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Determining the spatial distribution 
of environmental and socio-economic 
suitability for human leptospirosis in the face 
of limited epidemiological data
Maximiliano A. Cristaldi1*, Thibault Catry2, Auréa Pottier2, Vincent Herbreteau2, Emmanuel Roux2,3,4, 
Paulina Jacob5,6 and M. Andrea Previtali1,7*   

Abstract 

Background: Leptospirosis is among the leading zoonotic causes of morbidity and mortality worldwide. Knowledge 
about spatial patterns of diseases and their underlying processes have the potential to guide intervention efforts. 
However, leptospirosis is often an underreported and misdiagnosed disease and consequently, spatial patterns of the 
disease remain unclear. In the absence of accurate epidemiological data in the urban agglomeration of Santa Fe, we 
used a knowledge-based index and cluster analysis to identify spatial patterns of environmental and socioeconomic 
suitability for the disease and potential underlying processes that shape them.

Methods: We geocoded human leptospirosis cases derived from the Argentinian surveillance system during the 
period 2010 to 2019. Environmental and socioeconomic databases were obtained from satellite images and publicly 
available platforms on the web. Two sets of human leptospirosis determinants were considered according to the level 
of their support by the literature and expert knowledge. We used the Zonation algorithm to build a knowledge-based 
index and a clustering approach to identify distinct potential sets of determinants. Spatial similarity and correlations 
between index, clusters, and incidence rates were evaluated.

Results: We were able to geocode 56.36% of the human leptospirosis cases reported in the national epidemiological 
database. The knowledge-based index showed the suitability for human leptospirosis in the UA Santa Fe increased 
from downtown areas of the largest cities towards peri-urban and suburban areas. Cluster analysis revealed down-
town areas were characterized by higher levels of socioeconomic conditions. Peri-urban and suburban areas encom-
passed two clusters which differed in terms of environmental determinants. The highest incidence rates overlapped 
areas with the highest suitability scores, the strength of association was low though (CSc r = 0.21, P < 0.001 and ESc 
r = 0.19, P < 0.001).

Conclusions: We present a method to analyze the environmental and socioeconomic suitability for human lepto-
spirosis based on literature and expert knowledge. The methodology can be thought as an evolutive and perfectible 
scheme as more studies are performed in the area and novel information regarding determinants of the disease 
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Background
Leptospirosis is a disease caused by a bacterium of the 
genus Leptospira and is among the leading zoonotic 
causes of morbidity and mortality worldwide [1]. 
Although humans can be exposed directly or indirectly 
to pathogenic leptospires, indirect transmission through 
contact with an environment contaminated with the bac-
teria is the most frequent human exposure route [2, 3]. 
Since the transmission dynamics of leptospires depends 
on interactions between human beings, reservoirs 
(mainly mammals), and the environment, human infec-
tions are strongly associated with ecological and local 
socioeconomic determinants [4, 5]. Higher incidence is 
reported in tropical, humid, and temperate regions, espe-
cially during the warmer and wetter months [3, 4]. Heavy 
rainfall and flooding often trigger leptospirosis out-
breaks by increasing human contact with animal hosts, 
contaminated water, and mud [4, 5]. Leptospirosis com-
monly occurs in rural areas affecting the most marginal-
ized populations such as rural subsistence farmers [5, 6]. 
However, leptospirosis outbreaks are now increasingly 
reported in urban slums of developing countries where 
infection is often associated with inadequate sanitation 
and poverty [4]. Leptospirosis has significant health and 
economic consequences for affected patients and coun-
tries [7, 8]. Prevention and early case detection and 
treatment are critical for reducing the number of severe 
cases and deaths due to leptospirosis [9, 10]. Therefore, 
it is important to enhance the implementation of public 
health interventions in order to reduce the incidence of 
the disease.

In public health, decision-makers often have to allo-
cate limited intervention resources in such a way as to 
slow down the outbreak of diseases and minimize their 
impacts (e.g. [11]). Knowledge about spatial patterns of 
diseases and their underlying processes have the poten-
tial to guide intervention efforts (e.g. [12]). In recent 
years, a growing number of studies using spatial analyti-
cal tools have been carried out, aiming at developing pre-
dictive maps of leptospirosis incidence to assist health 
authorities and policymakers to identify high-risk areas 
where prevention and surveillance measures should be 
strengthened (for a review, see [13]). Most of these stud-
ies have applied data-driven methods using leptospiro-
sis notification data obtained from passive surveillance 
[13]. Data-driven methods require accurate and detailed 

epidemiological databases [14]. These methods should 
be applied to areas in which surveillance activities have 
effective coverage and the epidemiological database 
consists of a representative sample of the distribution 
of a disease. However, leptospirosis is often considered 
as an underreported and misdiagnosed disease even in 
endemic areas [3, 15]. The lack of data in many regions 
may make the estimation of its actual incidence and the 
identification of its determinants difficult to address 
adequately.

The assessment of the environmental and socioeco-
nomic suitability (hereafter “suitability”) for human lep-
tospirosis offers an alternative way to identify spatial 
patterns of the disease in areas where epidemiological 
data may be biased. While not a predictive approach, the 
suitability analysis can synthesize social and biophysical 
information to describe different conditions which may 
lead to the occurrence of the disease [16]. Spatial pat-
terns of suitable conditions for the occurrence of infec-
tious diseases have been previously assessed using a 
wide range of analytical tools (e.g. [17, 18]). Particularly, 
knowledge-based index and cluster analysis may provide 
complementary information about spatial patterns of the 
suitability for human leptospirosis. A knowledge-based 
index consists of the aggregation of a set of observable 
or hypothesized determinants of an event (in our case, 
the occurrence of leptospirosis) into a scalar variable by 
means of weighting criteria [19]. A knowledge-based 
index may be useful to rank sites according to the suit-
ability for the occurrence of human leptospirosis. Since 
suitability cannot be observed directly, the main purpose 
of an index is to define suitability from variables that can 
be measured directly [19]. Consequently, it makes a theo-
retical concept operational since it aggregates real-world 
information into a format that is relevant and useful for 
decision-making [20]. However, similar levels of suitabil-
ity may result from different environmental and socioec-
onomic conditions. Given that different combinations of 
determinants may imply distinct underlying processes for 
human leptospirosis, this information may be relevant for 
specific interventions planning. Cluster-based approach 
may provide insights about this topic. Cluster analysis has 
been previously used to identify homogeneous group-
ings or profiles in a wide variety of socio-ecological sys-
tems and these profiles have been considered as distinct 
socio-economic and environmental conditions in which 

become available. Our approach can be a valuable tool for decision-makers since it can serve as a baseline to plan 
intervention measures.

Keywords: Spatial epidemiology, Underreported misdiagnosed diseases, Environmental conditions, Socioeconomic 
groups, Knowledge-based index, Cluster analysis
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different local mechanisms or processes may take place 
(e.g. [21]). In this sense, cluster analyses keep individual 
determinants discernable, as they are not merged into 
one final value, as typically occurs in the construction of 
an index. Cluster methods, however, do not automati-
cally generate a profile hierarchy [22]. Hence, the knowl-
edge-based index will reveal a suitability gradient for 
human leptospirosis while cluster analysis will contribute 
to identify distinct sets of determinants that may shape 
the suitability across a socio-ecological system [21, 22]. 
Finally, knowledge about the multiple determinants of 
the disease is required when both approaches are applied. 
There have been a large number of contributions regard-
ing environmental and socio-economic determinants of 
human leptospirosis incidence around the world (e.g. [4, 
5, 23]). Therefore, the application of both approaches to 
assess spatial patterns of suitability for human leptospi-
rosis seems a feasible alternative to data-driven methods 
in areas where the representativeness of epidemiological 
databases is questionable.

The capital city of the province of Santa Fe (Argentina) 
is the core city of an urban agglomeration prone to suffer 

floods due to river overflow, heavy rains, or the combina-
tion of both. It exhibits an urban structure pattern typical 
of Latin American metropolises [24], with marginalized 
social groups located at the periphery and more afflu-
ent groups at the center of the largest cities. In addition, 
Ricardo et al. [25] found that there was a high proportion 
of people that inhabited riverside communities in the 
region with risky practices for leptospirosis and scarce 
knowledge about the disease. Finally, biases in national 
epidemiological databases have been previously reported 
[26, 27]. Therefore, our aims were twofold: (1) to identify 
the spatial distribution of the suitability for human lep-
tospirosis and (2) to find distinct combinations of deter-
minants that may lead to the occurrence of the disease 
across the urban agglomeration of Santa Fe.

Material and methods
Study area
Our study area is composed of the following localities: 
the cities of Santa Fe, Santo Tomé, Recreo, San José del 
Rincón and two townships, Monte Vera and Arroyo 
Leyes (Fig.  1). We called our study area “the urban 

Fig. 1 The urban agglomeration of Santa Fe. A Political boundaries of Argentina and its provinces are shown in black. The area of the province of 
Santa Fe is shown in red. B The political boundaries of the Santa Fe province are shown in black and the study area with a red squared. C The urban 
agglomeration of Santa Fe (UA of Santa Fe): the city of Santa Fe (blue boundaries), the city of Santo Tomé (pink), the city of San José del Rincón 
(orange), the city of Recreo (yellow), the township of Monte Vera (green), the township of Arroyo Leyes (red)
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agglomeration of Santa Fe” (UA Santa Fe) [33]. The UA 
Santa Fe (31° 38ʹ 0ʺ S, 60° 42ʹ 0ʺ W) covers an approxi-
mate area of 705 sq. km and the population size is over 
493,043 people [28]. The weather is temperate with a 
mean daily temperature of about 19.5  °C and approxi-
mate annual rainfall of 990.4  mm [29]. The topography 
is flat. The UA Santa Fe is crossed by the Salado River at 
the west and by the Paraná floodplain at the east (includ-
ing the Colastiné River and Setúbal lagoon) (Fig. 1). The 
predominant vegetation types in the area are character-
ized by the confluence of the Paranaense (Interior Atlan-
tic Forest) and Espinal phytogeographic provinces. The 
vegetation is strongly influenced by the floodplain of the 
Paraná River, which is composed of subtropical wet forest 
and gallery forest and different types of flooded savan-
nahs and wetlands (rivers, streams, ponds and estuaries) 
[30, 31].

Santa Fe and Santo Tomé are the most densely built 
localities with the largest population size of the UA. In 
contrast, other UA localities present the highest rate of 
demographic growth and green spaces are composed 
of both planted and spontaneous vegetation [32]. The 
advantaged socioeconomic groups are mainly settled in 
downtown areas while the disadvantaged socioeconomic 
groups are mainly at the periphery of the cities of Santa 
Fe and Santo Tomé [33]. In the other localities, socioeco-
nomic groups are not spatially segregated [33]. Therefore, 
all localities except the cities of Santa Fe and Santo Tomé 
were considered as suburban areas [34].

Data source and collection
The epidemiological database was composed of both con-
firmed and probable human leptospirosis cases reported 

in the UA Santa Fe during the period 2010–2019 [35]. All 
records came from the National epidemiological surveil-
lance system (SIVILA, Sistema de Vigilancia Laborato-
rial de Argentina). We geocoded the residential address 
of patients using the Google Geocoding API through 
Google Map. We aggregated probable and confirmed 
cases of human leptospirosis by census tracts and calcu-
lated the incidence of the disease based on the population 
reported for each census tract (Table  1). Environmen-
tal and socio-economic data were collected from differ-
ent publicly available sources (Table  1). We calculated 
the Euclidean distance to open channels using the ras-
ter package [36] from R 2.8.1 version [37]. All variables 
were interpolated at a pixel size of 200 m since previous 
studies have found association patterns between human 
leptospirosis and socio-environmental determinants at 
similar spatial resolutions [38, 39].

We rescaled variables using the formulas:
Xir =

Xi−min(Xi)
max(Xi)−min(Xi)

 , if the suitability increases with 
the variable values;
Xir = 1−

Xi−min(Xi)
max(Xi)−min(Xi)

 , if the suitability decreases 
with the variable values.

Xi being the raw ith determinant and min and max 
being the minimum and the maximum functions, respec-
tively. As a consequence, each rescaled determinant 
ranges from 0 (lowest suitability score) to 1 (highest suit-
ability score).

Land cover classification
The land cover classification of UA Santa Fe was pro-
duced using Sentinel-1 RADAR satellite images and 
Sentinel-2 optical satellite images, freely provided by the 
Copernicus Program from the European Space Agency 

Table 1 Data format, source and the interpolation method used for databases

References: (1) Demographic data: Number of inhabitants by census tract for the year 2010, (2) Socioeconomic data: Proportion of housings at the level of census 
tract: (a) without latrine, (b) without piped water supply, (c) without solid roof and/or with bare floor, (d) with the head of household with a high school diploma or 
above (tertiary and university degree) for the year 2010, (3) Land cover types: low vegetation, high vegetation, permanent and non-permanent water bodies and 
impervious surfaces, (4) https:// pobla ciones. org/, (5) https:// www. santa fe. gob. ar/ idesf/ portal, and (6) https:// www. ign. gob. ar/

Database Data description Source Spatial interpolation

Demographic  data1 Vector data. Census tracts represented by 
polygons

“Population”  platform4 Area-weighting approach [114]

Socio-economic  data2 Vector data. Census tracts represented by 
polygons

“Populations”  platform4 Area-weighting approach [114]

Open channels Vector data. Open channels represented by lines Infrastructure of Spatial Data of the 
Province of Santa Fe  website5

Euclidean distance

Elevation Raster data. Digital Elevation Model (DEM) with 
5 m resolution

National Geographic Institute  website6 Minimum value of cells aggregated

Vegetation coverage Raster data. Mean Normalized Difference Vegeta-
tion Index (NDVI) for the year 2018 with 5 m 
resolution

Sentinel 2 images Bilinear method

Land cover  types3 Raster data. Land cover raster for the year 2018 
with 10 m resolution

Sentinel-1 and Sentinel-2 images

https://poblaciones.org/
https://www.santafe.gob.ar/idesf/portal
https://www.ign.gob.ar/
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(ESA). 30 Sentinel-1 images at Ground Range Detected 
(GRD) level and 71 Sentinel-2 level 1A images, from 
January 2018 to December 2018, were downloaded on 
the ESA Copernicus Open Access Hub [40]. Sentinel-2 
images were processed at level-2A using Sen2Cor from 
ESA to produce Normalized Difference Vegetation Index 
(NDVI) at each date.

Pre-processing of Sentinel-1 data was done using the 
Sentinel Application Platform (SNAP) developed by 
ESA following the usual steps to process Sentinel-1 GRD 
products: apply orbit file, subset to the study area, ther-
mal noise removal, border noise removal, radiometric 
calibration, orthorectification and conversion to decibel 
(dB) [41]. Atmospheric corrections and cloud masking 
of Sentinel-2 data were performed using the MAJA pro-
cessor developed by CNES, CESBIO and DLR [42, 43]. 
A pixel-based classification using S1 and S2 time-series 
was then performed to produce a land cover map of five 
classes: low vegetation, high vegetation, permanent and 
non-permanent water bodies and impervious surfaces 
[44–46] (Table 1).

Based on the land cover classification previously cre-
ated, we used the raster [36] and landscape metrics [47] 
packages from R [37] to generate the following environ-
mental and landscape heterogeneity determinants of 
human leptospirosis at a pixel size of 200 m: the distance 
to waterbodies, the proportion of waterbodies, high veg-
etation, low vegetation and impervious (built-up) surface, 
the number of patches, the edge density and the Shannon 
diversity (Table 1).

The conceptual framework
We considered two scenarios: a Conservative one (CSc), 
which considers only determinants whose association 
with leptospirosis is widely supported by the literature 
and expert knowledge, and an Explorative one (ESc) 
which also includes determinants that have rarely been 
investigated. Therefore, our conceptual framework was 
based on the following assumptions:

The Conservative scenario (CSc)
Precarious living conditions such as lack of adequate 
housing, clothing, food and basic services (piped water, 
sewage and garbage collection) promote environmen-
tal contamination, the thriving of rodents, and exposure 
to the bacteria [39, 48]. On the other hand, education 
enhances the likelihood of using preventive practices 
[25, 39]. Therefore, the higher the level of precarious liv-
ing conditions and the lower the access to education, the 
greater the suitability for human leptospirosis.

Leptospirosis infection risk is inversely associated 
with terrain elevation given that the contact with water 
and humid soil is more likely in lower terrains [39, 49]. 

Consequently, the lower the elevation, the higher the 
suitability for human leptospirosis.

Human leptospirosis incidence is generally associated 
to areas with abundant water bodies, such as lakes, or in 
proximity to a river [50, 51]. Studies have reported that 
the presence of a river adjacent to human settlement 
increased the risk of leptospirosis [52, 53]. The nearer to 
and the greater proportion of water bodies, the higher 
the suitability for human leptospirosis. On the other 
hand, the proximity of households to open drainage sys-
tems and direct contact with sewage, flooding water and 
runoff have been associated with increased risk of infec-
tion [54–58]. The nearer to open urban channels, the 
higher the suitability for the disease.

The Explorative scenario (ESc)
The abundance of many rodent species is positively influ-
enced by vegetation cover as it provides food and shelter 
to these animals [59, 60]. High density of rodents could 
boost leptospires shedding into the environment as well 
as increase the risk of transmission among reservoir ani-
mals [61]. On the other hand, greater vegetation cover is 
associated with increased humidity, lower ambient tem-
peratures and solar radiation, all of which can enhance 
the persistence of free-living stages of Leptospira spp. 
[62–64]. Therefore, the association between the suitabil-
ity for human leptospirosis and vegetation coverage was 
considered positive.

In urban environments, infected synanthropic rodents 
will be found in areas covered by a mix of buildings and 
spontaneous and/or cultivated green spaces, increasing 
the transmission of Leptospira spp. Additionally, urban 
green spaces will provide shaded areas, puddles, moist 
soils, and lower temperatures than those sectors where 
pavement and buildings predominate. We assumed that 
the suitability for human leptospirosis is positively asso-
ciated to landscape heterogeneity and negatively associ-
ated to built-up areas.

In urban environments, infected animals were mainly 
found in areas covered by a mix of buildings and spon-
taneous and/or cultivated green spaces [65, 66]. The 
dominance of synanthropic rodents and the relatively 
high abundance that they can reach in those heteroge-
neous areas is likely to result in greater transmission of 
Leptospira spp. [66]. Increasing landscape heterogeneity 
in human settlements may favor leptospiral infection in 
synanthropic rodent species [65, 66]. On the other hand, 
agricultural areas may be suitable environments for the 
bacteria because of greater vegetation cover, humidity 
and wet soils [62, 64, 67]. Instead, urban environments 
may be heterogeneous in terms of environmental suita-
bility since leptospiral survival would be favored in green 
spaces that provide shaded areas, puddles, moist soils, 
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and lower temperatures than those sectors where pave-
ment and buildings predominate [62, 68–71]. Therefore, 
the association between human leptospirosis and land-
scape heterogeneity determinants was considered posi-
tive. In contrast, the association between the suitability 
and the percentage coverage of built-up areas was con-
sidered negative.

Assessment of multi‑collinearity
In order to assess information redundancy in the dataset, 
we used the Variance Inflation Factor (VIF) and Pearson 
correlation coefficient (r) between determinants [72]. All 
determinants with a VIF < 5 and a r < 0.8 were considered 
for further analyses. We used a stepwise procedure: we 
calculated VIF for each determinant and excluded the 
one with the highest VIF (greater than the threshold). 
Then, we repeated the procedure until no determinant 
with VIF > 5 remained [73]. Finally, we calculated the 
pairwise Pearson coefficient to check if all the remaining 
determinants were not correlated.

Knowledge‑based index
To combine human leptospirosis determinant layers 
based on the spatial distribution of the suitability defined 
above we used the Zonation algorithm [74]. This algo-
rithm takes into account the spatial distribution of fea-
tures in the landscape associated with the occurrence of 
leptospirosis to determine the priority value of an area. 
It starts from the full landscape, and then iteratively dis-
cards locations (grid cells) of lowest priority value from 
the edge of the remaining area, thus maintaining a high 
degree of structural connectivity [74]. Consequently, 
this allows the identification of a nested sequence of 
aggregated landscape structures with locations of high-
est priority value remaining until the last iteration. In 
health care systems, nested zoning may be an interesting 
approach for guiding geographically-prioritized limited 
resource allocation during the decision-making process 
[75].

One of the approaches that Zonation uses for defining 
the importance of locations is the benefit function [76]. 
In the additive benefit function the value of a priority 
area is given by the sum over feature-specific values of 
representation in the landscape [76]. Since we assumed 
that the most suitable areas are those where multiple 
determinants for the occurrence of human leptospiro-
sis presented the highest values [4], we used Zonation’s 
additive benefit function to generate a suitability gradient 
ranging from 0 to 1 [76]. The lowest suitability score does 
not mean protective socio-environmental conditions 
since low values may be caused by features whose highest 
values occur in feature-poor regions (cells with the low-
est values for many features in them) [76].

Feature weighting allows Zonation to maintain a bal-
ance among features in the outcomes of the analyses. In 
CSc all determinants were assumed to have equal impor-
tance (i.e., weight Wi = 1 for each determinant Xi

r) given 
the lack of information on the relative importance of 
determinants [77]. In the ESc, we considered a greater 
number of environmental determinants than socio-eco-
nomic ones. The group with the largest number of deter-
minants may have the greatest influence on Zonation 
outcomes. In order to avoid unequal aggregate weights 
based on different number of determinants within each 
group, we assigned the same aggregate weight (Wi = 6) to 
each group of determinants and rescaled the weights of 
determinants within each group to sum up to the aggre-
gate weight [78].

Cluster analysis
We identified areas with distinct socio-environmental 
characteristics (here referred to as ‘suitability profiles’) 
across the UA Santa Fe by means of the following steps. 
We first applied a principal component analysis (PCA) on 
the determinants for both the conservative and explora-
tive scenarios [79]. We considered the first five principal 
components (PCs) which represented about 85% of the 
cumulated data variance. Thus, we removed random fluc-
tuations which generally constitute the bulk of the vari-
ance retained in the last axes (non-systematic variations 
contained in the data) [80]. This improves clustering by 
producing more homogeneous classes [80]. We then 
used hierarchical and partitioning (k-means) algorithms 
to the PCs [79]. Hierarchical clustering assigns sites 
into groups based on the similarity between them using 
Ward’s minimum variance criterion to minimize the total 
within-cluster variance. However, the partition obtained 
is not always optimal because of the structure of nested 
partitions in the obtained dendrogram. On the other 
hand, while the k-means algorithm efficiently partitions 
the data into k groups, its outcome is sensitive to ini-
tialization. Therefore, we used the hierarchical algorithm 
(Ward’s method) to define the initial conditions (i.e., the 
cluster barycenter) for the k-means [81]. We performed 
cluster analysis using the databases of both scenarios. We 
set the optimal number of clusters to three in both sce-
narios, as it was estimated by most of the 30 indices listed 
in Charrad et al. [82].

Comparison between both scenarios: CSc and ESc
To compare the suitability gradients from the knowledge-
based index, we used the Pearson correlation coefficient 
and the Fuzzy Inference System (FIS) [83]. The evalu-
ation of the spatial similarities between both scenarios 
with the Pearson correlation coefficient is based on a cell-
by-cell comparison. However, a cell-by-cell comparison 
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may register a disagreement between cells even when the 
overall spatial patterns are essentially the same [83]. The 
FIS comparison algorithm offers an alternative approach. 
It compares the characteristics of polygons rather than 
cells found in both maps [83]. The characteristics that are 
taken into account in this evaluation are area of intersec-
tion, area of disagreement and size of polygon [83]. We 
reclassified suitability gradients into 5 bins (0, 0.25, 0.5, 
0.75, 0.9, 1) and implemented the FIS comparison algo-
rithm available at Map Comparison Kit [83]. The value 
for similarity ranges from 0 to 1, with 0 corresponding to 
two completely dissimilar maps and 1 to maps with com-
pletely matching cells. We considered a similarity thresh-
old of 0.55 [84]. We applied a correspondence analysis to 
compare the suitability profiles obtained from the cluster 
analysis.

Comparison between the spatial distribution 
of the suitability for human leptospirosis 
and the distribution of incidence of the disease
We assessed the level of agreement between the spatial 
distribution of the suitability for human leptospirosis and 
the distribution of the incidence of the disease in the UA 
of Santa Fe given that it can be considered as an indica-
tive measure of the strength by which environmental 
and socioeconomic conditions influence the occurrence 
of the disease [18, 85]. We applied the Pearson correla-
tion coefficient to compare suitability scores from the 
knowledge-based index and the incidence of the disease. 
We compared the distribution of leptospirosis incidence 
between clusters using non-parametric Kruskal–Wallis 
and Wilcoxon tests. All analyses were performed using 
the free Statistical software R 2.8.1 version [37].

Results
Epidemiological and socio‑environmental databases
In the UA Santa Fe, a total of 291 human leptospiro-
sis cases were reported for the period 2010–2019 by 
the SIVILA: 92 confirmed cases and 199 probable cases 
(31.6% and 68.4%, respectively). Most records came from 
the city of Santa Fe (233 records, 80.1%). Based on the 
quality of locality descriptions, we were able to geocode 
164 records (56.36%): 44 confirmed cases and 120 prob-
able cases.

We removed the proportion of housings with bare floor 
from both, CSc and ESc scenarios, and proportion of low 
vegetation, NDVI and edge density from ESc scenario 
because of a VIF > 5 (Table 2).

Knowledge‑based index
We found an increasing suitability gradient for the 
occurrence of human leptospirosis from downtown 
areas of the cities of Santa Fe and Santo Tomé towards 

peri-urban and suburban areas (Fig.  2). Suitability gra-
dients obtained from both scenarios, CSc and ESc, were 
positively correlated (r = 0.55, P-value < 0.001). Addition-
ally, we obtained a low degree of similarity between both 
scenarios according to the Fuzzy Inference System (Fuzzy 
global matching = 0.44). Greater differences in suitability 
scores between both scenarios were observed at the city 
of Santo Tomé and suburban areas of the UA (Fig. 3).

Cluster analysis
We did not find significant differences between socio-
environmental profiles from both scenarios. The clus-
ter 1 (CSc1 and ESc1) mainly included downtown areas 
of Santa Fe and Santo Tomé, while cluster 2 (CSc2 and 
ESc2) and cluster 3 (CSc3 and ESc3) overlapped periph-
eral and suburban areas of the UA Santa Fe (Fig. 4). In the 
CSc, cluster 2 mainly overlapped suburban areas while 
cluster 3, peripheral areas of the Santa Fe city (Fig.  4a). 
In contrast, cluster 3 included suburban areas in the ESc 
(Fig.  4b). Clusters were distributed along the first and 
second PC (Fig.  5). According to the first PC, cluster 1 
(CSc1 and ESc1) was characterized by higher levels of 
education and better housing conditions than cluster 2 
(CSc2 and ESc2) and cluster 3 (CSc3 and ESc3) (Fig. 5). 
According to the second PC, cluster 2 (CSc2 and ESc2) 
and cluster 3 (CSc3 and ESc3) presented different envi-
ronmental conditions suitable for human leptospirosis 
(Fig.  5). Differences in the geographic space of clusters 
between both scenarios were mainly presented in cluster 
2 and cluster 3 (Fig. 6).

Table 2 Variance Inflation Factor (VIF) and Pearson coefficient (R) 
for human leptospirosis determinants in both the Conservative 
and Explorative scenarios (Csc and Esc, respectively)

* Proportion of housings without indoor water supply, solid roof or latrine
+ Proportion of housings with the head of household with a high school 
education or more

Determinants Csc Esc

VIF R VIF R

Indoor water supply* 1.46 0.43 2.27 − 0.66

Solid roof* 3.01 − 0.74 3.56 − 0.75

Latrine* 2.69 − 0.73 2.84 − 0.75

High school or  more+ 3.74 − 0.74 3.94 − 0.75

Elevation 1.68 − 0.49 1.7 − 0.47

Distance to channel 1.14 0.26 1.15 0.27

Distance to water bodies 1.45 0.47 1.47 0.45

Proportion of water bodies 1.4 − 0.49 1.81 − 0.45

Proportion of high vegetation – – 1.91 − 0.39

Proportion of built-up surface – – 3.1 − 0.66

Number of patches – – 2.32 0.63

Shannon diversity – – 2.64 0.63



Page 8 of 19Cristaldi et al. Infectious Diseases of Poverty           (2022) 11:86 

Comparison between the spatial distribution 
of the suitability for human leptospirosis 
and the distribution of incidence of the disease
We obtained the highest incidence rates in subur-
ban and peri-urban areas where environmental and 

socioeconomic suitable conditions for human lepto-
spirosis predominate. Knowledge-based index predic-
tions for both scenarios returned significant (P < 0.001) 
positive Pearson correlation coefficients when con-
sidering all incidence (CSc r = 0.21, P < 0.001 and ESc 

Fig. 2 The gradient of the environmental and socioeconomic suitability (hereafter “suitability”) for human leptospirosis across the urban 
agglomeration of Santa Fe. A The suitability for human leptospirosis according to the Conservative scenario. B The suitability for the human 
leptospirosis according to the Explorative scenario
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r = 0.19, P < 0.001) and non-null incidence values (CSc 
r = 0.35, P < 0.001 and ESc r = 0.26, P < 0.001) (Additional 
file  1a–d). The highest incidence rates of leptospirosis 
cases overlapped CSc2 and CSc3 (Wilcoxon test: CSc1–
CSc2, P < 0.001; CSc1–CSc3, P < 0.001; CSc2–CSc3, 
P = 0.7415) (Additional file 1e) and ESc3 (Wilcoxon test: 
ESc1–ESc2, P = 0.69; ESc1–ESc3, P < 0.001; ESc2–ESc3, 
P < 0.001) (Additional file 1f ). We obtained high overlap-
ping between the distributions of incidence in all clusters 
(> 50%) for both scenarios and consequently, statistical 
differences are due to the presence of outliers (Additional 
file 1e, f ).

Discussion
We used a comprehensive approach based on reliable 
bibliographic information and expert knowledge in order 
to contribute to the territorial representation of the suit-
ability for human leptospirosis in an urban agglomeration 
where the representativeness of epidemiological data-
bases was questionable. Our results indicated that the 
suitability for the disease is spatially heterogeneous in 
the UA of Santa Fe, being more suitable towards subur-
ban areas of the urban agglomeration. The identification 
of distinct profiles through the cluster analysis helped 
to understand this spatial heterogeneity in the suitabil-
ity since it provided a different set of possible drivers 
for the occurrence of the disease across the UA Santa 
Fe. The usage of different scenarios based on different 

assumptions about leptospirosis determinants did not 
lead to significant differences in the spatial arrangement 
of the suitability for the disease. In contrast, we observed 
some spatial mismatches in peripheral and suburban 
areas. Therefore, the methodology is a useful tool for the 
spatial representation of the suitability from human lep-
tospirosis determinants widely supported by the litera-
ture and can be thought as an evolutive and perfectible 
scheme as more studies are performed in the area and 
novel information regarding these or other determinants 
become available. Our approach can be a valuable tool 
for decision-makers since it can serve as a baseline to 
plan preventive measures and to monitor human lepto-
spirosis determinants.

Knowledge about association patterns between the 
occurrence of infectious diseases and environmental 
and socio-economic drivers enables the construction of 
suitability gradients for the occurrence of those diseases 
[13]. Our knowledge-based index identified high levels 
of suitability for human leptospirosis in peripheral areas 
of Santa Fe and Santo Tomé and suburban areas of the 
UA. This spatial pattern agrees with the Socio-economic 
Residential Segregation reported in previous studies 
for the region [33]. The downtown areas and their sur-
roundings in the cities of Santo Tomé and Santa Fe are 
equipped with better infrastructure and inhabited by 
advantaged socioeconomic groups while peripheral areas 
of these cities and suburban areas of the UA include 

Fig. 3 The Fuzzy Inference System comparison between the environmental and socio-economic suitability for human leptospirosis obtained from 
both the Conservative and Explorative scenarios
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self-construction or informal and state planned neigh-
borhoods with few or without public services, mainly 
inhabited by disadvantaged socioeconomic groups [33]. 

This spatial pattern of suitability may have derived from 
various economic, social, and demographic processes. 
Two main urbanization processes can be recognized 

Fig. 4 Aggregation of sites according to environmental and socio-economic determinants for human leptospirosis obtained from the cluster 
analysis and both the Conservative (a) and Explorative (b) scenarios
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Fig. 5 Biplot of environmental and socioeconomic determinants of human leptospirosis and sites of the Urban Agglomaration of Santa Fe (UA of 
Santa Fe) based on a Principal Component Analysis. Sites of the UA of Santa Fe are represented by points. Determinants for human leptospirosis are 
represented by arrows. Arrow orientation represent the direction of the steepest increase of the determinant. Arrow length indicates the relative 
importance of determinants in the model, the angle between arrows and axes indicates the degree of correlation between them. Socioeconomic 
determinants: Proportion of housings without indoor water supply (“indoor_water_sp”), solid roof (“roof”), latrine (“latrine”), and with the head of 
household with a high school education or more (“high_sch_more”). Environmental determinants: elevation (“elevation”), distance to channel (“dist_
to_channel”), water bodies (“dist_to_wb”), proportion of water bodies (“prop_wb”), high vegetation (“high_veg”), impervious (built-up) surface, 
number of patches (“patches”) and Shannon diversity (“shan_div”)
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in the UA Santa Fe [86]: middle income settlements 
close to industries and the center of the cities of Santa 
Fe and Santo Tomé during a stage of industrial devel-
opment (mainly during the 1950s–1970s); and infor-
mal impoverished settlements in low topography areas 
(beginning in the 1970s–1980s) and nowadays exposed 
to flooding and close to dumps and landfills. As social 
and spatial inequalities in housing, health, education, or 
financial resources were settled, new ecological niches 
for leptospirosis may have emerged [87, 88]. Addition-
ally, the highest population growth rates were reported at 
the suburb of the UA Santa Fe in the last two censuses 
(2001–2010) [24, 32]. The inadequate land use planning 
policies and infrastructure provision in rapidly growing 
and expanding settlements could create the conditions 
for future outbreaks of leptospirosis [87, 89]. Therefore, 
knowledge about social processes that shape these spatial 
patterns may help to understand, predict, prevent and 
control the emergence of suitable conditions for human 
leptospirosis.

Leptospirosis is commonly reported in urban settings 
where both socioeconomic and environmental suitable 
conditions coexist (e.g. [39]). We identified two profiles 
of suitability (cluster 2 and 3) characterized by both envi-
ronmental and socioeconomic determinants that over-
lapped areas with the highest suitability scores according 
to the knowledge-based index. Differences between these 
profiles were based mainly on environmental determi-
nants. However, this result should be interpreted with 
caution as two limitations have to be considered. First, 
although CSc2 and ESc2 included sites with a lower pro-
portion and greater distance to water bodies and a higher 
elevation than CSc3 and ESc3, these sites are still prone 
to being flooded mainly during extraordinarily large 

floods of the Salado and Paraná rivers (see [90, 91]). Even 
the center of Santa Fe is prone to being flooded during 
the largest overflows of the rivers [90]. Despite of envi-
ronmental differences reported in our results, the inci-
dence of human leptospirosis may rise and be more 
widespread after a flood event involving areas that are at 
higher elevation and far away from the water bodies [92, 
93]. Second, we could not find differences based on soci-
oeconomic determinants, but different socioeconomic 
groups can still be found. CSc2 and ESc2 encompassed 
small farms and horticultural lands settled in peripheral 
areas of Santo Tomé and Santa Fe [91, 94]. In contrast, 
CSc3 and ESc3 encompassed riverside communities set-
tled mainly in the periphery of Santa Fe and suburban 
areas in the east. These riverside communities are prone 
to being flooded and characterized by precarious houses 
intermixed with patches of spontaneous vegetation and 
small dump sites [25] (pers. obs.). Many of the residents 
of these communities work in the informal market as 
subsistence fishermen, hunters or farmers and have sev-
eral domestic animals non vaccinated against leptospiro-
sis [25] (pers. obs.). Therefore, the heterogeneity of these 
suitable conditions for human leptospirosis found in 
suburban areas should be taken into account in order to 
guide prevention and control actions.

Although the two scenarios evaluated did not differ 
significantly in the spatial arrangement of the suitabil-
ity for the disease, we found some spatial mismatches at 
intermediate levels of suitability. For instance, CSc1 
overlapped suburban areas at the east characterized by 
the presence of first and second households belonging 
to groups with medium–high income [32]. In contrast, 
these areas were assigned to clusters ESc2 and ESc3 when 
environmental and landscape heterogeneity determi-
nants were considered in the ESc. These areas are char-
acterized by a lower density of human settlements which 
are surrounded by patches of introduced and spontane-
ous vegetation, water bodies and unpaved streets [24]. In 
addition, middle-high income groups often settle in sub-
urban areas to enjoy nature and practice outdoor activi-
ties such as water sports, fishing among others [32, 95]. 
These practices along with environmental conditions 
may increase the probability of exposure to pathogenic 
leptospires [6]. Therefore, despite of the presence of 
advantaged socioeconomic groups, suitable conditions 
for human leptospirosis may still occur.

The low degree of agreement between the suitability 
scores and suitability profiles for human leptospirosis and 
the incidence of the disease in the UA Santa Fe for both 
scenarios was expected for the following reasons:

1. Suitable conditions do not necessarily imply the 
occurrence of human leptospirosis

Fig. 6 Correspondence biplot of clusters (“suitability profiles”) from 
both the Conservative and Explorative scenarios for the Urban 
Agglomeration of Santa Fe. Blue circles correspond to clusters from 
the Conservative scenario (Csc). Red triangles represent clusters 
from the Explorative scenario (Esc). Clusters of each scenario are 
differentiated with a number added as a suffix (1, 2 and 3)
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 Estimates of suitability were based only on environ-
mental and socioeconomic drivers while other fac-
tors may influence the incidence of the disease [96]. 
Two previous studies conducted in Santa Fe and sub-
urban areas at the east of the UA, Vanasco et al. [97] 
and Ricardo et al. [98], found high prevalence of anti-
Leptospira antibodies in rodent species at sites with 
different environmental and socioeconomic settings. 
In our suitability gradient for human leptospirosis, 
even the lowest suitability scores overlapped areas 
where high seroprevalence was found in rodents. 
In this sense, rodent species may contribute to the 
circulation of the bacteria across the UA Santa Fe, 
but it may not be enough to shape the occurrence 
of human infections [25]. Future studies are neces-
sary to assess this hypothesis in the region. On the 
other hand, chemoprophylaxis campaigns are com-
monly used to prevent leptospirosis outbreaks in 
populations affected by floods in endemic areas [9]. 
According to López et al. [92], a stronger preventive 
campaign, including chemoprophylaxis, may explain 
the lower incidence of leptospirosis observed during 
the flood of 2015–2016 with respect to the flood of 
2009–2010 that affected the region. This campaign 
not only may have led to an attenuation of the out-
break but also may explain changes in spatial patterns 
of the disease [92].

2. Inherent problems in the epidemiological data collec-
tion methods

 The national epidemiological database lacks relevant 
information about the disease. First, information 
about transmission pathways is lacking. Thus, we 
could not differentiate whether leptospirosis cases 
were due to direct contact with animals or environ-
mental exposure. However, biases based on transmis-
sion pathways may be negligible since in Argentina, 
the main risk factor for leptospirosis is persistent 
contact with flooded environments [26]. Second, it is 
possible that locations where infection took place are 
different from where the disease case was reported. 
In the national epidemiological database, most of 
human leptospirosis records that include informa-
tion on the patient’s home address do not have infor-
mation on whether the patient indicates a different 
locality for where exposure may have occurred. This 
is particularly a problem for analyses performed 
with a spatial resolution that includes housings and 
its surroundings such as the one conducted in the 
present study [96]. Third, the low level of complete-
ness in the locality description is also problematic. 
We were unable to assign geographic coordinates to 
almost half of the cases since many locality descrip-
tions included only the name of the city or the type of 

environment (rural or urban). Depending on the spa-
tial scale considered, this missing information could 
greatly affect the performance of the analyses. The 
current level of completeness of the database was suf-
ficient for exploratory analyses conducted previously 
in the region that provided some insights on associa-
tion patterns between the dynamics of human lepto-
spirosis and socioeconomic and environmental driv-
ers at larger spatial scales [26, 92]. However, greater 
data quality would enable more in-depth studies that 
can provide better descriptions of the risk groups 
or areas to help guide allocation of health resources 
[99]. In Argentina, the surveillance system was modi-
fied in 2019, linking the patient health data to the 
National Registry of Persons (Renaper) database, 
thereby improving the completeness of the database.

3. The weighting criteria applied to the leptospirosis 
determinants

 Finally, differences between leptospirosis incidence 
and the spatial distribution of the suitability may be 
due to the weighting criteria applied for leptospirosis 
determinants. The choice of the aggregation method 
influences the results, making the aggregation criteria 
a subjective decision in both the index construction 
and clustering process. Different weighting criteria 
have been proposed to avoid biases due to the choice 
of aggregation criteria used [100, 101]. Therefore, 
future work could explore the outcomes obtained by 
applying different weighting criteria. However, we 
think that the spatial distribution of the suitability for 
human leptospirosis presented here is robust based 
on our careful and thorough determinant selection 
procedure, on the usage of different scenarios and on 
the clustering approach employed in this study.

Strengthening the health system in order to enhance 
its capacity regarding prevention, surveillance and con-
trol actions has been proved to be useful to reduce the 
frequency of epidemics [102]. However, resources are 
often limited and consequently, resource allocation is a 
central part of the decision-making process in health care 
systems [75]. Our findings may contribute to allocate 
limited funds available for health system since the spa-
tial distribution of the suitability for human leptospirosis 
was obtained. By means of a nested ranking approach, we 
identified areas where greater efforts would be required 
to reduce the occurrence of leptospirosis outbreaks given 
that most determinants supported by the scientific litera-
ture coexist.

Some considerations must be taken into account 
to improve the spatial arrangement of the obtained 
suitability:
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(i) Additional environmental and socioeconomic 
determinants supported by the literature could be 
explored, such as the presence of formal and infor-
mal garbage dumps, the proportion of empty prop-
erties, the proportion of the population engaged in 
freshwater fishing, collecting and processing solid 
waste, horticulture, among others [4, 5]. However, 
this information is often not available, mainly in the 
developing world, as it is the case for our study area. 
Thus, the consideration of additional socio-envi-
ronmental determinants would require conducting 
additional fieldwork to collect relevant data.

(ii) Suitability scores may vary over time given that var-
iable spatio-temporal patterns of human leptospiro-
sis incidence have been widely reported (e.g. [103, 
104]). In Argentina, the highest incidence rates of 
human leptospirosis were recorded in seasons with 
warm and moderate temperatures (summer and 
autumn) [26, 92, 105]. These outbreaks occurred 
during the weeks of heavy rainfall or 1 to 2 weeks 
after the onset of such climatic conditions or fol-
lowing floods [92]. Moreover, many mammal spe-
cies can act as reservoirs for Leptospira spp. [106]. 
In addition, infection prevalence by Leptospira spp. 
has been found to be higher in wildlife occupy-
ing urban habitats than natural environments, and 
this trend appears to be particularly significant for 
rodents [106]. In the region, several rodent species 
such as Rattus norvegicus, R. rattus and Mus mus-
culus have been recorded in urban environments 
[60, 97]. This can lead to regular human exposure 
to these species and their excreta. Despite risks 
posed by urban rodent infestation, the distribution, 
prevalence, diversity and dynamics of Leptospira 
spp. infections in urban rodent populations remains 
largely unknown, affecting the ability of local 
authorities to develop effective intervention strat-
egies. Therefore, temporal variations in the spatial 
configuration of water bodies, rates of rainfall, the 
spatial distribution of animal reservoirs and rodent 
activity could be assessed as human leptospiro-
sis determinants to evaluate changes in the spatial 
arrangement of the suitability across the time [92, 
103, 107].

(iii) Human groups have often promoted or limited 
the spread of infectious diseases through cultur-
ally coded patterns of behavior, modes of produc-
tion and changing social relationships which led to 
changes in relationships among infectious disease 
agents, their human and animal hosts, and the envi-
ronment in which the interaction takes place [108]. 
As we stated above, the observed suitability gradi-
ent may have been the result of socio-demographic, 

cultural and economic processes that occurred in 
the UA Santa Fe over time, mainly during the last 
decades [32, 86]. Additionally, the higher growth 
rate in suburban localities with respect to the larg-
est cities of the UA Santa Fe may lead to changes in 
the current urban structure and distribution of the 
population [32], and probably, on the spatial distri-
bution of the suitability for the disease. Future stud-
ies should analyze the effect of the economic, social 
and political dynamics on the occurrence of human 
leptospirosis in the region in order to understand, 
prevent or control the ultimate causes of the disease 
[109].

(iv) The Modifiable Areal Unit Problem (MAUP) should 
be explored whenever possible. The MAUP is com-
posed of two separate but closely related problems. 
First, the spatial scale determines the range of pat-
terns and processes that can be detected on a land-
scape, and consequently researchers must be aware 
of the uncertainties associated with changes in spa-
tial scales (“the scale problem”) [110]. In this study 
we described suitable conditions for the human lep-
tospirosis in terms of environmental and socioeco-
nomic determinants at a neighborhood-level (hous-
ings and their surroundings). We considered this to 
be an appropriate spatial scale since previous stud-
ies found significant associations between incidence 
of the disease and its determinants at similar scales 
[38, 39, 111]. However, since spatial patterns of the 
disease are scale dependent (e.g. [111]), future stud-
ies should consider different spatial scales to obtain 
a more exhaustive description of suitable conditions 
for the occurrence of human leptospirosis in the 
UA Santa Fe. The second one, the aggregation prob-
lem, refers to variation in spatial pattern and pro-
cesses due to the use of alternative combinations of 
areal units at equal or similar scales [110]. Socio-
economic variables are often obtained from census 
data that are aggregated over arbitrary areal units. 
In such circumstances, researchers have no control 
over how variable aggregations are made and/or 
how those areal units are determined [112]. If the 
results are sensitive to change in boundaries, cau-
tion should be exercised when interpreting appar-
ent associations between environmental exposures 
and health effects [113]. Although we cannot dis-
entangle the spatial distribution of socioeconomic 
databases from that associated with arbitrary aggre-
gations, we think that these databases are still use-
ful according to our objectives. In previous studies, 
spatial patterns of processes such as social vulner-
ability, vulnerability to natural disasters, quality 
of life, accessibility to green spaces, among others, 
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were analyzed using the same source of socioeco-
nomic data that we applied in this work [114–117].

(v) During the construction process of an index and 
clustering, uncertainty and sensitivity analysis 
should be also performed whenever possible [118, 
119]. Uncertainty analysis is performed to investi-
gate variations in the index and clustering outputs 
that are generated from uncertainty in parameter 
inputs [118]. Sensitivity analysis follows uncertainty 
analysis as it assesses how variations in the index 
and clustering outputs can be apportioned, quali-
tatively or quantitatively, to different input sources 
[118]. Therefore, uncertainty and sensitivity analy-
ses offer a way to assess the adequacy of index and 
clustering and establish what factors affect their 
outputs [120]. Uncertainty will arise from all of the 
arbitrary choices performed in each step during 
the construction process of an index and cluster-
ing. These choices are mainly made based on both 
statistical procedure, such as the standardization 
of data, and alternative epidemiological hypothesis 
[118]. Regarding statistical procedures, research-
ers should compare our approach with alternative 
statistical procedure in order to assess their impact 
on the spatial patterns of the disease (e.g. [118]). On 
the other hand, uncertainty will also arise whenever 
alternative hypotheses emerge. For instance, one of 
the most important sources of uncertainty is the 
selection of the determinants that are aggregated 
according to competing hypothesis (e.g. [121]). In 
our study, the similarity of knowledge-based index 
and clustering outputs between the Conservative 
and Explorative scenarios indicated minor effects 
of additional human leptospirosis determinants to 
those widely supported by the scientific literature. 
This suggest that variables in the Conservative sce-
nario may be among the most important determi-
nants of the spatial arrangement of the suitability 
of human leptospirosis in the UA of Santa Fe. We 
expect new findings may still arise when compar-
ing alternative models that combine and integrate 
the determinants of the disease considered here and 
others in different ways. Therefore, we consider our 
approach as an informative tool for an initial assess-
ment of spatial patterns of the human leptospirosis 
in the UA of Santa Fe that can be updated as novel 
information regarding the underlying processes of 
the disease become available. However, sensitivity 
analyses are still lacking and assessing and com-
paring the effect of different sources of uncertainty 
based on alternative hypothesis and not only statis-
tical procedure will also shed light on the knowl-
edge of the disease, and consequently, may impact 

on the spatial arrangement of the suitability of the 
disease in the region.

Finally, it is important to note that suitability maps help 
to decide where to act but do not provide insights on the 
specific interventions needed there. A multi-sectorial 
and multi-stakeholder exchange is required to set pri-
orities among prevention, surveillance and control meas-
ures and allocate resources across the region to reduce 
disease incidence and improve response capacity to lep-
tospirosis outbreaks [122, 123]. It is crucial that the com-
munities are engaged in a participatory manner and are 
supported to undertake healthy village initiatives, in ways 
that respect cultural values, traditions, and local govern-
ance structures [124].

Conclusions
We presented a method to analyze the spatial hetero-
geneity of the suitability for the occurrence of human 
leptospirosis that is particularly useful in areas where 
high-quality epidemiological data are lacking. Our 
approach can be more broadly used to explore the spa-
tial distribution of the suitability for the occurrence 
of infectious diseases caused by parasites that have a 
free-living stage. The spatial distribution of the suitabil-
ity obtained in this study is not intended to be inter-
preted as definitive, instead, they should be considered 
as estimates based on the available evidence, and the 
scientists’ interpretation of that evidence. Although we 
used environmental and socio-economic determinants 
widely supported by the literature and expert knowl-
edge, using this approach with alternative determi-
nants would provide further insights. Using this novel 
and integrative approach and the available information 
for the UA Santa Fe, we obtained a suitability map for 
the occurrence of human leptospirosis with clear and 
robust patterns. The identification of a limited num-
ber of distinct suitability profiles by the cluster analysis 
complemented our knowledge-based index approach 
and enabled us to distinguish potential underlying pro-
cesses that shape the suitability for the disease. As the 
current spatial distribution of the suitability may have 
been shaped by social processes that took place in the 
past, the recent higher growth rate in suburban areas 
of the urban agglomeration may change the underlying 
processes that shape the suitability for leptospiral expo-
sure. Therefore, our approach may contribute to analyze 
these changes in the future. Our methodology can be 
extended with the use of alternative scenarios or pro-
jected data (e.g., land use change or population density 
projections) to better understand potential changes in 
the spatial distribution of the suitability for the disease. 
The resulting insights suggest that prevention strategies 
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efforts should be spatially heterogeneous across the UA 
Santa Fe. Our results may help to prioritize areas and 
social groups and hence, guide the allocation of limited 
health resources more appropriately. This is an impor-
tant step towards developing methods that can help to 
reduce the incidence of the disease mainly in develop-
ing countries that are the most affected by the burden 
of leptospirosis and that generally lack high-quality 
surveillance data.
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