yang

If 𝑣 ≡ val` for some ` = (𝛼, _), we calculate the condition (i) as follows:

𝑝 (𝑣) =
(
fv(𝑒)𝑐 ∩ L𝑒 ′[`/𝑦]M♯

)
⊇

(
fv(𝑒) ∪ {val`} ∪ fv(𝑒 ′[`/𝑦])

)𝑐
= 𝑑 (𝑣)𝑐 .

If 𝑣 ≡ pr` for some ` = (𝛼, _), we prove the condition (i) as follows:

𝑝 (𝑣) = fv(𝑒)𝑐 ∩ LpdfN (`; 𝑒1, 𝑒2)M♯ ⊇ fv(𝑒)𝑐 ∩ fv(pdfN (`; 𝑒1, 𝑒2))𝑐

⊇
(
fv(𝑒) ∪ {`, pr`} ∪ fv(𝑒1) ∪ fv(𝑒2)

)𝑐
= 𝑝 (pr`).

Finally, if 𝑣 ≡ cnt` for some ` = (𝛼, _), we show the condition (i) as follows:

𝑝 (𝑣) = fv(𝑒)𝑐 ∩ Lcnt` + 1M♯ ⊇ fv(𝑒)𝑐 ∩ fv(cnt` + 1)𝑐 = (fv(𝑒) ∪ {cnt`})𝑐 = 𝑑 (𝑣)𝑐 .

Case 𝑐 ≡ 𝑐 ′; 𝑐 ′′. Let (𝑝 ′, 𝑑 ′,𝑉 ′) ≜ J𝑐 ′K♯ and (𝑝 ′′, 𝑑 ′′,𝑉 ′′) ≜ J𝑐 ′′K♯. The condition (ii) holds since

𝑑 (𝑣) = 𝑉 ′ ∪ 𝑑 ′∪ (𝑑 ′′(𝑣)) ⊇ 𝑉 ′ ∪ 𝑑 ′∪ (𝑉 ′′) = 𝑉 .
For the condition (ii), we prove the required subset relationship as follows:

𝑑 (𝑣)𝑐 = (𝑉 ′ ∪ 𝑑 ′∪ (𝑑 ′′(𝑣)))𝑐 = (𝑉 ′)𝑐 ∩
⋂

𝑤∈𝑑′′ (𝑣)
𝑑 ′(𝑤)𝑐

⊆ (𝑉 ′)𝑐 ∩
⋂

𝑤∈𝑑′′ (𝑣)
𝑝 ′(𝑤) ∩

⋂
𝑤∈𝑝′′ (𝑣)𝑐

𝑑 ′(𝑤)𝑐

=

(
𝑉 ′ ∪ 𝑝 ′∩ (𝑑 ′′(𝑣))𝑐 ∪ 𝑑 ′∪ (𝑝 ′′(𝑣)𝑐)

)𝑐
= 𝑝 (𝑣).

The subset relationship in the above derivation holds because 𝑑 ′(𝑤)𝑐 ⊆ 𝑝 ′(𝑤) and 𝑑 ′′(𝑣) ⊇ 𝑝 ′′(𝑣)𝑐
by induction hypothesis.

Case 𝑐 ≡ if 𝑏 {𝑐 ′} else {𝑐 ′′}. Let (𝑝 ′, 𝑑 ′,𝑉 ′) ≜ J𝑐 ′K♯ and (𝑝 ′′, 𝑑 ′′,𝑉 ′′) ≜ J𝑐 ′′K♯. Then, by induc-
tion hypothesis,

𝑉 =

(
fv(𝑏) ∪𝑉 ′ ∪𝑉 ′′

)
⊆

(
fv(𝑏) ∪ 𝑑 ′(𝑣) ∪ 𝑑 ′′(𝑣)

)
= 𝑑 (𝑣),

which implies the condition (ii). Also, by induction hypothesis again,

𝑑 (𝑣)𝑐 =
(
fv(𝑏)𝑐 ∩ 𝑑 ′(𝑣)𝑐 ∩ 𝑑 ′′(𝑣)𝑐

)
⊆

(
fv(𝑏)𝑐 ∩ 𝑝 ′(𝑣) ∩ 𝑝 ′′(𝑣)

)
= 𝑝 (𝑣),

which shows the condition (ii).

Case𝑐 ≡ while𝑏 {𝑐 ′}. Let (𝑝 ′, 𝑑 ′,𝑉 ′) ≜ J𝑐 ′K♯, and 𝐹 ♯ be the operator in the abstract semantics of𝑐 .

Note that the abstract domainD♯
contains (𝑝⊥, 𝑑⊥,𝑉⊥) = ((_𝑣.Var), (_𝑣.∅), ∅). Thus, it is sufficient

to show that 𝐹 ♯ is a well-defined monotone function onD♯
, because then the least fixed point of

𝐹 ♯ is also inD♯
and satisfies the conditions (i) and (ii). The monotonicity of 𝐹 ♯ holds because when

(𝑝1, 𝑑1,𝑉1) ≜ 𝐹 ♯ (𝑝0, 𝑑0,𝑉0), the inputs 𝑝0, 𝑑0, and𝑉0 are used in the right polarity in the definitions
of 𝑝1, 𝑑1, and 𝑉1; for instance, 𝑝0 is used only in the positive position (with respect to the subset

order) when it is used to define 𝑝1. To prove well-definedness of 𝐹
♯
, assume that 𝑝0 (𝑣0) ⊇ 𝑑0 (𝑣0)𝑐

and 𝑑0 (𝑣0) ⊇ 𝑉0 for all 𝑣0 ∈ Var, and pick a variable 𝑣1 ∈ Var. Then, since𝑉0 ⊆ 𝑑0 (𝑣1),

𝑉1 =

(
fv(𝑏) ∪ 𝑑 ′∪ (𝑉0) ∪𝑉 ′

)
⊆

(
fv(𝑏) ∪ 𝑑 ′∪ (𝑑0 (𝑣1)) ∪𝑉 ′ ∪ {𝑣1}

)
= 𝑑1 (𝑣1).

Also, by the induction hypothesis on the loop body 𝑐 ′ and the relationship 𝑑0 (𝑣1) ⊇ 𝑝0 (𝑣1)𝑐 ,

𝑑1 (𝑣1)𝑐 = fv(𝑏)𝑐 ∩ (𝑉 ′)𝑐 ∩
⋂

𝑤∈𝑑0 (𝑣1)
𝑑 ′(𝑤)𝑐 ∩ {𝑣1}𝑐

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:67

⊆ fv(𝑏)𝑐 ∩ (𝑉 ′)𝑐 ∩
⋂

𝑤∈𝑑0 (𝑣1)
𝑝 ′(𝑤) ∩

⋂
𝑤∈𝑝0 (𝑣1)𝑐

𝑑 ′(𝑤)𝑐

= fv(𝑏)𝑐 ∩
(
𝑉 ′ ∪ 𝑝 ′∩ (𝑑0 (𝑣1))𝑐 ∪ 𝑑 ′∪ (𝑝0 (𝑣1)𝑐)

)𝑐
= 𝑝1 (𝑣1).

Thus, (𝑝1, 𝑑1,𝑉1) is also inD♯
. □

F.2 Proof of Theorem 5.8
Our program analysis consists of two parts, one for tracking the dependency information and the

other for tracking the smoothness information. Thefirst part does not depend on the second, although

it is used crucially by the second part. We exploit this one-way relationship between the two parts

of our analysis, and prove the soundness of the dependency-tracking part first and then that of the

other smoothness-tracking part. Consider a command 𝑐 , and let (𝑝,𝑑,𝑉) ≜ J𝑐K♯. Then, we have:

Theorem F.1. For all 𝑣 ∈ Var, we have |= Δ(J𝑐K, 𝑑 (𝑣), {𝑣}). Also, |= Δ(J𝑐K,𝑉 , ∅).

Theorem F.2. For all 𝑣 ∈ Var, we have |= Φ(J𝑐K, 𝑝 (𝑣), {𝑣}).

We prove the two soundness results in §F.3 and §F.4. From these, we immediately obtain the main

soundness theorem:

Proof of Theorem 5.8. Let 𝑐 be a command and (𝑝,𝑑,𝑉) = J𝑐K♯. Then, by Theorems F.1 and F.2,

we have |= Δ(J𝑐K, 𝑑 (𝑣), {𝑣}), |= Δ(J𝑐K,𝑉 , ∅), and |= Φ(J𝑐K, 𝑝 (𝑣), {𝑣}) for all 𝑣 ∈ Var. Hence, by the
definition of𝛾 (i.e., Eq. (10)), we have J𝑐K ∈ 𝛾 (J𝑐K♯) as desired. □

F.3 Proof of Theorem F.1
Proof of Theorem F.1. We prove the theorem by induction on the structure of 𝑐 . Let (𝑝, 𝑑,𝑉) ≜

J𝑐K♯. Pick a variable 𝑣 ∈ Var and states 𝜎, 𝜎 ′, 𝜎0, 𝜎 ′0 ∈ St such that
𝜎 ∼𝑑 (𝑣) 𝜎 ′ and 𝜎0 ∼𝑉 𝜎 ′0 .

We will show that (i) if J𝑐K𝜎0 ∈ St, then J𝑐K𝜎 ′
0
∈ St, and (ii) if J𝑐K𝜎 ∈ St and J𝑐K𝜎 ′ ∈ St, then

J𝑐K𝜎 ∼{𝑣 } J𝑐K𝜎 ′, i.e., J𝑐K𝜎 (𝑣) = J𝑐K𝜎 ′(𝑣). Since𝑉 ⊆ 𝑑 (𝑣), these two imply the claim of the theorem.

We refer to these two properties as conditions (i) and (ii) in the rest of the proof.

Case 𝑐 ≡ skip. In this case, 𝑑 (𝑣) = {𝑣} and𝑉 = ∅. The condition (i) holds since skip always ter-
minates. The condition (ii) also holds because J𝑐K𝜎 ′′ = 𝜎 ′′ for all 𝜎 ′′, and the relation ∼𝑑 (𝑣) coincides
with ∼{𝑣 } .

Case 𝑐 ≡ (𝑥 := 𝑒). In this case,𝑉 = ∅, and the condition (i) holds since the assignments always

terminate. For the condition (ii), we do case analysis on the variable 𝑣 .

• Case 𝑣 ≡ 𝑥 . In this case, 𝑑 (𝑣) = fv(𝑒). This implies J𝑒K𝜎 = J𝑒K𝜎 ′. Thus, J𝑐K𝜎 (𝑥) = J𝑒K𝜎 =

J𝑒K𝜎 ′ = J𝑐K𝜎 ′(𝑥). This implies the desired J𝑐K𝜎 ∼{𝑥 } J𝑐K𝜎 ′.
• Case 𝑣 . 𝑥 . In this case, 𝑑 (𝑣) = {𝑣}, and so 𝜎 (𝑣) = 𝜎 ′(𝑣). This implies that J𝑐K𝜎 (𝑣) = 𝜎 (𝑣) =
𝜎 ′(𝑣) = J𝑐K𝜎 ′(𝑣), which gives the desired relationship.

Case 𝑐 ≡ obs(distN (𝑒1, 𝑒2), 𝑟). The observe commands always terminate. Thus, the condition (i)

holds. We prove the condition (ii) by case analysis on the variable 𝑣 . If 𝑣 is not like, then 𝑑 (𝑣) = {𝑣},
J𝑐K𝜎 (𝑣) = 𝜎 (𝑣), and J𝑐K𝜎 ′(𝑣) = 𝜎 ′(𝑣). Thus, in this case, the assumption𝜎 ∼𝑑 (𝑣) 𝜎 ′ implies J𝑐K𝜎 (𝑣) =
J𝑐K𝜎 ′(𝑣), as desired. If 𝑣 is like, then𝑑 (𝑣) = fv(𝑒1) ∪ fv(𝑒2) ∪ {like}, and for some function𝑔 : R4 → R,

J𝑐K𝜎 (𝑣) = 𝑔(𝜎 (like), 𝑟 , J𝑒1K𝜎, J𝑒2K𝜎) and J𝑐K𝜎 ′(𝑣) = 𝑔(𝜎 ′(like), 𝑟 , J𝑒1K𝜎 ′, J𝑒2K𝜎 ′) .
Therefore, from the assumption 𝜎 ∼𝑑 (𝑣) 𝜎 ′, it follows that J𝑐K𝜎 (𝑣) = J𝑐K𝜎 ′(𝑣), as desired.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:68 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Case 𝑐 ≡ (𝑥 := sam(𝑛, distN (𝑒1, 𝑒2), _𝑦.𝑒 ′)). The sample commands always terminate. So, the

condition (i) holds. We prove the condition (ii) by case analysis on 𝑛.

Thefirst case is that𝑛 is a constant expression, i.e., it is an expressionof the formname(𝛼, 𝑟) for some

𝛼 ∈ Strandrealnumber𝑟 . Let ` ≜ create_name(𝛼, 𝑟). If𝑣 isnotoneof𝑥 ,val` , andpr` , then𝑑 (𝑣) = {𝑣},
and J𝑐K𝜎 (𝑣) = 𝑔(𝜎 (𝑣)) and J𝑐K𝜎 ′(𝑣) = 𝑔(𝜎 ′(𝑣)) for some function𝑔 : R→ R, so that the assumption

𝜎 ∼𝑑 (𝑣) 𝜎 ′ implies that J𝑐K𝜎 (𝑣) = J𝑐K𝜎 ′(𝑣), as desired. If 𝑣 is 𝑥 or val` , then 𝑑 (𝑣) = fv(𝑒 ′[`/𝑦]),
J𝑐K𝜎 (𝑣) = J𝑒 ′[`/𝑦]K𝜎 , and J𝑐K𝜎 ′(𝑣) = J𝑒 ′[`/𝑦]K𝜎 ′, so that the required J𝑐K𝜎 (𝑣) = J𝑐K𝜎 ′(𝑣) holds.
Finally, if 𝑣 = pr` , then 𝑑 (𝑣) = {`} ∪ fv(𝑒1) ∪ fv(𝑒2), and so, the assumption 𝜎 ∼𝑑 (𝑣) 𝜎 ′ implies that

J𝑐K𝜎 (pr`) = JpdfN (`; 𝑒1, 𝑒2)K𝜎 = JpdfN (`; 𝑒1, 𝑒2)K𝜎 ′ = J𝑐K𝜎 ′(pr`),

which is precisely the equality that we want.

The next case is that 𝑛 is not a constant expression. Let name(𝛼, 𝑒) be the form of 𝑛. If 𝑣 is not

one of 𝑥 , val` , pr` , and cnt` for some ` of the form (𝛼, _), then 𝑑 (𝑣) = {𝑣}, J𝑐K𝜎 (𝑣) = 𝜎 (𝑣), and
J𝑐K𝜎 ′(𝑣) = 𝜎 ′(𝑣), so that the assumption 𝜎 ∼𝑑 (𝑣) 𝜎 ′ implies the desired J𝑐K𝜎 (𝑣) = J𝑐K𝜎 ′(𝑣). Assume

that 𝑣 is one of 𝑥 , val` , pr` , and cnt` for some ` with ` = (𝛼, _). Let `0 ≜ J𝑛K𝜎 and ` ′
0
≜ J𝑛K𝜎 ′.

Since 𝑑 (𝑣) ⊇ fv(𝑛) in this case, the assumption 𝜎 ∼𝑑 (𝑣) 𝜎 ′ ensures that `0 = ` ′
0
. If 𝑣 is 𝑥 , then

fv(𝑒 ′[`0/𝑦]) ⊆ 𝑑 (𝑣), so that the assumption 𝜎 ∼𝑑 (𝑣) 𝜎 ′ gives the desired
J𝑐K𝜎 (𝑣) = J𝑒 ′[`0/𝑦]K𝜎 = J𝑒 ′[` ′

0
/𝑦]K𝜎 ′ = J𝑐K𝜎 ′(𝑣).

If 𝑣 is cnt` for some ` of the form (𝛼, _), then cnt` ∈ 𝑑 (𝑣), and J𝑐K𝜎 (cnt`) = 𝑔(𝜎 (cnt`)) and
J𝑐K𝜎 ′(cnt`) = 𝑔(𝜎 ′(cnt`)) for some function𝑔 : R→ R, so that J𝑐K𝜎 (𝑣) = J𝑐K𝜎 ′(𝑣), as desired. If 𝑣 is
val` for ` = (𝛼, _), then 𝑑 (𝑣) ⊇ {val`} ∪ fv(𝑒 ′[`/𝑦]), and J𝑐K𝜎 (val`) = ℎ(J𝑒 ′[`/𝑦]K𝜎, 𝜎 (val`)) and
J𝑐K𝜎 ′(val`) = ℎ(J𝑒 ′[`/𝑦]K𝜎 ′, 𝜎 ′(val`)) for someℎ : R×R→ R, so that J𝑐K𝜎 (val`) = J𝑐K𝜎 ′(val`) as
desired. Finally, if 𝑣 is pr` for some ` of the form (𝛼, _), then 𝑑 (𝑣) ⊇ {pr`, `} ∪ fv(𝑒1) ∪ fv(𝑒2), and
for some 𝑘 : R4 → R,

J𝑐K𝜎 (𝑣) = 𝑘 (𝜎 (pr`), 𝜎 (`), J𝑒1K𝜎, J𝑒2K𝜎) and J𝑐K𝜎 ′(𝑣) = 𝑘 (𝜎 ′(pr`), 𝜎 ′(`), J𝑒1K𝜎 ′, J𝑒2K𝜎 ′),

so that the assumption 𝜎 ∼𝑑 (𝑣) 𝜎 ′ guarantees that J𝑐K𝜎 (𝑣) = J𝑐K𝜎 ′(𝑣), as desired.

Case 𝑐 ≡ (𝑐 ′; 𝑐 ′′). Let (𝑝 ′, 𝑑 ′,𝑉 ′) ≜ J𝑐 ′K♯ and (𝑝 ′′, 𝑑 ′′,𝑉 ′′) ≜ J𝑐 ′′K♯. Recall that

𝑑 (𝑣) = 𝑉 ′ ∪ (𝑑 ′)∪ (𝑑 ′′(𝑣)) = 𝑉 ′ ∪
⋃
{𝑑 ′(𝑣 ′′) | 𝑣 ′′ ∈ 𝑑 ′′(𝑣)} and𝑉 = 𝑉 ′ ∪ (𝑑 ′)∪ (𝑉 ′′).

Let us handle the condition (i) first. Since J𝑐 ′; 𝑐 ′′K𝜎0 ∈ St, we have J𝑐 ′K𝜎0 ∈ St. But 𝜎0 ∼𝑉 ′ 𝜎 ′0,
because 𝜎0 and 𝜎

′
0
are ∼𝑉 -related and𝑉 includes𝑉 ′. Thus, J𝑐 ′K𝜎 ′

0
∈ St as well by induction hypoth-

esis, and it is sufficient to show J𝑐 ′K𝜎0 ∼𝑉 ′′ J𝑐 ′K𝜎 ′
0
. Note that for every 𝑣 ′′ ∈ 𝑉 ′′, by the definition

of 𝑉 , we have 𝑉 ⊇ 𝑑 ′(𝑣 ′′), and so 𝜎0 ∼𝑑′ (𝑣′′) 𝜎 ′0, which implies, by induction hypothesis, that

J𝑐 ′K𝜎0 ∼{𝑣′′ } J𝑐 ′K𝜎 ′
0
. As a result, we have the desired J𝑐 ′K𝜎0 ∼𝑉 ′′ J𝑐 ′K𝜎 ′0.

Next, we deal with the condition (ii). Since J𝑐 ′; 𝑐 ′′K𝜎 and J𝑐 ′; 𝑐 ′′K𝜎 ′ are both in St, there exist
states 𝜎1, 𝜎

′
1
such that J𝑐 ′K𝜎 = 𝜎1 and J𝑐 ′K𝜎 ′ = 𝜎 ′

1
. We apply the induction hypothesis to 𝑐 ′ and get

𝜎1 ∼𝑑′′ (𝑣) 𝜎 ′1. Since J𝑐 ′′K𝜎1 and J𝑐 ′′K𝜎 ′
1
are in St, we apply the induction hypothesis again but this

time to 𝑐 ′′, 𝜎1, and 𝜎 ′1, and obtain J𝑐 ′′K𝜎1 ∼{𝑣 } J𝑐 ′′K𝜎 ′
1
, which implies the desired

J𝑐K𝜎 (𝑣) = J𝑐 ′′K𝜎1 (𝑣) = J𝑐 ′′K𝜎 ′
1
(𝑣) = J𝑐K𝜎 ′(𝑣).

Case 𝑐 ≡ (if𝑏 {𝑐 ′} else {𝑐 ′′}). Let (𝑝 ′, 𝑑 ′,𝑉 ′) ≜ J𝑐 ′K♯ and (𝑝 ′′, 𝑑 ′′,𝑉 ′′) ≜ J𝑐 ′′K♯. Then, 𝑑 (𝑣) =
fv(𝑏) ∪ 𝑑 ′(𝑣) ∪ 𝑑 ′′(𝑣) and𝑉 = fv(𝑏) ∪𝑉 ′ ∪𝑉 ′′.
We prove the condition (𝑖) under the assumption that J𝑏K𝜎0 = true. Essentially the same proof

applies to the other case that J𝑏K𝜎0 = false. Since 𝑉 includes fv(𝑏), we also have J𝑏K𝜎 ′
0
= true.

Furthermore, since𝑉 ′ ⊆ 𝑉 and so 𝜎0 ∼𝑉 ′ 𝜎 ′0 by the induction hypothesis, we get that J𝑐 ′K𝜎 ′0 ∈ St.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:69

Next we show the condition (𝑖𝑖) under the assumption that J𝑏K𝜎 = true. As before, the proof of
the other case J𝑏K𝜎 = false is essentially the same. Since 𝑑 (𝑣) includes fv(𝑏) and 𝑑 ′(𝑣), we have
J𝑏K𝜎 ′ = true and 𝜎 ∼𝑑′ (𝑣) 𝜎 ′. Also, because J𝑐K𝜎 = J𝑐 ′K𝜎 and J𝑐K𝜎 ′ = J𝑐 ′K𝜎 ′, both J𝑐 ′K𝜎 and J𝑐 ′K𝜎 ′
are in St. Thus, by induction hypothesis, J𝑐 ′K𝜎 ∼{𝑣 } J𝑐 ′K𝜎 ′, which implies that

J𝑐K𝜎 (𝑣) = J𝑐 ′K𝜎 (𝑣) = J𝑐 ′K𝜎 ′(𝑣) = J𝑐K𝜎 ′(𝑣),

as desired.

Case 𝑐 ≡ (while𝑏 {𝑐0}). Let (𝑑0, 𝑝0,𝑉0) ≜ J𝑐0K♯, and 𝐹 ♯ be the operator in the abstract semantics

of𝑐 such that (𝑝,𝑑,𝑉) is the least fixed point of 𝐹 ♯. Also, let 𝐹 be the operator in the concrete semantics

of 𝑐 such that J𝑐K is the least fixed point of 𝐹 . Now define

𝑇 ≜ {𝑓 ∈ [St→ St⊥] | for all 𝑣 ∈ Var, |= Δ(𝑓 , 𝑑 (𝑣), {𝑣}) and |= Δ(𝑓 ,𝑉 , ∅)}.

Wewill show that (i)𝑇 contains the empty function⊥St→St⊥ ≜ _𝜎. undefined, (ii) it is closed under
the least upper bounds of increasing chains, and (iii) the function 𝐹 maps functions in𝑇 to some

functions in the same set. These three imply that the least fixed point of 𝐹 , namely, J𝑐K, is in𝑇 , which
gives the desired conclusion.

The membership of ⊥St→St⊥ to 𝑇 is immediate, since we have |= Δ(⊥St→St⊥ ,𝑈 ,𝑈
′) for all

𝑈 ,𝑈 ′ ⊆ Var.
To prove the next requirement, namely, the closure under the least upper bounds of increasing

chains, consider a chain (𝑓𝑛)𝑛∈N in𝑇 , i.e., a sequence such that 𝑓𝑛 (𝜎) = 𝑓𝑛+1 (𝜎) for all 𝑛 ∈ N and

𝜎 with 𝑓𝑛 (𝜎) ∈ St. Let 𝑓∞ be the least upper bound of the 𝑓𝑛’s (i.e., 𝑓∞ (𝜎) = 𝑓𝑛 (𝜎) if 𝑓𝑛 (𝜎) ∈ St and
𝑓∞ (𝜎) = ⊥ if 𝑓𝑛 (𝜎) = ⊥ for all 𝑛 ∈ N). As in all the other cases so far, we pick an arbitrary variable

𝑣 ∈ Var and arbitrary states 𝜎0, 𝜎 ′0, 𝜎 , and 𝜎 ′ such that

𝜎0 ∼𝑉 𝜎 ′0, 𝑓∞ (𝜎0) ∈ St, 𝜎 ∼𝑑 (𝑣) 𝜎 ′, 𝑓∞ (𝜎), 𝑓∞ (𝜎 ′) ∈ St.

Wewill show that 𝑓∞ (𝜎 ′0) ∈ St and 𝑓∞ (𝜎) ∼{𝑣 } 𝑓∞ (𝜎 ′), which correspond to what we have called

conditions (i) and (ii) in the previous cases. Since 𝑓∞ (𝜎0) ∈ St, there exists𝑛 ∈ N such that 𝑓𝑛 (𝜎0) ∈ St.
Because |= Δ(𝑓𝑛,𝑉 , ∅) and 𝜎0 ∼𝑉 𝜎 ′0, we have 𝑓𝑛 (𝜎 ′0) ∈ St, which implies that 𝑓∞ (𝜎 ′0) = 𝑓𝑛 (𝜎 ′0) ∈ St,
as desired. Our proof of the condition (ii) has a similar form. Since both 𝑓∞ (𝜎) and 𝑓∞ (𝜎 ′) are in St,
there exists 𝑛 ∈ N such that 𝑓∞ (𝜎) = 𝑓𝑛 (𝜎) and 𝑓∞ (𝜎 ′) = 𝑓𝑛 (𝜎 ′). By assumption, 𝜎 ∼𝑑 (𝑣) 𝜎 ′, and
𝑓𝑛 ∈ 𝑇 . Thus, 𝑓𝑛 (𝜎) ∼{𝑣 } 𝑓𝑛 (𝜎 ′), which gives the desired 𝑓∞ (𝜎) ∼{𝑣 } 𝑓∞ (𝜎 ′).
It remains to show the last requirement, i.e., the closure under 𝐹 . Pick an arbitrary 𝑓 ∈ 𝑇 . Consider

a variable 𝑣 ∈ Var and states 𝜎0, 𝜎 ′0, 𝜎 , and 𝜎 ′ such that

𝜎0 ∼𝑉 𝜎 ′0, 𝐹 (𝑓) (𝜎0) ∈ St, 𝜎 ∼𝑑 (𝑣) 𝜎 ′, 𝐹 (𝑓) (𝜎), 𝐹 (𝑓) (𝜎 ′) ∈ St.

Wewill show that 𝐹 (𝑓) (𝜎 ′
0
) ∈ St and 𝐹 (𝑓) (𝜎) ∼{𝑣 } 𝐹 (𝑓) (𝜎 ′), while referring to these two desired

properties as conditions (i) and (ii), as we have done before.

Let us handle the condition (i) first. If J𝑏K𝜎0 = false, we have J𝑏K𝜎 ′
0
= false, because 𝜎0 ∼𝑉 𝜎 ′0 and

fv(𝑏) ⊆ 𝑉 . Thus, in this case, 𝐹 (𝑓) (𝜎 ′
0
) = 𝜎 ′

0
∈ St. If J𝑏K𝜎0 = true, then J𝑏K𝜎 ′

0
is also true. Furthermore,

in this case, by induction hypothesis, J𝑐0K𝜎 ′0 ∈ St since𝑉 ⊇ 𝑉0, 𝜎0 ∼𝑉 𝜎 ′0, and J𝑐0K𝜎0 ∈ St. Also, by
induction hypothesis again, J𝑐0K𝜎0 ∼𝑉 J𝑐0K𝜎 ′0, since𝑉 ⊇ (𝑑0)∪ (𝑉) and 𝜎0 ∼𝑉 𝜎 ′

0
. Since 𝑓 ∈ 𝑇 and

𝑓 (J𝑐0K𝜎0) ∈ St, we have 𝑓 (J𝑐0K𝜎 ′0) ∈ St, which implies that 𝐹 (𝑓) (𝜎 ′
0
) ∈ St, as desired.

Next, we prove the condition (ii). If J𝑏K𝜎 = false, we have J𝑏K𝜎 ′ = false since fv(𝑏) ⊆ 𝑑 (𝑣) and
𝜎 ∼𝑑 (𝑣) 𝜎 ′. Thus, in this case, 𝐹 (𝑓) (𝜎) = 𝜎 and 𝐹 (𝑓) (𝜎 ′) = 𝜎 ′. Also, {𝑣} ⊆ 𝑑 (𝑣), and so, 𝜎 ∼𝑑 (𝑣) 𝜎 ′
implies that 𝐹 (𝑓) (𝜎) = 𝜎 ∼{𝑣 } 𝜎 ′ = 𝐹 (𝑓) (𝜎 ′), as desired. Now assume that J𝑏K𝜎 = true. Then,
J𝑏K𝜎 ′ = true by the reason that fv(𝑏) ⊆ 𝑑 (𝑣) and 𝜎 ∼𝑑 (𝑣) 𝜎 ′. Also, J𝑐0K𝜎 and J𝑐0K𝜎 ′ are in St, so
that 𝐹 (𝑓) (𝜎) = 𝑓 (J𝑐0K𝜎) and 𝐹 (𝑓) (𝜎 ′) = 𝑓 (J𝑐0K𝜎 ′). Furthermore, since 𝑑 (𝑣) ⊇ (𝑑0)∪ (𝑑 (𝑣)) and

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:70 Wonyeol Lee, Xavier Rival, and Hongseok Yang

𝜎 ∼𝑑 (𝑣) 𝜎 ′, we have J𝑐0K𝜎 ∼𝑑 (𝑣) J𝑐0K𝜎 ′. We then use the fact that 𝑓 ∈ 𝑇 and 𝑓 (J𝑐0K𝜎), 𝑓 (J𝑐0K𝜎 ′) ∈ St,
and conclude that 𝑓 (J𝑐0K𝜎) ∼{𝑣 } 𝑓 (J𝑐0K𝜎 ′), which gives the desired 𝐹 (𝑓) (𝜎) ∼{𝑣 } 𝐹 (𝑓) (𝜎 ′). □

F.4 Proof of Theorem F.2
Let seq be the following operator, which models sequential composition:

seq : [St→ St⊥] × [St→ St⊥] → [St→ St⊥]
seq(𝑓 , 𝑔) ≜ 𝑔† ◦ 𝑓 .

Also, define an operator cond for modelling if commands as follows:

cond : [St→ B] × [St→ St⊥] × [St→ St⊥] → [St→ St⊥]

cond (ℎ, 𝑓 , 𝑔) (𝜎) ≜
{
𝑓 (𝜎) ifℎ(𝜎) = true,
𝑔(𝜎) ifℎ(𝜎) = false.

Proof of Theorem F.2. Weprove the theorembyinductiononthestructureof𝑐 . Let (𝑝,𝑑,𝑉) ≜ J𝑐K♯.

Case 𝑐 ≡ skip. In this case, J𝑐K(𝜎) = 𝜎 for all 𝜎 ∈ St, and 𝑝 (𝑣) = Var for all 𝑣 ∈ Var. To prove the
conclusion, consider 𝑣 ∈ Var and 𝜏 ∈ St[𝑝 (𝑣)𝑐] = St[∅]. We should show 𝑔 ∈ 𝜙𝑝 (𝑣),{𝑣 } , where

𝑔(𝜎) =
{
(𝜋Var,{𝑣 } ◦ J𝑐K) (𝜎 ⊕ 𝜏) if J𝑐K(𝜎 ⊕ 𝜏) ∈ St
undefined otherwise.

Since J𝑐K(𝜎 ⊕ 𝜏) = J𝑐K(𝜎) = 𝜎 ∈ St for all 𝜎 ∈ St, we have 𝑔 = 𝜋Var,{𝑣 } . Thus, Assumption 3 implies

𝑔 = 𝜋Var,{𝑣 } ∈ 𝜙Var,{𝑣 } = 𝜙𝑝 (𝑣),{𝑣 } .

Case 𝑐 ≡ (𝑥 := 𝑒). In this case, J𝑐K(𝜎) = 𝜎 [𝑥 ↦→ J𝑒K𝜎] for all 𝜎 ∈ St. Also, 𝑝 (𝑣) = Var if 𝑣 . 𝑥 ,
and L𝑒M♯ if 𝑣 ≡ 𝑥 . Consider 𝑣 ∈ Var and 𝜏 ∈ St[𝑝 (𝑣)𝑐]. We should show 𝑔 ∈ 𝜙𝑝 (𝑣),{𝑣 } , where

𝑔(𝜎) =
{
(𝜋Var,{𝑣 } ◦ J𝑐K) (𝜎 ⊕ 𝜏) if J𝑐K(𝜎 ⊕ 𝜏) ∈ St
undefined otherwise.

If 𝑣 . 𝑥 , then 𝑔(𝜎) = 𝜋Var,{𝑣 } (J𝑐K(𝜎)) = 𝜋Var,{𝑣 } (𝜎 [𝑥 ↦→ J𝑒K𝜎]) = 𝜋Var,{𝑣 } (𝜎) for all 𝜎 ∈ St, where
the first equality uses 𝑝 (𝑣) = Var, and the last uses 𝑣 . 𝑥 . Hence, Assumption 3 implies

𝑔 = 𝜋Var,{𝑣 } ∈ 𝜙Var,{𝑣 } = 𝜙𝑝 (𝑣),{𝑣 } .
If 𝑣 ≡ 𝑥 , then𝑔(𝜎) = (𝜋Var,{𝑥 } ◦ J𝑐K) (𝜎 ⊕𝜏) = 𝜋Var,{𝑥 } ((𝜎 ⊕𝜏) [𝑥 ↦→ J𝑒K(𝜎 ⊕𝜏)]) = [𝑥 ↦→ J𝑒K(𝜎 ⊕𝜏)]
for all 𝜎 ∈ St. Since 𝜏 ∈ St[(L𝑒M♯)𝑐] and 𝑝 (𝑣) = L𝑒M♯, Assumption 2 implies

𝑔 = _𝜎. [𝑥 ↦→ J𝑒K(𝜎 ⊕ 𝜏)] ∈ 𝜙L𝑒M♯,{𝑥 } = 𝜙𝑝 (𝑣),{𝑣 } .

Case 𝑐 ≡ (𝑐 ′; 𝑐 ′′). Let (𝑝 ′, 𝑑 ′,𝑉 ′) ≜ J𝑐 ′K♯ and (𝑝 ′′, 𝑑 ′′,𝑉 ′′) ≜ J𝑐 ′′K♯. Then,

𝑝 (𝑣) =
(
𝑉 ′ ∪ (𝑝 ′)∩ (𝑑 ′′(𝑣))𝑐 ∪ (𝑑 ′)∪ (𝑝 ′′(𝑣)𝑐)

)𝑐
=

(
(𝑝 ′)∩ (𝑑 ′′(𝑣))

)
\
(
𝑉 ′ ∪ (𝑑 ′)∪ (𝑝 ′′(𝑣)𝑐)

)
for all 𝑣 ∈ Var.

Also,wehave J𝑐K = seq(J𝑐 ′K, J𝑐 ′′K). To prove the conclusion, let 𝑣 ∈ Var. It suffices to apply LemmaF.7

to 𝑓 = J𝑐 ′K, 𝑔 = J𝑐 ′′K, 𝐾 = 𝑝 (𝑣), 𝐿 = 𝑑 ′′(𝑣) ∩ 𝑝 ′′(𝑣), 𝐿′ = 𝑑 ′′(𝑣), and𝑀 = {𝑣}. What remains is to

show the preconditions of the lemma:

(a) |= Φ(J𝑐 ′K, 𝑝 (𝑣), 𝑑 ′′(𝑣) ∩ 𝑝 ′′(𝑣)).
(b) |= Φ(J𝑐 ′′K, 𝑑 ′′(𝑣) ∩ 𝑝 ′′(𝑣), {𝑣}).
(c) |= Δ(J𝑐 ′K, 𝑝 (𝑣)𝑐 , 𝑑 ′′(𝑣) \ (𝑑 ′′(𝑣) ∩ 𝑝 ′′(𝑣))).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:71

(d) |= Δ(J𝑐 ′′K, 𝑑 ′′(𝑣), {𝑣}).
We obtain (b) as follows: by induction hypothesis on 𝑐 ′′, we have |= Φ(J𝑐 ′′K, 𝑝 ′′(𝑣), {𝑣}), and by the
weakening lemma forΦ (Lemma F.4), we have (b).We obtain (d) directly by Theorem F.1 on 𝑐 ′′. For (a),
consider induction hypothesis on 𝑐 ′, which says that |= Φ(J𝑐 ′K, 𝑝 ′(𝑤), {𝑤}) for all𝑤 ∈ Var. By the
merging lemma for Φ (Lemma F.6), we have |= Φ(J𝑐 ′K, (𝑝 ′)∩ (𝑑 ′′(𝑣) ∩ 𝑝 ′′(𝑣)), 𝑑 ′′(𝑣) ∩ 𝑝 ′′(𝑣)). Since

𝑝 (𝑣) ⊆ (𝑝 ′)∩ (𝑑 ′′(𝑣)) ⊆ (𝑝 ′)∩ (𝑑 ′′(𝑣) ∩ 𝑝 ′′(𝑣)),
we obtain (a) by the weakening lemma for Φ (Lemma F.4). For (c), observe that

𝑝 (𝑣)𝑐 ⊇ 𝑉 ′ ∪ (𝑑 ′)∪ (𝑝 ′′(𝑣)𝑐) and 𝑑 ′′(𝑣) \ (𝑑 ′′(𝑣) ∩ 𝑝 ′′(𝑣)) = 𝑝 ′′(𝑣)𝑐 (23)

where the second equality follows from 𝑝 ′′(𝑣) ⊇ 𝑑 ′′(𝑣)𝑐 . By Theorem F.1 on 𝑐 ′, we have |=
Δ(J𝑐 ′K,𝑉 ′, ∅) and |= Δ(J𝑐 ′K, 𝑑 ′(𝑤), {𝑤}) for all𝑤 ∈ Var. If 𝑝 ′′(𝑣)𝑐 = ∅, then |= Δ(J𝑐 ′K,𝑉 ′, 𝑝 ′′(𝑣)𝑐)
holds, and if 𝑝 ′′(𝑣)𝑐 ≠ ∅, then |= Δ(J𝑐 ′K, (𝑑 ′)∪ (𝑝 ′′(𝑣)𝑐), 𝑝 ′′(𝑣)𝑐) holds by the merging lemma for Δ
(Lemma F.5). By Eq. (23) and the weakening lemma for Δ (Lemma F.3), we obtain (c) for both cases.

Note that we crucially used 𝑝 (𝑣)𝑐 ⊇ 𝑉 ′ to handle the case 𝑝 ′′(𝑣)𝑐 = ∅.

Case 𝑐 ≡ (if𝑏 {𝑐 ′}, else {𝑐 ′′}). Let (𝑝 ′, 𝑑 ′,𝑉 ′) ≜ J𝑐 ′K♯ and (𝑝 ′′, 𝑑 ′′,𝑉 ′′) ≜ J𝑐 ′′K♯. Then,

𝑝 (𝑣) = fv(𝑏)𝑐 ∩ 𝑝 ′(𝑣) ∩ 𝑝 ′′(𝑣) for all 𝑣 ∈ Var. (24)

Also, J𝑐K = cond (J𝑏K, J𝑐 ′K, J𝑐 ′′K). To prove the conclusion, let 𝑣 ∈ Var. It suffices to apply LemmaF.8 to

𝑓 = J𝑐 ′K,𝑔 = J𝑐 ′′K,𝐾 = 𝑝 (𝑣),𝐿 = {𝑣}, and𝑏.What remains is to show the preconditions of the lemma:

(a) |= Φ(J𝑐 ′K, 𝑝 (𝑣), {𝑣}).
(b) |= Φ(J𝑐 ′′K, 𝑝 (𝑣), {𝑣}).
(c) 𝑝 (𝑣)𝑐 ⊇ fv(𝑏).

We obtain (a) and (b) as follows: by induction hypothesis on 𝑐 ′ and 𝑐 ′′, we have |= Φ(J𝑐 ′K, 𝑝 ′(𝑣), {𝑣})
and |= Φ(J𝑐 ′′K, 𝑝 ′′(𝑣), {𝑣}), and by Eq. (24) and the weakening lemma for Φ (Lemma F.4), we have

(a) and (b). We obtain (c) directly by Eq. (24).

Case 𝑐 ≡ (while𝑏 {𝑐0}). The proof starts by decomposing J𝑐K and J𝑐K♯ into smaller pieces. Let

(𝑝0, 𝑑0,𝑉0) ≜ J𝑐0K♯ .

Define 𝐹 : [St→ St⊥] → [St→ St⊥] and 𝐹 ♯ : D♯ → D♯
as in §3 and Fig. 3:

𝐹 (𝑡) (𝜎) ≜
{
𝜎 if J𝑏K𝜎 = false
𝑡† (J𝑐0K𝜎) if J𝑏K𝜎 = true,

𝐹 ♯ (𝑝,𝑑,𝑉) ≜ ©«
_𝑣. fv(𝑏)𝑐 ∩ (𝑉0 ∪ (𝑝0)∩ (𝑑 (𝑣))𝑐 ∪ (𝑑0)∪ (𝑝 (𝑣)𝑐))𝑐 ,
_𝑣 . fv(𝑏) ∪𝑉0 ∪ (𝑑0)∪ (𝑑 (𝑣)) ∪ {𝑣},
fv(𝑏) ∪ (𝑑0)∪ (𝑉) ∪𝑉0

ª®¬ .
Define 𝑡 ′𝑛 ∈ [St→ St⊥] and (𝑝 ′𝑛, 𝑑 ′𝑛,𝑉 ′𝑛) ∈ D♯

for 𝑛 ∈ N ∪ {∞} as

𝑡 ′𝑛 ≜

{
_𝜎. 𝐹𝑛 (𝑡⊥) (𝜎) if 𝑛 ∈ N⊔
𝑖∈N 𝑡

′
𝑖 if 𝑛 = ∞,

(𝑝 ′𝑛, 𝑑 ′𝑛,𝑉 ′𝑛) ≜
{
(𝐹 ♯)𝑛 (𝑝⊥, 𝑑⊥,𝑉⊥), if 𝑛 ∈ N⊔
𝑖∈N (𝑝 ′𝑖 , 𝑑 ′𝑖 ,𝑉 ′𝑖) if 𝑛 = ∞,

where 𝑡⊥ = _𝜎.⊥ and (𝑝⊥, 𝑑⊥,𝑉⊥) = (_𝑣.Var, _𝑣 . ∅, ∅). Then, we have
J𝑐K = 𝑡 ′∞ and J𝑐K♯ = (𝑝 ′∞, 𝑑 ′∞,𝑉 ′∞) .

The proof is organized as follows. Define𝑇,𝑇 ′ ⊆ [St→ St⊥] as
𝑇 ≜ {𝑓 ∈ [St→ St⊥] | ∀𝑣 ∈ Var. |= Δ(𝑓 , 𝑑 ′∞ (𝑣), {𝑣}) ∧ |= Δ(𝑓 ,𝑉 ′∞, ∅)},
𝑇 ′ ≜ {𝑓 ∈ [St→ St⊥] | ∀𝑣 ∈ Var. |= Φ(𝑓 , 𝑝 ′∞ (𝑣), {𝑣})}.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:72 Wonyeol Lee, Xavier Rival, and Hongseok Yang

In Theorem F.1, we proved

𝑡 ′𝑛 ∈ 𝑇 for all 𝑛 ∈ N ∪ {∞}. (25)

In this theorem, our goal is to show 𝑡 ′∞ ∈ 𝑇 ′. To do so, we prove the next three statements:

(a) 𝑡 ′
0
∈ 𝑇 ′.

(b) If 𝑡 ′ ∈ 𝑇 ′ ∩𝑇 , then 𝐹 (𝑡 ′) ∈ 𝑇 ′.
(c) If 𝑡 ′𝑛 ∈ 𝑇 ′ for all 𝑛 ∈ N, then 𝑡 ′∞ ∈ 𝑇 ′.

It suffices to prove the three because (a), (b), and Eq. (25) imply 𝑡 ′𝑛 ∈ 𝑇 ′ for all 𝑛 ∈ N, and this and

(c) imply 𝑡 ′∞ ∈ 𝑇 ′. We now prove (a), (b), and (c) as follows.

First, (a) follows directly from Lemma F.9.

Next, we prove (b). Consider 𝑡 ′ ∈ 𝑇 ′∩𝑇 . Our goal is to show |= Φ(𝐹 (𝑡 ′), 𝑝 ′∞ (𝑣), {𝑣}) for all 𝑣 ∈ Var.
Observe that

𝐹 (𝑡 ′) = cond (J𝑏K, seq(J𝑐0K, 𝑡 ′), JskipK).

By Theorem F.1 and induction hypothesis on 𝑐0, we have

J𝑐0K ∈ 𝛾 (𝑝0, 𝑑0,𝑉0),

and by assumption, we have

𝑡 ′ ∈ 𝛾 (𝑝 ′∞, 𝑑 ′∞,𝑉 ′∞) = 𝑇 ′ ∩𝑇 .

By applying to these the proofs of skip, sequential composition, and conditional cases, we have

|= Φ(𝐹 (𝑡 ′), 𝑝 ′′(𝑣), {𝑣}) for all 𝑣 ∈ Var

where

𝑝 ′′(𝑣) = fv(𝑏)𝑐 ∩
(
𝑉0 ∪ (𝑝0)∩ (𝑑 ′∞ (𝑣))𝑐 ∪ (𝑑0)∪ (𝑝 ′∞ (𝑣)𝑐)

)𝑐
∩ Var.

Since 𝑝 ′′ is the 𝑝 part of 𝐹 ♯ (𝑝 ′∞, 𝑑 ′∞,𝑉 ′∞) and (𝑝 ′∞, 𝑑 ′∞,𝑉 ′∞) is a fixed point of 𝐹 ♯, we have 𝑝 ′′ = 𝑝 ′∞.
Hence, we obtain |= Φ(𝐹 (𝑡 ′), 𝑝 ′∞ (𝑣), {𝑣}) for all 𝑣 ∈ Var. This completes the proof of (b).

Finally, we prove (c). Suppose that 𝑡 ′𝑛 ∈ 𝑇 ′ for all 𝑛 ∈ N, and let 𝑣 ∈ Var. Our goal is to show

|= Φ(𝑡 ′∞, 𝑝 ′∞ (𝑣), {𝑣}).

Observe that Lemma F.10 implies the goal when applied to 𝐾 = 𝑝 ′∞ (𝑣), 𝐿 = {𝑣}, and {𝑓𝑛}𝑛∈N =

{𝑡 ′𝑛}𝑛∈N. Hence, it suffices to show the three preconditions of the lemma:

• {𝑡 ′𝑛}𝑛∈N is an𝜔-chain.

• For all 𝜏 ∈ St[𝑝 ′∞ (𝑣)𝑐] and 𝑛 ∈ N, the set {𝜎 ′ ∈ St[𝑝 ′∞ (𝑣)] | 𝑡 ′𝑛 (𝜎 ′ ⊕ 𝜏) ∈ St} is ∅ or St[𝑝 ′∞ (𝑣)].
• For all 𝑛 ∈ N, we have |= Φ(𝑡 ′𝑛, 𝑝 ′∞ (𝑣), {𝑣}).

The first preconditionwas already observed in §3. The third one holds by the assumption that 𝑡 ′𝑛 ∈ 𝑇 ′
for all 𝑛 ∈ N. For the second one, it is enough to show the next two statements:

(i) For all𝑈 ⊆ Varwith𝑈 ⊇ 𝑉 ′∞, and for all 𝜏 ∈ St[𝑈] and 𝑛 ∈ N, the next set is ∅ or St[𝑈 𝑐]:

{𝜎 ′ ∈ St[𝑈 𝑐] | 𝑡 ′𝑛 (𝜎 ′ ⊕ 𝜏) ∈ St}.

(ii) For all 𝑣 ∈ Var,
𝑝 ′∞ (𝑣)𝑐 ⊇ 𝑉 ′∞.

We give the proof of the two statements below. This completes the proof of the while-loop case.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:73

Proof of (ii). We prove a stronger statement: for all 𝑛 ∈ N and 𝑣 ∈ Var, 𝑝 ′𝑛 (𝑣)𝑐 ⊇ 𝑉 ′𝑛 . This state-
ment implies (ii) because 𝑝 ′∞ (𝑣)𝑐 = (

⋂
𝑛∈N 𝑝

′
𝑛 (𝑣))𝑐 =

⋃
𝑛∈N 𝑝

′
𝑛 (𝑣)𝑐 ⊇

⋃
𝑛∈N𝑉

′
𝑛 = 𝑉 ′∞.We prove the

statement by induction on 𝑛. For 𝑛 = 0, we have

𝑝 ′𝑛 (𝑣)𝑐 = Var𝑐 = ∅ ⊇ ∅ = 𝑉 ′𝑛 for all 𝑣 ∈ Var.

For 𝑛 > 0, let 𝑣 ∈ Var. By induction hypothesis, 𝑝 ′𝑛−1 (𝑣)𝑐 ⊇ 𝑉 ′𝑛−1 holds. Using this, we have

𝑝 ′𝑛 (𝑣)𝑐 = fv(𝑏) ∪𝑉0 ∪ (𝑝0)∩ (𝑑 ′𝑛−1 (𝑣))𝑐 ∪ (𝑑0)∪ (𝑝 ′𝑛−1 (𝑣)𝑐)
⊇ fv(𝑏) ∪𝑉0 ∪ (𝑑0)∪ (𝑉 ′𝑛−1) = 𝑉 ′𝑛 .

This completes the proof of (ii).

Proof of (i). Consider𝑈 ⊆ Var, 𝜏 ∈ St[𝑈], and 𝑛 ∈ N such that𝑈 ⊇ 𝑉 ′∞. Let Σ ≜ {𝜎 ′ ∈ St[𝑈 𝑐] |
𝑡 ′𝑛 (𝜎 ′ ⊕ 𝜏) ∈ St}. If Σ = ∅, there is nothing left to prove. So assume Σ ≠ ∅. To prove Σ = St[𝑈 𝑐], we
need to show that 𝑡 ′𝑛 (𝜎 ′ ⊕ 𝜏) ∈ St for any 𝜎 ′ ∈ St[𝑈 𝑐]. Choose 𝜎 ′ ∈ St[𝑈 𝑐]. We show 𝑡 ′𝑛 (𝜎 ′ ⊕ 𝜏) ∈ St
using the next two claims:

(iii) For all 𝑛 ∈ N and 𝜎 ∈ St,

𝑡 ′𝑛 (𝜎) =
{
J𝑐 (𝑖)

0
K𝜎 if 𝑖 ∈ 𝐼𝑛 (𝜎)

⊥ otherwise,
(26)

where 𝑐
(𝑖)
0
≜ (skip; 𝑐0; · · · ; 𝑐0) that has 𝑖 copies of 𝑐0, and

𝐼𝑛 (𝜎) ≜ {𝑖 ∈ [0, 𝑛 − 1] | J𝑐 (𝑖)
0

K𝜎 ∈ St ∧ J𝑏K(J𝑐 (𝑖)
0

K𝜎) = false

∧ J𝑏K(J𝑐 (𝑖−1)
0

K𝜎) = · · · = J𝑏K(J𝑐 (0)
0

K𝜎) = true}.

Note that Eq. (26) is well-defined since 𝐼𝑛 (𝜎) has at most one element.

(iv) For all 𝑛 ∈ N,

|= Δ(J𝑐 (𝑛)
0

K,𝑉 ′∞, fv(𝑏)) .
We give the proof of the two claims below, and for nowwe just assume them.

Since Σ ≠ ∅, there is some 𝜎 ′′ ∈ St[𝑈 𝑐] such that 𝑡 ′𝑛 (𝜎 ′′ ⊕ 𝜏) ∈ St. Since 𝑡 ′𝑛 (𝜎 ′′ ⊕ 𝜏) ∈ St, (iii)
implies that

𝑡 ′𝑛 (𝜎 ′′ ⊕ 𝜏) = J𝑐 (𝑚)
0

K(𝜎 ′′ ⊕ 𝜏) ∈ St
for some𝑚 ∈ 𝐼𝑛 (𝜎 ′′ ⊕ 𝜏). Since 𝜎 ′ ⊕ 𝜏 ∼𝑉 ′∞ 𝜎 ′′ ⊕ 𝜏 (by 𝑈 ⊇ 𝑉 ′∞) and J𝑐 (𝑖)

0
K(𝜎 ′′ ⊕ 𝜏) ∈ St for all

𝑖 ∈ [0,𝑚] (by J𝑐 (𝑚)
0

K(𝜎 ′′ ⊕ 𝜏) ∈ St), (iv) implies that

J𝑐 (𝑖)
0

K(𝜎 ′ ⊕ 𝜏) ∈ St and J𝑐 (𝑖)
0

K(𝜎 ′ ⊕ 𝜏) ∼fv (𝑏) J𝑐 (𝑖)
0

K(𝜎 ′′ ⊕ 𝜏) for all 𝑖 ∈ [0,𝑚].

By combining these with𝑚 ∈ 𝐼𝑛 (𝜎 ′′ ⊕ 𝜏), we get𝑚 ∈ 𝐼𝑛 (𝜎 ′ ⊕ 𝜏). Hence, by (iii), we have

𝑡 ′𝑛 (𝜎 ′ ⊕ 𝜏) = J𝑐 (𝑚)
0

K(𝜎 ′ ⊕ 𝜏) ∈ St.

This completes the proof of (i).

Proof of (iii). We prove this by induction on 𝑛. For 𝑛 = 0, 𝑡 ′𝑛 (𝜎) = ⊥ and 𝐼𝑛 (𝜎) = ∅ for all 𝜎 ∈ St.
Hence, Eq. (26) holds. For 𝑛 > 0, we have

𝑡 ′𝑛 (𝜎) = 𝐹 (𝑡 ′𝑛−1) (𝜎)

=

{
𝜎 if J𝑏K𝜎 = false
(𝑡 ′𝑛−1)† (J𝑐0K𝜎) if J𝑏K𝜎 = true

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:74 Wonyeol Lee, Xavier Rival, and Hongseok Yang

=

𝜎 if J𝑏K𝜎 = false · · · (∗1)
J𝑐 (𝑖)

0
K(J𝑐0K𝜎) if J𝑏K𝜎 = true, J𝑐0K𝜎 ∈ St and 𝑖 ∈ 𝐼𝑛−1 (J𝑐0K𝜎) · · · (∗2)

⊥ otherwise

=

J𝑐 (0)

0
K𝜎 if 0 ∈ 𝐼𝑛 (𝜎) · · · (∗′1)

J𝑐 (𝑖+1)
0

K𝜎 if 𝑖 + 1 ∈ 𝐼𝑛 (𝜎) and 𝑖 + 1 ≥ 1 · · · (∗′
2
)

⊥ otherwise.

The second equality is by the definition of 𝐹 , the third by induction hypothesis, and the last by the

following: for any 𝜎 ∈ St and 𝑗 ∈ {1, 2}, (∗𝑗) holds iff (∗′𝑗) holds; and for any 𝑖 ∈ N, J𝑐0K𝜎 ∈ St
implies J𝑐 (𝑖)

0
K(J𝑐0K𝜎) = J𝑐 (𝑖+1)

0
K𝜎 , and J𝑐 (𝑖+1)

0
K𝜎 ∈ St implies J𝑐0K𝜎 ∈ St. Hence, Eq. (26) holds. This

completes the proof of (iii).

Proof of (iv). To prove this, we prove a stronger statement: for all 𝑛 ∈ N, |= Δ(J𝑐 (𝑛)
0

K,𝑉 ′𝑛+1, fv(𝑏)) .
This statement implies (iv) since 𝑉 ′𝑛 ⊆ 𝑉 ′∞ for all 𝑛 ∈ N and we have the weakening lemma

for Δ (Lemma F.3). We prove the statement by induction on 𝑛. For 𝑛 = 0, J𝑐 (𝑛)
0

K = JskipK and
𝑉 ′𝑛+1 = fv(𝑏) ∪𝑉0. By Theorem F.1 on skip, we have |= Δ(JskipK, {𝑣}, {𝑣}) for all 𝑣 ∈ Var, and then
by the merging lemma for Δ (Lemma F.5), we have

|= Δ(JskipK, fv(𝑏), fv(𝑏)) .
Since𝑉 ′𝑛+1 ⊇ fv(𝑏), |= Δ(J𝑐 (𝑛)

0
K,𝑉 ′𝑛+1, fv(𝑏)) holds by the weakening lemma for Δ (Lemma F.3). Next,

for𝑛 > 0, J𝑐 (𝑛)
0

K = J𝑐0; 𝑐
(𝑛−1)
0

K and𝑉 ′𝑛+1 = fv(𝑏) ∪𝑉0 ∪ (𝑑0)∪ (𝑉 ′𝑛). By J𝑐0K♯ = (𝑝0, 𝑑0,𝑉0), TheoremF.1

on 𝑐0, and induction hypothesis of the theorem (not that of the claim (iv)), we have

J𝑐0K ∈ 𝛾 (𝑝0, 𝑑0,𝑉0).
Also, by induction hypothesis of our strengthening of the claim (iv) and the weakening lemma for

Δ (Lemma F.3),

|= Δ(J𝑐 (𝑛−1)
0

K,𝑉 ′𝑛 , {𝑣}) for all 𝑣 ∈ fv(𝑏).
By applying to these the proof of Theorem F.1 (on the sequential composition case), we have

|= Δ(J𝑐0; 𝑐 (𝑛−1)
0

K,𝑉0 ∪ (𝑑0)∪ (𝑉 ′𝑛), {𝑣}) for all 𝑣 ∈ fv(𝑏).
By the merging lemma for Δ (Lemma F.5), |= Δ(J𝑐 (𝑛)

0
K,𝑉0 ∪ (𝑑0)∪ (𝑉 ′𝑛), fv(𝑏)) holds. Since𝑉 ′𝑛+1 in-

cludes𝑉0 ∪ (𝑑0)∪ (𝑉 ′𝑛), we get |= Δ(J𝑐 (𝑛)
0

K,𝑉 ′𝑛+1, fv(𝑏)) by the weakening lemma for Δ (Lemma F.3).

This completes the proof of (iv).

Case 𝑐 ≡ (𝑥 := sam(name(𝛼, 𝑒), distN (𝑒1, 𝑒2), _𝑦.𝑒 ′)). To prove the conclusion, consider 𝑣 ∈ Var
and 𝜏 ∈ St[𝑝 (𝑣)𝑐]. We should show 𝑔 ∈ 𝜙𝑝 (𝑣),{𝑣 } , where

𝑔(𝜎) = 𝜋Var,{𝑣 } (J𝑐K(𝜎 ⊕ 𝜏)) = [𝑣 ↦→ J𝑐K(𝜎 ⊕ 𝜏) (𝑣)] .
We prove this by case analysis on 𝑣 .

First, suppose 𝑣 ∉ {𝑥} ∪ {val`, pr`, cnt` | ` ∈ Name, ` = (𝛼, _)}. Then, 𝑝 (𝑣) = Var and

𝑔(𝜎) = [𝑣 ↦→ J𝑐K𝜎 (𝑣)] = [𝑣 ↦→ 𝜎 (𝑣)] = 𝜋Var,{𝑣 } (𝜎)
for all 𝜎 ∈ St[𝑝 (𝑣)]. Here the first equality follows from 𝜏 ∈ St[∅], and the second equality holds
since J𝑐K does not change the value of 𝑣 . Hence, by Assumption 3, 𝑔 = 𝜋Var,{𝑣 } ∈ 𝜙Var,{𝑣 } = 𝜙𝑝 (𝑣),{𝑣 } .
Next, suppose 𝑣 ∈ {𝑥} ∪ {val`, pr`, cnt` | ` ∈ Name, ` = (𝛼, _)}. Then, we have 𝑝 (𝑣)𝑐 ⊇ fv(𝑒):

if 𝑒 is a constant, fv(𝑒) = ∅ holds, and if 𝑒 is not a constant, the definition of 𝑝 (𝑣) ensures this. Thus,
there exists `0 ∈ Name such that create_name(𝛼, J𝑒K(𝜎 ⊕ 𝜏)) = `0 for all 𝜎 ∈ St[𝑝 (𝑣)]. We now do

refined case analysis on 𝑣 using `0.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:75

• Case 𝑣 ∈ {val`, pr`, cnt` | ` ∈ Name, ` = (𝛼, _), ` ≠ `0}. In this case,
𝑔(𝜎) = [𝑣 ↦→ (𝜎 ⊕ 𝜏) (𝑣)] = 𝜋Var,{𝑣 } (𝜎 ⊕ 𝜏)

for all 𝜎 ∈ St[𝑝 (𝑣)]. Here the first equality holds since J𝑐K does not change the value of 𝑣 . By
Assumption 3,we have𝜋Var,{𝑣 } ∈ 𝜙Var,{𝑣 } . Then, byAssumption 5,we obtain𝑔 ∈ 𝜙𝑝 (𝑣),{𝑣 } . Note
that this argument does not depend on the value of 𝑝 (𝑣) (which can be Var, fv(𝑒)𝑐 ∩ L𝑣 + 1M♯,
etc., depending on 𝑒 and 𝑣).

• Case 𝑣 ∈ {𝑥, val`0 }. Define 𝐾1 ≜ L𝑒 ′[`0/𝑦]M♯. Then, 𝑝 (𝑣)𝑐 ⊇ (L𝑒 ′[`0/𝑦]M♯)𝑐 = 𝐾𝑐
1
. So, there

exist 𝜏1 ∈ St[𝐾𝑐1] and 𝜏2 ∈ St[𝑝 (𝑣)𝑐 \ 𝐾𝑐1] such that 𝜏 = 𝜏1 ⊕ 𝜏2. Let ℎ : St[𝐾1] → St[{𝑣}] be
a function defined by

ℎ(𝜎 ′) ≜ [𝑣 ↦→ J𝑒 ′[`0/𝑦]K(𝜎 ′ ⊕ 𝜏1)] .
Then,

𝑔(𝜎) =
[
𝑣 ↦→ J𝑒 ′[`0/𝑦]K(𝜎 ⊕ 𝜏)

]
= ℎ(𝜎 ⊕ 𝜏2)

for all 𝜎 ∈ St[𝑝 (𝑣)]. By Assumption 2, we haveℎ ∈ 𝜙𝐾1,{𝑣 } , Then, by Assumption 5, we obtain

𝑔 ∈ 𝜙𝑝 (𝑣),{𝑣 } .
• Case 𝑣 ≡ pr`0 . In this case, 𝑝 (𝑣) = fv(𝑒)𝑐 ∩ 𝐾 for𝐾 = LpdfN (`0; 𝑒1, 𝑒2)M♯. Since 𝜏 ∈ St[𝑝 (𝑣)𝑐]
and 𝑝 (𝑣)𝑐 = (𝐾 \ fv(𝑒)𝑐) ⊎ 𝐾𝑐 , there exist 𝜏1 ∈ St[𝐾 \ fv(𝑒)𝑐] and 𝜏2 ∈ St[𝐾𝑐] such that

𝜏 = 𝜏1 ⊕ 𝜏2. Using 𝜏1 and 𝜏2, we have
𝑔(𝜎) =

[
𝑣 ↦→ JdistN (𝑒1, 𝑒2)K(𝜎 ⊕ 𝜏)

(
(𝜎 ⊕ 𝜏) (`0)

)]
=

[
𝑣 ↦→ JpdfN (`0; 𝑒1, 𝑒2)K(𝜎 ⊕ 𝜏)

]
= ℎ(𝜎 ⊕ 𝜏1)

for all 𝜎 ∈ St[𝑝 (𝑣)], whereℎ : St[𝐾] → St[{𝑣}] is defined by
ℎ(𝜎 ′) = [𝑣 ↦→ JpdfN (`0; 𝑒1, 𝑒2)K(𝜎 ′ ⊕ 𝜏2)] .

Here the first equality follows from the definition of J𝑐K, the second equality holds because pdfN
is the density function of a normal distribution, and the third equality comes from 𝜏 = 𝜏1 ⊕ 𝜏2.
By Assumption 2, we haveℎ ∈ 𝜙𝐾,{𝑣 } . Then, by Assumption 5, we obtain 𝑔 ∈ 𝜙𝑝 (𝑣),{𝑣 } .
• Case 𝑣 ≡ cnt`0 . The proof is similar to the above case 𝑣 ≡ pr`0 . In this case, 𝑝 (𝑣) = fv(𝑒)𝑐 ∩ 𝐾
for𝐾 = Lcnt`0 + 1M

♯
. As in the above case, there exist 𝜏1 ∈ St[𝐾 \ fv(𝑒)𝑐] and 𝜏2 ∈ St[𝐾𝑐] such

that 𝜏 = 𝜏1 ⊕ 𝜏2, and we have
𝑔(𝜎) = [𝑣 ↦→ (𝜎 ⊕ 𝜏) (cnt`0) + 1]

= [𝑣 ↦→ Jcnt`0 + 1K(𝜎 ⊕ 𝜏)] = ℎ(𝜎 ⊕ 𝜏1)
for all 𝜎 ∈ St[𝑝 (𝑣)], whereℎ : St[𝐾] → St[{𝑣}] is defined by

ℎ(𝜎 ′) = [𝑣 ↦→ Jcnt`0 + 1K(𝜎 ′ ⊕ 𝜏2)] .
By Assumption 2, we haveℎ ∈ 𝜙𝐾,{𝑣 } . Then, by Assumption 5, we obtain 𝑔 ∈ 𝜙𝑝 (𝑣),{𝑣 } .

Case 𝑐 ≡ obs(distN (𝑒1, 𝑒2), 𝑟). To prove the conclusion, consider 𝑣 ∈ Var and 𝜏 ∈ St[𝑝 (𝑣)𝑐]. We

should show 𝑔 ∈ 𝜙𝑝 (𝑣),{𝑣 } , where
𝑔(𝜎) = 𝜋Var,{𝑣 } (J𝑐K(𝜎 ⊕ 𝜏)) = [𝑣 ↦→ J𝑐K(𝜎 ⊕ 𝜏) (𝑣)] .

We prove this by case analysis on 𝑣 .

First, suppose 𝑣 . like. Then, 𝑝 (𝑣) = Var and

𝑔(𝜎) = [𝑣 ↦→ J𝑐K𝜎 (𝑣)] = [𝑣 ↦→ 𝜎 (𝑣)] = 𝜋Var,{𝑣 } (𝜎)
for all 𝜎 ∈ St[𝑝 (𝑣)]. Here the first equality is by 𝜏 ∈ St[∅], and the second equality holds since J𝑐K
does not change the value of 𝑣 . Hence, by Assumption 3, 𝑔 = 𝜋Var,{𝑣 } ∈ 𝜙Var,{𝑣 } = 𝜙𝑝 (𝑣),{𝑣 } .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:76 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Next, suppose 𝑣 ≡ like. Then, 𝑝 (𝑣) = Llike × pdfN (𝑟 ; 𝑒1, 𝑒2)M♯ and
𝑔(𝜎) = [𝑣 ↦→ (𝜎 ⊕ 𝜏) (like) · JdistN (𝑒1, 𝑒2)K(𝜎 ⊕ 𝜏) (𝑟)]

= [𝑣 ↦→ Jlike × pdfN (𝑟 ; 𝑒1; 𝑒2)K(𝜎 ⊕ 𝜏)]
for all 𝜎 ∈ St[𝑝 (𝑣)]. Here the first equality is by the definition of J𝑐K, and the second equality holds
because pdfN is the density function of a normal distribution. Hence, by Assumption 2, we have

𝑔 ∈ 𝜙𝑝 (𝑣),{𝑣 } . □

F.5 Proofs of Lemmas for Theorem F.2
Here are the lemmas used to prove Theorem F.2:

Lemma F.3 (Weakening; Δ). Let 𝑓 ∈ [St→ St⊥] and𝐾,𝐾 ′, 𝐿, 𝐿′ ⊆ Var. Then,

|= Δ(𝑓 , 𝐾, 𝐿) ∧ (𝐾 ⊆ 𝐾 ′) ∧ (𝐿 ⊇ 𝐿′) =⇒ |= Δ(𝑓 , 𝐾 ′, 𝐿′).

Proof. Consider 𝜎, 𝜎 ′ ∈ Stwith 𝜎 ∼𝐾 ′ 𝜎 ′. Then, 𝜎 ∼𝐾 𝜎 ′ because𝐾 ⊆ 𝐾 ′. Since |= Δ(𝑓 , 𝐾, 𝐿),
(𝑓 (𝜎) ∈ St ⇐⇒ 𝑓 (𝜎 ′) ∈ St) and (𝑓 (𝜎) ∈ St =⇒ 𝑓 (𝜎) ∼𝐿 𝑓 (𝜎 ′)) .

Note that the conclusion of the second conjunct implies 𝑓 (𝜎) ∼𝐿′ 𝑓 (𝜎 ′) since 𝐿′ ⊆ 𝐿. From what

we have just shown, the desired conclusion |= Δ(𝑓 , 𝐾 ′, 𝐿′) follows. □

Lemma F.4 (Weakening; Φ). Let 𝑓 ∈ [St→ St⊥] and𝐾,𝐾 ′, 𝐿, 𝐿′ ⊆ Var. Then,

|= Φ(𝑓 , 𝐾, 𝐿) ∧ (𝐾 ⊇ 𝐾 ′) ∧ (𝐿 ⊇ 𝐿′) =⇒ |= Φ(𝑓 , 𝐾 ′, 𝐿′).

Proof. We prove the lemma using Assumptions 3, 5 and 6. Consider 𝜏 ∈ St[(𝐾 ′)𝑐], and let𝑔 be
the following partial function:

𝑔 : St[𝐾 ′] ⇀ St[𝐿′], 𝑔(𝜎 ′) ≜
{
(𝜋Var,𝐿′ ◦ 𝑓) (𝜎 ′ ⊕ 𝜏) if 𝑓 (𝜎 ′ ⊕ 𝜏) ∈ St
undefined otherwise.

Weshould show𝑔 ∈ 𝜙𝐾 ′,𝐿′ .Note that (𝐾 ′)𝑐 ⊇ 𝐾𝑐 . Thus, there exist𝜏1 ∈ St[(𝐾 ′)𝑐 \𝐾𝑐] and𝜏2 ∈ St[𝐾𝑐]
such that 𝜏 = 𝜏1 ⊕ 𝜏2. Define a partial functionℎ : St[𝐾] → St[𝐿] by

ℎ(𝜎 ′′) ≜
{
(𝜋Var,𝐿 ◦ 𝑓) (𝜎 ′′ ⊕ 𝜏2) if 𝑓 (𝜎 ′′ ⊕ 𝜏2) ∈ St
undefined otherwise.

Then, since |= Φ(𝑓 , 𝐾, 𝐿), we haveℎ ∈ 𝜙𝐾,𝐿 . Note that for all 𝜎 ′ ∈ St[𝐾 ′],
𝑔(𝜎 ′) = (𝜋𝐿,𝐿′ ◦ ℎ) (𝜎 ′ ⊕ 𝜏1).

By Assumptions 3, 5 and 6, the above equation implies 𝑔 ∈ 𝜙𝐾 ′,𝐿′ , as desired. □

Lemma F.5 (Merging; Δ). Let 𝑓 ∈ [St→ St⊥] and𝐾,𝐾 ′, 𝐿, 𝐿′ ⊆ Var. Then,

|= Δ(𝑓 , 𝐾, 𝐿) ∧ |= Δ(𝑓 , 𝐾 ′, 𝐿′) =⇒ |= Δ(𝑓 , 𝐾 ∪ 𝐾 ′, 𝐿 ∪ 𝐿′).

Proof. Consider 𝜎, 𝜎 ′ ∈ St with 𝜎 ∼𝐾∪𝐾 ′ 𝜎 ′. Then, 𝜎 ∼𝐾 𝜎 ′, and by the assumption that

|= Δ(𝑓 , 𝐾, 𝐿), we have
𝑓 (𝜎) ∈ St ⇐⇒ 𝑓 (𝜎 ′) ∈ St.

It remains to show that if 𝑓 (𝜎), 𝑓 (𝜎 ′) ∈ St, then 𝑓 (𝜎) ∼𝐿∪𝐿′ 𝑓 (𝜎 ′). Assume 𝑓 (𝜎), 𝑓 (𝜎 ′) ∈ St. Since
𝜎 ∼𝐾∪𝐾 ′ 𝜎 ′ and we have |= Δ(𝑓 , 𝐾, 𝐿) and |= Δ(𝑓 , 𝐾 ′, 𝐿′) by assumption,

𝑓 (𝜎) ∼𝐿 𝑓 (𝜎 ′) and 𝑓 (𝜎) ∼𝐿′ 𝑓 (𝜎 ′) .
This implies that 𝑓 (𝜎) ∼𝐿∪𝐿′ 𝑓 (𝜎 ′), as desired. □

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:77

Lemma F.6 (Merging; Φ). Let 𝑓 ∈ [St→ St⊥] and𝐾,𝐾 ′, 𝐿, 𝐿′ ⊆ Var. Then,

|= Φ(𝑓 , 𝐾, 𝐿) ∧ |= Φ(𝑓 , 𝐾 ′, 𝐿′) =⇒ |= Φ(𝑓 , 𝐾 ∩ 𝐾 ′, 𝐿 ∪ 𝐿′).

Proof. Uses the weakening lemma for Φ (Lemma F.4), we have

|= Φ(𝑓 , 𝐾 ∩ 𝐾 ′, 𝐿) and |= Φ(𝑓 , 𝐾 ∩ 𝐾 ′, 𝐿′).

This and Assumption 4 then imply the desired conclusion. Concretely, for all 𝜏 ∈ St[(𝐾 ∩ 𝐾 ′)𝑐], if
𝑔, 𝑔1, and 𝑔2 are the following partial functions

𝑔 : St[𝐾 ∩ 𝐾 ′] ⇀ St[𝐿 ∪ 𝐿′], 𝑔(𝜎 ′) ≜
{
(𝜋Var,𝐿∪𝐿′ ◦ 𝑓) (𝜎 ′ ⊕ 𝜏) if 𝑓 (𝜎 ′ ⊕ 𝜏) ∈ St
undefined otherwise,

𝑔1 : St[𝐾 ∩ 𝐾 ′] ⇀ St[𝐿], 𝑔1 (𝜎 ′) ≜
{
(𝜋Var,𝐿 ◦ 𝑓) (𝜎 ′ ⊕ 𝜏) if 𝑓 (𝜎 ′ ⊕ 𝜏) ∈ St
undefined otherwise,

𝑔2 : St[𝐾 ∩ 𝐾 ′] ⇀ St[𝐿′], 𝑔2 (𝜎 ′) ≜
{
(𝜋Var,𝐿′ ◦ 𝑓) (𝜎 ′ ⊕ 𝜏) if 𝑓 (𝜎 ′ ⊕ 𝜏) ∈ St
undefined otherwise,

then 𝑔1 ∈ 𝜙𝐾∩𝐾 ′,𝐿 , 𝑔2 ∈ 𝜙𝐾∩𝐾 ′,𝐿′ , and 𝑔 = ⟨𝑔1, 𝑔2⟩, so that by Assumption 4, we have 𝑔 ∈ 𝜙𝐾∩𝐾 ′,𝐿∪𝐿′
as desired. □

Lemma F.7 (Seqence). Let 𝑓 , 𝑔 ∈ [St→ St⊥] and𝐾, 𝐿, 𝐿′, 𝑀 ⊆ Var. Then,

|= Φ(𝑓 , 𝐾, 𝐿) ∧ |= Φ(𝑔, 𝐿,𝑀) ∧ |= Δ(𝑓 , 𝐾𝑐 , 𝐿′ \ 𝐿) ∧ |= Δ(𝑔, 𝐿′, 𝑀) =⇒ |= Φ(seq(𝑓 , 𝑔), 𝐾,𝑀) .

Proof. Consider 𝑓 , 𝑔 ∈ [St→ St⊥] and𝐾, 𝐿, 𝐿′, 𝑀 ⊆ Var that satisfy the given conditions:

|= Φ(𝑓 , 𝐾, 𝐿), |= Φ(𝑔, 𝐿,𝑀), |= Δ(𝑓 , 𝐾𝑐 , 𝐿′ \ 𝐿), and |= Δ(𝑔, 𝐿′, 𝑀).

To prove the conclusion, pick an arbitrary 𝜏 ∈ St[𝐾𝑐]. We have to showℎ ∈ 𝜙𝐾,𝑀 , where

ℎ(𝜎) =
{
𝜋Var,𝑀 ((𝑔† ◦ 𝑓) (𝜎 ⊕ 𝜏)) if (𝑔† ◦ 𝑓) (𝜎 ⊕ 𝜏) ∈ St
undefined otherwise.

Observe that since |= Φ(𝑓 , 𝐾, 𝐿) and |= Φ(𝑔, 𝐿,𝑀), we have ℎ1 ∈ 𝜙𝐾,𝐿 and ℎ2 ∈ 𝜙𝐿,𝑀 for any

𝜏1 ∈ St[𝐾𝑐] and 𝜏2 ∈ St[𝐿𝑐], whereℎ1 andℎ2 are parameterised by 𝜏1 and 𝜏2, and defined by

ℎ1 : St[𝐾] ⇀ St[𝐿], ℎ1 (𝜎) ≜
{
𝜋Var,𝐿 (𝑓 (𝜎 ⊕ 𝜏1)) if 𝑓 (𝜎 ⊕ 𝜏1) ∈ St
undefined otherwise,

ℎ2 : St[𝐿] ⇀ St[𝑀], ℎ2 (𝜎) ≜
{
𝜋Var,𝑀 (𝑔(𝜎 ⊕ 𝜏2)) if 𝑔(𝜎 ⊕ 𝜏2) ∈ St
undefined otherwise.

Given these, it suffices to show the claim thatℎ = ℎ2 ◦ ℎ1 for some 𝜏1 and 𝜏2: if the claim holds, then

we haveℎ = ℎ2 ◦ ℎ1 ∈ 𝜙𝐾,𝑀 by Assumption 6, sinceℎ1 ∈ 𝜙𝐾,𝐿 andℎ2 ∈ 𝜙𝐿,𝑀 . We prove the claim by

case analysis on 𝑓 (− ⊕ 𝜏).

Case 𝑓 (𝜎 ⊕ 𝜏) ∉ St for all 𝜎 ∈ St[𝐾]. In this case, we set 𝜏1 ≜ 𝜏 and pick any 𝜏2 ∈ St[𝐿𝑐]. Then,
for all 𝜎 ∈ St[𝐾],ℎ(𝜎) and (ℎ2 ◦ ℎ1) (𝜎) are both undefined, as desired. Note that the latter term is

undefined sinceℎ1 (𝜎) is undefined.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:78 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Case 𝑓 (𝜎 ′ ⊕ 𝜏) ∈ St for some 𝜎 ′ ∈ St[𝐾]. In this case, we set 𝜏1 ≜ 𝜏 and 𝜏2 ≜ 𝜋Var,𝐿𝑐 (𝑓 (𝜎 ′ ⊕ 𝜏)).
To show ℎ = ℎ2 ◦ ℎ1, consider any 𝜎 ∈ St[𝐾]. If 𝑓 (𝜎 ⊕ 𝜏) ∉ St, then by the same argument for the

above case,ℎ(𝜎) and (ℎ2 ◦ ℎ1) (𝜎) are both undefined. So, assume that 𝑓 (𝜎 ⊕ 𝜏) ∈ St. Then,

ℎ(𝜎) =
{
𝜋Var,𝑀 (𝑔(𝜎1)) if 𝑔(𝜎1) ∈ St
undefined otherwise,

(ℎ2 ◦ ℎ1) (𝜎) =
{
𝜋Var,𝑀 (𝑔(𝜎2)) if 𝑔(𝜎2) ∈ St
undefined otherwise,

(27)

where

𝜎1 = 𝑓 (𝜎 ⊕ 𝜏) ∈ St, 𝜎2 = 𝜋Var,𝐿 (𝑓 (𝜎 ⊕ 𝜏)) ⊕ 𝜋Var,𝐿𝑐 (𝑓 (𝜎 ′ ⊕ 𝜏)) ∈ St.

Our goal is to show that ℎ(𝜎) and (ℎ2 ◦ ℎ1) (𝜎) are both undefined, or they are both defined and

are the same. By |= Δ(𝑔, 𝐿′, 𝑀) and Eq. (27), it suffices to show 𝜎1 ∼𝐿′ 𝜎2. To prove this, we show
a stronger statement: 𝜎1 ∼𝐿 𝜎2 and 𝜎1 ∼𝐿′\𝐿 𝜎2. The former relation holds since 𝜋Var,𝐿 (𝜎1) =

𝜋Var,𝐿 (𝑓 (𝜎 ⊕ 𝜏)) = 𝜋Var,𝐿 (𝜎2). The latter relation is equivalent to 𝑓 (𝜎 ⊕ 𝜏) ∼𝐿′\𝐿 𝑓 (𝜎 ′ ⊕ 𝜏), and this
holds by |= Δ(𝑓 , 𝐾𝑐 , 𝐿′ \ 𝐿) and 𝜎 ⊕ 𝜏 ∼𝐾𝑐 𝜎 ′ ⊕ 𝜏 . Hence,ℎ = ℎ2 ◦ ℎ1 as desired. □

Lemma F.8 (Conditional). Let 𝑓 , 𝑓 ′ ∈ [St→ St⊥] and𝐾, 𝐿 ⊆ Var. Then, for any boolean expres-
sion 𝑏,

|= Φ(𝑓 , 𝐾, 𝐿) ∧ |= Φ(𝑓 ′, 𝐾, 𝐿) ∧ (𝐾𝑐 ⊇ fv(𝑏)) =⇒ |= Φ(cond (J𝑏K, 𝑓 , 𝑓 ′), 𝐾, 𝐿).

Proof. Let 𝑓 , 𝑓 ′,𝐾 , 𝐿, and 𝑏 be the functions, sets and a boolean expression such that

|= Φ(𝑓 , 𝐾, 𝐿), |= Φ(𝑓 ′, 𝐾, 𝐿), and 𝐾𝑐 ⊇ fv(𝑏).

Consider 𝜏 ∈ St[𝐾𝑐]. Define 𝑓 ′′ ≜ cond (J𝑏K, 𝑓 , 𝑓 ′), and also partial functions𝑔,𝑔′, and𝑔′′ as follows:

𝑔 : St[𝐾] ⇀ St[𝐿], 𝑔(𝜎) ≜
{
(𝜋Var,𝐿 ◦ 𝑓) (𝜎 ⊕ 𝜏) if 𝑓 (𝜎 ⊕ 𝜏) ∈ St
undefined otherwise,

𝑔′ : St[𝐾] ⇀ St[𝐿], 𝑔′(𝜎) ≜
{
(𝜋Var,𝐿 ◦ 𝑓 ′) (𝜎 ⊕ 𝜏) if 𝑓 ′(𝜎 ⊕ 𝜏) ∈ St
undefined otherwise,

𝑔′′ : St[𝐾] ⇀ St[𝐿], 𝑔′′(𝜎) ≜
{
(𝜋Var,𝐿 ◦ 𝑓) (𝜎 ⊕ 𝜏) if 𝑓 (𝜎 ⊕ 𝜏) ∈ St
undefined otherwise,

We should show 𝑔′′ ∈ 𝜙𝐾,𝐿 . Since 𝐾𝑐 ⊇ fv(𝑏), either J𝑏K(𝜎 ⊕ 𝜏) = true for all 𝜎 ∈ St[𝐾] or
J𝑏K(𝜎 ⊕ 𝜏) = false for all 𝜎 ∈ St[𝐾]. In the former case,𝑔′′ = 𝑔, and in the latter case,𝑔′′ = 𝑔′. Since
both 𝑔 and 𝑔′ are in 𝜙𝐾,𝐿 , we have the desired 𝑔′′ ∈ 𝜙𝐾,𝐿 in both cases. □

Lemma F.9 (Loop; base). Let𝐾, 𝐿 ⊆ Var. Then,

|= Φ((_𝜎 ∈ St.⊥), 𝐾, 𝐿).

Proof. Consider 𝜏 ∈ St[𝐾𝑐]. Define a partial function 𝑔 : St[𝐾] ⇀ St[𝐿] by

𝑔(𝜎) ≜
{
(𝜋Var,𝐿 ◦ (_𝜎 ∈ St.⊥))(𝜎) if (_𝜎 ∈ St.⊥)(𝜎) ∈ St
undefined otherwise

= undefined.

Then, 𝑔 ∈ 𝜙𝐾,𝐿 by Assumption 7. □

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:79

Lemma F.10 (Loop; limit). Let𝐾, 𝐿 ⊆ Var and {𝑓𝑛 ∈ [St→ St⊥]}𝑛∈N be an𝜔-chain (i.e., 𝑓𝑛 ⊑ 𝑓𝑛+1
for all 𝑛 ∈ N). Here we write 𝑓 ⊑ 𝑔 if 𝑓 (𝜎) ⊑ 𝑔(𝜎) for all 𝜎 ∈ St. Suppose that for any 𝜏 ∈ St[𝐾𝑐] and
𝑛 ∈ N, the set {𝜎 ∈ St[𝐾] | 𝑓𝑛 (𝜎 ⊕ 𝜏) ∈ St} is either ∅ or St[𝐾]. Then,∧

𝑛∈N
|= Φ(𝑓𝑛, 𝐾, 𝐿) =⇒ |= Φ(

⊔
𝑛∈N

𝑓𝑛, 𝐾, 𝐿).

Proof. Consider an 𝜔-chain {𝑓𝑛 ∈ [St → St⊥]}𝑛∈N such that |= Φ(𝑓𝑛, 𝐾, 𝐿) for all 𝑛. Pick an

arbitrary 𝜏 ∈ St[𝐾𝑐]. Let 𝑓∞ ≜
⊔
𝑛∈N 𝑓𝑛 , and define partial functions 𝑔∞ and 𝑔𝑛 for all 𝑛 as follows:

𝑔∞ : St[𝐾] ⇀ St[𝐿], 𝑔∞ (𝜎) ≜
{
(𝜋Var,𝐿 ◦ 𝑓∞) (𝜎 ⊕ 𝜏) if 𝑓∞ (𝜎 ⊕ 𝜏) ∈ St
undefined otherwise,

𝑔𝑛 : St[𝐾] ⇀ St[𝐿], 𝑔𝑛 (𝜎) ≜
{
(𝜋Var,𝐿 ◦ 𝑓𝑛) (𝜎 ⊕ 𝜏) if 𝑓𝑛 (𝜎 ⊕ 𝜏) ∈ St
undefined otherwise.

Then, {𝑔𝑛}𝑛∈N is an𝜔-chain when we order 𝑔𝑛’s by graph inclusion, and 𝑔∞ is the least upper bound

of this chain for the same order. We will show that 𝑔∞ = 𝑔𝑛 for some 𝑛 ∈ N by case analysis on

Σ𝑛 ≜ {𝜎 ∈ St[𝐾] | 𝑓𝑛 (𝜎 ⊕ 𝜏) ∈ St}. Note that this implies the desired 𝑔∞ ∈ 𝜙𝐾,𝐿 because 𝑔𝑛 ∈ 𝜙𝐾,𝐿
for all 𝑛 ∈ N. If Σ𝑛 = ∅ for all 𝑛 ∈ N, then 𝑔 = 𝑔𝑛 for any 𝑛, since both 𝑔 and 𝑔𝑛 are the same empty

partial function. Otherwise, by the assumption of the lemma, Σ𝑛 = St[𝐾] for some 𝑛. This means

that 𝑔𝑛 is the total function, and so 𝑔𝑛 = 𝑔𝑚 for all𝑚 ≥ 𝑛, which implies that 𝑔 = 𝑔𝑛 , as desired. □

G DEFERREDRESULTS IN §5.3
G.1 Proof of Theorem 5.10

Proof of Theorem 5.10. Wego through the assumptions, and show that they are satisfied by𝜙 (𝑑)

and 𝜙 (𝑙) .

Case of Assumption 3. Let 𝐾, 𝐿 ⊆ Var such that 𝐿 ⊆ 𝐾 . The projection 𝜋𝐾,𝐿 is total and has
an open set as its domain. Furthermore, the projection 𝜋𝐾,𝐿 is differentiable and 1-Lipschitz contin-

uous. Since Lipschitz continuity implies local Lipschitz continuity, we have both 𝜋𝐾,𝐿 ∈ 𝜙 (𝑑)𝐾,𝐿
and

𝜋𝐾,𝐿 ∈ 𝜙 (𝑙)𝐾,𝐿 , as desired.

Case of Assumption 4. Let 𝐾, 𝐿0, 𝐿1 ⊆ Var such that 𝐿0 ∩ 𝐿1 = ∅. Consider 𝑓0, 𝑔0 ∈ [St[𝐾] ⇀
St[𝐿0]] and 𝑓1, 𝑔1 ∈ [St[𝐾] ⇀ St[𝐿1]] such that all of the following hold:

𝑓0 ∈ 𝜙 (𝑑)𝐾,𝐿0
, 𝑓1 ∈ 𝜙 (𝑑)𝐾,𝐿1

, 𝑔0 ∈ 𝜙 (𝑙)𝐾,𝐿0 , and 𝑔1 ∈ 𝜙 (𝑙)𝐾,𝐿1 .

Let

𝐿 ≜ 𝐿0 ∪ 𝐿1;

𝑓 : St[𝐾] ⇀ St[𝐿], 𝑓 (𝜎) ≜
{
𝑓0 (𝜎) ⊕ 𝑓1 (𝜎) if 𝜎 ∈ dom(𝑓0) ∩ dom(𝑓1),
undefined otherwise;

𝑔 : St[𝐾] ⇀ St[𝐿], 𝑔(𝜎) ≜
{
𝑔0 (𝜎) ⊕ 𝑔1 (𝜎) if 𝜎 ∈ dom(𝑔0) ∩ dom(𝑔1),
undefined otherwise.

We should show that 𝑓 and𝑔 satisfy 𝜙
(𝑑)
𝐾,𝐿

and 𝜙
(𝑙)
𝐾,𝐿

, respectively. In both cases, dom(𝑓) and dom(𝑔)
are the intersections of two open sets, so that they are open as required.

To prove the differentiability of 𝑓 , consider 𝜎 ∈ dom(𝑓). Letℎ0 andℎ1 be the linear functions in
[St[𝐾] ⇀ St[𝐿0]] and [St[𝐾] ⇀ St[𝐿1]], respectively, such that their domains are open and contain

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:80 Wonyeol Lee, Xavier Rival, and Hongseok Yang

0, and for all 𝑖 ∈ {0, 1},

lim

𝜎′→0

∥ 𝑓𝑖 (𝜎 + 𝜎 ′) − 𝑓𝑖 (𝜎) − ℎ𝑖 (𝜎 ′)∥2
∥𝜎 ′∥

2

= 0.

Letℎ be the linear function in [St[𝐾] ⇀ St[𝐿]] defined by

ℎ(𝜎) ≜
{
ℎ0 (𝜎) ⊕ ℎ1 (𝜎) if 𝜎 ∈ dom(ℎ0) ∩ dom(ℎ1);
undefined otherwise.

Then, dom(ℎ) is open and contains 𝜎 . Furthermore,

lim

𝜎′→0

∥ 𝑓 (𝜎 + 𝜎 ′) − 𝑓 (𝜎) − ℎ(𝜎 ′)∥
2

∥𝜎 ′∥
2

= lim

𝜎′→0

√
∥ 𝑓0 (𝜎 + 𝜎 ′) − 𝑓0 (𝜎) − ℎ0 (𝜎 ′)∥22 + ∥ 𝑓1 (𝜎 + 𝜎 ′) − 𝑓1 (𝜎) − ℎ1 (𝜎 ′)∥22

∥𝜎 ′∥
2

= lim

𝜎′→0

√(
∥ 𝑓0 (𝜎 + 𝜎 ′) − 𝑓0 (𝜎) − ℎ0 (𝜎 ′)∥2

∥𝜎 ′∥
2

)
2

+
(
∥ 𝑓1 (𝜎 + 𝜎 ′) − 𝑓1 (𝜎) − ℎ1 (𝜎 ′)∥2

∥𝜎 ′∥
2

)
2

=

√(
lim

𝜎′→0

∥ 𝑓0 (𝜎 + 𝜎 ′) − 𝑓0 (𝜎) − ℎ0 (𝜎 ′)∥2
∥𝜎 ′∥

2

)
2

+
(
lim

𝜎′→0

∥ 𝑓1 (𝜎 + 𝜎 ′) − 𝑓1 (𝜎) − ℎ1 (𝜎 ′)∥2
∥𝜎 ′∥

2

)
2

= 0.

Thus, 𝑓 is differentiable at 𝜎 , as desired.

It remains to prove the local Lipschitzness of 𝑔. Pick 𝜎 ∈ dom(𝑔). Then, 𝑔0 and 𝑔1 are defined at
𝜎 and they are locally Lipschitz. Thus, there exist open sets𝑂0 ⊆ dom(𝑔0) and𝑂1 ⊆ dom(𝑔1) and
constants 𝐵0, 𝐵1 > 0 such that 𝜎 belongs to both𝑂0 and𝑂1, and for all 𝜎0, 𝜎

′
0
∈ 𝑂0 and 𝜎1, 𝜎

′
1
∈ 𝑂1,

∥𝑔0 (𝜎0) − 𝑔0 (𝜎 ′0)∥2 ≤ 𝐵0∥𝜎0 − 𝜎 ′0∥2 and ∥𝑔1 (𝜎1) − 𝑔1 (𝜎 ′1)∥2 ≤ 𝐵1∥𝜎1 − 𝜎 ′1∥2.

Let𝑂 ≜ 𝑂0 ∩𝑂1. The set𝑂 is open, and contains 𝜎 . Furthermore, for all 𝜎 ′, 𝜎 ′′ ∈ 𝑂 ,

∥𝑔(𝜎 ′) − 𝑔(𝜎 ′′)∥
2
=

√
∥𝑔0 (𝜎 ′) − 𝑔0 (𝜎 ′′)∥22 + ∥𝑔1 (𝜎 ′) − 𝑔1 (𝜎 ′′)∥22

≤
√
𝐵2
0
∥𝜎 ′ − 𝜎 ′′∥2

2
+ 𝐵2

1
∥𝜎 ′ − 𝜎 ′′∥2

2

=

√
𝐵2
0
+ 𝐵2

1
· ∥𝜎 ′ − 𝜎 ′′∥

2
.

Thus, 𝑔 is Lipschitz in𝑂 , as desired.

Case of Assumption 5. Consider 𝐾,𝐾 ′, 𝐿 ⊆ Varwith 𝐾 ⊆ 𝐾 ′, and 𝜏 ∈ St[𝐾 ′ \ 𝐾]. Let 𝑓 and 𝑔
be partial functions in [St[𝐾 ′] ⇀ St[𝐿]] such that 𝑓 ∈ 𝜙 (𝑑)

𝐾 ′,𝐿 and 𝑔 ∈ 𝜙
(𝑙)
𝐾 ′,𝐿 . Let

𝑓1 : St[𝐾] ⇀ St[𝐿], 𝑓1 (𝜎) ≜
{
𝑓 (𝜎 ⊕ 𝜏) if 𝜎 ⊕ 𝜏 ∈ dom(𝑓)
undefined otherwise,

𝑔1 : St[𝐾] ⇀ St[𝐿], 𝑔1 (𝜎) ≜
{
𝑔(𝜎 ⊕ 𝜏) if 𝜎 ⊕ 𝜏 ∈ dom(𝑔)
undefined otherwise.

We should show that 𝑓1 and 𝑔1 satisfy 𝜙
(𝑑)
𝐾,𝐿

and 𝜙
(𝑙)
𝐾,𝐿

, respectively. Note that

dom(𝑓1) = {𝜎 | 𝜎 ⊕ 𝜏 ∈ dom(𝑓)} and dom(𝑔1) = {𝜎 | 𝜎 ⊕ 𝜏 ∈ dom(𝑔)}.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:81

These two sets are open since dom(𝑓) and dom(𝑔) are open and for any open𝑂 , the slice {𝜎 ∈ St[𝐾] |
𝜎 ⊕ 𝜏 ∈ 𝑂} is open. Let 𝜎0 ∈ dom(𝑓1) and 𝜎1 ∈ dom(𝑔1). We will show that 𝑓1 is differentiable at 𝜎0,

and 𝑔1 is Lipschitz in an open neighbourhood of 𝜎1.

Since 𝑓 is differentiable and 𝜎0 ⊕ 𝜏 ∈ dom(𝑓), there exists a linear mapℎ : St[𝐾 ′] ⇀ St[𝐿] such
that dom(ℎ) is open and contains 0, and

lim

𝜎′→0

∥ 𝑓 (𝜎0 ⊕ 𝜏 + 𝜎 ′) − 𝑓 (𝜎0 ⊕ 𝜏) − ℎ(𝜎 ′)∥2
∥𝜎 ′∥

2

= 0.

Let 𝜏0 ≜ _𝑣 ∈ 𝐾 ′ \ 𝐾. 0, andℎ1 be the partial function from St[𝐾] to St[𝐿] defined by

ℎ1 (𝜎) ≜
{
ℎ(𝜎 ⊕ 𝜏0) if 𝜎 ⊕ 𝜏0 ∈ dom(ℎ),
undefined otherwise.

Then, ℎ1 is linear, its domain is open (since taking a slice of an open set in St[𝐾] � R |𝐾
′ |
by fixing

some coordinate variables gives an open set), and

lim

𝜎′′→0

∥ 𝑓1 (𝜎0 + 𝜎 ′′) − 𝑓1 (𝜎0) − ℎ1 (𝜎 ′′)∥2
∥𝜎 ′′∥

2

= lim

𝜎′′→0

∥ 𝑓 (𝜎0 ⊕ 𝜏 + 𝜎 ′′ ⊕ 𝜏0) − 𝑓 (𝜎0 ⊕ 𝜏) − ℎ(𝜎 ′′ ⊕ 𝜏0)∥2
∥𝜎 ′′ ⊕ 𝜏0∥2

= 0.

This means that 𝑓1 is differentiable at 𝜎0.

Since 𝑔 is locally Lipschitz and 𝜎1 ⊕ 𝜏 ∈ dom(𝑔), there exists an open subset𝑂 of dom(𝑔) such
that𝑂 contains 𝜎1 ⊕ 𝜏 and 𝑔 is Lipschitz in𝑂 , that is, there exists a real number 𝐵 > 0 such that

∥𝑔(𝜎) − 𝑔(𝜎 ′)∥
2
≤ 𝐵 · ∥𝜎 − 𝜎 ′∥

2

for all 𝜎, 𝜎 ′ ∈ 𝑂 . Let
𝑂 ′ ≜ {𝜎 ∈ St[𝐾] | 𝜎 ⊕ 𝜏 ∈ 𝑂}.

Then,𝑂 ′ is open, and it contains 𝜎1. Furthermore, for all 𝜎, 𝜎 ′ ∈ 𝑂 ′,

∥𝑔1 (𝜎) − 𝑔1 (𝜎 ′)∥2 = ∥𝑔(𝜎 ⊕ 𝜏) − 𝑔(𝜎 ′ ⊕ 𝜏)∥2 ≤ 𝐵 · ∥𝜎 ⊕ 𝜏 − 𝜎 ′ ⊕ 𝜏 ∥2 = 𝐵 · ∥𝜎 − 𝜎 ′∥2 .

Thus, 𝑔1 is Lipschitz in𝑂
′
, as desired.

Case of Assumption 6. For the composition condition, we handle the differentiability case only.

The other case can be proved similarly. Consider

𝐾, 𝐿,𝑀 ⊆ Var, 𝑓 ∈ [St[𝐾] ⇀ St[𝐿]], and 𝑔 ∈ [St[𝐿] ⇀ St[𝑀]] .

Assume that 𝑓 ∈ 𝜙 (𝑑)
𝐾,𝐿

and 𝑔 ∈ 𝜙 (𝑑)
𝐿,𝑀

. Letℎ be the standard composition of partial functions 𝑔 and 𝑓 .

We should show thatℎ ∈ 𝜙 (𝑑)
𝐾,𝑀

as well, that is, dom(ℎ) is open andℎ is differentiable on its domain.

Note that

dom(ℎ) = dom(𝑓) ∩ 𝑓 −1 (dom(𝑔)) .

Since 𝑔 ∈ 𝜙 (𝑑)
𝐿,𝑀

, the set dom(𝑔) is open. Because 𝑓 ∈ 𝜙 (𝑑)
𝐾,𝐿

, dom(𝑓) is open and 𝑓 is continuous on its
domain. The latter implies that 𝑓 −1 (dom(𝑔)) is open as well. Thus, the intersection of dom(𝑓) and
𝑓 −1 (dom(𝑔)) is open as desired. The differentiability ofℎ on its domain holds since the restriction of

𝑓 to dom(ℎ) gives a differentiable total function from dom(ℎ) to dom(𝑔), that of 𝑔 to dom(𝑔) is also
a differentiable total function, and the composition of two differentiable functions is differentiable.

CaseofAssumption7. The empty set is open, and the empty function is jointly differentiable and

locally Lipschitz continuous. Thus, the strictness assumption holds for both predicate families. □

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:82 Wonyeol Lee, Xavier Rival, and Hongseok Yang

H DEFERREDRESULTS IN §6
H.1 Proof of Theorem 6.2

Proof of Theorem 6.2. Suppose that the algorithm returns 𝜋 (without an error message). We

should show the conclusion that 𝜋 is simple and satisfies (R2) and (R3).

We make several observations before proving the conclusion. Let

(p𝑚, d𝑚,V𝑚) ≜ J𝑐𝑚K♯, (p𝑔, d𝑔,V𝑔) ≜ J𝑐𝑔K♯, (p𝑔, d𝑔,V𝑔) ≜ J𝑐𝑔𝜋 K♯,

and𝐾 ⊆ Var be the set defined in Eq. (12). Also, let 𝑆𝑟 be the set of names that the algorithm uses to

construct the returned reparameterisation plan𝜋 . Then, by the algorithm,we have the two inclusions

in Eq. (12) and Eq. (13), and also 𝜋 = 𝜋0 [𝑆𝑟]. In addition, 𝑆𝑟 ⊆ 𝐾 since

𝑆𝑟 ⊆ {(𝛼, 𝑖) ∈ Name | for all 𝑖 ′ ∈ N, (𝛼, 𝑖 ′) ∈ Name =⇒ (𝛼, 𝑖 ′) ∈ 𝐾} ⊆ 𝐾.
We now prove the conclusion in three parts.

First part: We show that 𝜋 is simple. To show this, consider (𝑛,𝑑, 𝑙), (𝑛′, 𝑑 ′, 𝑙 ′) ∈ NameEx ×
DistEx×LamEx such that𝑛 = name(𝛼, 𝑒) and𝑛′ = name(𝛼, 𝑒 ′) for some𝛼 ∈ Str,𝑒 , and𝑒 ′. Suppose that
(𝑛,𝑑, 𝑙) ∈ dom(𝜋). We should show (𝑛′, 𝑑 ′, 𝑙 ′) ∈ dom(𝜋). Since (𝑛,𝑑, 𝑙) ∈ dom(𝜋) = dom(𝜋0 [𝑆𝑟]),
we have (𝑛,𝑑, 𝑙) ∈ dom(𝜋0) and (𝛼, _) ∈ 𝑆𝑟 . This implies that (𝑛′, 𝑑 ′, 𝑙 ′) ∈ dom(𝜋0) because 𝜋0 is
simple. Since 𝑛′ = name(𝛼, _) and (𝛼, _) ∈ 𝑆𝑟 , we have (𝑛′, 𝑑 ′, 𝑙 ′) ∈ dom(𝜋) as desired.

Second part: We show that 𝜋 satisfies (R2) in three steps.

First step:We prove \ ∪ rv(𝜋) ⊆ 𝐾 . To do so, observe that the 𝑆 in the algorithm always satisfies

the following property:

(𝛼, 𝑖) ∈ 𝑆 =⇒ (𝛼, 𝑖 ′) ∈ 𝑆 for any (𝛼, 𝑖), (𝛼, 𝑖 ′) ∈ Name. (28)

We can prove this by induction: the initial 𝑆 (i.e., 𝑆 = {(𝛼, 𝑖) ∈ Name | for all 𝑖 ′ ∈ N, (𝛼, 𝑖 ′) ∈
Name =⇒ (𝛼, 𝑖 ′) ∈ 𝐾}) satisfies the property, and each update of 𝑆 (i.e., 𝑆 ← 𝑆 \ {(𝛼, 𝑖) ∈ Name}
for some (𝛼, _) ∈ 𝑆) preserves the property. From this, we obtain rv(𝜋) = rv(𝜋0) ∩ 𝑆 :

rv(𝜋) = rv(𝜋0 [𝑆])
= {(𝛼, 𝑖) ∈ Name | ∃𝑒, 𝑑, 𝑙 . (name(𝛼, 𝑒), 𝑑, 𝑙) ∈ dom(𝜋0 [𝑆])}
=

{
(𝛼, 𝑖) ∈ Name | ∃𝑒, 𝑑, 𝑙 .

(
(name(𝛼, 𝑒), 𝑑, 𝑙) ∈ dom(𝜋0) ∧ ∃𝑖 ′. (𝛼, 𝑖 ′) ∈ 𝑆

)}
=

{
(𝛼, 𝑖) ∈ Name |

(
∃𝑒, 𝑑, 𝑙 .

(
(name(𝛼, 𝑒), 𝑑, 𝑙) ∈ dom(𝜋0)

)
∧

(
∃𝑖 ′. (𝛼, 𝑖 ′) ∈ 𝑆

)}
= {(𝛼, 𝑖) ∈ Name | (name(𝛼, _), _, _) ∈ dom(𝜋0)} ∩ {(𝛼, 𝑖) ∈ Name | (𝛼, _) ∈ 𝑆}
= rv(𝜋0) ∩ 𝑆,

where the second and third equalities use the definitions of rv(−) and 𝜋0 [𝑆], respectively, and the
last equality uses Eq. (28). Since rv(𝜋) ⊆ 𝑆 ⊆ 𝐾 and \ ⊆ 𝐾 by Eq. (12) (the inclusion of \), we get

\ ∪ rv(𝜋) ⊆ 𝐾 as desired.

Second step:We prove that for all𝑢 ∈ {like} ∪ {pr` | ` ∈ Name} and 𝑣 ∈ {pr` | ` ∈ Name}, the
following functions (which are total since 𝑐𝑚 and 𝑐𝑔 always terminate) are differentiable with respect

to the variables in \ ∪ rv(𝜋) jointly:
(𝜎\ , 𝜎𝑛) ∈ St[\] × St[Name] ↦−→ J𝑐𝑚K(𝜎𝑝\\ ⊕ 𝜎\ ⊕ 𝜎𝑛 ⊕ 𝑔(𝜎𝑛)) (𝑢),
(𝜎\ , 𝜎𝑛) ∈ St[\] × St[Name] ↦−→ J𝑐𝑔K(𝜎𝑝\\ ⊕ 𝜎\ ⊕ 𝜎𝑛 ⊕ 𝑔(𝜎𝑛)) (𝑣),

(29)

where 𝜎𝑝\\ ≜ (_𝑣 ∈ PVar \ \ . 0) and the function 𝑔 : St[Name] → St[AVar] takes 𝜎𝑛 and returns
𝜎𝑎 such that 𝜎𝑎 maps like to 1, pr` toN(𝜎𝑛 (`); 0, 1), val` to 𝜎𝑛 (`), and all the other variables to 0.
The state 𝜎𝑝\\ ⊕ 𝑔(𝜎𝑛) is the very initialisation used in Eq. (3). This step consists of two substeps.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:83

First substep: We first show that for all𝑢 ∈ {like} ∪ {pr` | ` ∈ Name} and 𝑣 ∈ {pr` | ` ∈ Name},
the functions 𝑓𝑚, 𝑓𝑔 : St[\] × St[Name] × St[AVar] → R are differentiable with respect to the

variables in \ ∪ rv(𝜋) jointly:
𝑓𝑚 (𝜎\ , 𝜎𝑛, 𝜎𝑎) ≜ J𝑐𝑚K(𝜎𝑝\\ ⊕ 𝜎\ ⊕ 𝜎𝑛 ⊕ 𝜎𝑎) (𝑢),
𝑓𝑔 (𝜎\ , 𝜎𝑛, 𝜎𝑎) ≜ J𝑐𝑔K(𝜎𝑝\\ ⊕ 𝜎\ ⊕ 𝜎𝑛 ⊕ 𝜎𝑎) (𝑣).

(30)

Note that in 𝑓𝑚 and 𝑓𝑔 , theAVarpartdoesnotdependon theNamepart (unlike inEq. (29)). For theproof,
pick arbitrary 𝑢 ∈ {like} ∪ {pr` | ` ∈ Name} and 𝑣 ∈ {pr` | ` ∈ Name}. Then, \ ∪ rv(𝜋) ⊆ 𝐾 ⊆
p𝑚 (𝑢) ∩p𝑔 (𝑣), where the first inclusion is from the above result and the second fromEq. (12) (the defi-

nition of𝐾). By the soundness of differentiability analysis (Theorem 5.8), |= Φ(J𝑐𝑚K,p𝑚 (𝑢), {𝑢}) and
|= Φ(J𝑐𝑔K,p𝑔 (𝑣), {𝑣}). From this, and by theweakening lemma ofΦwith\ ∪ rv(𝜋) ⊆ p𝑚 (𝑢) ∩p𝑔 (𝑣)
(Lemma F.4), we have |= Φ(J𝑐𝑚K, \ ∪ rv(𝜋), {𝑢}) and |= Φ(J𝑐𝑔K, \ ∪ rv(𝜋), {𝑣}). Hence, the functions
in Eq. (30) are differentiable with respect to \ ∪ rv(𝜋) jointly as desired, by the definition of Φ (§5.1)

and the definition of “𝑓 : St[𝐿] → R for𝐿 ⊆ Var is differentiablewith respect to𝐿′ ⊆ 𝐿 jointly” (§4.2).
Second substep: We now prove that the claim of the second step follows from the first substep

just proved. Pick any 𝑢 ∈ {like} ∪ {pr` | ` ∈ Name}. We should show that the first function in

Eq. (29) is differentiable with respect to \ ∪ rv(𝜋). Note that we should also show the same for the

second function (for any 𝑣), but the proof is similar to the first function so we omit this case. To

prove the claim for the first function, pick any b ′𝑛,0 ∈ St[Name \ rv(𝜋)] and 𝜎𝑎,0 ∈ St[AVar]. Define
𝑓 ′ : St[\] × St[rv(𝜋)] × St[AVar] as

𝑓 ′(𝜎\ , b𝑛, 𝜎𝑎) ≜ 𝑓 (𝜎\ , b𝑛 ⊕ b ′𝑛,0, 𝜎𝑎).
Then, by Lemma C.6-(2) and Lemma C.6-(3),

𝑓 ′(𝜎\ , b𝑛, 𝜎𝑎) ≜
{
𝑓 (𝜎\ , b𝑛 ⊕ b ′𝑛,0, 𝜎𝑎,0) if (𝜎\ , b𝑛) ∈ 𝑈
proj(𝜎𝑎) if (𝜎\ , b𝑛) ∉ 𝑈

for some𝑈 ⊆ St[\] × St[rv(𝜋)] and some projection map proj : St[AVar] → R. Also, since 𝑓 is
differentiable with respect to \ ∪ rv(𝜋), 𝑓 ′(−,−, 𝜎𝑎) : St[\] × St[rv(𝜋)] is differentiable and thus
continuous for all 𝜎𝑎 ∈ St[AVar]. From these, Lemma H.1 is applicable to 𝑓 ′, implying that𝑈 should

be either ∅ or St[\] × St[rv(𝜋)]. We now consider 𝑓 ′′ : St[\] × St[rv(𝜋)] → R defined by

𝑓 ′′(𝜎\ , b𝑛) ≜ 𝑓 ′(𝜎\ , b𝑛, 𝑔(b𝑛) ⊕ 𝑔(b ′𝑛,0)),
where 𝑔 is extended to accept a substate in St□ [Name] and return a substate for the corresponding
auxiliary part. Then, to prove the claim, it suffices to show that 𝑓 ′′ is differentiable (since b ′𝑛,0 was
chosen arbitrarily). We do case analysis on𝑈 . If𝑈 = St[\] × St[rv(𝜋)], then

𝑓 ′′(𝜎\ , b𝑛) = 𝑓 (𝜎\ , b𝑛 ⊕ b ′𝑛,0, 𝜎𝑎,0) for all 𝜎\ and b𝑛 ;

since 𝑓 is differentiable with respect to \ ∪ rv(𝜋), 𝑓 ′′ is differentiable. If𝑈 = ∅, then
𝑓 ′′(𝜎\ , b𝑛) = proj(𝑔(b𝑛) ⊕ 𝑔(b ′𝑛,0)) for all 𝜎\ and b𝑛 ;

since𝑔,⊕, and proj are all differentiable (because𝑔 only uses projection and the density of the standard
normal distribution), 𝑓 ′′ is differentiable. Hence, 𝑓 ′′ is differentiable in both cases, and this shows
the claim of the second step.

Third step:We prove that 𝜋 satisfies (R2), i.e., the functions in (R2) are differentiable with respect to

\ ∪ rv(𝜋) jointly. This holds because: 𝑐𝑚 and 𝑐𝑔 do not have a double-sampling error, so each function

in (R2) is a multiplication of some of the functions in Eq. (29) (for different𝑢 and 𝑣); the functions in

Eq. (29) are differentiable with respect to \ ∪ rv(𝜋) jointly (by the above result); and multiplication

preserves differentiability.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

12:84 Wonyeol Lee, Xavier Rival, and Hongseok Yang

Third part: We show that 𝜋 satisfies (R3), i.e., the functions in (R3) are differentiable with re-

spect to \ jointly. For this, it suffices to show the claim that for all 𝑣 ∈ {pr`, val` | ` ∈ Name} and
𝜎𝑛 ∈ St[Name], the following function is differentiable with respect to \ jointly:

𝜎\ ∈ St[\] ↦−→ J𝑐𝑔𝜋 K(𝜎𝑝\\ ⊕ 𝜎\ ⊕ 𝜎𝑛 ⊕ 𝑔(𝜎𝑛)) (𝑣) . (31)

This implies (R3) because:𝑐𝑔
𝜋
doesnothaveadouble-samplingerror, so each function in (R2) is either a

multiplicationorapairingof the function inEq. (31) (fordifferent𝑣); andmultiplicationandpairingpre-

serve differentiability. To show the claim, consider any 𝑣 ∈ {pr`, val` | ` ∈ Name}. Then, \ ⊆ p𝑔 (𝑣)
byEq. (13). By the soundness of differentiability analysis (Theorem5.8), |= Φ(J𝑐𝑔𝜋 K,p𝑔 (𝑣), {𝑣}). From
this, and by the weakening lemma of Φwith \ ⊆ p𝑔 (𝑣) (Lemma F.4), we have |= Φ(J𝑐𝑔𝜋 K, \, {𝑣}).
Hence, the function in Eq. (31) is differentiable with respect to \ jointly. This completes the overall

proof. □

Lemma H.1. Let 𝑓 : R𝑛 × R𝑚 → R be a function such that

𝑓 (𝑥,𝑦) =
{
𝑓1 (𝑥) if 𝑥 ∈ 𝑈
𝑓2 (𝑦) if 𝑥 ∉ 𝑈

for some 𝑓1 : R𝑛 → R, 𝑓2 : R𝑚 → R, and𝑈 ⊆ 𝑅𝑛 . Suppose that 𝑓2 (R𝑚) = R and 𝑓 (−, 𝑦) : R𝑛 → R is
continuous for all𝑦 ∈ R𝑚 . Then,𝑈 is either ∅ or R𝑛 .

Proof. Here is a sketch of the proof. We prove the lemma by contradiction. Suppose that𝑈 is

neither ∅ nor R𝑛 . Then, the boundary of𝑈 (i.e., bd(𝑈) ⊆ R𝑛) is nonempty, since the boundary of a

set is empty if and only if the set is both open and closed, and since ∅ and R𝑛 are the only subsets
of R𝑛 that are both open and closed. Let 𝑥 ∈ bd(𝑈) and consider two cases: 𝑥 ∈ 𝑈 or 𝑥 ∉ 𝑈 . In

each of the two cases, we can show that there exists𝑦 ∈ R𝑚 such that 𝑓 (−, 𝑦) is not continuous at 𝑥 .
When showing the discontinuity, we use the following: 𝑥 ∈ bd(𝑈); the specific way that 𝑓 is defined
(in terms of𝑈 , 𝑓1, and 𝑓2); and the assumption that 𝑓2 (R𝑚) = R. By assumption, 𝑓 (−, 𝑦) should be
continuous over the entire R𝑛 , so we get contradiction. □

I DEFERREDRESULTS IN §7
I.1 Deferred Experiment Details and Results

Table 7. Pyro examples used in experiments and their key features (continued from Table 3). The last five
columns show the total number of code lines (excluding comments), loops, sample commands, observe
commands, and learnable parameters (declared explicitly by pyro.param or implicitly by a neural network
module). Each number is the sum of the counts in the model and guide.

Name Probabilistic model LoC while sam obs param

dpmm Dirichlet process mixture models 27 0 6 1 4

vae Variational autoencoder (VAE) 35 0 2 1 5

csis Inference compilation 38 0 2 2 5

br Bayesian regression 42 0 10 1 5

lda Amortised latent Dirichlet allocation 57 0 8 1 5

prodlda Probabilistic topic modelling 58 0 2 1 5

ssvae Semi-supervised VAE 60 0 4 1 7

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

Smoothness Analysis for Probabilistic Programs with Application to Optimised Variational Inference 12:85

Table 8. Results of smoothness analyses (continued from Table 4). “Manual” and “Ours” denote the number
of continuous random variables and learnable parameters in which the density of the program is smooth,
computed by hand and by our analyser. “Time” denotes the runtime of our analyser in seconds. “#CRP” denotes
the total number of continuous random variables and learnable parameters in the program. -m and -g denote
model and guide. We consider {(𝛼, 𝑖) ∈ Name} as one random variable for each 𝛼 ∈ Name.

Differentiable Locally Lipschitz

Name Manual Ours Time Manual Ours Time #CRP

dpmm-m 2 2 0.002 2 2 0.002 2

dpmm-g 6 6 0.003 6 6 0.003 6

vae-m 3 3 0.002 3 3 0.003 3

vae-g 4 4 0.002 4 4 0.002 4

csis-m 1 1 0.001 1 1 0.001 1

csis-g 2 2 0.004 6 6 0.004 6

br-m 5 5 0.002 5 5 0.002 5

br-g 10 10 0.004 10 10 0.004 10

lda-m 3 3 0.002 3 3 0.002 3

lda-g 7 7 0.007 7 7 0.007 7

prodlda-m 2 2 0.008 2 2 0.007 2

prodlda-g 5 5 0.007 5 5 0.006 5

ssvae-m 3 3 0.004 3 3 0.003 3

ssvae-g 6 6 0.007 6 6 0.009 6

Table 9. Results of variable selections (continued from Table 5). “Ours-Time” denote the runtime of our variable
selector in seconds. “Ours-Sound” and “Pyro \Ours” denote the number of randomvariables in the example that
are in 𝜋ours , and that are in 𝜋0 but not in 𝜋ours , respectively, where 𝜋ours and 𝜋0 denote the reparameterisation
plans given by our variable selector and by Pyro. “Pyro \Ours” is partitioned into “Sound” and “Unsound”: the
latter denotes the number of random variables that make (R2’) or (R3’) violated when added to 𝜋ours , and the
former denotes the number of the rest. “#CR” and “#DR” denote the total number of continuous and discrete
random variables in the example. We consider {(𝛼, 𝑖) ∈ Name} as one random variable for each 𝛼 ∈ Name.

Ours Pyro \Ours
Name Time Sound Sound Unsound #CR #DR

dpmm 0.007 2 0 0 2 1

vae 0.004 1 0 0 1 0

csis 0.014 1 0 0 1 0

br 0.009 5 0 0 5 0

lda 0.011 3 0 0 3 1

prodlda 0.018 1 0 0 1 0

ssvae 0.013 1 0 0 1 1

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 12. Publication date: January 2023.

	Abstract
	1 Introduction
	2 Informal Description of Basic Concepts and Our Approach
	3 Setup
	4 Selective Pathwise Gradient Estimator
	4.1 Program Transformation
	4.2 Gradient Estimator via Program Transformation
	4.3 Local Lipschitzness for Relaxed Requirements

	5 Program Analysis for Smoothness
	5.1 Parametric Abstraction for Smoothness Properties
	5.2 Parametric Static Program Analysis
	5.3 Instantiations

	6 Algorithm for the SPGE Variable-Selection Problem
	7 Experimental Evaluation
	8 Related Work
	Acknowledgments
	References
	A Deferred Results in §1
	A.1 Unsoundness of Continuity Analyses in cgl:popl:10,cgl:jacm:12

	B Deferred Results in §2
	B.1 Table Summarising sec:overview

	C Deferred Results in §4.1
	C.1 Proof of thm:unbiased-val
	C.2 Proofs of lem:subfns-well-defined,lem:integral-sampled-terms-only
	C.3 Proof of lem:integral-same-under-reparam

	D Deferred Results in §4.2
	D.1 Deferred Statements and Their Proofs
	D.2 Proof of thm:unbiased-grad
	D.3 Proofs of lem:dens-decomp,lem:dens-misc

	E Deferred Results in §4.3
	E.1 Deferred Statements and Their Proofs
	E.2 Proof of thm:unbiased-grad-lip

	F Deferred Results in §5.2
	F.1 Proof of thm:abstract-semantics-well-formedness
	F.2 Proof of thm:soundness-analysis
	F.3 Proof of thm:soundness-delta
	F.4 Proof of thm:soundness-phi
	F.5 Proofs of Lemmas for thm:soundness-phi

	G Deferred Results in §5.3
	G.1 Proof of thm:families-satisfy-assumptions

	H Deferred Results in §6
	H.1 Proof of thm:soundness-reparam

	I Deferred Results in §7
	I.1 Deferred Experiment Details and Results

