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Summary. In this paper, we present an h-adaptive Discontinuous Galerkin (DGM) formula-
tion of the shallow water equations. For a DGM scheme using polynomials up to order p, the
discretization error of the DGM can be shown to be of the order of hp+1. It can be shown by
rigorous error analysis that the DGM discretization error can be related to the amplitude of
the inter-element jumps. Therefore we use the information contained in jumps to build error
metrics and size field. Some results are presented for ocean modeling problems. A first experi-
ment shows that the theoretical convergence rate is reached with the DGM high-order h-adaptive
method applied to the classical Stommel model. A second experiment shows the propagation of
an anticyclonic eddy in the realistic domain of the Gulf of Mexico.

1 Introduction

The Discontinuous Galerkin Method (DGM) has become a very attractive method especially
for advection-dominated problems [10, 1, 4]. The main advantage being its flexibility in terms
of mesh and shape function while maintaining compactness of the stencil for efficient parallel
implementation. Recent advances coming from the integration-free version of the formulation
[17, 2], allow to enhance the efficiency of the DGM. The quadrature free implementation is
especially useful at high polynomials orders. The DGM has been recently applied to solve
shallow-water problem [6, 7]. In our work, we aim to develop circulation model where the
geometry, often based on topographic data, is complex enough to justify the shift from traditional
ocean modeling cartesian grid model to unstructured meshes[13]. We believe that the DGM is
a good candidate for unstructured ocean simulation. In ocean modeling, important dynamics
features like eddies have to be followed in time and solved accurately. Dynamic mesh adaptation
strategies that follow those structures have great potential in the field of Ocean modeling.
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Recent applications [3, 5, 11, 9] show that those technologies are mature enough to tackle
difficult problems. The computational overhead of modifying the mesh is insignificant compare to
the overall gain in computation time. Starting from a fast implementation of the DGM, originally
developed to solve aero-acoustic propagation problem [8], we first discuss the implementation
of the shallow-water equations, in particular the choice of a good Riemann solver. After a brief
description of the mesh-adaptation package, MeshAdapt developed at SCOREC1 [19, 16], we
detail the coupling between the DGM code and MeshAdapt. We then provide some preliminary
validations of the methods by solving the classical Stommel-Problem, before turning to an
idealized simulation of an anticyclonic eddy in the Gulf of Mexico.

2 Discontinuous Galerkin Method for shallow water equations

It’s only recently that the DGM has been applied to the shallow water equations (SWEs)
[21, 12]. These equations have been used for many years for solving a huge range of problems,
such as atmospheric, oceanic, dam breaking or river flow problems [22].

2.1 Shallow water equations

The SWEs describe the flow of a thin layer of incompressible fluid, under the influence of a
gravitational force. Those equations are derived from the Navier-Stokes equations by integration
over the depth of the fluid layer H = h+η, where h is the bathymetry and η the relative surface
elevation measured from a reference height (figure (1) ). The bottom and the surface of the
ocean are impermeable, which gives the two boundary conditions required for integration.
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h

Figure 1: Shallow Water notations for water depth H with a time-independent bathymetry h (Courtesy
of Laurent White)

The two-dimensional, inviscid, conservative form of the SWEs reads :

∂H

∂t
+∇ · (Hv) = 0 (1)

∂Hv

∂t
+∇ · (Hvv) + gH∇η + fez ×Hv = −γHv +

τ

ρ
(2)

1SCOREC, Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY
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where t is time, f is the Coriolis parameter, v is the depth-averaged velocity, g is the gravita-
tional acceleration, γHv and τ

ρ are the bottom and surface stresses, respectively.

Interesting simplifications can be done to the above equations in order to obtain the Stommel
model, which possesses an analytical solution. If non linear transport terms can be neglected,
with a constant bathymetry and the beta plane approximation in the non conservative form of
the SWEs, we obtain the Stommel equations :

∂η

∂t
+∇ · (hv) = 0 (3)

∂v

∂t
+ g∇η + (f0 + β0y)ez × v = −γv +

τ

hρ
(4)

The free surface allows propagation of gravity waves at speed c =
√
gH, just like the sound

waves in acoustic problems. If the water depth is large enough, this involves the resolution of
two different phenomenons : the propagation of gravity waves and the movement of the fluid,
typically ten to a hundred times slower in ocean applications.

2.2 Discontinuous Galerkin Method applied to SWEs

The difference between the DGM and classical FEMs is that the solution is approximated in
each element separately. Two neighboring elements in continuous FEM share a common node,
which allows information transfer between them. In DGM, all the nodes lie in their respective
element, so that the jumps at interfaces are the only way to generate information transfer across
boundaries, by creating fluxes between elements. Jumps clearly contain interesting information,
in particular an estimation for the error which will be useful in adaptive developments.

The problem can be expressed as follows without loss of generality. We seek to determine
the vector of unknowns U(Ω, t) : <2 × <2 → L2(Ω)m = V (Ω) as the solution of a system of
conservation laws :

∂U

∂t
+∇ · F(U) = S (5)

where F is the flux matrix and S is the vector containing the source terms.
In order to obtain a Galerkin form of (5), we can multiply equation (5) by a test function
w ∈ V (Ω) and integrate over Ω :

< w
∂U

∂t
> + < ∇ · F(U)w >=< Sw > (6)

with the following operators definitions : < · >=
∫

Ω ·dΩ and � · �=
∫
∂Ω ·dS.

The divergence theorem can be used to obtain the following variational formulation :

< w
∂U

∂t
> − < F(U) · ∇w > +� F(U) · nw�=< Sw > (7)
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The simplified Stommel equations lead to the following expressions for U and F :

U =



η
u
v


 F(U) =



hu hv
gη 0
0 gη


 (8)

The discrete solution Uh is completely discontinuous between elements. Information can thus
only propagate through fluxes between adjacent elements. But the values of Uh at the discon-
tinuities ∂Ω are not well defined. Those values and the corresponding fluxes can be expressed
as the approximate solution of a Riemann problem [15].

The general form equation (5) can be expressed as :

∂U

∂t
+ Fx

∂U

∂x
+ Fy

∂U

∂y
= S (9)

The projection of (9) on the normal direction to ∂Ω leads to :

∂U

∂t
+ Jn

∂U

∂x
= S (10)

where the tangential component has been neglected. The matrix Jn can be written as Jn =
RΛR−1 with matrices of eigenvectors R and eigenvalues Λ. Then we obtain the following
one-dimensional transport equation :

∂U∗

∂t
+ Λ

∂U∗

∂x
= R−1S (11)

The “characteristics” variables U∗ = R−1U are convected along the normal direction to the edge
of the element. The transport velocities are the eigenvalues of the problem. For the Stommel
equations, eigenvalues are given by :

Λ =




√
gh 0 0
0 −√gh 0
0 0 0


 (12)

Those eigenvalues are used to choose the appropriate values on the edge. More precisely, up-
winding can be applied on the “characteristics” variables convected across the edge. It has been
shown that this method (the Riemann solver) introduces the minimum numerical dissipations
needed to stabilize the numerical scheme in the presence of transport terms.

In order to keep the same general formulation (5), the transport terms require the use of
the conservative formulation. Advection terms are thus expressed as a divergence ∇ · (Hvv).
This conservative form is non linear, even without transport terms, because of the presence of

the elevation term ∇
(
H2

2

)
. But the transport terms lead to a complex and computationally

prohibitive solution of the exact Riemann solver. Approximate Riemann solvers are proved to
produce more numerical dissipation than the exact solver, but numerical experience suggests
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that this choice does not have a significant impact on the accuracy of the solution, especially
when polynomial degree increases. The conservative formulation can thus be solved with, for
example, a Roe solver, which consists in the exact solution to a linearized Riemann problem, and
is consistent with the discrete entropy condition [20]. The basic idea consists in considering that
over a small time step, the characteristics curves propagating information can be replaced by
straight lines. This approximation leads to consider as constant the eigenvalues and eigenvectors
matrices Λ ans R.

The Roe numerical flux for shallow water equations can be written as :

F(U) · n = 1
2 [F(UL) + F(UR)] · n

+1
2Fr [F(UL)− F(UR)] · n + 1

2cA(1− Fr2) [UL −UR]
(13)

The first term corresponds to the centered flux, the others are dissipation terms. The R and L

subscripts denote the values of the field on each of the two sides of the interface between two
elements. The average Froude number Fr is defined as :

Fr =
vA · n
cA

(14)

and acts exactly as the Mach number in acoustics problems. This quantity and the average
gravity waves speed cA are based on the Roe’s averages, used to linearize the Riemann problem :

uA =
uL
√
hL + uR

√
hR√

hL +
√
hR

vA =
vL
√
hL + vR

√
hR√

hL +
√
hR

cA =

√

g
hL + hR

2
(15)

3 Mesh-adaptation scheme

Mesh-adaptation technic has seen lots of recent development that make it an attractive
method to apply in lots of Engineering domain. [19, 3, 5, 11] The MeshAdapt software package,
perform local mesh modification in order to adapt the mesh to a given metric field. It is able to
perform 3D anisotropic mesh adaptation in parallel. In this work we only use a subset of this
package : since we are interested in solving shallow water problem, only 2D mesh adaptation will
be used. We will also, for our first experience in coupling ocean modeling and meshadaptation
restrain ourself to isotropic mesh adaptation in order to simplify the metric definition. We
briefly describe the mesh modification technics detailed in [19, 16, 18] to focus our attention to
the definition of the mesh metric

3.1 Description of the mesh adapt package

Given a mesh metric defined over the domain, in our case an isotropic size defined at each
node, the mesh adaptation procedure iteratively modifies the local mesh so that the actual
size fits the desired size field. The local mesh modification operation used to adapt the 2
dimensional mesh includes entity splitting, edge collapsing and edge swapping operations. The
mesh adaptation algorithm consist of :

• identify those mesh entities not satisfying the mesh size.
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• perform appropriate mesh modifications so that local mesh will better satisfy the mesh
size eld

• repeat above steps until the mesh size is satisfied to an acceptable degree.

To identify mesh entities that need modification, edge length are compared to the size field
and marked to be collapsed or splited. Since it is not possible to ensure all mesh edges perfectly
match the size field, the transformed length of all mesh edges falls into a small interval close
to one. Particularly, we choose interval [0.5; 1.4]. The reason for using such an interval is to
ensure that the two new edges from a bisection will not be short edges so that oscillation between
refinning and coarsening are prevented. A mesh edge is considered short if its transformed length
is less than the lower bound of the interval and a mesh edge is considered long if its transformed
length is greater than the upper bound. Flat triangles may still exist after mesh modifications :
all the edges may satisfy the criteria but the element is poorly shaped. A criteria is therefore
used to detect those elements which are eliminated by a combination of edge swap and collapse.
More details about the mesh adaptation technics used can be found in [19, 16, 18]

3.2 Defining the mesh size field

In order to define a mesh size field, we have to somehow link an error estimation to the desired
size field. While super-convergence has been shown for the eigen values of the convective operator
of the DGM scheme, point wise error is known to be of the order of hp+1. Superconvergence
also exists at the downwind side of interface between elements for convective variables [1], if
the solution is smooth. This superconvergence allows to demonstrate that the jump between
elements of any variable constitutes an error estimator : the jump between elements converges
at the same rate as the size. For each interelement interface i, we first compute the integral
of the jump Ji, over the interface, of one chosen monitor variable : Ji =

∫
i UL − URds. In the

case of shallow water equation, we always peak the elevation η. Then, for each topological node
of the mesh, we define the error estimator as the maximum of the Ji for each edge (in 2D),
or face for 3D cases, connected to this node. This define En, the error estimator for the patch
of elements connected to the node n. We then need to compute the targeted edge size around
each node. The user defines a target error, Et : the desired maximum of En around each node.
Results from error analysis previously cited leads us to estimate : Et = Cnh

p+1
tn , En = Cnh

p+1
n ,

where Cn is an unknown constant dependent on the shape of the patch around node n, and hn
an actual characteristic length of the elements around node n and htn the one that should lead
to the targeted error. In our case, we defined hn as the mean length of edge connected to node
n. For each node, the target length is computed as :

htn = hn(
Et
En

)
1
p+1 (16)

The target length as computed is valid for any order of p and does not rely on the computation
of the gradient or Hessian of the solution field. The size field is then sent along with the mesh
to the mesh-adapt package which applies the previous algorithm to adapt the mesh.
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3.3 Projection of the solution

Once the mesh has been adapted the solution on the old mesh has to be projected from the
old mesh to the adapted one. This is done by means of an L2 projection. In case of the DGM,
this projection is quite cheap, since it can be done element per element. Some diffusion error due
to the projection can be expected where swapping operation is applied. In practice, only a small
amount of diffusion appears, since swap only occurs to remove bad shaped element. This would
not be the case if we had allowed node repositioning as a valid mesh modification procedure.
Dispersive error is also only linked to the swap operation, but is only due to the precision of
the integration scheme for the L2 projection, and is therefore controlable. Where ever extra
precision is needed, no projection error exists since only edge splitting appends. Projection after
a collapse also create some error, but collapse only happens when the error is under the target.

4 Application to Ocean modeling

In this section, we first perform a convergence experiment with an adaptive strategy, in order
to test both the convergent behavior of the DGM scheme and the efficiency of the adaptive
strategy. In a second experiment, we simulate the propagation of a typical anticyclonic eddy in
the realistic domain of the Gulf of Mexico.

4.1 Adaptive convergence applied to the Stommel equations

The following convergence study is performed using the Stommel Problem : the Stommel
equations are solved on a one thousand kilometers square, and compared to the analytical solu-
tion. The Coriolis effect leads to a geostrophic balance, creating a recirculation cell. The linear
part βy of the Coriolis factor f tends to move the created balance westward (for the northern
hemisphere parameters), leading to a boundary layer. The adaptive method is therefore very
useful in order to capture the large gradients on this western boundary, while the eastern part
of the domain don’t require such a fine discratization.
Two different polynomial order (P1 and P4) have been used, giving two different theorical con-
vergence rates, according hp+1.

The figure (2.a) presents the evolution of the L2 error norm with the characteristic element
size on a regular mesh. The numerical results show a classical asymptotic behaviour. The figure
(2.b) presents the evolution of the L2 error norm with the size of the elements corresponding
to a given target error (equation (16)). The numerical results are compared to the theorical
convergence rates lines.
Numerical results fit the theorical rates, both with fixed regular mesh and adapted mesh. Akind
of oscillatory behaviour is still present on the adaptive mesh which can be explained with the use
of the interval [0.5; 1.4] to transform the error estimation into a new edge size field, as discussed
in the previous paragraph.
To reach the same error norm of approximatly 5 10−3 with linear shape functions, the non-
adaptive structured regular mesh requiered 648 elements while the adaptive method needs only
79 elements.

On the same mesh, the error is more than a hundred times smaller with P4 element than
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Figure 2: Convergence of the L2 error norm with the decreasing characteristic element size h on structured

mesh and ht (the element size corresponding to a given target error et according to ht ∝ e
1
p+1

t ) on adaptive
mesh.

with P1. Our choice of mesh size field based on the only interface element jump leads to the
right convergence rate, regardless of polynomial order.

4.2 Propagation of anticyclonic eddy at midlatitudes

The following result consists in the propagation of a typical anticyclonic eddy at midlatitudes.
The Gulf of Mexico is chosen as the domain to test the model in a realistic geometry. The basin
is assumed closed, the Yucatan Channel and the Florida Straits with their inflow and outflow
are ignored. Altough this experiment is highly idealized, it is expected to represent some of the
features of the life cycle of anticyclonic eddies with the adaptive capture of eddies propagation.
A Gaussian distribution of water elevation η is present at initial time, with an initial velocity
field taken to be in geostrophic balance, which means :

g′∇H = fez × v (17)

where the β-plane assumption is made (i.e. f = f0 + βy) and with g′ the reduced gravity. No
wind forcing and no bottom friction is applied. The Coriolis effect is thus the only source term to
move the eddy westward. This propagation of slow Rossby waves, represented with the SWEs,
has a major effect on the large scale circulation, and thus on weather and climate. For instance,
Rossby waves can intensify western boundary currents, which transport huge quantities of heat.
Even a minor shift in the position of the current can thus dramatically affect weather over large
areas of the globe.

Figure (3) represents the evolution of the eddy with the Coriolis forcing. Its westward propa-
gation is captured by the mesh evolution (right column) : a minimum edge size of ten kilometers
has been applied to keep a low number of elements.
After one week of physical time simulation, the mesh has been adapted three times to capture
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the regions with larger variations : the eddy region, and the coast lines, where gravity waves
come and bounce back. At this time, the mesh presents approximately 3000 elements. The
eddy keeps moving westward until approximately week 11, when it reaches the coast. Then, its
shape is modified when a second eddy appears, spinning in the other direction. The number
of elements grows until about 7000 to fit this large variation region. On week 14, one can see
the slow creation of a western boundary current, flowing southward. As the eddy keeps moving
southward, the mesh seems to perfectly capture the evolution of this current and the swirl gen-
erated at the south extremity of the golf on week 23. The initial eddy then collapses to generate
lots of smaller eddies which keep spinning and mixing on the western boundary. The number of
elements decreases then to the initial value of 3000.
The mesh adapted to eddies and currents, but large field variations and mesh refinement must
also be noticed on sharp and non regular coasts, as on the north and east-north of the Gulf.
A restriction of ten kilometers has been applied on the size of elements on adaptive mesh. To
reach the same accuracy with a non-adaptive mesh, about 34000 elements would be required
with the first order polynomial shape function.

5 Conclusion

In this paper we have shown that mesh adaptivity, coupled with discontinuous Galerkin
method, can be a very attractive technology for the ocean modeling field. Of course, in terms
of the physic that need to be modeled lots of work need to be done in code implementation
in order to compare with established ocean model. Our next step toward this goal will be the
ability to deal with realistic bathymetry. On the mesh adaptation side of the work, we plan to
take full advantage of the anisotropic mesh adaptation feature of the MeshAdapt package.
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