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Abstract

Automated thermal-to-visible face recognition has re-
ceived increased attention due to benefits related to low-
light applications. Towards improvement of related match-
ing accuracy, we hereby present TFLD, a detector of face
and landmarks operating in the thermal spectrum. Our
proposed TFLD is based on the architecture of YOLOv5,
integrating sequential modules for face and landmark de-
tection. We introduce a thermal face restoration scheme,
in order to enhance thermal image quality and hence de-
tection accuracy. We address data scarcity by transfer-
ring landmarks in paired visible and thermal images. Our
experimental results showcase that our proposed detector
accurately detects faces, as well as landmarks in a wide
range of adversarial conditions. Further, TFLD achieves
promising results on three benchmark multi-spectral face
and landmark datasets, namely ARL-VTF, SF-TL54 and
RWTH-Aachen; thereby improving the matching accuracy
in cross-spectral face recognition by providing robust face
alignment based on estimated facial landmarks.

1. Introduction

Face recognition (FR) generally includes face detection
and landmark-based alignment as initial processing steps
[6, 2, 13, 17]. While landmark detection has become rea-
sonably reliable in the context of the visible spectrum, it
remains challenging in the context of thermal images due to
associated inherent low-contrast and low-resolution, as well
due to poor texture information [16]. We note that existing
face and landmark detection algorithms, that were trained
with visible face images, fail to generalize onto thermal im-
ages [7, 14] due to the cross-spectral modality gap. At the
same time, lack of available annotated thermal datasets is
the primary cause for the scarcity of work focused on detec-
tion of thermal facial landmarks [8, 11, 16].

Motivated by the above, we present a novel thermal face
and landmark detector (TFLD), streamlined to be robust to

adversarial conditions such as pose, expression, occlusion,
poor image quality and long-range distance. Specifically
jointly, TFLD and a proposed data augmentation strategy,
are able to (i) detect face and landmarks in the thermal
spectrum in challenging unconstrained conditions. Related
to that, TFLD (ii) establishes a benchmark for face and
landmark detection in the thermal spectrum. We present
related results on the ARL-VTF [16] dataset and further
showcase that TLFD is instrumental for (iii) cross-spectral
face recognition (CFR), which aims to compare visible face
images against face images acquired beyond the visible, as
well as to (iv) assist thermal monitoring systems (see Fig-
ure 1). In addition, TFLD (v) enhances currently limited
annotation of existing thermal face datasets, e.g., 5 facial
landmarks in the ARL-VTF dataset by detecting 68 facial
landmarks. However, when datasets contain rich landmark
annotations, such as SF-TL54 [10] or RWTH-Aachen [8]
datasets, TFLD training can be directly applied. To be spe-
cific to the ARL-VTF database, TFLD extracts facial land-
marks in visible face images and transfers these to the syn-
chronized and aligned thermal counterpart images, in order
to serve as ground truth annotations.

Given that face detection and facial landmarks constitute
sub-tasks of traditional object detection, we hereby adopt
YOLOv51, which has excelled in object detection. There-
fore, TFLD detects facial landmarks by considering them as
the center of a textured area instead of points. In contrast to
visible spectrum images, thermal images contain less high-
frequency information and associated degraded quality ren-
ders semantic definitions for certain landmarks challenging.
To the best of our knowledge, this is the first work based on
YOLOv5 for large-scale thermal-based facial landmark de-
tection. Our method brings more benefits compared to prior
work, in particular offering, on the one hand, the ability to
detect a large amount of thermal facial landmarks in un-
constrained environment. And on the other hand, providing
facial key points for the purpose of face alignment, which
also demonstrates a positive impact on the face recognition

1https://github.com/ultralytics/yolov5



Figure 1. Monitoring system with thermal sensor. TFLD method applied on video sequence captured in the wild. A person, approxi-
mately 14m away, walks towards the camera while TFLD is tracking face and landmarks.

scores, therefore rendering TFLD an accurate automatic an-
notation tool for cross-spectral face recognition systems.

We design a model, where a thermal face restoration
(TFR) pre-processing filter is succeeded by two YOLOv5
models, denoted as M1 and M2. TFR is beneficial in high-
lighting visual details and contours, in improving contrast
and sharpness of the face, ultimately allowing for better de-
tection accuracy. While M1 detects the full face in the ther-
mal spectrum, M2 subsequently detects a set of facial land-
marks in the localized face. We evaluate the accuracy of
TFLD by assessing landmark accuracy, as well as by deter-
mining the impact of the proposed face alignment on CFR.

The main contributions of this work include the follow-
ing.

• We propose a novel framework incorporating two suc-
cessive YOLOv5-object detectors for face and land-
mark detection in the thermal spectrum, placing em-
phasis on robustness in unconstrained environments.
TFLD predicts landmarks as regions of interest instead
of specific marks, where textured areas are a principal
concern rather than semantic points. We incorporate a
thermal face restoration module as a pre-processing fil-
ter, allowing for a significant detection improvement.

• We (a) achieve at least state-of-the-art performance
on three benchmark thermal face datasets with respect
to landmark localisation and (b) improve automatic
face recognition matching scores when using TFLD
for pre-processing.

The rest of the paper is organized as follows. Section 2
revisits recent work on landmark detection involving ther-
mal imaging. Section 3 introduces the framework of the
proposed TFLD. Section 4 presents experimental results
pertaining to face and landmark detection, as well as the

impact of TFLD based face alignment on CFR. Section 5
concludes the work.

2. Related Work

A number of deep learning based approaches have been
proposed to address the task of face landmark detection
in the thermal spectrum. Poster et al. [14] examined
three different approaches, namely deep alignment network
(DAN), multi-task convolutional neural network (MTCNN)
and multi-class patch-based fully convolutional neural net-
work (PBC). Similarly, Chu and Liu [4] presented a neu-
ral network approach for joint facial landmark detection
and emotion recognition. Kuzdeuov et al. [10] compared
the classical machine learning model Dlib based on a set
of regression trees with a deep learning model based on
the U-net architecture. All these approaches were origi-
nally designed for visible face landmark detection and were
then retrained for thermal images. However, the large inter-
spectral gap left room for improvement with respect to de-
tection results. In addition, face and landmark detection in
the thermal spectrum was addressed by methods based on
generative adversarial networks (GANs), aiming at trans-
lating facial images to the visible spectrum, then extracting
facial key points and transferring the key points to the image
of the original spectrum. Mallat et al. [11] proposed con-
verting existing visible face databases to the thermal spec-
trum. Active appearance models (AAMs) and DAN are then
trained using the synthetic thermal, along with the shared
landmark annotations. Nevertheless, Nagumo et al. [12]
noted that computation using AAM method is costly, thus
rendering AAM inapplicable in real-world scenarios. Poster
et al. [15] leveraged the use of visible data by proposing
visible-to-thermal parameter transfer learning with a cou-
pled neural network. However, Anghelone et al. [1] re-
ported that the facial identity was often not preserved dur-



ing the spectral transformation, where salient regions of the
synthesized face deviated. As a result, the methodology fre-
quently failed in facial landmark localization.

3. Proposed Approach
Our proposed TFLD is based on YOLOv5, comprised

of two sequential modules, namely a face detection module
and a landmark detection module. Prior to these, a thermal
face restoration pre-processing filter is applied to enhance
the thermal image quality before the detection. The overall
architecture of TFLD is illustrated in Figure 4.

3.1. Formalization

Let T be the thermal domain. A digital thermal image
can be defined as

Ithmw×h : {0, .., w − 1} × {0, .., h− 1} → {0, .., 255}
(x, y) 7→ Ithmw×h(x, y),

(1)
where w ∈ N∗ and h ∈ N∗ denote the width and height, re-
spectively. To simplify the notation, we denote Ithmw×h,n for a
thermal image belonging to {Ithmw×h,n}Nn=1, which represents
a set of N thermal images. Equation (1) defined as ther-
mogram is the function, which quantifies the light intensity
ranging from 0 to 255, emerging through the heat sensitive
energy acquired from any point of the thermal sensor. Due
to the nature of thermal imagery, a face will emit significant
heat and thus will appear as a high intensity object. This
physical phenomenon is illustrated in Figure 2 (left).

3.2. Thermal face restoration

Motivated by the fact that thermal sensors provide both,
poor image quality and low spatial resolution, we here note
that improvement of the former is essential for accurate fa-
cial landmark locatalization. We introduce a thermal face
restoration (TFR) pre-processing filter that reveals many vi-
sual details, enhancing contrast and sharpness [3]. TFR
is based on a combination of several difference of Gaus-
sians (DoG) filters. The DoG filter as main operation, noted
Γσi,σj

, serves as a spatial band-pass filter and involves the
subtraction of one Gaussian blurred Gσi

version of an orig-
inal image from another Gσj less blurred version of the
original. The Gaussian blurred image Bσ is obtained by
convoluting the original thermal image Ithmw×h with a Gaus-
sian kernel Gσ having a standard deviation σ. This can be
expressed as

Bσ = Ithmw×h ∗Gσ, (2)

where the Gaussian kernel is from a two-dimensional Gaus-
sian distribution

Gσ(x, y) =
1

2πσ2
e
−
x2 + y2

2σ2 . (3)

Figure 2. Thermal face restoration pre-processing filter. Left im-
age shows the raw image Ithmw×h acquired from a thermal sensor,
whereas right image shows the enhanced image TFR(Ithmw×h) per-
formed by the TFR filter.

In particular, the DoG filter is obtained by performing the
subtraction of two Gaussian kernels. Here, a kernel must
have a standard deviation σi lower than the previous σj .

Γσi,σj = Bσj −Bσi . (4)

Finally, the TFR image is obtained via a combination of
two DoG filters consisting of both, different Gaussian ker-
nel size and standard variation values, and can be formal-
ized as

TFR(Ithmw×h) = Γσ1,σ2 + Γσ3,σ4 . (5)

Figure 2 highlights quality enhancement, as contributed by
TFR.

3.3. Data augmentation

(a) (b) (c) (d) (e)

Figure 3. Data augmentation. An original image (a) augmented
by introducing (b) circular occlusion, (c) rectangular occlusion,
(d) low resolution degradation, and (e) thermal face restoration
processing.

We augment our dataset with a set of simulations of real
world conditions such as occlusions (e.g., random circles
and rectangles superimposed on the image), low resolution
degradation and long range acquisition variations, see Fig-
ure 3. Such simulations allow the model to gain robustness
to unconstrained environments, and hence to adapt to in-
the-wild scenario.

3.4. Missing ground truth extrapolation with
visible-to-thermal landmark transfer

Thermal face datasets often lack labeled face bounding
boxes and offer limited corresponding landmarks, e.g., of
the left and right eyes, nose and left and right mouth cor-
ners only. As a result, very limited scientific work has been



focusing on thermal facial landmark detection. For our pur-
pose, we consider the ARL-VTF [16] dataset, introduced
in Section 4.1.1. It is a large scale dataset including syn-
chronized and aligned visible-thermal face images offering
only a partial set of thermal landmarks. We extract facial
landmarks based on visible images and proceed to transfer
these onto the thermal counterpart, in order to employ them
as ground truth references. This is illustrated in Figure 5,
providing a full facial landmark annotation to the images in
the thermal spectrum.

3.5. Baseline model

We design a series of two successive YOLOv5 models
based on the medium backbone, denoted as M1 and M2
respectively, where both are optimized by three objective
functions that include (i) the mean square error as bounding
box regression loss, (ii) the binary cross entropy as object-
ness loss and (iii) the cross entropy as classification loss.
While M1 detects the regions of interest (ROI) that contains
faces from the background, M2 aims at extracting a set of
landmarks pertaining to the prior cropped region. Given
that YOLOv5 was originally an object detector, we build
M1 and M2 for face and landmark detection, rather than
box detection. In order to do so, we consider (a) a face F
as a bounding area based on the semantic definition of the
inter-eye distance dIED (center of the left and right eyes).
F contains at least the left and right eyes, nose and mouth.
In particular, we apply the following standard where the up-
per left coordinates (up) and the bottom right coordinates
(down) of F are defined as

(xup, yup) = (x left eye −
dIED

2
, y left eye −

dIED

3
), (6)

(xdown, ydown) = (x right eye +
dIED

2
, y right eye +

2dIED

3
). (7)

In addition, we consider (b) a landmark lk as a ROI
through a custom box, where the center represents the de-
sired landmark with proportional width and height shape.
Consequently, for all k ∈ [0,K] the associated landmark lk
is expressed by the shape of the custom box with

lk = Ithmw×h(xk, yk) = (
xk
up + xk

down

2
,
ykup + ykdown

2
), (8)

where K is the total number of facial landmarks, (xk
up, y

k
up)

and (xk
down, y

k
down) denote the upper left and bottom right

coordinates corner of the k-th custom box, respectively.
The TFR filter is first applied as a pre-processing step

on the n-th thermal image Ithmw×h,n. Hence, the network is
fed by TFR(Ithmw×h,n), where M1 detects a set of Fn faces.
If no face is detected, M1 returns an empty set ∅. This is
formalized as follows.

M1(TFR(Ithmw×h,n)) =

{
∅ if Fn = 0⋃Fn

f=1 F
f
wc×hc,n

otherwise,
(9)

where f ∈ [1, Fn] and F f
wc×hc,n

is the f -th cropped face2

within the n-th image.
Then, given the Equation (9), the second model M2 pro-

duces the final landmark output. Hence, for Fn ̸= 0 and
all f ∈ [1, Fn], M2 attempts to provide a set Lf,n of K
landmarks corresponding to the f -th face of the n-th image.
This is formalized as follows.

M2(F f
wc×hc,n

) = Lf,n. (10)

In particular,

Lf,n =

K⋃
k=1

lf,nk , (11)

where lf,nk refers to the coordinates (xf,n
k , yf,nk ) of the k-

th landmark present in the f -th face of the n-th image. If
lf,nk is undetected, M2 returns an empty point ∅, which then
interpolated with other based predicted landmarks.

Finally, for all f ∈ [1, Fn], Lf,n is reported on the orig-
inal Ithmw×h,n thermal input image, providing therefore the
final landmark locations.

4. Experimental Results
4.1. Dataset and Protocol

4.1.1 Thermal face datasets

To validate the effectiveness of the proposed approach, we
perform experiments on three datasets, namely ARL-VTF,
SF-TL54 and RWTH-Aachen. All contain thermal face
samples from different variations ranging from frontal faces
to faces poses and expressions.

The large ARL-Visible Thermal Face dataset [16] (ARL-
VTF) contains a collection of paired visible and ther-
mal face images with a spatial resolution of 640 × 512
from 395 subjects, with over 500,000 images including
baseline (frontal faces), occlusion (eyeglasses), expression
(lips movements) and pose (yaw angles beyond ±20◦) se-
quences. Face images were acquired in a controlled envi-
ronment (indoor) at a distance of 2.1m in a time synchro-
nized manner and included eye, nose and mouth key points
annotations. Following the established evaluation protocol,
131, 583 images from 295 subjects were used for training
and 5, 590 images from 100 subjects were used for testing.

The Speaking Faces - Thermal Landmarks 54 dataset
[10] (SF-TL54) includes thermal faces with their visible

2F f
wc×hc,n

encompasses the points {(xf
up, y

f
up), (x

f
down, y

f
down)},

denoting the upper left and bottom right coordinates corner of the f -th
face bounding box, respectively, further marked by the plotted points on
the Figure 4.



TFR

M1 M2

Face detection Landmark detection

Ithm
w×h TFR(Ithm

w×h)

Fface1−detected
wc×hc

LFace1−detected

Figure 4. Illustration of the TFLD pipeline. A TFR filter is first applied to a thermal image Ithmw×h. Hence, the network is fed by
an enhanced TFR(Ithmw×h) thermal image, where M1 is responsible of the face detection F face1−detected

wc×hc
, whereas M2 is dedicated to

extract a set of facial landmarks Lface1−detected.

Figure 5. Landmarks transfer. Given a synchronized visible-
thermal paired face and a post-alignment processing, facial land-
marks are extracted from the visible face (left) and transferred to
the thermal counterpart face (right).

face counterparts of 142 different identities, with a spatial
resolution of 464 × 348. The acquisition was conducted in
two stages, where subjects have been captured with a neu-
tral attitude first, then were asked to read a series of short
texts. A total number of 2, 556 images have been collected
under 9 angles, combining yaw and pitch rotations, in a con-
trolled environment (indoor) along with 54 annotated land-
marks. This dataset therefore distinguishes itself with many
non-frontal faces, overshadowing the expression deforma-
tions which remain subtle. We thus denote this database as
Pose sequences in our experiments. Following the estab-
lished protocol, 100 subjects are used for training and the
remaining subjects were used for testing.

The RWTH-Aachen [8] dataset offers the highest spa-
tial resolution with 1024 × 768 images with full manual
annotations of 68 facial landmarks. It comprises 90 sub-
jects, showing posed expressions, where 2, 403 images and
532 images were used for the training and testing sets, re-
spectively. We thus denote this database as Expression se-
quences.

4.1.2 Evaluation metrics

TFLD is based on face and subsequent landmark detection.
Therefore we present in this section the metrics used for
quantitatively evaluating (i) thermal face detection and (ii)

thermal landmark detection.

Face detection - Model M1

Face detection capacity is evaluated by the Detection Rate
(DR) metric. According to Equation (9) and given a thermal
image Ithmw×h,n containing Fn faces, the cardinality defined
as the number of faces properly detected by the model M1
is expressed as

|M1(Ithmw×h,n) | = F. (12)

F denotes the number of correctly detected faces. A de-
tected face F f

wc×hc,n
is only considered as correctly de-

tected, in case that the sub-cropping image of size wc × hc

contains at least the eyes and mouth ground truth annota-
tions. Therefore, the face DR per image is given by the
ratio |M1(Ithmw×h,n)|/Fn and the total face DR assessed by
M1, noted DRM1 is formulated as follows.

DRM1 =
1

N

N∑
n=1

|M1(Ithmw×h,n) |
Fn

, (13)

where N represents the total number of images tested, and
Fn the number of faces that are annotated in the n-th image.

Landmark detection - Model M2

The localization performance is evaluated by the Normal-
ized Point-to-Point Error (NPPE) metric and the Normal-
ized Mean Error (NME). Given a set of N testing ther-
mal images {Ithmw×h,n}Nn=1 and a detected F f

wc×hc,n
face, the

NPPE metric computed for a particular landmark k ∈ [1,K]
in the f -th face present in the n-th image is referred to as
P f,n
k and defined as follows.

P f,n
k =

∥lf,nk − l̂f,nk ∥
dIOD

, (14)



where l is the ground truth coordinate and l̂ the estimated
coordinate provided by M2. The quantity dIOD represents
the inter-ocular distance (considering the outer corners of
the eyes). The NME metric is further used to assess the
average performance and is obtained by

NME =

F,K∑
f,k

P f,n
k

F ×K
, (15)

where F indicates the total number of faces in the set.

TFLD aims to provide a higher DR obtained in Equation
(13) while a lower NME expressed in Equation (15).

4.2. Performances

To evaluate the effectiveness of the TFLD approaches,
we conduct a series of tests on the ARL-VTF, SF-TL54 and
RWTH-Aachen datasets including baseline, expression and
pose sequences under several variations: Raw3, Occlusion
and Poor image quality along with (w/) or without (w/o)
applying the TFR filter.

4.2.1 Face and Landmark detection

Model M1 is responsible for face detection and demon-
strates a perfect detection rate DRM1 as 100% faces are
detected in all datasets, under raw, occlusion or low resolu-
tion variations, with or without applying the TFR filter.

Model M2 locates facial key points and has been trained
on each dataset separately, as the datasets differ in amount
and semantic definition of facial landmarks. Figures 6, 7,
and 8 visualize the landmarks estimated by TFLD on the
ARL-VTF, SF-TL54 and RWTH-Aachen datasets, respec-
tively. We observe that facial key points are detected accu-
rately on baseline, expression and pose sequences. In order
to highlight the TFR benefits for TFLD, Figure 6 displays
Raw and Poor Resolution samples against Sharp samples
obtained via TFR. However, detection is challenged in all
sequences of poor image quality and occlusion. Neverthe-
less, we observe that occlusion related to glasses (see Figure
7) does not seem to impact the correct identification of fa-
cial key points.

Table 1 illustrates quantitative results w.r.t. NME. Note
that landmarks are predicted on images where prior faces
are detected by M1. The reported performances are stable
across datasets. TFR improves performance consistently for
all settings, however occlusion and low resolution have a
minor impact on performance.

3Raw denotes the original image acquisition emerging from the thermal
sensor.

4.2.2 Comparison with State-of-the-Art

Table 2 summarizes the performance of landmark detec-
tion w.r.t. NME scores, in accordance to State-of-the-Art
on the SF-TL54 and RWTH-Aachen datasets, respectively.
We note that to the best of our knowledge, we are the first
to present results on the ARL-VTF dataset, see Table 1 un-
der the Raw setting with TFR processing. TFLD achieves
promising results compared to State-of-the-Art methods
based on machine learning or deep learning.

4.3. Impact of face alignment on CFR

We proceed here to demonstrate that automated face
alignment, as a pre-processing step, is beneficial for Cross-
spectral face recognition (CFR). In particular, an appro-
priate face alignment method is instrumental in improving
matching scores. We here evaluate the impact of face align-
ment in thermal images w.r.t. CFR by comparing FR scores
originating from method (i) cropping facial images follow-
ing bounding box detection, (ii) aligned facial image based
on facial key points.

Cropping face images based on the face bounding box
consists of cropping the detected face provided by M1 to
a target size, whereas face alignment based on key points
is the result of affine transformations such as translation,
scale and rotation, in order to canonically align the face as
[1] with the geometric eye center4, nose and mouth corners.

Finally, matching is performed using the ArcFace [5]
matcher. Table 3 summarizes facial recognition scores, re-
porting the Area Under the Curve (AUC) metric, computed
between the visible gallery face and the associated aligned
thermal probe face. A higher AUC indicates a better perfor-
mance. Note that RWTH-Aachen cannot be considered in
this experiment, as it does not include paired visible-thermal
faces.

The first naive observation has to do with the low perfor-
mance of face matching, given that faces are provided with-
out alignment. However, alignment based on the above five
key points improves the scores. In particular, when compar-
ing AUC scores of images aligned with ground truth anno-
tations, Dlib (optimizer) [10] decreases the score, while our
TFLD method slightly improves the score. Therefore, be-
side being operational in a wide range of adversarial condi-
tions, TFLD demonstrates its potential as a robust and accu-
rate landmark annotator and instrumental in CFR systems.

4.4. Discussion
Detection in a two-stage process, namely face and land-

marks, allows for reliable multi-face detection and land-
mark detection in unconstrained settings. In particular, this
sequential detection prevents the detection of false land-
marks where no face appears. Figures 1, 9 and 10 illustrate

4The geometric eye center is semantically defined as the midpoint be-
tween the outer corners of the eye.



Table 1. Landmark detection performance represented by the Normalized Mean Error (NME), on ARL-VTF, SF-TL54 and RWTH-
Aachen datasets.

TFLD - M2 ARL-VTF [16] SF-TL54 [10] RWTH-Aachen [8]
Landmark detection - NME Baseline Expression Pose Pose Expression

Raw w/o TFR 0.05244 0.05468 0.06804 0.03082 0.03311
Raw w/ TFR 0.05201 0.05460 0.06737 0.03001 0.03289

Occlusion w/o TFR 0.05958 0.07328 0.07811 0.04243 0.03975
Occlusion w/ TFR 0.05549 0.06170 0.07789 0.03856 0.03897

Low Resolution w/o TFR 0.07099 0.08861 0.09378 0.05205 0.04167
Low Resolution w/ TFR 0.06934 0.08605 0.09118 0.04999 0.04039

Raw Sharp Occlusion Poor Resolution

Baseline Expression Pose

Raw Sharp Occlusion Poor Resolution Raw Sharp Occlusion Poor Resolution

Figure 6. Visualized faces and landmarks as detected by TFLD. The face is first detected (red box) followed by landmark detection (red
points). TFLD is challenged with Baseline, Expression and Pose sequences, comparing Raw, Sharp (TFR), Occlusion and Poor resolution
degradations.

Table 2. NME score comparison of TFLD with other approaches
on different dataset.

Authors Methods SF-TL54 RWTH-Aachen

Mallat et al.[11] AAM - 0.143
DAN - 0.146

Chu et al. [4] Dlib (adapted) - 0.095
U-net (multitask) - 0.040

Kuzdeuov et al. [10] Dlib (optimizer) 0.033 0.057
U-net 0.035 0.058

Ours TFLD 0.03001 0.03289

Table 3. Evaluation of the impact of face alignment in thermal
images toward a cross-spectral face recognition system with re-
spect to face recognition matching scores AUC %.

Alignment based on ARL-VTF SF-TL54
Bounding box (no alignment) 52.86 60.89
GT annotations 56.03 69.20
Dlib (optimizer) [10] annotations 55.56 67.84
TFLD annotations 56.93 69.59

a real world scenario, where subjects are captured at differ-
ent distances, in indoor as well as outdoor environments. In
such settings, image quality decreases drastically, imped-
ing localization of facial features. Data augmentation ad-
dresses such poor image quality issues and the TFLD model
is able to successfully detect face and landmarks due to the
enhancement of the TFR filter.

Facial annotations are expensive and tedious to obtain.
The ARL-VTF dataset enabled visible-to-thermal landmark
transfer, allowing for an increase of number of landmarks

fed to TFLD for training. By taking advantage of having
synchronized images, our pipeline can circumvent this is-
sue. The infusion of additional landmarks has a significant
impact on improving e.g., face recognition performances.
To the best of our knowledge, few datasets comply with
these characteristics, thus reducing on the one hand the
possibility of creating a more unified method of landmark
detection (even spread over several databases), and on the
other hand limiting the possibility of considering them as
benchmarks for face and landmark detection.

5. Conclusions

Accurate and reliable automatic face and landmark de-
tection is a key preprocessing step in cross-spectral face
recognition. In this paper, we have proposed a novel thermal
face and landmark detector (TFLD) that accurately local-
izes faces and landmarks in the wild. The proposed TFLD
sequentially detects face and landmarks, thereby improv-
ing the accuracy of landmark localization. Experiments
on three datasets suggest that our proposed TFLD achieves
competitive results, even under pose and expression vari-
ations. The model has additionally been tested on uncon-
strained thermal images. Finally, we have demonstrated the
positive impact of face alignment based on TFLD on cross-
spectral face recognition. Future work will involve the de-
tection of additional salient facial features, detected for the
purpose of robust cross-spectral face recognition.



Figure 7. Visualization of the landmark detection performed by TFLD model on the SF-TL54 dataset [10]. TFLD appears robust to
Pose variations.

Figure 8. Visualization of the landmark detection performed by
TFLD model on the RWTH-Aachen dataset [8]. TFLD appears
robust to Expression variations.

5m
7m

(a) (b) (c)

Figure 9. Examples of TFLD in unconstrained thermal im-
ages. The top row shows images acquired at an offset distance
of 5m, whereas the bottom row - at 7m including the co-variates
(a) frontal pose variation, (b) eye glasses, and (c) face in profile.

Figure 10. Examples of TFLD operating in an outdoor envi-
ronment with sunny weather. Despite challenging atmospheric
conditions, faces, eyes, eyesbrows, nose, mouth and jawline key
points are successfully located by our model. (image from TFW
[9] dataset).
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