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Abstract

Thermal to visible face image translation aims at synthe-
sizing high-fidelity visible face images from thermal coun-
terparts, placing emphasis on preserving the identity of
the faces. While remarkable progress has been achieved
related to the quality of synthetic images, as well as re-
lated to associated face matching accuracy, interpreting
the generation process from thermal to visible face images
remains an open challenge. Towards tackling this chal-
lenge, we present a novel generic attention-guided gener-
ative adversarial network (AG-GAN) for thermal to visible
image translation. The AG-GAN framework is based on
an encoder network that directly generates attention fea-
ture maps from an input thermal image in either, super-
vised or unsupervised fashion. A decoder network takes
the attention maps and applies adaptive layer-instance nor-
malization, in order to reconstruct the corresponding visi-
ble image. We show that solving thermal to visible image
translation tasks through AG-GAN significantly improves
the cross-spectral face matching accuracy, as well as in-
herently supports model explanation.

1. Introduction

Image-to-image translation has received increased atten-
tion due to great progress in the field of generative adver-
sarial networks (GANs) [22, 13, 14, 16, 15]. We here are
interested in thermal-to-visible image synthesis via condi-
tional adversarial networks, which represents the task of
generating photo-realistic visible face images conditioned
on certain input thermal data [4, 8, 2]. This task has a wide
range of applications including cross-spectral face recogni-
tion [2, 4] and face landmark detection [19], highly perti-
nent in defense, surveillance and public safety.

State-of-the-art thermal-to-visible image translation
models have achieved reasonably high visual quality and fi-
delity [3]. Rakhil et al. [11] proposed a Transformers-based
GAN by augmenting the network with axial-attention layers
to perform simultaneous face hallucination and translation.

Compared to the self-attention used in Transformers [9], the
axial-attention factorizes 2D self-attention by applying 1D
self-attention to height and width sequentially. Di et al. [7]
presented a self-attention generative adversarial network to
enhance attention-guided feature synthesis for synthesizing
visible images from the polarimetric thermal inputs. How-
ever, all named works did not offer insightful explanation
or visualization on which type of axial-attention or self-
attention features were learned during the thermal to visi-
ble generation process. Recently, Anghelone et al. [2] uti-
lized two separate identity and style encoders to disentangle
the latent space into identity and style code representations.
The associated visualization of identity code demonstrated
that the identity-related structure information were well pre-
served during the translation. However, their work did not
incorporate attention to augment the network.

In this work, we firstly introduce a generic attention-
guided generative adversarial network (AG-GAN) that en-
codes an input thermal image into attention feature maps.
The encoder is based on a ResNet style architecture that
consists of downsampling blocks that gradually reduce the
spatial size and enlarge the feature channel numbers. The
decoder uses residual blocks with adaptive layer instance
normalization (AdaLIN) to modulate the shape and texture
change during the translation. The AdaLIN parameters are
computed by applying a fully connected layer to the at-
tention feature maps. The AG-GAN is designed to learn
the attention modules, in order to guide the feature synthe-
sis to focus on regions that are pertinent to the interests of
the generator and the discriminator. Here, we consider two
types of attention feature map learning: supervised and un-
supervised. While the supervised attention map learns to
generate the attention weights based on an auxiliary clas-
sifier, the unsupervised attention learning generates the at-
tention weights via squeeze-excitation (SE) operation [10].
The commonality among these two approaches is that they
learn the channel-based attention weights to capture global
interactions between facial contexts. The architecture of the
proposed method for the generation process is depicted in
Figure 1.

The contributions of our work are summarized below.



• We design an explainable generative adversarial net-
works based on attention feature map learning.

• We showcase the attention maps for both, generator
and discriminator.

• We compare both quantitatively and qualitatively for
supervised and unsupervised attention learning.

• We offer extensive ablation studies and visualization
results to validate the effectiveness of the proposed ap-
proaches from both the controlled and the uncontrolled
studies.

2. Related Work
In this section, we briefly discuss existing literature on

conditional adversarial networks and explainable GANs in
performing general image-to-image translation.

Conditional adversarial networks [13] have so far
been the de-facto model to solve image-to-image transla-
tion tasks in supervised settings. Prior works have involved
notably Pix2Pix [13], aimed at learning to map a condi-
tional input thermal image to an output visible image. The
optimization step was further regularized by introducing
additional constraints such as closed-set face recognition
losses [21, 17] or face verification losses [4, 2], in order
to preserve the identity mapping. In comparison to these,
some other recent works have focused on preserving the at-
tribute mapping by using a pre-trained attribute prediction
network [12, 8]. In addition to the preservation of identity
and attribute mappings, some methods [11] focused on elab-
orate network architecture design, incorporating the self-
attention module from the Transformers [9].

Explainable GANs aim to empower image translation
by transparency and interpretability. Recent works predom-
inantly focused on the visualization and understanding of
internal representations [14, 2]. Kim et al. [14] incorpo-
rated learnable attention modules into the generator and
the discriminator for unsupervised image-to-image trans-
lation. Tang et al. [20] proposed an attention-guided gen-
erator to disentangle the semantic objects from the back-
ground via producing an attention mask and a content mask.
The attention module was also integrated into the discrim-
inator, focusing on attended regions only. Their proposed
attention-guided generator and discriminator were used to
solve unpaired image-to-image translation, which demon-
strated promising results, in case that the geometric change
between the source and target domain is minor.

3. Proposed Method
We propose AG-GAN, a generic attention-guided gen-

erative adversarial network designed for thermal to visible

spectral translation. Our method is inspired from the U-
GAT-IT work [14]. Notable differences include: (a) we
re-design the entire architecture to a supervised learning
framework; (b) we propose new attention feature map learn-
ing, as well as (c) we introduce a new set of loss functions
such as identity loss to further constrain the mapping space.
Specifically, AG-GAN encompasses three networks dedi-
cated to the generation task, namely (i) encoder, (ii) atten-
tion and (iii) decoder.

Let T and V be the thermal and visible domains. Given
an input thermal image It ∈ RH×W×Cin and an output vis-
ible image Iv ∈ RH×W×Cout , the thermal-to-visible trans-
lation model can be described as:

Θt→v : T → V
It 7→ Ĩv = Gv(Et(It)),

(1)

where Θt→v consists of an encoder Et, a decoder Gv and
an auxiliary classifier η{T orV}. Consequently, Equation 1
is the function producing the final output image Ĩv in the
visible domain. Here, H , W , Cin and Cout are the height,
width, input channel number and output channel number,
respectively. Let x ∈ {(It, Iv), (It, Ĩv)} denote a sample
pair conditioned on an input thermal image It. Further, the
discriminator Dv is adopted to determine whether x is gen-
uine or fake. In particular, (It, Iv) and (It, Ĩv) denote the
genuine and fake pairs, respectively.

3.1. Network Architecture

3.1.1 Generator

Encoder. Given an input thermal image It, we first use a
7 × 7 convolutional layer H0 to transform an input image
space into a high-dimensional feature space:

F0 = H0(It). (2)

Here, H0 refers to a composite function of three differ-
ent operations including convolution, instance normaliza-
tion and ReLU. This operation was preceded by perform-
ing a reflection padding to keep the dimensional size un-
changed. Then, we apply a sequence of down-sampling op-
erations:

Fi = Hi(Fi−1), (3)

where Fi represents the intermediate feature maps after the
i-th down-sampling operation, for all i ∈ {1, ...,K} with
K ∈ N∗. Here, Hi is the same composite function as H0,
but with the purpose of halving the dimension and doubling
the channel number. To further enhance the feature embed-
ding, we apply a series of residual blocks HRj

:

Fj = HRj
(Fj−1), (4)

where Fj , for all j ∈ {K+1, ...,M} with M > K, denotes
the intermediate feature maps after performing feature en-
hancement including the j-th residual block, which has two



Figure 1. The architecture of the proposed AG-GAN and AG-GAN+ methods for thermal to visible image translation. The attention map in
AG-GAN is generated by multiplying the learned attention weights with the feature maps obtained after encoder comprising downsampling
bottlenecks. Such attention weights are obtained by inputting the GAP and GMP logits to an auxiliary classifier modulated by the CAM
loss. The attention map in AG-GAN+ is generated by applying the squeeze-excitation (SE) module with no explicitly designed loss function
to learn the attention weights. The decoder is formed by a series of upsampling bottlenecks coupled with AdaLIN parameters.

3 × 3 convolutional layers with the same output channel
numbers and a skip-connection.
Attention. Given the embedding of Equations (3) and (4),
we define the encoder feature map Ek

t (It) as the k-th acti-
vation map from the encoder output FM . In particular, we
note E

kij

t (It) as the value of activation map at (i, j). An
auxiliary classifier is later introduced to learn the weight
wk

t of the k-th feature map for the thermal domain. Thus,
training is driven by both, global average and global max
pooling, viz. σ providing:

ηT (It) = σ

∑
k

wk
t ∗

∑
i,j

E
kij

t (It)

 . (5)

In other words, ηT (It) expresses the probability that It
comes from the thermal domain. Finally, benefits from
wk

t provide salient thermal domain specific attention feature
maps that can be illustrated as follows:

at(It) = wt ∗ Et(It). (6)

Thereby giving rise to the proposed domain translation
function

Θt→v(It) = Gv(at(It)), (7)

where we aim to learn the translation using neural networks.
For AG-GAN+, the attention feature maps at are generated
via the squeeze-excitation module that consists of squeeze
and excitation operations. Mathematically, the squeeze op-
eration can be described by

St =
1

H ×W

H∑
i=1

W∑
j=1

Et(It)(i, j). (8)

Here, H and W refer to the height and width of the encoded
feature map Et(It) and (i, j) is the corresponding element.

The channel-wise representation St is generated by apply-
ing the global average pooling per channel. For the excita-
tion operation, St is fed into two sequential fully connected
layers joined by the ReLU, which can described as follows,

wt = σ(FC1(ReLU(FC2(St)))). (9)

Here, wt refers to the attention weights computed by SE.
Next, we compute the resulted attention feature maps, see
Eqn. 6. Note that the difference between AG-GAN and AG-
GAN+ lies in the generation of attention weights wt. The
AG-GAN supervises the weights by the auxiliary classifier
associated with the CAM loss, whereas the AG-GAN+ gen-
erates the weights by squeeze-excitation operations without
employing auxiliary loss function, hence, the inception of
unsupervised learning. The heatmap is generated by aver-
aging the channel dimension of the attention feature map
at.
Decoder. The decoder Gv aims at transforming a high-
dimensional feature space into an output image space.
It comprises of several residual blocks followed by up-
sampling blocks. Here, residual blocks are instrumen-
tal in embedding features, while up-sampling convolu-
tion blocks generate target Ĩv visible domain images from
the associated embedded features. Inspired by U-GAT-
IT [14] decoder, we further constrain the residual blocks
with Adaptive Layer-Instance Normalization (AdaLIN).
AdaLIN combines both advantages of Adaptive instance
normalization (AdaIN) and Layer Normalization (LN) by
helping the AG-GAN model to bring more flexibility in fa-
cial features generation control, with respect to shape and
textures. To perform upsampling, we use the nearest neigh-
bor strategy.

3.1.2 Discriminator

The discriminator Dv performs a binary-class classification
by determining whether the given pairs (It, Iv) and (It, Ĩv)



are genuine or fake. This is further enhanced by construct-
ing two different scales of PatchGAN [13] discriminators
that output resulting feature maps of 6× 6 and 30× 30, re-
spectively. We adopt the same attention maps used by the
generator and embed them into the discriminator for both
AG-GAN and AG-GAN+.

3.2. Loss Function

We utilize the pixel-wise L1 loss function to measure the
similarity between target visible face image Iv and synthe-
sized visible face image Θt→v(It) = Ĩv at the pixel level:

L1 = ∥Iv − Ĩv∥1. (10)

The objective of L1 loss function is to minimize the dif-
ference at the low-level features, which may not lead to
the preservation of high-level features such as identity.
Therefore, we utilize a pre-trained ArcFace recognition net-
work [6] to extract the face feature embedding, measure the
cosine similarity and compute the identity loss function:

LID = 1− < ϕR(It), ϕR(Ĩv) > . (11)

Here, ϕR(It) and ϕR(Ĩv) denote the normalized feature em-
bedding. Further, the CAM loss results from the auxiliary
classifier can be described as:

LΘt→v

CAM = −(Ex∼T [log(ηT (x))] + Ex∼V [1− log(ηT (x))])
(12)

LDv

CAM = Ex∼V [ηV(x)
2]+Ex∼T [(1−ηV(Gv(x)))

2]. (13)

Note that for AG-GAN+, no auxiliary classifier was used to
learn the attention weights, thus no CAM loss was required.
We also introduce the perceptual loss to enhance the image
quality:

LP = ∥ϕP (Iv)− ϕP (Ĩv)∥1. (14)

Here, ϕP denotes the perceptual network constructed from
the VGG-19. The overall loss function is the combination
of aforementioned loss functions, along with the adversarial
loss function.

3.3. Implementation Details

We use LSGAN for training the AG-GAN by setting
weight of L1, LID, and LΘt→v

CAM to be 100, 1, and 1000, re-
spectively. The default number of epochs used in our train-
ing was 200. Images were first scaled to size 286 × 286,
and then randomly cropped to a size of 256× 256. A batch
size of 1 with the Adam optimizer was used. The percep-
tual loss LP was used only in SpeakingFaces experiment.
During the inference process, we experimented with mod-
els generated by different epochs and select epoch 90 as our
final model.

4. Experimental Results
To verify the effectiveness of the proposed method, ex-

periments were conducted on the controlled ARL-VTF [18]
dataset, as well as the uncontrolled SpeakingFaces [1]
dataset.

4.1. Evaluation on ARL Dataset

The ARL-VTF dataset [18] is considered as the largest
collection of paired thermal and visible face images. Fol-
lowing the established evaluation protocol, 295 subjects
were used for training and 100 subjects were used for test-
ing. Specifically, the setting of gallery (G VB0-) and probe
(P TB0-) subjects without glasses was chosen. The face im-
ages were pre-processed by aligning and cropping based on
the manually annotated landmarks to minimize variations
unrelated to the identity (see Figure 6).

Table 1. Comparison of proposed method with GAN-based face
matching methods on ARL-VTF dataset.

Method AUC↑ EER↓ PSNR↑ SSIM↑
U-GAT-IT [14] 89.58 17.84 14.49 0.65

AttentionGAN [20] 93.35 13.41 14.34 0.64
LG-GAN [2] 94.26 12.99 15.77 0.61
SG-GAN [4] 98.52 5.07 17.27 0.71

Axial-GAN [11] 99.05 4.98 - -
AG-GAN 98.74 5.56 17.39 0.70

AG-GAN+ 99.26 4.30 17.58 0.72

Table 1 shows quantitative comparisons between (a) pro-
posed methods: AG-GAN and AG-GAN+ and (b) state-of-
the-art methods: U-GAT-IT [14], AttentionGAN [20], LG-
GAN [2], SG-GAN [4] and Axial-GAN [11]. As showcased
in Table 1, AG-GAN+ achieves best performance on all
evaluation metrics. Note that U-GAT-IT and AttentionGAN
were designed for unsupervised image-to-image translation.
The remaining methods are applicable to supervised image-
to-image translation. For a fair comparison with Axial-
GAN, we adopt the face matching results from [11]. The
maximum AUC is achieved by AG-GAN+. Here, the AUC
and EER are used to measure the face matching accuracy,
while PSNR and SSIM represent the image quality. We ob-
serve that PSNR and SSIM are positively correlated with
AUC and EER. Additionally, we show corresponding ROC
curves in Figure 2. The proposed methods achieve signif-
icantly higher true match rates across different false match
rates. Further, a qualitative comparison between the se-
lected methods is shown in Figure 3. Notably, the proposed
methods AG-GAN and AG-GAN+ are able to accurately re-
construct visible images from thermal inputs, while preserv-
ing well identity and incorporating finer details. In contrast,
U-GAT-IT, AttentionGAN and LG-GAN appear to include
more artifacts.
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Figure 2. ROC results of proposed algorithms and existing works
on ARL-VTF dataset.

Figure 3. Comparison of qualitative results of proposed algorithms
with existing works on ARL-VTF dataset.

4.2. Evaluation on SpeakingFaces

The SpeakingFaces dataset [1] consists of 142 subjects,
where 100 subjects were used for training and the remaining
subjects were used for testing. Following the established
protocol used in [1], 5,400 and 2,268 thermal-visible im-
age pairs were utilized for training and testing, respectively.
Each subject was captured under 9 different poses, making
it suitable for evaluating thermal-to-visible image transla-
tion under pose variations.

Table 2 shows quantitative comparisons between (a) pro-
posed methods: AG-GAN and AG-GAN+ and (b) state-
of-the-art methods: U-GAT-IT [14], CUT [1], Attention-
GAN [20], Pix2Pix [13], CycleGAN [1], SG-GAN [4],
Axial-GAN [11]1. As demonstrated in Table 2, the pro-
posed AG-GAN and AG-GAN+ methods achieve the best
overall results for evaluating thermal-to-visible image trans-

1Axial-GAN has been reproduced on the high-resolution thermal to vis-
ible image translation task. We make sure the results from the reproduced
model is similar to the original results.

lation under pose variation. This is corroborated by the use
of face verification and image quality metrics. Further, we
compute the ROC curves for selected algorithms in Fig-
ure 5. In addition, a qualitative comparison between the
methods is shown in Figure 4. Both proposed methods are
able to synthesize high-fidelity visible face images under
pose variations, while preserving well the identity.

Table 2. Comparison of proposed method with GAN-based face
matching methods on SpeakingFaces dataset.

Method AUC↑ EER↓ PSNR↑ SSIM↑
U-GAT-IT [14] 83.0 24.48 19.05 0.71

CUT [1] 83.62 23.59 20.51 0.67
AttentionGAN [20] 84.69 22.92 19.21 0.71

Pix2Pix [13] 86.82 20.99 20.29 0.72
CycleGAN [1] 86.97 20.70 20.34 0.67
SG-GAN [4] 88.41 19.23 20.33 0.72

Axial-GAN [11] 89.51 17.90 21.15 0.69
AG-GAN 89.86 17.68 20.82 0.74

AG-GAN+ 90.53 17.20 21.01 0.75

4.3. Ablation Study

We conduct an ablation study to understand the effective-
ness of AG-GAN with respect to the GCAM loss LΘt→v

CAM ,
DCAM loss LDv

CAM and identity loss LID.
Impact of CAM loss. As seen in Table 3, the use of CAM
loss can increase the face matching accuracy by pushing
the generator to focus on salient facial regions. Here, “w/o
DCAM” and “w/o GCAM” refers to the settings, where
no CAM loss is applied to the discriminator and genera-
tor, respectively. “w/o GDCAM” refers to the setting where
no CAM loss is applied to both, generator and discrimina-
tor. However, we do not observe a correlation between face
matching accuracy and perceived image quality when ana-
lyzing the CAM loss.

Table 3. Ablation study on the impact of CAM loss with ARL-
VTF dataset.

Method AUC↑ EER↓ PSNR↑ SSIM↑
AG-GAN 98.74 5.56 17.39 0.70

w/o DCAM 97.19 7.09 17.00 0.69
w/o GCAM 97.93 6.30 17.67 0.70

w/o GDCAM 97.74 7.29 17.81 0.71

Impact of Identity loss. We investigate the use of different
face recognition networks to extract feature embedding and
compute identity loss. As seen in Table 4, using ArcFace [6]
to derive the feature embedding for identity loss computa-
tion results in higher performance than MobileFaceNet [5],
as well as the framework without adopting the identity loss.
Admittedly, applying face recognition loss does not always
result in improved matching performance. Therefore, it is



Figure 4. Comparison of qualitative results of proposed algorithms with existing works on SpeakingFaces dataset.

0 20 40 60 80 100
False Match Rate (%)

30

40

50

60

70

80

90

100

Tr
ue

 M
at

ch
 R

at
e 

(%
)

ROC Curve

U-GAT-IT
AttentionGAN
Pix2Pix
SG-GAN
Axial-GAN
AG-GAN
AG-GAN+

Figure 5. ROC results of proposed algorithms and existing works
on SpeakingFaces dataset.

critical to choose a suitable identity loss to ensure maxi-
mum identity similarity between target visible and synthe-
sized visible images.

Table 4. Ablation study on the impact of identity loss with ARL-
VTF dataset using AG-GAN.

Method AUC↑ EER↓ PSNR↑ SSIM↑
w/o ID 97.66 7.78 17.02 0.69

w/ MobileFaceNet 97.59 7.57 16.94 0.69
w/ ArcFace 98.74 5.56 17.39 0.70

4.4. Results on Attention Maps

For interpretation of the generation process from input
thermal to output visible images, we visualize the atten-

tion maps embedded in the generator. As seen in Figure 6,
features are generally activated around the salient facial re-
gions including nose, mouth and eyes. Other notable re-
gions such as hair are also likely to be activated. However,
it is worth pointing out that the skin regions are not acti-
vated in the resulting attention maps. This clearly indicates
that the generator network tends to focus on salient facial
features that are discriminative across subjects. The skin
region, on the other hand, appears to share more similar-
ity in texture, thereby not being accentuated by the gener-
ator. In contrast, the discriminator attention maps focus on
distinguishing the skin region difference between the syn-
thesized and ground-truth visible face images. This could
be explained by the fact that features from salient facial re-
gions are well synthesized, hence considering to be genuine
by the discriminator. Thus, the generator and discriminator
are unlikely to compete against each other on these regions
to distinguish between genuine and fake images.

We show that the attention maps entail highly similar
representations throughout the entire generation process.
Figure 7 reveals the attention maps produced at different test
epochs for a single subject. It becomes evident that atten-
tion maps at different stages demonstrate highly consistent
representations in salient facial regions including eyes, nose
and mouth. This clearly validates that the visual attention is
consistent across the entire training process. Note that with
the increase of epochs, more visually pleasing images can
be obtained.
Observation of Pose. We observe that such attention maps

are also effective in interpreting the thermal-to-visible im-
age translation in uncontrolled conditions, e.g., pose varia-
tion. Figure 8 presents the heatmap visualization results for
a subject captured under 9 different pose positions. Appar-
ently, the heatmap interpretation is also consistent with the
conclusion drawn from Figure 6.



Figure 6. Transparency and Interpretability. Examples of attention maps produced by the generator and discriminator on ARL-VTF
dataset using AG-GAN. The images from top to bottom rows are: thermal, generator attention map, discriminator attention map, synthe-
sized visible and ground-truth visible face images.

Figure 7. Robustness and Consistency. Examples of attention
maps produced by the generator at individual test epochs on ARL-
VTF dataset using AG-GAN. The images in the top and bottom
rows are synthesized visible images and their corresponding atten-
tion maps.

4.5. Supervised vs. Unsupervised Attention

The attention weights from the proposed AG-GAN
method were learned by the CAM loss, while the atten-
tion weights from AG-GAN+ were learned by the squeeze-
excitation operation. Here, the supervised and unsuper-
vised learning were defined based on whether the attention
weights are directly learned by a loss function. Figure 9
shows the heatmaps generated by the squeeze-excitation.
Compared to Figure 6, where the attention maps are more
localized, the AG-GAN+ generates the attention maps that
are more globally distributed. This is challenging for the
model explainability, as there are no consistent patterns ob-
served. However, the attention maps computed by the gen-
erator still clearly reveal the structure information.

5. Conclusions
In this paper, we propose a general-purpose attention-

guided generative adversarial model for explainable
thermal-to-visible image translation. Attention maps are
extracted from the encoder in both, supervised and unsu-
pervised manner and are fed into the AdaLIN-based de-
coder. By visualizing the learned attention maps, we show
that AG-GAN is capable of interpreting thermal-to-visible
image translation. Additionally, we demonstrate that the
proposed methods achieve competitive cross-spectral face
matching performances. Future work will explore the spa-
tial attention and the self-attention from Transformers, in
order to further improve the performance.
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