Synthetic Driver Image Generation for Human Pose-Related Tasks
Romain Guesdon, Carlos F Crispim-Junior, Laure Tougne

To cite this version:

HAL Id: hal-03936401
https://hal.science/hal-03936401
Submitted on 12 Jan 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Synthetic Driver Image Generation for Human Pose-Related Tasks

Romain Guesdon1, Carlos Crispim-Junior1, and Laure Tougne Rodet1
1Univ Lyon, Univ Lyon 2, CNRS, INSA Lyon, UCBL, Centrale Lyon
LIRIS UMR5205, F-69676 Bron, France
{romain.guesdon, carlos.crispim-junior, laure.tougne}@liris.cnrs.fr

Keywords: Dataset, synthetic generation, neural networks, human pose transfer, consumer vehicle

Abstract: The interest in driver monitoring has grown recently, especially in the context of autonomous vehicles. However, the training of deep neural networks for computer vision requires more and more images with significant diversity, which does not match the reality of the field. This lack of data prevents networks to be properly trained for certain complex tasks such as human pose transfer which aims to produce an image of a person in a target pose from another image of the same person. To tackle this problem, we propose a new synthetic dataset for pose-related tasks. By using a straightforward pipeline to increase the variety between the images, we generate 200k images with a hundred human models in different cars, environments, lighting conditions, etc. We measure the quality of the images of our dataset and compare it with other datasets from the literature. We also train a network for human pose transfer in the synthetic domain using our dataset. Results show that our dataset matches the quality of existing datasets and that it can be used to properly train a network on a complex task. We make both the images with the pose annotations and the generation scripts publicly available.

1 INTRODUCTION

The increasing complexity of computer vision tasks over the years has led to a growth in the size of deep learning models. Therefore, more and more data has been required to train the deep neural networks, with more diversity among the images. Large-scale general datasets have been published over the years to answer this problem, such as ImageNet (Deng et al., 2009), COCO (Lin et al., 2015), or DeepFashion (Liu et al., 2016) datasets. However, specific contexts lack sufficiently large datasets, especially because of the high cost of acquisition in comparison with the size of the research field.

Human Pose Transfer (HPT) is an example of a data-demanding task. HPT aims to generate, from a source image of a person, a new image of that same person in a different target pose. Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) achieve good performances on this task (Zhu et al., 2019; Huang et al., 2020; Zhang et al., 2021), mostly in two contexts: fashion and video surveillance images. These two domains correspond to the two main datasets available for this task (Liu et al., 2016; Zheng et al., 2015). However, a substantial number of images, with high diversity in persons, clothes, and environment is required to properly train GAN models. These requirements are difficult to achieve in specific contexts, for example, images of drivers in consumer vehicles. In this context, data acquisition requires setting up experimentations in a moving car (Guesdon et al., 2021) or at least in a simulator (Martin et al., 2019). These constraints lead to the availability of few images with little variety of subjects.

A commonly used solution to tackle a lack of training data is geometric data augmentation such as random rotation, crop, scaling, etc. (Simard et al., 2003; Krizhevsky et al., 2012). However, these methods may be sufficient for rigid objects but are not fully suitable for articulated ones. An alternative is the use of synthetic data. This process allows the generation of a high number of images with a theoretically infinite diversity and accurate annotations, within a limited time and financial cost. Even if a domain gap exists between synthetic and real images, literature has demonstrated that generated images can be used to assist the training of networks on real-world images for many tasks (Juraev et al., 2022; Wu et al., 2022; Kim et al., 2022). In the driving context, few synthetic public datasets exist (Cruz et al., 2020; Katrolia et al., 2021). Furthermore, these datasets mainly focus on monitoring tasks and emphasize more on actions than on subject diversity.

To address the lack of diversity in driving vehi-
icles, we propose a large dataset of synthetic images for pose-related tasks. We develop a pipeline where we diversify the subjects (with 100 driver models), but also the car cockpits, the environment, the lighting conditions, etc. The images are publicly available, as well as the scripts used for data generation.

This paper is organized as follows. Section 2 presents related work on driver image datasets. In Section 3 we present our proposed process and the synthetic dataset along with the choices made for the generation. We show and evaluate in Section 4 the generated images and an application of our dataset with an HPT architecture. Finally, Section 5 presents our conclusions and future work.

2 RELATED WORK

Work in the computer-vision field about drivers in consumer vehicles mainly focuses on passenger monitoring, mostly for safety-related tasks. Therefore, datasets in real-world conditions or in driving simulators have been published for tasks such as driver activity recognition (Ohn-Bar et al., 2014; Jegham et al., 2019; Martin et al., 2019; Borghi et al., 2020), driver pose estimation (Guesdon et al., 2021), driver gaze estimation (Ribeiro and Costa, 2019), driver awareness monitoring (Abtahi et al., 2014).

Most of these datasets contain RGB images from video clips annotated for the target tasks. However, these datasets usually do not provide pose annotations required for the study of human pose transfer tasks. Drive&Act (Martin et al., 2019) proposes a multi-modal (RGB, NIR, depth) and multi-view dataset in a static driving simulator, with 3D human pose and activity annotations. DriPE dataset (Guesdon et al., 2021) depicts drivers in consumer vehicles in real-world driving conditions, with manually annotated poses. However, these two datasets contain only 15 and 19 subjects, respectively, which is not enough to fully train deep neural networks on a complex task, such as HPT, according to our observations.

Regarding synthetic data for driver monitoring, two datasets have been published. SVIRO (Cruz et al., 2020), a synthetic dataset for scenarios in the passenger cockpit. It depicts people and objects in the car back seat with different placements and provides RGB images along with infrared imitation, depth maps, segmentation masks, and human pose ground-truth keypoints. TICaM (Katrolia et al., 2021) is a dataset with both real and synthetic images for vehicle interior monitoring, with real images recorded in a car cockpit simulator. The dataset provides RGB, depth, and infrared images with action annotations and segmentation ground-truth masks. The two main issues

1Images and generation scripts are publicly available on: https://gitlab.liris.cnrs.fr/aura_autobehave/synthetic_drivers
with these datasets are the front view angle, which does not allow a clear view of the driver’s full body, and the subject diversity which is still low for large models such as GAN (Goodfellow et al., 2014) on these data without overfitting. We can also mention Cañas et al. (Canas et al., 2022) which describe a global approach to generate synthetic images for passenger monitoring. However, their work only partially considers the question of random pose generation, and no script nor images have been made publicly available so far.

In summary, there currently exists no publicly available dataset suited to study driver pose transfer with a high variety of driver subjects and a full body view camera angle.

3 DATASET GENERATION

Because the driver datasets in the literature for human pose-related tasks lack diversity, deep generative methods cannot be trained and used to increase the available data quantity. We propose a process based on a standard pipeline for 3D scene generation to render new synthetic images. Using this method, we build a large dataset depicting one hundred human instances, several car models, variations of luminance, etc. In this section, we describe the generation process and present statistics about the generated images.

3.1 3D Models

To generate synthetic driver images, two objects need to be modeled: cars and humans. Human models are generated using MakeHuman Community (MakeHuman, 2022). This open-source software produces 3D models with many parameters like age, height, muscle mass, ethnicity, face proportions, etc. Models are generated with a rigged skeleton, which allows animating them easily and realistically. We use the default clothes from MakeHuman along with some provided by the community. To generate many models, we use the Mass Produce module which allows setting an interval for each parameter. We also randomly change the color of the clothes’ textures when generating the full scene to increase the diversity. The car models are obtained on the Unity Asset store (Unity, 2022). We select different types of consumer vehicles (e.g., family cars, sports cars, pick-ups), with equipment going from plain dashboards to touchscreens.

3.2 Pose Generation

Human models are animated using the included rigged skeleton (Figure 3-a). Theoretically, each bone can rotate freely around the body joint where its head is attached, which gives it three degrees of liberty. However, several constraints must be considered in our case. First, no real human bone can fully rotate...
in any direction. If we take the forearm for example and consider that it is fully open by default, it can approximately rotate from 0 to 150° around the pitch and the roll axis and cannot rotate around its yaw axis (Maik et al., 2010). Secondly, the car cabin is a constrained space, which brings many constraints to avoid the human and the car models colliding. Therefore, to address these constraints, we proceed as follows:

1. We define a default pose, which corresponds to the person sitting straight on the car seat with the arms close to the upper body.
2. We perform small random rotations on the head, back, and legs considering the human body constraints and the car cabin.
3. We randomly defined a target for each wrist, in front of the subject and within the arm range. We also add a constraint to force the targets to be within a defined box that represents the cabin space. The boxes are manually defined beforehand for each car model to best match their shape.
4. We use an inverse kinematic solver integrated into the 3D modeling software to place the wrists on the targets. We only move the upper arms and forearms during this process, which does not modify the back inclination. This is to avoid unnatural poses in the car seat. Kinematic angle constraints are set on each involved bone to match real body constraints.

This process allows us to easily generate many random plausible poses while taking into consideration body and environment constraints.

However, random positioning is very unlikely to generate standard driving poses, such as hands on the wheel or the gear lever. This is not problematic when considering the car as an autonomous vehicle of level 2 or 3 for example, but can be less realistic for manual driving tasks (in a vehicle of levels of autonomy 0 or 1). Therefore, we additionally set in each car model fixed wrist targets on the wheel, gear lever, and dashboard (Figure 3-b). We use these targets instead of random ones to separately generate more realistic driving images.

3.3 Generation Process

To set up the full scene and render the images, we use Blender 3.2 (Blender, 2022) modeling software. Its advantages are that it is free and open-source, accessible, and can be fully automated using Python scripts. The global rendering process is summarized in Figure 2.

We first create the default scene by setting up a fixed camera, a sunlight source, and a panel for the background image (Figure 2). We use high-quality images of landscapes to simulate the background, which allows us to easily leverage a high number of different backgrounds from free picture databases. The 3D models are then imported into the scene.
Table 1: Comparison table between different datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>SVIRO</th>
<th>TICaM</th>
<th>Drive&Act</th>
<th>DriPE</th>
<th>Market</th>
<th>Fashion</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2020</td>
<td>2021</td>
<td>2019</td>
<td>2021</td>
<td>2015</td>
<td>2016</td>
<td>2022</td>
</tr>
<tr>
<td>#Frames</td>
<td>25K</td>
<td>126K</td>
<td>9.6M</td>
<td>10K</td>
<td>33K</td>
<td>54K</td>
<td>200k</td>
</tr>
<tr>
<td>#Subjects</td>
<td>22 adults</td>
<td>13</td>
<td>15</td>
<td>19</td>
<td>3k</td>
<td>10k</td>
<td>100</td>
</tr>
<tr>
<td>#Views</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Synthetic / Real</td>
<td>Synthetic / Both</td>
<td>Synthetic / Real</td>
<td>Synthetic / Real</td>
<td>Synthetic / Real</td>
<td>Real</td>
<td>Real</td>
<td>Synthetic</td>
</tr>
<tr>
<td>Data</td>
<td>Depth, RGB, IR</td>
<td>Depth, RGB, IR</td>
<td>Depth, RGB, IR</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
<td>RGB</td>
</tr>
<tr>
<td>Annotation</td>
<td>Classification labels, 2D box mask, 2D skeleton</td>
<td>2D+3D boxes, 3D segmentation mask, activity</td>
<td>Activity, 2D+3D skeletons</td>
<td>2D boxes, skeleton</td>
<td>2D skeleton</td>
<td>2D skeleton</td>
<td>2D+3D skeletons and boxes</td>
</tr>
</tbody>
</table>

Table 1: Comparison table between different datasets.

In this section, we present and discuss methods used to evaluate the relevance of the proposed dataset. We first compare it with other state-of-the-art datasets using metrics from the literature to measure the quality of the images. Then, we use the task of human pose transfer to evaluate whether our synthetic dataset is large and diversified enough for a complex task.

4.1 Dataset Evaluation

We define a total of 1,000 configurations by randomly picking between 7 cars and 100 human models. For each configuration, 200 poses are generated, which results in a dataset of 200k images.

In Table 1, we compare our dataset with several other datasets from the literature. We can see that our dataset possesses more images than both driver synthetic and real-world HPT datasets. The only exception is Drive&Act, which is composed of video clips instead of single images, which multiplies the total number of frames. However, the proposed dataset presents far more driver models than previous datasets.

Then, we compare the quality of the synthetic images with the ones in other datasets. For this purpose, we use the Inception Score (IS) (Salimans et al., 2016) which is a metric commonly used to evaluate the quality of images generated by GAN (Zhu et al., 2019; Tang et al., 2020; Huang et al., 2020). This metric is based on the predictions from a pre-trained InceptionNet classifier (Szegedy et al., 2016). Since Inception Score is sensitive to image sizes, each dataset is resized to approximately match the same number of pixels. We choose a standard size of 49,152 pixels, which corresponds to a shape of 192 × 256 pixels.

The Inception Score is computed on the full datasets using a Pytorch implementation of the original IS algorithm (Pytorch metrics, 2022). Results of the evaluation can be found in Table 2.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Inception Score (IS) ↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>DeepFashion</td>
<td>4.247</td>
</tr>
<tr>
<td>Market</td>
<td>4.223</td>
</tr>
<tr>
<td>DriPE</td>
<td>1.481</td>
</tr>
<tr>
<td>Drive&Act</td>
<td>1.343</td>
</tr>
<tr>
<td>SVIRO</td>
<td>1.902</td>
</tr>
<tr>
<td>TICam - synthetic</td>
<td>1.276</td>
</tr>
<tr>
<td>TICam - real</td>
<td>1.662</td>
</tr>
<tr>
<td>Ours</td>
<td>2.391</td>
</tr>
</tbody>
</table>

Table 2: Evaluation of the image quality of the full dataset using Inception Score.

First, we observe in Table 2 that the two datasets used for HPT, i.e., DeepFashion and Market, present a score strictly higher than the one measured on driver datasets. This can be explained by the fact that the Inception Score reflects two aspects: the intrinsic quality of each image and the variety among...
the dataset (Salimans et al., 2016). Since the driver datasets present fewer subjects with large and fixed foregrounds, we can expect a lower IS. However, we can see that our synthetic dataset obtains a better score than the other driver datasets. This suggests that its images have an apparent quality similar to those from the other driver datasets while presenting a larger variety.

4.2 Human Pose Transfer

As mentioned in Section 1, training a model for a complex task such as human pose transfer, without heavily overfitting the training set, requires many images with a high variety of subjects.

Therefore, we train an HPT generative network on our synthetic dataset to evaluate the diversity of its images. We chose from the state of the art the APS architecture (Huang et al., 2020), which presents competitive performances with no need for additional input data such as segmentation maps. We train the network using the scripts provided by the authors in their repository. We adopted the same hyperparameters used for training on the DeepFashion dataset and resize our synthetic images to 192x256 pixels to get closer to the size of the DeepFashion images. The proposed dataset is split into a training set of 180k pictures and a testing set of 20k pictures, and these two sets do not share any subject model.

To measure the quality of our results, we evaluate the images using several state-of-the-art metrics (Table 3): Inception Score (IS), Frechet Inception Distance (FID) (Heusel et al., 2017), and Structural Similarity (SSIM) (Wang et al., 2004). FID and SSIM are computed using the same script as IS (Pytorch metrics, 2022). Unlike the evaluation of the datasets in Section 4.1, the metrics here are only computed on the images generated by the network on the test set.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>IS</th>
<th>FID</th>
<th>SSIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fashion</td>
<td>3.565</td>
<td>16.84</td>
<td>0.669</td>
</tr>
<tr>
<td>Market</td>
<td>3.144</td>
<td>41.49</td>
<td>0.312</td>
</tr>
<tr>
<td>Synthetic</td>
<td>2.456</td>
<td>38.06</td>
<td>0.810</td>
</tr>
</tbody>
</table>

Table 3: Evaluation of images generated by an APS network trained on different datasets.

First, we observe that the Inception Score of the generated images is close to the one measured on the full synthetic dataset in Table 2. Then, the FID distance between the driver images generated by the GAN and the ground truth images is close to the one observed with the Market dataset. Furthermore, the SSIM score, which measures the structural similarity between two images, is higher on our synthetic dataset than on both Fashion and Market. This can be explained by the fact that more than half the surface of driver images is composed of a fixed background that...
the GAN network can easily preserve since it almost
does not change during the pose transfer.

We can notice that the score measures on the Fash-
on dataset are better than those on both the Market
and our synthetic dataset. This can be explained by
the simplicity of the Fashion images context, espe-
cially the lack of a complex background, fully visible
body parts, etc., in comparison with the real-life im-
geas in the two other datasets.

Finally, Figure 2 presents qualitative results of the
trained GAN. The generated images show that the
network learned to reproduce the pose while preserv-
ing most of the visual characteristics of the subject
and the global environment. This result indicates that
the network can learn and generalize on our dataset.
In the end, the evaluation results combined with the
qualitative results suggest that our dataset contains
enough diversity to train a network for a complex task
without overfitting.

5 CONCLUSION

In this paper, we have presented a dataset of 200k
synthetic driver images for human pose-related tasks
with a large diversity of human models to answer the
lack of available datasets on driver monitoring tasks.
Using state-of-the-art metrics, we demonstrated that
the quality of our synthetic images is comparable to
the one measured in existing datasets, synthetic or
real-world. We finally trained a GAN for human
pose transfer, a data-demanding task, on our synthetic
dataset. The network achieved similar performances
to those trained for HPT on real-world datasets for
other applications, which demonstrates that the pro-
posed synthetic dataset is diverse enough to train large
networks. This dataset is publicly available as well as
the script used to generate it.

Future work will investigate the problem of do-
main adaptation from synthetic to real-world driver
images in models for human pose-related tasks.
Moreover, the proposed pipeline could be used to ex-
tend our dataset with multiple views to approach tasks
such as 3D human pose estimation, or with real activ-
ities for passenger monitoring.

Acknowledgements

This work was supported by the Pack Ambition
Recherche 2019 funding of the French AURA Region
in the context of the AutoBehave project.

REFERENCES

Abtahi, S., Omidiyeganeh, M., Shirmohammadi, S., and
dataset. In Proceedings of the 5th ACM multimedia
Mercury: a vision-based framework for driver moni-
toring. In International Conference on Intelligent Hu-
man Systems Integration, pages 104–110. Springer.
Canas, P. N., Ortega, J. D., Nieto, M., and Otaegui, O.
(2022). Virtual passengers for real car solutions: syn-
Cruz, S. D. D., Waser, O., Beise, H.-P., Stürer, T.,
and Stricker, D. (2020). Sviro: Synthetic vehicle in-
terior rear seat occupancy dataset and benchmark. In
Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 973–982.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. (2009). Imagenet: A large-scale hierarchical im-
age database. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 248–255. Ieee.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. In Grah-
manani, Z., Welling, M., Cortes, C., Lawrence, N.,
and Weinberger, K., editors, Advances in Neural Infor-
mation Processing Systems, volume 27. Curran Asso-
ciates, Inc.
Dripe: A dataset for human pose estimation in
real-world driving settings. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion Workshops, pages 2865–2874.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. (2017). Gans trained by a two time-
scale update rule converge to a local nash equilibrium.
Advances in neural information processing systems,
30.
Huang, S., Xiong, H., Cheng, Z.-Q., Wang, Q., Zhou, X.,
person images with appearance-aware pose stylizer. In
IJCAI.
Jegham, I., Khalifa, A. B., Alouani, I., and Mahjoub, M. A.
(2019). Mdad: A multimodal and multiview in-
vehicle driver action dataset. In International Confer-
ence on Computer Analysis of Images and Patterns,
pages 518–529. Springer.
Juraev, S., Ghimire, A., Alikanov, J., Kakani, V., and Kim,
H. (2022). Exploring human pose estimation and
the usage of synthetic data for elderly fall detection
in real-world surveillance. IEEE Access, 10:94249–
94261.
Katrolia, J. S., El-Sherif, A., Feld, H., Mirbach, B., Ram-
flight in-car monitoring dataset. In 32nd British