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Abstract: The interest in driver monitoring has grown recently, especially in the context of autonomous vehicles. How-
ever, the training of deep neural networks for computer vision requires more and more images with significant
diversity, which does not match the reality of the field. This lack of data prevents networks to be properly
trained for certain complex tasks such as human pose transfer which aims to produce an image of a person
in a target pose from another image of the same person. To tackle this problem, we propose a new synthetic
dataset for pose-related tasks. By using a straightforward pipeline to increase the variety between the images,
we generate 200k images with a hundred human models in different cars, environments, lighting conditions,
etc. We measure the quality of the images of our dataset and compare it with other datasets from the literature.
We also train a network for human pose transfer in the synthetic domain using our dataset. Results show that
our dataset matches the quality of existing datasets and that it can be used to properly train a network on a
complex task. We make both the images with the pose annotations and the generation scripts publicly avail-
able.

1 INTRODUCTION1

The increasing complexity of computer vision tasks2

over the years has led to a growth in the size of deep3

learning models. Therefore, more and more data has4

been required to train the deep neural networks, with5

more diversity among the images. Large-scale gen-6

eral datasets have been published over the years to7

answer this problem, such as ImageNet (Deng et al.,8

2009), COCO (Lin et al., 2015), or DeepFashion (Liu9

et al., 2016) datasets. However, specific contexts lack10

sufficiently large datasets, especially because of the11

high cost of acquisition in comparison with the size12

of the research field.13

Human Pose Transfer (HPT) is an example of a14

data-demanding task. HPT aims to generate, from a15

source image of a person, a new image of that same16

person in a different target pose. Generative Ad-17

versarial Networks (GAN) (Goodfellow et al., 2014)18

achieve good performances on this task (Zhu et al.,19

2019; Huang et al., 2020; Zhang et al., 2021), mostly20

in two contexts: fashion and video surveillance im-21

ages. These two domains correspond to the two main22

datasets available for this task (Liu et al., 2016; Zheng23

et al., 2015). However, a substantial number of im-24

ages, with high diversity in persons, clothes, and en-25

vironment is required to properly train GAN models.26

These requirements are difficult to achieve in specific27

contexts, for example, images of drivers in consumer28

vehicles. In this context, data acquisition requires set-29

ting up experimentations in a moving car (Guesdon30

et al., 2021) or at least in a simulator (Martin et al.,31

2019). These constraints lead to the availability of32

few images with little variety of subjects.33

A commonly used solution to tackle a lack of34

training data is geometric data augmentation such as35

random rotation, crop, scaling, etc. (Simard et al.,36

2003; Krizhevsky et al., 2012). However, these meth-37

ods may be sufficient for rigid objects but are not fully38

suitable for articulated ones. An alternative is the use39

of synthetic data. This process allows the generation40

of a high number of images with a theoretically infi-41

nite diversity and accurate annotations, within a lim-42

ited time and financial cost. Even if a domain gap ex-43

ists between synthetic and real images, literature has44

demonstrated that generated images can be used to as-45

sist the training of networks on real-world images for46

many tasks (Juraev et al., 2022; Wu et al., 2022; Kim47

et al., 2022). In the driving context, few synthetic48

public datasets exist (Cruz et al., 2020; Katrolia et al.,49

2021). Furthermore, these datasets mainly focus on50

monitoring tasks and emphasize more on actions than51

on subject diversity.52

To address the lack of diversity in driving vehi-53



Figure 1: Samples of images from the proposed synthetic dataset.

cles, we propose a large dataset of synthetic images54

for pose-related tasks. We develop a pipeline where55

we diversify the subjects (with 100 driver models),56

but also the car cockpits, the environment, the light-57

ing conditions, etc. The images are publicly available,58

as well as the scripts used for data generation 1.59

This paper is organized as follows. Section 260

presents related work on driver image datasets. In61

Section 3, we present our proposed process and the62

synthetic dataset along with the choices made for the63

generation. We show and evaluate in Section 4 the64

generated images and an application of our dataset65

with an HPT architecture. Finally, Section 5 presents66

our conclusions and future work.67

2 RELATED WORK68

Work in the computer-vision field about drivers in69

consumer vehicles mainly focuses on passenger mon-70

itoring, mostly for safety-related tasks. Therefore,71

datasets in real-world conditions or in driving simu-72

lators have been published for tasks such as driver ac-73

tivity recognition (Ohn-Bar et al., 2014; Jegham et al.,74

2019; Martin et al., 2019; Borghi et al., 2020), driver75

pose estimation (Guesdon et al., 2021), driver gaze76

1Images and generation scripts are publicly available
on : https://gitlab.liris.cnrs.fr/aura autobehave/synthetic
drivers

estimation (Ribeiro and Costa, 2019; Selim et al.,77

2020), driver awareness monitoring (Abtahi et al.,78

2014).79

Most of these datasets contain RGB images from80

video clips annotated for the target tasks. However,81

these datasets usually do not provide pose annotations82

required for the study of human pose transfer tasks.83

Drive&Act (Martin et al., 2019) proposes a multi-84

modal (RGB, NIR, depth) and multi-view dataset in85

a static driving simulator, with 3D human pose and86

activity annotations. DriPE dataset (Guesdon et al.,87

2021) depicts drivers in consumer vehicles in real-88

world driving conditions, with manually annotated89

poses. However, these two datasets contain only 1590

and 19 subjects, respectively, which is not enough to91

fully train deep neural networks on a complex task,92

such as HPT, according to our observations.93

Regarding synthetic data for driver monitoring,94

two datasets have been published. SVIRO (Cruz et al.,95

2020), a synthetic dataset for scenarios in the pas-96

senger cockpit. It depicts people and objects in the97

car back seat with different placements and provides98

RGB images along with infrared imitation, depth99

maps, segmentation masks, and human pose ground-100

truth keypoints. TICaM (Katrolia et al., 2021) is a101

dataset with both real and synthetic images for vehicle102

interior monitoring, with real images recorded in a car103

cockpit simulator. The dataset provides RGB, depth,104

and infrared images with action annotations and seg-105

mentation ground-truth masks. The two main issues106

https://gitlab.liris.cnrs.fr/aura_autobehave/synthetic_drivers
https://gitlab.liris.cnrs.fr/aura_autobehave/synthetic_drivers
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Figure 2: Global process for the generation of the synthetic driver images.

with these datasets are the front view angle, which107

does not allow a clear view of the driver’s full body,108

and the subject diversity which is still low for large109

models such as GAN (Goodfellow et al., 2014) on110

these data without overfitting. We can also mention111

Cañas et. al. (Canas et al., 2022) which describe112

a global approach to generate synthetic images for113

passenger monitoring. However, their work only par-114

tially considers the question of random pose genera-115

tion, and no script nor images have been made pub-116

licly available so far.117

In summary, there currently exists no publicly118

available dataset suited to study driver pose transfer119

with a high variety of driver subjects and a full body120

view camera angle.121

3 DATASET GENERATION122

Because the driver datasets in the literature for hu-123

man pose-related tasks lack diversity, deep generative124

methods cannot be trained and used to increase the125

available data quantity. We propose a process based126

on a standard pipeline for 3D scene generation to ren-127

der new synthetic images. Using this method, we128

build a large dataset depicting one hundred human in-129

stances, several car models, variations of luminance,130

etc. In this section, we describe the generation pro-131

cess and present statistics about the generated images.132

3.1 3D Models133

To generate synthetic driver images, two objects need134

to be modeled: cars and humans. Human models are135

generated using MakeHuman Community (MakeHu-136

man, 2022). This open-source software produces 3D137

models with many parameters like age, height, mus-138

cle mass, ethnicity, face proportions, etc. Models are139

generated with a rigged skeleton, which allows ani-140

mating them easily and realistically. We use the de-141

fault clothes from MakeHuman along with some pro-142

vided by the community. To generate many models,143

we use the Mass Produce module which allows set-144

ting an interval for each parameter. We also randomly145

change the color of the clothes’ textures when gener-146

ating the full scene to increase the diversity. The car147

models are obtained on the Unity Asset store (Unity,148

2022). We select different types of consumer vehicles149

to represent various car cockpits (e.g., family cars,150

sports cars, pick-ups), with equipment going from151

plain dashboards to touchscreens.152

3.2 Pose Generation153

Human models are animated using the included154

rigged skeleton (Figure 3-a). Theoretically, each bone155

can rotate freely around the body joint where its head156

is attached, which gives it three degrees of liberty.157

However, several constraints must be considered in158

our case. First, no real human bone can fully rotate159



Figure 3: Illustrations of the generation process in Blender with (a) the skeleton rig, (b) the fixed wrist targets (only used for
the additional driving images), (c) the default scene perspective, an example of the final scenes without (d) and with (e) the
light rendering, and (f) a view from the camera.

in any direction. If we take the forearm for exam-160

ple and consider that it is fully open by default, it can161

approximately rotate from 0 to 150° around the pitch162

and the roll axis and cannot rotate around its yaw axis163

(Maik et al., 2010). Secondly, the car cabin is a con-164

stricted space, which brings many constraints to avoid165

the human and the car models colliding. Therefore, to166

address these constraints, we proceed as follows:167

1. We define a default pose, which corresponds to168

the person sitting straight on the car seat with the169

arms close to the upper body.170

2. We perform small random rotations on the head,171

back, and legs considering the human body con-172

straints and the car cabin.173

3. We randomly defined a target for each wrist, in174

front of the subject and within the arm range.175

We also add a constraint to force the targets to176

be within a defined box that represents the cabin177

space. The boxes are manually defined before-178

hand for each car model to best match their shape.179

4. We use an inverse kinematic solver integrated180

into the 3D modeling software to place the wrists181

on the targets. We only move the upper arms182

and forearms during this process, which does not183

modify the back inclination. This is to avoid un-184

natural poses in the car seat. Kinematic angle con-185

straints are set on each involved bone to match186

real body constraints.187

This process allows us to easily generate many ran-188

dom plausible poses while taking into consideration189

body and environment constraints.190

However, random positioning is very unlikely to191

generate standard driving poses, such as hands on the192

wheel or the gear lever. This is not problematic when193

considering the car as an autonomous vehicle of level194

2 or 3 for example, but can be less realistic for man-195

ual driving tasks (in a vehicle of levels of autonomy196

0 or 1). Therefore, we additionally set in each car197

model fixed wrist targets on the wheel, gear lever, and198

dashboard (Figure 3-b). We use these targets instead199

of random ones to separately generate more realistic200

driving images.201

3.3 Generation Process202

To set up the full scene and render the images, we use203

Blender 3.2 (Blender, 2022) modeling software. Its204

advantages are that it is free and open-source, accessi-205

ble, and can be fully automated using python scripts.206

The global rendering process is summarized in Fig-207

ure 2.208

We first create the default scene by setting up a209

fixed camera, a sunlight source, and a panel for the210

background image (Figure 3-c). We use high-quality211

images of landscapes to simulate the background,212

which allows us to easily leverage a high number213

of different backgrounds from free picture databases.214

The 3D models are then imported into the scene.215



Dataset SVIRO TICaM Drive&Act DriPE Market Fashion Ours
Year 2020 2021 2019 2021 2015 2016 2022
#Frames 25K 126K 9.6M 10k 33k 54k 200k
#Subjects 22 adults 13 15 19 ∼ 3k ∼ 10k 100
#Views 1 1 6 1 - - 1
Synthetic /
Real Synthetic Both Real Real Real Real Synthetic

Data Depth,
RGB, IR

Depth,
RGB, IR

Depth,
RGB, IR RGB RGB RGB RGB

Annotation

Classification
labels, 2D
box mask,
2D skeleton

2D+3D
boxes, 3D
segmenta-
tion mask,
activity

Activity,
2D+3D
skeletons

2D boxes,
skeleton 2D skeleton 2D skeleton

2D+3D
skeletons
and boxes

Table 1: Comparison table between different datasets.

Then, we randomly define several configurations,216

where a configuration is composed of a human model,217

a car model, a background, small camera deviations,218

and lighting parameters (Figure 3-d, e. Note that the219

black triangle in the illustrations represents the up di-220

rection of the camera model). We use a Blender add-221

on that places the sun in a realistic position from GPS222

coordinates and date time, which we set randomly.223

We also generate night configurations by selecting224

night backgrounds and dimming the lights. The night225

setting is randomly used 20% of the time.226

Finally, for each configuration, we generate a pose227

using the process described in Section 3.2 (Figure 3-228

f) and render the image. We also save the 2D and 3D229

coordinates of each body joint, the bounding boxes,230

and the camera’s intrinsic and extrinsic parameters.231

4 RESULTS AND DISCUSSIONS232

In this section, we present and discuss methods used233

to evaluate the relevance of the proposed dataset. We234

first compare it with other state-of-the-art datasets us-235

ing metrics from the literature to measure the quality236

of the images. Then, we use the task of human pose237

transfer to evaluate whether our synthetic dataset is238

large and diversified enough for a complex task.239

4.1 Dataset Evaluation240

We define a total of 1.000 configurations by randomly241

picking between 7 cars and 100 human models. For242

each configuration, 200 poses are generated, which243

results in a dataset of 200k images.244

In Table 1, we compare our dataset with sev-245

eral other datasets from the literature. We can see246

that our dataset possesses more images than both247

driver synthetic and real-world HPT datasets. The248

only exception is Drive&Act, which is composed of249

video clips instead of single images, which multiplies250

the total number of frames. However, the proposed251

dataset presents far more driver models than previous252

datasets.253

Then, we compare the quality of the synthetic im-254

ages with the ones in other datasets. For this purpose,255

we use the Inception Score (IS) (Salimans et al., 2016)256

which is a metric commonly used to evaluate the qual-257

ity of images generated by GAN (Zhu et al., 2019;258

Tang et al., 2020; Huang et al., 2020). This metric259

is based on the predictions from a pre-trained Incep-260

tionNet classifier (Szegedy et al., 2016). Since In-261

ception Score is sensitive to image sizes, each dataset262

is resized to approximately match the same number263

of pixels. We choose a standard size of 49,152 pix-264

els, which corresponds to a shape of 192∗256 pixels.265

The Inception Score is computed on the full datasets266

using a Pytorch implementation of the original IS al-267

gorithm (Pytorch metrics, 2022). Results of the eval-268

uation can be found in Table 2.269

Dataset Inception Score (IS) ↑
DeepFashion 4.247

Market 4.223
DriPE 1.481

Drive&Act 1.343
SVIRO 1.902

TICam - synthetic 1.276
TICam - real 1.662

Ours 2.391
Table 2: Evaluation of the image quality of the full dataset
using Inception Score.

First, we observe in Table 2 that the two datasets270

used for HPT, i.e., DeepFashion and Market, present271

a score strictly higher than the one measured on272

driver datasets. This can be explained by the fact273

that the Inception Score reflects two aspects: the in-274

trinsic quality of each image and the variety among275



Figure 4: Samples from the test inferences generated by the GAN trained on our synthetic dataset.

the dataset (Salimans et al., 2016). Since the driver276

datasets present fewer subjects with large and fixed277

foregrounds, we can expect a lower IS. However, we278

can see that our synthetic dataset obtains a better score279

than the other driver datasets. This suggests that its280

images have an apparent quality similar to those from281

the other driver datasets while presenting a larger va-282

riety.283

4.2 Human Pose Transfer284

As mentioned in Section 1, training a model for a285

complex task such as human pose transfer, without286

heavily overfitting the training set, requires many im-287

ages with a high variety of subjects.288

Therefore, we train an HPT generative network289

on our synthetic dataset to evaluate the diversity of290

its images. We chose from the state of the art the291

APS architecture (Huang et al., 2020), which presents292

competitive performances with no need for additional293

input data such as segmentation maps. We train the294

network using the scripts provided by the authors in295

their repository. We adopted the same hyperparame-296

ters used for training on the DeepFashion dataset and297

resize our synthetic images to 192x256 pixels to get298

closer to the size of the DeepFashion images. The299

proposed dataset is split into a training set of 180k300

pictures and a testing set of 20k pictures, and these301

two sets do not share any subject model.302

To measure the quality of our results, we evaluate303

the images using several state-of-the-art metrics (Ta-304

ble 3): Inception Score (IS), Frechet Inception Dis-305

tance (FID) (Heusel et al., 2017), and Structural Sim-306

ilarity (SSIM) (Wang et al., 2004). FID and SSIM are307

computed using the same script as IS (Pytorch met-308

rics, 2022). Unlike the evaluation of the datasets in309

Section 4.1, the metrics here are only computed on310

the images generated by the network on the test set.311

Dataset IS ↑ FID ↓ SSIM ↑
Fashion 3.565 16.84 0.669
Market 3.144 41.49 0.312

Synthetic 2.456 38.06 0.810
Table 3: Evaluation of images generated by an APS network
trained on different datasets.

First, we observe that the Inception Score of the312

generated images is close to the one measured on313

the full synthetic dataset in Table 2. Then, the FID314

distance between the driver images generated by the315

GAN and the ground truth images is close to the one316

observed with the Market dataset. Furthermore, the317

SSIM score, which measures the structural similar-318

ity between two images, is higher on our synthetic319

dataset than on both Fashion and Market. This can be320

explained by the fact that more than half the surface of321

driver images is composed of a fixed background that322



the GAN network can easily preserve since it almost323

does not change during the pose transfer.324

We can notice that the score measures on the Fash-325

ion dataset are better than those on both the Market326

and our synthetic dataset. This can be explained by327

the simplicity of the Fashion images context, espe-328

cially the lack of a complex background, fully visible329

body parts, etc., in comparison with the real-life im-330

ages in the two other datasets.331

Finally, Figure 4 presents qualitative results of the332

trained GAN. The generated images show that the333

network learned to reproduce the pose while preserv-334

ing most of the visual characteristics of the subject335

and the global environment. This result indicates that336

the network can learn and generalize on our dataset.337

In the end, the evaluation results combined with the338

qualitative results suggest that our dataset contains339

enough diversity to train a network for a complex task340

without overfitting.341

5 CONCLUSION342

In this paper, we have presented a dataset of 200k343

synthetic driver images for human pose-related tasks344

with a large diversity of human models to answer the345

lack of available datasets on driver monitoring tasks.346

Using state-of-the-art metrics, we demonstrated that347

the quality of our synthetic images is comparable to348

the one measured in existing datasets, synthetic or349

real-world. We finally trained a GAN for human350

pose transfer, a data-demanding task, on our synthetic351

dataset. The network achieved similar performances352

to those trained for HPT on real-world datasets for353

other applications, which demonstrates that the pro-354

posed synthetic dataset is diverse enough to train large355

networks. This dataset is publicly available as well as356

the script used to generate it.357

Future work will investigate the problem of do-358

main adaptation from synthetic to real-world driver359

images in models for human pose-related tasks.360

Moreover, the proposed pipeline could be used to ex-361

tend our dataset with multiple views to approach tasks362

such as 3D human pose estimation, or with real activ-363

ities for passenger monitoring.364
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