
HAL Id: hal-03936659
https://hal.science/hal-03936659v1

Submitted on 12 Jan 2023 (v1), last revised 10 Feb 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Task-based parallel programming for scalable matrix
product algorithms

Emmanuel Agullo, Alfredo Buttari, Abdou Guermouche, Julien Herrmann,
Antoine Jego

To cite this version:
Emmanuel Agullo, Alfredo Buttari, Abdou Guermouche, Julien Herrmann, Antoine Jego. Task-based
parallel programming for scalable matrix product algorithms. ACM Transactions on Mathematical
Software, In press. �hal-03936659v1�

https://hal.science/hal-03936659v1
https://hal.archives-ouvertes.fr

A

Task-based parallel programming for scalable matrix product
algorithms

Emmanuel Agullo, Inria-LaBRI
Alfredo Buttari, IRIT, Université de Toulouse, CNRS
Abdou Guermouche, Université de Bordeaux
Julien Herrmann, IRIT, Université de Toulouse, CNRS
Antoine Jego, IRIT, Universit de Toulouse, INPT

Task-based programming models have succeeded in gaining the interest of the high-performance math-
ematical software community because they relieve part of the burden of developing and implementing
distributed-memory parallel algorithms in an efficient and portable way.In increasingly larger, more het-
erogeneous clusters of computers, these models appear as a way to maintain and enhance more complex
algorithms. However, task-based programming models lack the flexibility and the features that are neces-
sary to express in an elegant and compact way scalable algorithms that rely on advanced communication
patterns. We show that the Sequential Task Flow paradigm can be extended to write compact yet efficient
and scalable routines for linear algebra computations. Although, this work focuses on dense General Matrix
Multiplication, the proposed features enable the implementation of more complex algorithms. We describe
the implementation of these features and of the resulting GEMM operation. Finally, we present an experi-
mental analysis on two homogeneous supercomputers showing that our approach is competitive up to 32,768
CPU cores with state-of-the-art libraries and may outperform them for some problem dimensions. Although
our code can use GPUs straightforwardly, we do not deal with this case because it implies other issues which
are out of the scope of this work.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming; G.1.3
[Numerical Analysis]: Numerical Linear Algebra; G.4 [Mathematical Software]

General Terms: Algorithms, Performance

1. INTRODUCTION
Recent trends in supercomputer architectures have widened the gap between the
speed of computations and the speed of data transfers. Modern supercomputers are
composed of fat nodes equipped with many computational cores and specialized pro-
cessing units (such as long vector units or GPUs) that can process operations at ex-
tremely fast rates. On the other hand, the speed of networks that interconnect these
nodes has increased by a much smaller factor. For this reason, and more than in the
past, a considerable effort is being devoted to the development of dense and sparse
linear algebra algorithms that communicate better or communicate less. Although the
literature of this subject is extremely vast, many of these scalable algorithms share
some features. Computations are commonly arranged in such a way that the use of
non-blocking or efficient collective communications is maximized [van de Geijn and
Watts 1997; Schatz et al. 2016]. Data reduction patterns are used to increase par-
allelism and reduce the weight of communications on the critical path [Demmel et al.
2012; van de Geijn and Watts 1997; Schatz et al. 2016]. In some cases, communications
are reduced at the price of a moderate or controllable overhead in terms of memory or
operations as in 3D algorithms [Schatz et al. 2016; Agarwal et al. 1995; Solomonik and
Demmel 2011; Ashcraft 1993; Sao et al. 2019].

With algorithms becoming more and more complex and supercomputers architec-
tures more heterogeneous, efforts have been made in the mathematical software com-
munity to build abstraction layers that hide the complexity of approaches that mix
multiple programming models and interfaces (e.g., MPI, OpenMP and CUDA). Such
efforts, however, shift the focus of experts away from the development of efficient and
scalable algorithms. As a result, the need has raised for programming models that re-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 E. Agullo et al.

lieve the high performance computing expert from the burden of dealing with low level
architectural details. Task-based parallelism is one such model: it allows for a high
level description of the workload in the form of a directed acyclic graph (DAG) where
nodes correspond to tasks (i.e., elementary operations) and edges the dependencies
among them or, equivalently, data transfers. This model has been widely used in the
past; one notable example is the MUMPS [Amestoy et al. 2001] sparse direct solver
that implements task-based parallelism by means of the MPI programming interface.
The task-based parallel programming paradigm has recently known a renewed inter-
est thanks to the emergence of novel programming models that allow for a simpler
construction of the DAG. Two well known examples are the sequential task flow (STF)
where tasks dependencies are inferred from data access modes (more details on this
model are provided in section 2.1) and the parameterized task graph (PTG) where task
dependencies are defined by means of rules provided by the programmer. These pro-
gramming models are available, through dedicated programming interfaces, in various
runtime systems (or, simply, runtimes) whose use in the high performance computa-
tional linear algebra domain is increasingly popular. Well known runtime systems in-
clude StarPU [Augonnet et al. 2011] (which provides an interface for the STF program-
ming model), ParSEC [Bosilca et al. 2013] (STF, PTG and others) and OpenMP from
version 4.0 (STF). The use of task-based parallelism through modern runtime systems
has several attractive features. It allows for a relatively easy and portable program-
ming of heterogeneous architectures including distributed memory multinode systems
running over multi and manycores as well as accelerators such as GPUs: the runtime
system takes care of deploying tasks on the available processing units (according to
a defined scheduling policy) and of transferring the data required for their execution
through the network or a dedicated bus. This approach presents great modularity. For
example, it allows for choosing among pre-defined task scheduling policies or develop-
ing new ones; because these are implemented within the runtime system, they are not
tied to a specific algorithm or application but can be reused transparently. By the same
token, as we will show below, it is easy to switch between different communication li-
braries. Numerous studies exist that demonstrate the effectiveness of this approach
for different applications and algorithms mostly on shared memory systems [Agullo
et al. 2016] but also, and increasingly so, on distributed memory ones [Herault et al.
2019]. Issues related to the scheduling of complex algorithms in a shared-memory set-
ting [Buttari et al. 2009; Quintana-Ortı́ et al. 2009] but also in a distributed-memory
setting have been raised in early development of libraries like Plasma or Magma [Ag-
ullo et al. 2009] or SuperMatrix [Igual et al. 2013]. Nevertheless, concerns still remain
about the expressiveness of task-based parallelism and programming models and their
capability to implement distributed memory algorithms with complex features such as
those mentioned above.

The purpose of our work is to address these concerns and show that, through a suit-
able extension of the state-of-the-art STF model for distributed memory machines [Ag-
ullo et al. 2017a], it is possible to implement complex scalable algorithms; the result-
ing code is easy to maintain and improve, yet very efficient and portable. As a refer-
ence, we will use the dense generic matrix-matrix product (GEMM) and its distributed
memory parallel variants such as the SUMMA [van de Geijn and Watts 1997] and
2.5D [Solomonik and Demmel 2011] algorithms which possess most of the above men-
tioned algorithmic features. Moreover, the efficient multiplication of dense matrices
of large and small sizes on distributed memory parallel computers is an essential op-
eration for numerous applications. Experimental results will show that the proposed
approach provides equivalent, if not better, performance than reference libraries with
a code which is only slightly more complex than the classic three nested loops of a
basic, sequential, matrix multiplication code.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Task-based parallel programming for scalable matrix product algorithms A:3

Because we are concerned with distributed memory parallel programming, we will
not cover the case of heterogeneous systems although it must be noted that the code re-
sulting from the proposed approach will run out of the box on computers equipped with
accelerators. In order to achieve optimal performance on these architectures, other is-
sues, for example related to the scheduling of tasks, must be addressed; these are out
of the scope of this work.

2. BACKGROUND
2.1. The sequential task flow programming interface
As explained above, task-based parallelism can be conveniently implemented using
specifically designed programming models such as sequential task flow (STF) or pa-
rameterized task graph (PTG). In this document we will focus on the STF one, some-
times also referred to as superscalar since it mimics the functioning of superscalar
processors where instructions are issued sequentially from a single stream but can
actually be executed in a different order and, possibly, in parallel depending on their
mutual dependencies. The STF model relies on a task insertion or submission primi-
tive which allows for creating a task. The insertion is non blocking, which means that
the control is immediately returned to the caller and the execution of the task is de-
ferred. Upon insertion of a task, the caller must specify the data used by the task and
whether the task accesses these data in read (R), write (W) or read-write (RW) mode.
Based on the order in which tasks are inserted and their data access modes, depen-
dencies between tasks can be easily determined and the DAG of tasks automatically
built.

In the case of a shared memory parallel computer, the STF model commonly relies on
the use of a master process which is in charge of inserting the tasks and multiple work-
ers which are in charge of executing them on the available processing units. Multiple
types of workers may exist if different processing units are available such as CPU cores
and GPUs. In the case of a distributed memory machine, multiple masters exist which
communicate by exchanging messages; these communications can be internally imple-
mented by the runtime system through the MPI standard but other communication
interfaces or libraries can also be used. These communications essentially correspond
to dependencies between tasks that are executed by workers associated with different
masters. For this reason, in the most basic use of the STF model, all masters must
insert all the tasks of the DAG to make sure these communications are correctly de-
tected and executed. This corresponds to the approach based on a concurrent unrolling
of the task graph proposed by YarKhan [2012].

This programming model is commonly appreciated because of its simplicity which
allows, in a relatively easy way, to transform a sequential code into a parallel one
while preserving its readability and maintainability. This advantage must, however,
be weighted against potential limitations due to the fact that the DAG must be entirely
unrolled by inserting all of its tasks: not only this can be time consuming, but it may
require considerable resources for the management of the DAG when it is of large size.
Several techniques have been proposed in the literature to alleviate this issue such as
the pruning of its traversal [Agullo et al. 2017a] or hierarchical tasks [Perez et al. 2017;
Huang et al. 2021; Kim et al. 2021]. The PTG model, on the other hand, has better
scalability because the DAG is not explicitly and entirely built but, instead, tasks are
efficiently instantiated based on rules defined by the programmer; this, however, comes
at the price of a considerably higher programming effort [Agullo et al. 2017b].

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 E. Agullo et al.

1 do i=1, m

do j=1, n

3 do l=1, k

call gemm(Ai,l, Bl,j , Ci,j)

5 end do

end do

7 end do

Fig. 1. Sequential, blocked GEMM

2.2. Distributed memory scalable GEMM algorithms
The general matrix-matrix multiplication (GEMM) operation, as defined in the BLAS
standard, consists in computing

C = α · op(A) · op(B) + β · C

with C, op(A) and op(B) being, respectively M ×N , M ×K and K ×N real or complex
matrices , op(.) being either the identity, the transpose or conjugate transpose (only
for complex matrices) operator and α and β real or complex scalars. Without loss of
generality, in the remainder of this paper we drop the op(.) operator (and, thus, assume
that neither A nor B are transposed) and assume that both α and β are equal to one.

For the purpose of the parallelization, we will suppose that all matrices are parti-
tioned into blocks of size b and that m = dM/be, n = dN/be and k = dK/be. This will
allow us to use efficient sequential BLAS routines for computations on blocks. Based
on this assumption, the sequential matrix multiplication can be simply written as
the triply nested loop in Figure 1, where the instruction in the inmost loop computes
Ci,j = Ci,j + Ai,l · Bl,j . Ignoring the data locality issues in NUMA memory configu-
rations, this code can be trivially parallelized for shared memory parallel computers
using, for example, loop parallelism or task-based parallelism (more on this will be
said in the next section).

When targeting distributed memory parallel computers, the A, B and C matrices
must be distributed among the ranks that participate in the computation. Here, and
in the remainder of the article, we use the generic word rank to denote processes that
communicate by exchanging messages; a rank corresponds to a master process in the
STF model or to a MPI process in the widely used MPI programming interface. We will
assume that a 2D block-cyclic distribution over a p× q ranks grid is employed because
of its wide use in reference dense linear algebra libraries (including ScaLAPACK) and
because it complies with the scalable GEMM algorithms described below; for the sake
of simplicity, we will also assume that all matrices are aligned, i.e., have a conforming
distribution across the ranks grid.

Despite its large arithmetic intensity, the scalability of the GEMM operation on
large size supercomputers can be severely limited by the slowness of network com-
munications and many algorithms have been proposed in the literature to overcome
this limitation. The Cannon’s algorithm [Cannon 1969], for example, has been proved
to minimize both the communication bandwidth and latency [Irony et al. 2004; Bal-
lard et al. 2011]. Nevertheless, this algorithm only works on square ranks grids and
is, therefore, unpractical. SUMMA [Schatz et al. 2016; van de Geijn and Watts 1997;
Agarwal et al. 1994] overcomes these limitations of the Cannon’s algorithm and has
become the most widely adopted algorithm in reference parallel dense linear algebra
libraries such as ScaLAPACK [Blackford et al. 1997] or PLAPACK [van de Geijn 1997].
In the SUMMA algorithm, shown in Figure 2, the matrix product is defined as a se-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Task-based parallel programming for scalable matrix product algorithms A:5

1 do l=1, k

forall i, i%p==r :

3 bcast(Ai,l, to:(r,:))

forall j, j%q==c :

5 bcast(Bl,j , to:(:,c))

forall i, i%p==r :

7 forall j, j%q==c :

call gemm(Ai,l, Bl,j , Ci,j)

9 end do

line 3

line 5

Fig. 2. Stationary-C SUMMA algorithm as executed by the (r, c) rank. Pattern of communications are
shown for l = 1 on an example with a 4× 4 ranks grid, m = n = 4 and k = 2.

quence of outer products where at each iteration l = 1, . . . , k the l-th column of A is
multiplied with the l-th row of B and the result added to C. Each (r, c) rank computes
the contribution for the Ci,j blocks it owns and, therefore must receive the correspond-
ing Ai,l and Bl,j blocks; the outer product formulation allows to transfer these blocks
using efficient collective communications: the Ai,l block is broadcasted to all the ranks
in the r-th grid row and the Bl,j block is broadcasted to all the ranks in the c-th grid
column. A pipelined version of this algorithm was also proposed [van de Geijn and
Watts 1997] which further reduces the length of the critical path of the parallel matrix
product; however, if non-blocking collective communications are available, the interest
of this variant is limited with respect to the basic one.

The SUMMA algorithm presented above is particularly efficient in the case where
the C matrix is much larger than A and B because only these two are transferred
whereas C stays in place; for this reason we refer to this algorithm as stationary C (or
stat-C, for short) following the notation proposed by Schatz et al. [2016]. Stationary
A or stationary B variants can be used in the case where A or B are larger than the
other two matrices, respectively; because these two variants behave the same, we only
present the first one here. In this algorithm, reported in Figure 3, the matrix-matrix
product is defined as a sequence of matrix-panel products where, at each step, the
entire A matrix is multiplied by a B∗,j block-column producing a C∗,j block-column.
In this case the A matrix stays in place, the B matrix is transferred using efficient
collective communications and locally computed contributions to the C matrix (denoted
Ct

i,j) are assembled using reductions. Note that in this algorithm, because of the cyclic
data distribution, the recv and bcast communications in lines 3 and 5 can be more
efficiently implemented using scatter and allgather primitives [Schatz et al. 2016].

The scalability of the SUMMA algorithm can be further improved using so-called
2.5D or 3D algorithms [Georganas et al. 2012; Schatz et al. 2016]. In these algorithms
we consider the ranks arranged in a three-dimensional grid of size p × q × s and the
A, B and C matrices initially distributed among the ranks in the lowest level (0) of
this grid, i.e., (:, :, 0). The pseudo-code for the 3D stat-C case executed by the (r, c, h)
rank is reported in Figure 4. Here the A and B matrices are partitioned in s parts
along the k dimension (columns and rows, respectively) and each part is replicated on
one of the higher levels 1, . . . , s− 1 where a partial stat-C matrix product is computed
producing local Ch contributions to the final result. The local contributions are finally
assembled into the C matrix using reductions. Clearly, equivalent 3D algorithms can
be formulated for stat-A or stat-B SUMMA; we refer the reader to the paper by Schatz
et al. [2016] for the related details.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 E. Agullo et al.

1 do j=1, n

forall l, l%p==r, l%q==c :

3 recv(Bl,j , from:(r,j%q))

forall l, l%p==c :

5 bcast(Bl,j , to:(:,c))

forall i, i%p==r :

7 forall l, j%q==c :

call gemm(Ai,l, Bl,j , Ch
i,j)

9 reduce(Ch
i,j , to:(i%r,j%q))

end do

line 3

line 5

+ line 9

Fig. 3. Stationary-A SUMMA algorithm as executed by the (r, c) rank. Pattern of communications are
shown for j = 1 on an example with a 4× 3 ranks grid, m = 4,n = 2,k = 3.

3. STF MATRIX MULTIPLY
3.1. Baseline STF model
The GEMM operation of Figure 1 can be straightforwardly parallelized using the STF
model by replacing the calls to the sequential gemm on blocks with task insertions
through the insert task routine; this delegates the execution of the corresponding op-
erations to the runtime system. The first argument of the insert task method is the
operation to be performed upon task execution and is followed by the list of data used
by the task (here, the Ai,l,Bl,j and Ci,j blocks). For each data, the corresponding access
mode is specified though a colon notation: R and RW denote, read and read-write access
modes, respectively. Based on the task insertion order and the tasks data access mode,
the runtime system can infer the tasks dependencies, build the corresponding DAG
and proceed to schedule its tasks on the available processing units. Figure 5 shows, as
an example, the DAG corresponding to the case m = 2, n = 3, k = 4.

Thanks to the very high arithmetic intensity of the GEMM operation, the code of
Figure 5 can achieve very good performance on shared memory, possibly accelerated
(e.g., with GPUs) systems, provided that a suitable block size is chosen which provides
a good trade-off between parallelism and efficiency of tasks. Additionally, in order to
run this code on distributed memory parallel systems, it is enough to make the runtime
system aware of the data distribution; for example, in the case of a 2D block-cyclic
distribution each (i, j) block of A, B and C is assigned to rank (i%p, j%q) of the p × q
ranks grid, where % is the modulo operator. In this case, the runtime system will take
care of transferring over the network the blocks needed by a task on the rank where the
task is executed. Although this code, based on the baseline model proposed in [Agullo
et al. 2017a], will be perfectly functional, its performance and scalability can be poor
compared with what can be achieved with the algorithms described in section 2.2 for a
number of reasons.

First of all, this code will not be able to make use of collective communications.
In this baseline STF model, communications are expressed by the edges of the DAG
which, essentially, define point-to-point data transfers.

Second, this baseline STF model does not allow any control on the mapping of tasks
over the p × q ranks of the grid. Runtime systems implement basic mapping policies

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Task-based parallel programming for scalable matrix product algorithms A:7

forall j, h*k/s ≤ j < (h+1)*k/s, j%q==c:

2 forall i, i%p==r :

recv(Ai,j , from:(r,c,0))

4
forall i, h*k/s ≤ i < (h+1)*k/s, i%p==r:

6 forall j, j%q==c :

recv(Bi,j , from:(r,c,0))

8
do l=h*k/s, (h+1)*k/s-1

10 forall i, i%p==r :

bcast(Ai,l, to:(r,:,h))

12 forall j, j%q==c :

bcast(Bl,j , to:(:,c,h))

14 forall i, i%p==r :

forall j, j%q==c :

16 call gemm(Ai,l, Bl,j , Ch
i,j)

end do

18
forall i, i%p==r :

20 forall j, j%q==c :

reduce(Ch
i,j , to:(r,c,0))

lines 11, 13lines 11, 13

line 3

line 7

line 21

Fig. 4. 3D stationary-C SUMMA algorithm as executed by the (r, c, h) rank. Pattern of communications are
shown for the complete algorithm on a 4× 4× 2 ranks grid with m = n = 4 and k = 2.

where a task is executed on the rank which owns the data that is accessed in read-
write mode (Ci,j , in the case of Figure 5). This can lead to a very large volume of
communications, for example, in the case where A and B are much larger than C and
will not allow us to use computing ranks that do not own blocks of the C matrix.

Finally, in this baseline STF model it is not possible to take advantage of the com-
mutativity and associativity of certain operations. In our case, it must be noted that
all the summations in tasks of the type Ci,j = Ai,l · Bl,j + Ci,j for all l can commute

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 E. Agullo et al.

1 do i=1, m

do j=1, n

3 do l=1, k

call insert_task(gemm , Ai,l:R, Bl,j:R, Ci,j:RW)

5 end do

end do

7 end do

C1,1

C1,2

C1,3

C2,1

C2,2

C2,3

Fig. 5. Parallel GEMM using the baseline STF model (top). Corresponding DAG with m = 2, n = 3, k = 4
(bottom); green circles representing GEMM tasks; each chain of tasks in the DAG corresponds to contribu-
tions to a single block of C.

or be grouped in any way. This property can be used to improve parallelism or reduce
communications. In the baseline STF model, instead these summations are forced to
be executed sequentially: because of the order in which tasks are inserted and of the
RW access mode on the Ci,j block, the task that computes Ci,j = Ai,l+1 · Bl+1,j + Ci,j

depends on the one computing Ci,j = Ai,l ·Bl,j + Ci,j .

3.2. Proposed extensions to the STF model
The limitations discussed in the previous section, make the baseline STF model [Agullo
et al. 2017a] unsuitable for implementing state-of-the-art algorithms for distributed
memory systems such as those presented in section 2.2. It must be noted that it is
possible to get around some of these limitations through careful programming. For
example, it is possible to take advantage of associativity of some operations by declar-
ing temporary data and explicitly inserting tasks to combine partial results; in other
words, this amounts to manually implementing reduction operations. This practice,
however, leads to complex code which is poorly portable and hard to maintain which,
essentially, defeats the purpose of using a high level task-based parallel programming
model. The purpose of this section is to present a minimal subset of extensions of
the baseline STF model of section 3.1 that allow us to implement scalable algorithms.
These features extend both the programming interface and the functionality of a STF-
based runtime system while preserving the high level expressiveness of the STF model
and, ultimately, the portability and maintainability of the code. In section 4.1 we will
discuss the availability of these features in modern runtime systems and possible im-
provements that lead to better performance.

Reduction tasks. The objective of this feature is to provide a mean of taking ad-
vantage of the associativity and commutativity of the block-sum operation to improve
parallelism. As explained above, this is not possible in the baseline STF model be-
cause for all the tasks that compute a Ci,j = Ai,l · Bl,j + Ci,j contribution are inserted
with RW (read-write) access mode on the Ci,j block; this induces a chain of dependen-
cies on these tasks according to the order in which they have been inserted. One way
to overcome this problem is to introduce a new access mode, which we call REDUX.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Task-based parallel programming for scalable matrix product algorithms A:9

With this access mode, each task will assemble its contribution in a temporary block
Df

i,j , f = 1, . . . , z; the runtime system takes care of creating all the z temporary blocks
and combining their content through dedicated tasks in a transparent way. This re-
duction phase is carried asynchronously, the only constraint being that it must be
completed prior to any other access to the Ci,j block with a different access mode; par-
allelism is also available in this phase which can be used through suitable reduction
trees. For this feature to work, it is necessary that the runtime system is informed of
how to initialize the temporary blocks and how to combine their values. This can be
achieved by declaring to the runtime system two methods, called the initializer and
the combiner (to follow the naming in the OpenMP standard). As temporary blocks
are part of a reduction pattern, all tasks that modify a copy of Ci,j should be made
commutable. It must be noted that a crucial design choice concerns the number z of
temporary copies Df

i,j for each Ci,j block : this is discussed in section 4.1.

Dynamic collective communications. In order to take advantage of efficient and scal-
able collective communications, whose role is essential in the algorithms presented in
section 2.2, we rely on the so-called dynamic collective communications feature pro-
posed by Denis et al. [2020]. This approach consists in automatically detecting that a
data must be transmitted from a source rank to multiple destination ranks; when such
a pattern is detected, the corresponding transfers are grouped together and achieved
through a collective communication. This feature has a number of interesting proper-
ties. First of all, it is completely transparent to the user: no change has to be done at the
user-level code but the detection and use of collective communications happen in the
communication library underlying the runtime system. Second, these collective com-
munications do not rely on the use of subcommunicators which has several advantages
as we will explain below. Finally, dynamic collective communications are non-blocking
which allows for an effective overlapping of communications and computations.

Tasks mapping. This feature amounts to binding one task to one rank, which means
that it can be executed by any of the workers associated with that rank. This is simply
achieved through an additional ON RANK argument to the insert task routine, which
defines the identifier of the rank where the task has to be run on. This feature is
essential for the stationary-A and 3D variants where the placement of tasks is not
trivially related to the initial data distribution.

3.3. Scalable GEMM with the extended STF model
Using the improved STF model including the features presented in section 3.2, all the
GEMM algorithms of section 2.2 can be conveniently implemented as in the pseudo-
code of Figure 6. Depending on the stationary variant defined by the stat variable and
the number of grid levels defined by the s variable, the map and am functions return,
respectively, the rank where a (i, j, l) task must be executed and the access mode on
the Ci,j block for this task. These functions are described in more details in the next
sections and in Table I. It must be noted that the functions provide the same result
regardless of how the i, j, and l loops are nested because in all cases the DAG of tasks
would be, essentially, the same. For the sake of readability, in the pseudo-code of Fig-
ure 6 we have omitted the declaration of the initializer and combiner routines for the
reductions; these correspond, respectively, to zeroing out all the coefficients of a block
and summing two input blocks into an output one.

The central claim of this paper is that the proposed extended STF model
allows one to express the three advanced GEMM algorithms (and commu-
nication patterns) described in section 2.2 with this extremely compact and
simple code (Figure 6), together with an appropriate choice for the mapping

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 E. Agullo et al.

1 do i=1, m

do j=1, n

3 do l=1, k

rank = map(i,j,l,stat ,s)

5 ACCESS_MODE = am(i, j, l, stat , s)

call insert_task(gemm ,

7 Ai,l:R,

Bl,j:R,

9 Ci,j:ACCESS MODE,

rank:ON RANK)

11 end do

end do

13 end do

Fig. 6. Parallel GEMM using the improved STF model. The outputs of function map and am can be found in
Table I.

Table I. The mapping of tasks and access modes on the C matrix for the stat-A, stat-B and stat-C 3D
GEMM algorithms. They correspond to the values returned by the map and am methods in Algorithm
6.

Algorithm 3D stat-C 3D stat-A 3D stat-B

Executing node of Ai,lBl,j (map) (i%p, j%q, l
k/s

) (i%p, l%q, j
n/s

) (l%p, j%q, i
m/s

)

Access mode for Ci,j (am) s = 1 : RW + COMMUTE REDUX REDUX
s 6= 1 : REDUX

and access modes. In Table I, we present the mapping and access mode correspond-
ing to each of the 3D GEMM algorithms for completeness. In the following paragraphs,
we detail such mapping and access mode corresponding to three specific variants : the
2D stat-C, the 2D stat-A and 3D stat-C.

Stationary-C SUMMA. In the stationary-C SUMMA algorithm the
rank owning the Ci,j block is in charge of all the Ci,j = Ai,l · Bl,j + Ci,j tasks for

l = 1, . . . , k. Therefore, assuming a 2D block-cyclic distribution on a p× q grid, the rank
output of the map function will be (i%p, j%q). As for the access mode of the Ci,j block
returned by the am function, this is read-write RW; however, to improve parallelism and
take advantage of the fact that each rank has multiple workers, we can make all the
tasks related to the same Ci,j block commutable; this is achieved through the COMMUTE
access mode which informs the runtime that all of these tasks can be performed in
any order. The dynamic collective communications feature will transparently group
together all the transfers of a Ai,l (Bl,j) along the i%p (j%q) ranks row (column) and
perform them using an efficient collective communications; this corresponds to the
broadcast communications in lines 3 and 5 of the pseudo-code in Figure 2.

Stationary-A SUMMA. In the stationary-A SUMMA variant, the rank in charge of
computing Ci,j = Ai,l ·Bl,j +Ci,j is the one that owns the Ai,l block; therefore, the rank
returned by the map function is (i%p, l%q). As for the access mode for the Ci,j block,
this has to be REDUX to achieve the reduction on line 9 of the pseudo-code in Figure 3.
The dynamic collective communications feature will detect that the Bl,j block has to
be sent to all the ranks in the l%q grid column and achieve these transfers with an ef-
ficient broadcast communication corresponding to the recv and bcast communications
in lines 3 and 5 of the pseudo-code in Figure 3. It must be noted that in MPI-based

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Task-based parallel programming for scalable matrix product algorithms A:11

implementations, the broadcasting of Bl,j to the l%q grid column must be done in two
steps because the rank owning this block does not necessarily belong the l%q grid col-
umn sub-communicator. Because the dynamic collective communications feature does
not rely on the use of sub-communicators, the recv communication in line 3 of Figure 3
is not necessary.

3D Stationary-C SUMMA. In the 3D stationary-C SUMMA variant, the rank se-
lected for computing the contribution Ai,l · Bl,j to the Ci,j block is (i%p, j%q, l/(k/s)).
The access mode to the Ci,j block is REDUX to operate the reductions in line 21 of the
pseudo-code in Figure 4. The broadcasts in lines 11 and 13 of Figure 4, are performed
straight from the lowest grid level through dynamic collectives without the need for
the preliminary point-to-point communications of lines 3 and 7. Similarly to what ex-
plained above for the stationary-A variant, these point-to-point communications are
necessary to move data on a rank belonging to the sub-communicator where the broad-
cast happens; because in the dynamic collectives feature the scope of a collective com-
munication is arbitrary and not defined by a sub-communicator, these preliminary
copies are unnecessary.

4. IMPLEMENTATION
In this section we discuss the practical implementation of the pseudo-code of Figure 6
which we achieved using the StarPU runtime system and its STF programming API
within the qr mumps [Agullo et al. 2016] library. This library has been chosen as it im-
plements parallelism for dense kernels through StarPU for the computation of mathe-
matical routines.

4.1. STF advanced features
The proposed implementation of Figure 6 makes use of the features described in sec-
tion 3.2. In this section we discuss the availability and use of these features in the
StarPU runtime system and, in the case of the reduction tasks feature, some improve-
ments that we have implemented in order to achieve better performance. The task
mapping feature is already available in the latest StarPU releases and will not be
discussed any further.

The second feature, the dynamic detection of collective communications, is available,
through the NewMadeleine library; the reader is referred to the recent work by Denis
et al. [2020] for a thorough discussion of this feature. This mechanism is implemented 1

such that the communication pattern used to achieve collective communications can be
chosen at run time through an environment variable. In all our experiments we have
used a binomial tree. It must be noted, though, that the use of a chain (where each rank
forwards the message to only one other rank) essentially leads to an asynchronous
implementation of the pipelined SUMMA algorithm [van de Geijn and Watts 1997,
sec. 5.2]. We reserve the analysis of this approach for future work.

Regarding the third feature, reduction tasks, recent official releases of StarPU pro-
vide the REDUX access mode to data. In the available implementation of this feature,
every worker executing a task on a data provided with this access mode allocates, ini-
tializes and modifies a private copy of it; as soon as another task is submitted that
accesses the same data with a different access mode, the runtime system transpar-
ently creates tasks that perform a reduction to merge all the private copies into the
original one. This design choice might lead to an excessively high, and potentially un-
necessary, number of copies of the data; for example, in the case of the stationary-A

1The dynamic detection of collective communications is available in a separate branch nmad-coop-mcast
that, as of writing, is scheduled for merging into the master branch

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 E. Agullo et al.

(3D stationary-C) variant, for each Ci,j block, there can be as many copies as q (s)
times the number of workers per rank. Another shortcoming of the available StarPU
implementation of the REDUX access mode is that the reduction step is performed in
a sequential fashion, that is, all the copies are assembled into the original one se-
quentially, one after the other. This design maximizes parallelism but may lead to an
excessive memory consumption and time consuming reductions when the number of
workers is high. Therefore, we improved this feature in two ways. First, we imple-
mented the RANK REDUX access mode in StarPU; here, the number of temporary copies
is equal to the number of ranks participating in the reduction which means only one
private copy of the data is created per rank and, therefore, shared by all the workers
associated with the rank. Although, with this access mode, we do not take advantage
of associativity within a rank, we still use commutativity; this means that all the tasks
mapped on the same rank that access one data through this access mode can be exe-
cuted in any order. Second, we extended this implementation in such a way that the
reduction tree shape can be chosen (at run time) among multiple shapes; in all our
experiments (see section 5) a binary tree was used.

4.2. Handling the general case
The general matrix-matrix multiplication operation includes multiplications by the α
and β scalars and the possibility of transposing the A and B matrices as explained
in section 2.2. Additionally, in a completely general setting, the matrices may not
be aligned on the ranks grid and possibly they can be distributed over different,
non-overlapping, sets of ranks. Our work deals with implementing all the discussed
SUMMA variants and is not concerned with how to choose the most fit one to address
a choice of transposition operations, size of the matrices and the grid, etc.. This choice
is not any different from other libraries such as ScaLAPACK and is conveyed through
the stat argument in the pseudo-code of Figure 6.

4.2.1. Transposition and alignment. In MPI the scope of a collective communication is de-
fined by a (sub)communicator. This does not represent a problem in the case where
the A, B and C matrices have a conforming distribution over ranks and neither A
nor B must be transposed: all blocks of A (respectively, B) already belong to the row
(column) subcommunicators where the broadcasts happen in the stat-C SUMMA algo-
rithm (similar observations can be made for the stat-A and B algorithms). In the oppo-
site case, however, a block of A (respectively, B) might reside on a rank which does not
belong in the same row (column) subcommunicator as where the broadcast happens.
Handling this case requires additional communications and code, as it is the case, for
example, in ScaLAPACK. In our approach, though, handling misaligned distributions
and matrix transpositions does not require any special care because dynamic collec-
tives do not rely on the use of subcommunicators but are constructed on the fly for any
arbitrary set of ranks.

4.2.2. Scaling. Scaling by the α scalar does not require any special handling. Scaling
of the C matrix by the β scalar, instead, might be handled in such a way to achieve
better efficiency and parallelism. Let’s assume k = 2 in the pseudo-code of Figure 6;
this implies that each Ci,j block is concerned by the two tasks

task1 : Ci,j = αAi,1B1,j + βCi,j

task2 : Ci,j = αAi,2B1,2 + Ci,j

These two tasks, which can be computed using the BLAS GEMM routine, do not com-
mute because of the multiplication by β; this means that the second task can only be
performed after the first even if all the data it needs are already available on the com-
puting rank. In our implementation, the scaling by β is performed beforehand through

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Task-based parallel programming for scalable matrix product algorithms A:13

dedicated tasks:
task1 : Ci,j = βCi,j

task2 : Ci,j = αAi,1B1,j + Ci,j

task3 : Ci,j = αAi,2B1,2 + Ci,j

Here, the first task is relatively cheap and does not require communications and the
two other tasks are commutative; this allows for a faster start of computations on all
the ranks which might lead to significant performance improvements especially for
small size problems.

4.3. Scalability of the STF model
In STF, all the tasks must be created sequentially in order to ensure the dependencies
are correctly detected. Although this has some favorable implications (for example it
can be used to reliably control the memory consumption of a parallel execution [Agullo
et al. 2016]), because of this the STF model is commonly regarded as less scalable
than other task-based parallel programming models such as PTG, that is, less capable
of handling large workloads on large parallel systems. Nevertheless, with some care
in the programming and some appropriate techniques, it is possible to overcome this
limitation even for very large workloads and computers, as shown by the experimental
results in the next section.

4.3.1. DAG pruning. Our implementation employs a DAG pruning technique [Agullo
et al. 2017a] to prevent each rank from creating all the tasks in the DAG as in the
basic concurrent unrolling [YarKhan 2012] (see the discussion in section 2.1). Each
rank, instead, will create a part of the DAG containing only local tasks (i.e., the tasks
it has to execute), remote tasks that use data it owns and remote tasks that produce
data needed by local tasks to ensure that dependencies are correctly detected at a
global scale. In the case of the stat-C 2D SUMMA algorithm, for example this means
that a rank has to create a task only if it owns one of the three blocks involved from A,
B and C, respectively; in this case the local size of the DAG is (mnk)/P if the A, B and
C matrices are aligned over the ranks grid. As for the other variants, the same rule can
be applied but, additionally, a node involved in a reduction must insert all the tasks
that participate in it; this only implies a moderate increase in the local DAG generated
on each node. It must be noted that the above pruning rules are generic and can be
systematically applied to any algorithm regardless of its complexity. The effectiveness
of the pruning obviously depends on how well balanced is the distribution of data and
workload in the implemented algorithm.

4.3.2. Efficient submission of tasks. It must be noted that all the possible nesting orders
for the loops of Figure 6 will lead to equivalent DAGs where collective communications
and reductions are correctly detected and executed for all the presented variants. Nev-
ertheless, if the nesting order is appropriately chosen, it is possible to ensure some
properties of the execution that can be exploited, for example, to control the mem-
ory consumption (more on this will be said in section 5.2.3). For the stat-A, stat-B and
stat-C variants, the nesting order used in our implementation is, respectively, (n,m, k),
(m,n, k) and (k,m, n). Although it is still possible to implement the three variants in
a single code by using suitable iterators, this would inevitably render the code less
readable and, most importantly, the creation of tasks less efficient. Preliminary exper-
imental results revealed that the StarPU runtime system is particularly sensitive to
the efficiency of tasks creation and, for this reason, we decided to have three separate
codes for the stat-A, stat-B and stat-C algorithms and their 3D variants.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 E. Agullo et al.

5. EXPERIMENTS
In this section we report experimental results that aim at assessing the effectiveness
of the proposed approach. Parallel GEMM is an extremely important numerical kernel
and a subject that has been the object of numerous research works. As a result, many
different implementations exist in many software packages. Among the most recent
efforts, we can cite the work by Herault et al. [2019] where remarkable performance
is achieved on large, GPU-based systems, with a task-based parallel approach rely-
ing on the PaRSEC runtime system and its PTG programming model. An exhaustive
comparison with other software packages is out of the scope of this paper. Rather, the
main objective of this experimental analysis is to show that the proposed approach can
achieve performance that is on par with reference implementations, despite the use of
a very high level parallel programming model and the fact that most of the complex
work is delegated to a runtime system. For this reason we have chosen to compare with
libraries that either are well known references to which most other works compare, or
share some features with our approach; these are

— ScaLAPACK (version 2.0.2): this is the de facto standard in parallel dense linear
algebra. This library implements the stat-A, B and C 2D SUMMA algorithms using
MPI; shared memory parallelism is achieved through the use of multithreaded BLAS
routines.

— Elemental2: this library has been developed using the MPI+X approach but relies
on a carefully engineered abstraction layer that uses modern features of the C++
language. Codes for all the 2D stationary variants are implemented.

— Slate3: this recent effort has the objective of producing a ScaLAPACK replacement
for modern multicore and accelerator based supercomputers. It implements the stat-
A and C 2D SUMMA variants using a hybrid MPI+OpenMP approach and employs
a lookahead method to achieve better efficiency by overlapping communications and
computations.

— Chameleon4: this library provides parallel dense and data-sparse linear algebra sub-
routines using task-based parallelism through different runtime systems. It imple-
ments the pipelined stat-C 2D SUMMA algorithm using the baseline STF model (see
section 3.1); therefore, it does not make use of the extended features described in the
present work but, rather, communications are explicitly handled through data copies
into temporary matrices. It uses a lookahead mechanism to overlap computations
and communications. The runtime system chosen for our experiments is StarPU.

5.1. Experimental setup
Our experiments were run on two different partitions of the Joliot-Curie supercom-
puter of the French Très Grand Centre de Calcul (TGCC) supercomputing center:

— Skylake. A partition of 1, 656 nodes equipped with two Intel Skylake 8168 @ 2.7 GHz
processors, 24 cores each, and 192 GB of DDR4 memory. This partition uses an In-
finiband EDR interconnect with a pruned fat tree topology.

— Rome. A partition of 2, 292 nodes equipped with two AMD Rome (Epyc) @ 2.6 GHz, 64
cores each, and 256 GB of DDR4 memory. This partition uses an Infiniband HDR100
interconnect through a dragonfly topology using 5 cells. Each cell is interconnected
through a fat tree topology.

2commit 4abe4ef0 from https://github.com/LLNL/Elemental
3commit bb597ae4 from https://bitbucket.org/icl/slate
4commit 9825fbf1 from https://gitlab.inria.fr/solverstack/chameleon

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Task-based parallel programming for scalable matrix product algorithms A:15

On both computers and for all software packages we used the BLAS routines pro-
vided by the Intel MKL (version 21.3.0) library and the GNU (version 9.3.0) compil-
ers suite. OpenMPI (version 4.0.5) was used for ScaLAPACK, Elemental and Slate
whereas for qr mumps and Chameleon we use StarPU5 with the NewMadeleine com-
munication backend6 which, in the case of qr mumps, provides support for the dynamic
collective communications.

In order to ensure the fairness of the experimental comparison, we have tuned sev-
eral parameters as explained below. Due to the very high number of experiments we
have conducted, it was not possible to fully optimize all of these parameters simultane-
ously but our choices ensure that none of the tested packages was severely advantaged
or penalized with respect to others and that, for all of them, performance was close to
the optimum; this allows us to draw conclusions from the experiments below with good
confidence.

We have tuned the number of ranks per node and of threads per rank making sure
that all the available cores were used and that all the ranks and threads were correctly
placed on the resources. For Slate, Chameleon and qr mumps experiments were run
with one rank per node using as many threads/workers as the available cores. In the
case of ScaLAPACK multiple ranks (MPI processes) per node were used (24 and 64 for
Skylake and Rome, respectively) each using two threads as this configuration resulted
in the best performance. This is also the case of Elemental which uses 24 ranks per
node on Skylake (two threads per rank) and 32 ranks per node on Rome (four threads
per rank).

We have chosen to experiment with multiple block sizes in all the packages; this
parameter can be tuned to achieve a favorable trade-off between parallelism and ef-
ficiency of local computations. We have chosen to run all experiments using multiple
block sizes, namely, 256, 512 and 1024, and report the best results. Smaller and larger
block sizes were found to be suboptimal on all the tested configuration either because of
an excessively small granularity of computations or because of an insufficient amount
of parallelism.

For the Slate and Chameleon packages, the default lookahead depth of one was used;
higher values were not found to improve the performance.

For the qr mumps tests, because the GEMM routines are benchmarked alone and
not as part of a larger application, we enriched the DAG with artificial tasks to make
sure that the dynamic collective communications are correctly detected and the reduc-
tion operations entirely executed.

All the experiments are run using double precision real data; in the case of com-
plex matrices we expect to achieve better scalability because of the higher arithmetic
intensity.

Finally, multiple runs were executed for each experiment, including a warm-up run
which is not taken into account in the performance measurement; median performance
across these runs is reported in the following sections.

5.2. Experimental results
We have chosen 3 matrix problem types (m = n = k, m = n = 8k, m = 8n = k) and,
for each type, three sizes of increasing value. The range of sizes was chosen so as to
evaluate both strong and weak scalability and to evaluate performance on small as
well as large matrices which might be of interest for different classes of applications.
For each type and size we have conducted experiments using 16, 64 and 256 nodes (i.e.,
up to 12, 288 and 32, 768 cores on Skylake and Rome, respectively). For the 2D variants,

5commit 0afdaeb09 from https://gitlab.inria.fr/starpu/starpu
6commit fdec689ab from https://gitlab.inria.fr/pm2/pm2

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 E. Agullo et al.

Chameleon, Slate and qr mumps use square grids with (4 × 4, 8 × 8, 16 × 16) ranks,
one rank per node each using all the available cores; ScaLAPACK uses grids with
(24× 16, 48× 32, 96× 64) and (32× 32, 64× 64, 128× 128) ranks using two cores each
on Skylake and Rome, respectively. Elemental uses the same grids as ScaLAPACK on
Skylake; on Rome the grids are of size (32× 16), (64× 32), (128× 64). When using a 3D
variant in qr mumps, we used rank grids with 4 layers (4× 4× 4, 8× 8× 4) on 64 and
256 nodes.

5.2.1. Stationary-C. We have evaluated the effectiveness of the stat-C variant on two
different problems: the first one uses square matrices (m = n = k) and the second one
only keeps the C matrix square with A and B being smaller, i.e., (m = n = 8k). The
first problem is often used in the literature for comparing parallel GEMM algorithms
and implementations. In this case, where all matrices are of comparable size, all 2D
variants are likely to achieve comparable performance although the stat-C one can be
preferred due to its relative simplicity. The stat-C is still the best suited variant for the
second problem despite k being small. Although, in this case, a considerable amount of
parallelism might still be available when m and n are large, the latency to exchange
blocks of A and B is critical to achieve high execution speed because the number of
outer products is reduced.

For these problem types, we can observe in figures 7 and 8 that our method is com-
petitive with all the libraries: it obtains the best median across several configurations.
When it is not the most efficient method, our method is able to be on par with other
ones as it proves strongly scalable. This is likely due to the use of asynchronous col-
lective communications and the ability of the runtime system to take advantage of the
commutativity of the tasks that contribute to the same Cij block. Notably, our imple-
mentation is able to achieve over 500 Tflop/s on the largest size of the m = n = 8k
problem on the Rome partition, on par with Elemental.

For square matrices, we compared the 2D and 3D stat-C variants of qr mumps. The
2D variant is better than the 3D in all tests except on Rome for the smallest prob-
lem and largest grid. In this case the 3D variant achieves better performance than
the 2D one thanks to its ability to achieve better parallelism without using an exces-
sively small block size. This is not inconsistent with results presented in the literature
related to 3D matrix multiplication [Schatz et al. 2016; Georganas et al. 2012; Dem-
mel et al. 2012] because our approach heavily relies on multithreading for using the
cores of each node rather than message passing and employs non-blocking collective
communications which were not available in MPI at the time of those works.

5.2.2. Stationary-A. In order to evaluate the effectiveness of the stat-A variant, we have
chosen problems where the size of the A matrix is much larger than that of the B and
C ones, namely m = 8n = k with m = {65536, 131072, 262144}. For qr mumps and
Slate, the stat-A and stat-C routines are directly callable and, thus, we include results
for both of them; for Elemental we only report the stat-A variant; for ScaLAPACK
it is only possible to call the generic GEMM routine which, internally, chooses the
most appropriate variant (which ended up being stat-A for the chosen problem sizes);
Chameleon does not implement the stat-A algorithm so we have chosen not to report
the performance of this library on this problem type.

For this problem type, we can observe on Figure 9 that our method is significantly
better than most libraries – Elemental obtains results similar to ours on both parti-
tions. This is likely due to the use of non-blocking collective communications and the
runtime system leveraging commutativity of local tasks as well as the reduction pat-
terns.

Stat-A variants are significantly better than their stat-C counterparts especially on
small size problems and large size grids where the execution time is dominated by com-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Task-based parallel programming for scalable matrix product algorithms A:17

m = n = k = 32,768 m = n = k = 65,536 m = n = k = 131,072

S
ky

la
ke

R
o
m

e

2
5
6

 1
6

 6
4

2
5
6

 1
6

 6
4

2
5
6

 1
6

 6
4

 30

390

210

120

 60

 90

150
180

300

 20

500

 70

 40

 30

 50

200

100

300

400

of nodes

E
x
e
c
.

S
p

e
e
d

 (
T

fl
o

p
/s

)

Algorithm qr_mumps chameleon slate scalapack elemental
Stationary variant C 3D-C

Block size 256 512 1024

Fig. 7. Comparisons of ScaLAPACK, Elemental, Slate, Chameleon and qr mumps DGEMM on square ma-
trices (m = n = k) and an increasing number of nodes. Markers correspond to the best median across runs
using a given blocking for an algorithm.

munications. As the problem size increases, this difference is less remarkable because
there’s more opportunity for overlapping communications and computations.

5.2.3. Controlling the memory consumption. Task-based parallel runtime systems in gen-
eral, and StarPU in particular, commonly rely on an eager scheduling: as soon as a task
becomes ready, it is scheduled for execution. In the case of StarPU, this also concerns
communications because they are fulfilled by dedicated tasks which are automatically
and transparently created by the runtime system. When the GEMM routine is not
evaluated as part of a larger application where the matrices are produced by other
operations, all the communication tasks are immediately ready and scheduled for ex-
ecution and potentially all executed in the very early stages of the matrix product.
This has two effects. First it might cause an excessive memory consumption because
StarPU must allocate communication buffers for blocks that are received much earlier
than when they are actually used. Second, it may reduce performance because of the
high contention that it generates on the network.

StarPU does not currently offer a proper feature to control the execution of commu-
nication tasks. Nevertheless, it is possible to control the execution of communications
indirectly by delaying the submission of tasks. Note that this relies on a fundamen-
tal property of the STF programming model: tasks are created sequentially, that is, in

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 E. Agullo et al.

m = n = 8*k = 65,536 m = n = 8*k = 131,072 m = n = 8*k = 262,144

S
ky

la
ke

R
o
m

e

2
5
6

 1
6

 6
4

2
5
6

 1
6

 6
4

2
5
6

 1
6

 6
4

 20

400

 70

 40

 30

 50
 60

100

200

300

 30

500

 80

 50
 40

 60

200

100

300

400

of nodes

E
x
e
c
.

S
p

e
e
d

 (
T

fl
o

p
/s

)

Algorithm qr_mumps chameleon slate scalapack elemental
Stationary variant C

Block size 256 512 1024

Fig. 8. Comparisons of ScaLAPACK, Elemental, Slate, Chameleon and qr mumps DGEMM involving a
large C matrix (m = n = 8k) on an increasing number of nodes. Markers correspond to the best median
across runs using a given blocking for an algorithm.

exactly the same order in which the corresponding operations would be executed in a
sequential code. Based on this assumption it is possible to use a feature of StarPU that
allows one to cap the number of submitted tasks through a sliding window mechanism
(this feature is already discussed in related work by Agullo et al. [2017a]). This feature
provides two environment variables that can be used to define the maximum and min-
imum number of submitted tasks: when the maximum is reached, the tasks creation is
suspended (the task submission routine becomes blocking) and is resumed when, upon
execution of already created tasks, the number falls below the minimum. We used this
feature to implement a lookahead mechanism in our implementation. The maximum
is set to be the number of tasks in a prescribed number of iterations of the outer loop
of the product which, essentially, corresponds to the lookahead depth.

The results obtained with this approach on the stat-C variant are presented in Fig-
ure 10 (similar results were obtained on the stat-A one). This figure shows the max-
imum memory consumption over all ranks, including the initial A B and C matrices
(represented by the gray dotted line), with respect to performance for multiple values
of the lookahead depth compared to Slate and Chameleon (for which the default looka-
head of 1 was used). The figure clearly shows that when no memory control mechanism
is used in qr mumps (which corresponds to an infinite depth lookahead), the memory
consumption is excessively high and much higher than the other packages. When a

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Task-based parallel programming for scalable matrix product algorithms A:19

m = 8*n = k = 65,536 m = 8*n = k = 131,072 m = 8*n = k = 262,144

S
ky

la
ke

R
o
m

e

2
5
6

 1
6

 6
4

2
5
6

 1
6

 6
4

2
5
6

 1
6

 6
4

 10

400

 60

 30

 20

 40
 50

100
 80

200

300

 10

500

 60

 30

 20

 40

200

100

300
400

of nodes

E
x
e
c
.

S
p

e
e
d

 (
T

fl
o

p
/s

)

Algorithm qr_mumps slate scalapack elemental
Stationary variant C A
Block size 256 512 1024

Fig. 9. Comparisons of ScaLAPACK, Elemental, Slate and qr mumps DGEMM involving a large A matrix
(m = 8n = k) on an increasing number of nodes. Markers correspond to the best median across runs using
a given blocking for an algorithm.

fixed-depth lookahead is used, instead, not only the memory consumption becomes
comparable to that of Chameleon and Slate, but performance is improved thanks to a
reduced pressure on the communication layer.

This analysis suggests that the memory consumption could be reliably controlled
through an analogous feature that allows for capping the maximum size of communi-
cation buffers rather than the number of tasks. The sequential tasks submission order
will ensure that no deadlocking occurs provided that a sufficient amount of memory
can be used [Agullo et al. 2016]. We reserve the implementation and study of such a
feature for future work.

6. CONCLUSIONS AND FUTURE WORK
The main conclusion of this work is that it is possible to design state-of-the-art matrix
multiplication algorithms for distributed memory machines through a very compact
sequential-like code. The programmer can be relieved from the burden of writing low-
level complex communication schemes as it the case for instance with MPI-based codes
such as ScaLAPACK. This can be achieved through the use of advanced features of
the STF, task-based, parallel programming model. In this enhanced STF model we
have proposed, we have indeed shown that efficient communication patterns can be
effectively inferred from an appropriate choice of the mapping and data access modes.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 E. Agullo et al.

Initial distribution

of A, B and C

Initial distribution

of A, B and C

Initial distribution

of A, B and C

Initial distribution

of A, B and C

Initial distribution

of A, B and C

Initial distribution

of A, B and C

m=n=k=65,536 (total size : 96 GB)

6
4
 S

kyla
ke

 n
o
d
e
s

0
.0

0

0
.9

5

1
.9

1

2
.8

6

3
.8

1

4
.7

7

5
.7

2

6
.6

8

7
.6

3

8
.5

8

 0

 25

 50

 75

100

Max used mem. (one node, GB)

E
x
e
c
.

S
p

e
e
d

 (
T

fl
o

p
/s

)

Algorithm chameleon qr_mumps slate
Lookahead (# of outer products) 1 2 5 10 ∞

Fig. 10. Comparisons of Slate, Chameleon and qr mumps DGEMM on square matrices of size 65,536 using
64 nodes and a blocking of size 512. qr mumps uses different tasks window mechanisms.

We emphasize also that relying on this extended STF model, the scalabity is achieved
with moderate effort from the programmer’s point of view: The main philosophy of the
STF model (expressing parallel algorithms through a sequential submission process)
still holds in this distributed memory context. The second main conclusion is that, as
of 2022, the software ecosystem is mature enough to ensure that the resulting code
may be competitive against state-of-the-art, finely hand-tuned libraries.

We believe that these conclusions shall motivate the community to further consider
task-based programming models, and the STF one in particular, for designing scalable
algorithms, while ensuring an enhanced portability and maintenance. Efforts to ex-
tend the features of generic, i.e. not necessarly dedicated to numerical linear algebra,
runtimes can be beneficial to the community: improvements to such software lead to
improvements in the ecosystem of applications relying on it. On our side, we plan to
assess the suitability of the model proposed in this paper to design dense and sparse
direct methods.

While the performance results are already remarkable, we believe that the proposed
programming model still offers additional opportunities for further optimization. In-
deed, while state-of-the-art MPI-based libraries rely on communicators to ensure col-
lective communications, on the contrary, multiple collective communications can (be
inferred and) progress concurrently [Denis et al. 2020] in our model. In particular, a
careful study of their impact on state-of-the-art distributed memory matrix multipli-
cation algorithms remains to be conducted.

While we have shown that the memory footprint can be kept under control without
performance penalty (or even improving it), the employed technique – a sliding window
mechanism – has required some manual tuning regarding the window size. We plan to
make it automatic with respect to a prescribed memory footprint, similarly to [Agullo
et al. 2016].

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Task-based parallel programming for scalable matrix product algorithms A:21

7. ACKNOWLEDGMENTS
We wish to thank Nathalie Furmento, Olivier Aumage and Samuel Thibault of the In-
ria STORM team for helping us making the most out of the StarPU runtime system.
We also thank Alexandre Denis and Philippe Swartvagher for the help they provided
in using the NewMadeleine library and its dynamic collectives feature. Work carried
out as part of this paper used the PlaFRIM experimental testbed, supported by Inria,
CNRS (LABRI and IMB), Universit de Bordeaux, Bordeaux INP and Conseil Rgional
dAquitaine (see https://www.plafrim.fr). This work was granted access to the HPC re-
sources of TGCC under the allocation 2021-5063 made by GENCI. This work was sup-
ported by the SOLHARIS project (ANR19-CE46-0009) which is operated by the French
National Research Agency (ANR).

REFERENCES

Ramesh C Agarwal, Susanne M Balle, Fred G Gustavson, Mahesh Joshi, and Prasad
Palkar. 1995. A three- dimensional approach to parallel matrix multiplication. IBM
Journal of Research and Development 39, 5 (1995), 575–582. http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.120.4575&rep=rep1&type=pdf

Ramesh C. Agarwal, Fred G. Gustavson, and Mohammad Zubair. 1994. A High-
Performance Matrix-Multiplication Algorithm on a Distributed-Memory Parallel
Computer, Using Overlapped Communication. IBM J. Res. Dev. 38, 6 (Nov. 1994),
673681. DOI:http://dx.doi.org/10.1147/rd.386.0673

Emmanuel Agullo, Olivier Aumage, Mathieu Faverge, Nathalie Furmento, Flo-
rent Pruvost, Marc Sergent, and Samuel Thibault. 2017a. Achieving high
performance on supercomputers with a sequential task-based programming
model. IEEE Transactions on Parallel and Distributed Systems (2017).
DOI:http://dx.doi.org/10.1109/TPDS.2017.2766064

Emmanuel Agullo, George Bosilca, Alfredo Buttari, Abdou Guermouche, and Florent
Lopez. 2017b. Exploiting a Parametrized Task Graph Model for the Paralleliza-
tion of a Sparse Direct Multifrontal Solver. In Euro-Par 2016: Parallel Processing
Workshops: Euro-Par 2016 International Workshops, Grenoble, France, August 24-
26, 2016, Revised Selected Papers, Frédéric Desprez, Pierre-François Dutot, Chris-
tos Kaklamanis, Loris Marchal, Korbinian Molitorisz, Laura Ricci, Vittorio Scarano,
Miguel A. Vega-Rodrı́guez, Ana Lucia Varbanescu, Sascha Hunold, Stephen L. Scott,
Stefan Lankes, and Josef Weidendorfer (Eds.). Springer International Publishing,
Cham, 175–186. DOI:http://dx.doi.org/10.1007/978-3-319-58943-5 14

Emmanuel Agullo, Alfredo Buttari, Abdou Guermouche, and Florent Lopez. 2016. Im-
plementing Multifrontal Sparse Solvers for Multicore Architectures with Sequential
Task Flow Runtime Systems. ACM Trans. Math. Softw. 43, 2, Article 13 (Aug. 2016),
22 pages. DOI:http://dx.doi.org/10.1145/2898348

Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien
Langou, Hatem Ltaief, Piotr Luszczek, and Stanimire Tomov. 2009. Numerical lin-
ear algebra on emerging architectures: The PLASMA and MAGMA projects. Journal
of Physics: Conference Series 180, 1 (2009), 012037. http://stacks.iop.org/1742-6596/
180/i=1/a=012037

Patrick R. Amestoy, Iain S. Duff, Jako Koster, and Jean-Yves L’Excellent. 2001. A Fully
Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling. SIAM J.
Matrix Anal. Appl. 23, 1 (2001), 15–41.

Cleve Ashcraft. 1993. The Fan-Both Family of Column-Based Distributed Cholesky
Factorization Algorithms. In Graph Theory and Sparse Matrix Computation, Alan
George, John R. Gilbert, and Joseph W. H. Liu (Eds.). Springer New York, New York,
NY, 159–190.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 E. Agullo et al.

Cedric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. 2011. StarPU: A Unified Platform for Task Scheduling on Heteroge-
neous Multicore Architectures. Concurrency and Computation: Practice and
Experience, Special Issue: Euro-Par 2009 23 (Feb. 2011), 187–198. Issue 2.
DOI:http://dx.doi.org/10.1002/cpe.1631

Grey Ballard, James Demmel, Olga Holtz, and Oded Schwartz. 2011. Minimizing Com-
munication in Numerical Linear Algebra. SIAM J. Matrix Anal. Appl. 32, 3 (2011),
866–901. DOI:http://dx.doi.org/10.1137/090769156

L. Susan Blackford, Jaeyoung Choi, Andrew J. Cleary, Eduardo F. D’Azevedo, James
Demmel, Inderjit S. Dhillon, Jack J. Dongarra, Sven Hammarling, Greg Henry, An-
toine Petitet, Ken Stanley, David W. Walker, and R. Clinton Whaley. 1997. ScaLA-
PACK: A Linear Algebra Library for Message-Passing Computers. In Proceedings of
the Eighth SIAM Conference on Parallel Processing for Scientific Computing, PPSC
1997, Hyatt Regency Minneapolis on Nicollel Mall Hotel, Minneapolis, Minnesota,
USA, March 14-17, 1997. SIAM.

George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas
Hérault, and Jack J. Dongarra. 2013. PaRSEC: Exploiting Heterogeneity to En-
hance Scalability. Computing in Science and Engineering 15, 6 (2013), 36–45.
DOI:http://dx.doi.org/10.1109/MCSE.2013.98

Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. 2009. A class of
parallel tiled linear algebra algorithms for multicore architectures. Parallel Comput.
35 (January 2009), 38–53. Issue 1. DOI:http://dx.doi.org/10.1016/j.parco.2008.10.002

Lynn Elliot Cannon. 1969. A Cellular Computer to Implement the Kalman Filter Algo-
rithm. Ph.D. Dissertation. Montana State University, USA. AAI7010025.

James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou. 2012.
Communication-optimal Parallel and Sequential QR and LU Factorizations. SIAM
J. Sci. Comput. 34, 1 (Feb. 2012), 206–239. http://dx.doi.org/10.1137/080731992

Alexandre Denis, Emmanuel Jeannot, Philippe Swartvagher, and Samuel Thibault.
2020. Using Dynamic Broadcasts to Improve Task-Based Runtime Performances. In
Euro-Par 2020: Parallel Processing, Maciej Malawski and Krzysztof Rzadca (Eds.).
Springer International Publishing, Cham, 443–457.

Evangelos Georganas, Jorge Gonzalez-Dominguez, Edgar Solomonik, Yili Zheng, Juan
Tourino, and Katherine Yelick. 2012. Communication avoiding and overlapping
for numerical linear algebra. In SC ’12: Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Analysis. 1–11.
DOI:http://dx.doi.org/10.1109/SC.2012.32

Thomas Herault, Yves Robert, George Bosilca, and Jack Dongarra. 2019. Generic
Matrix Multiplication for Multi-GPU Accelerated Distributed-Memory Platforms
over PaRSEC. In ScalA 2019 - IEEE/ACM 10th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems. IEEE, Denver, United States, 33–41.
DOI:http://dx.doi.org/10.1109/ScalA49573.2019.00010

Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. 2021. Taskflow: A
Lightweight Parallel and Heterogeneous Task Graph Computing System. IEEE
Transactions on Parallel and Distributed Systems (2021), 1–1.

Francisco D. Igual, Gregorio Quintana-Ortı́, and Robert A. van de Geijn. 2013.
Scheduling algorithmsbyblocks on small clusters. Concurrency and computation :
practice and experience. 25, 3 (2013), 367–384.

Dror Irony, Sivan Toledo, and Alexander Tiskin. 2004. Communication lower bounds
for distributed-memory matrix multiplication. J. Parallel and Distrib. Comput. 64,
9 (2004), 1017–1026. DOI:http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2004.03.021

Jungwon Kim, Seyong Lee, Beau Johnston, and Jeffrey S. Vetter. 2021. IRIS: A
Portable Runtime System Exploiting Multiple Heterogeneous Programming Sys-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

Task-based parallel programming for scalable matrix product algorithms A:23

tems. In Proceedings of HPEC’21. 1–8.
Josep M. Perez, Vicen Beltran, Jesus Labarta, and Eduard Ayguad. 2017. Improving

the Integration of Task Nesting and Dependencies in OpenMP. In Procceeding of
IPDPS’17. 809–818.

Gregorio Quintana-Ortı́, Enrique S. Quintana-Ortı́, Robert A. Van De Geijn, Field
G. Van Zee, and Ernie Chan. 2009. Programming matrix algorithms-by-blocks for
thread-level parallelism. ACM Trans. Math. Softw. 36, 3 (2009).

Piyush Sao, Xiaoye S. Li, and Richard Vuduc. 2019. A communication-
avoiding 3D algorithm for sparse LU factorization on heterogeneous
systems. J. Parallel and Distrib. Comput. 131 (2019), 218–234.
DOI:http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2019.03.004

Martin D. Schatz, Robert A. van de Geijn, and Jack Poulson. 2016. Parallel matrix
multiplication: a systematic journey. SIAM Journal on Scientific Computing 38, 6
(2016), 748–781. http://www.cs.utexas.edu/users/flame/pubs/2D3DFinal.pdf

Edgar Solomonik and James Demmel. 2011. Communication-optimal Parallel 2.5D
Matrix Multiplication and LU Factorization Algorithms. In Proceedings of the
17th International Conference on Parallel Processing - Volume Part II (Euro-
Par’11). Springer-Verlag, Berlin, Heidelberg, 90–109. http://dl.acm.org/citation.cfm?
id=2033408.2033420

Robert van de Geijn and Jerrell Watts. 1997. SUMMA: scalable universal matrix
multiplication algorithm. CONCURRENCY: PRACTICE AND EXPERIENCE 9, 4
(1997), 255–274. http://www.netlib.org/lapack/lawnspdf/lawn96.pdf

Robert A. van de Geijn. 1997. Using PLAPACK - parallel linear algebra package. MIT
Press.

Asim YarKhan. 2012. Dynamic task execution on shared and distributed memory ar-
chitectures. Ph.D. Dissertation.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

