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Delay-Aware Decentralized Q-learning for Wind Farm Control

Claire Bizon Monroc, Eva Bouba, Ana BušiÂc, Donatien Dubuc, Jiamin Zhu

AbstractÐ Wind farms are subject to the so-called ºwake
effectº, where upstream turbines facing the wind create sub-
optimal wind conditions for turbines located downstream. One
strategy to address this issue is to use yaw actuators to misalign
the wind turbines with regard to the incoming wind direc-
tion, thus deflecting wakes away from downstream turbines.
Tractable models for yaw optimization are however subject to
inaccuracies, ignore wake dynamics and lack adaptability. This
incentivizes the use of model-free methods. In this paper, we
propose a delay-aware decentralized Q-learning algorithm for
yaw control on wind farms. We introduce a strategy to handle
delayed cost collection, and show that our method significantly
increases power production in simulations with realistic wake
dynamics. We validate our results for two farm layouts on mid-
fidelity wind farm simulator FAST.Farm.

I. INTRODUCTION

A common strategy to maximize the power production of

a turbine is to orient its rotor to face the wind. The angle

between the rotor and the wind direction, denoted ºyawº in

this article, is then 0◦ (cf. Figure 1). In wind farms however,

this greedy strategy is vulnerable to the so-called ºwake

effectº: when a wind turbine extracts energy from the wind,

the wind speed downstream decreases and its turbulence

increases. This leads to sub-optimal conditions for the energy

production of the turbines located downstream. A number of

controllable actuators can be used to reduce this effect: power

capture can be influenced by controlling the orientation of

the blades or the torque of the generator, the wake of a

turbine can be deflected below downstream turbines by tilting

the rotor plane, or to their side by modifying the yaw: a

technique known as wake steering. In this work, we focus

on this last strategy: our goal is to design an algorithm

controlling the yaws of all turbines in order to maximize the

total power output. Our solution, a delay-aware decentralized

Q-learning algorithm, is robust to turbulent wind and wake

dynamics, as validated on the simulator FAST.Farm [1].

Traditional control approaches build a model of the wind

farm and optimize control inputs with respect to this approx-

imation. Various models using analytical approximations or

numerical computations have been proposed in [2]. Several

steady-state wake deflection models are available in the

popular wind farm simulation environment FLORIS [3],

developed by the National Renewable Energy Laboratory
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(NREL). Such models however lack accuracy and ignore the

dynamics of turbulent wind and wake propagation, leading to

misestimation of the wake effects in wind farms [2]. A more

precise option is the simulator FAST.Farm, also from the

NREL, that uses a wake dynamics module to reach results

similar to high-fidelity large eddy simulations [4]. Figure 2

provides an example of these realistic wind fields, and can

be compared to a similar simulation done with FLORIS on

Figure 1. This precision however comes at the price of higher

computational cost, and these complex models are not fit for

real time optimization.

This has motivated the use of reinforcement learning (RL)

algorithms: following a data-driven approach, they directly

infer the best actions solely by observing the system’s

responses to input changes. This online learning approach is

particularly interesting because of the need to recover in the

field from sub-optimal behaviors due to differences between

simulation and reality.

RL methods have already been used to control yaw angles

for automatic generation control on a wind farm: [5] uses

the centralized deep learning algorithm Deep Deterministic

Policy Gradient (DDPG) with the axial induction factor

as the control variable. In [6], DDPG is combined with

offline supervised learning, leading to a significant increase

of power output in high-fidelity simulations. Centralized

methods however see the dimension of their problem grow

with the number of turbines, raising the issue of scalibility. In

[6], the authors exploit a layout-specific symmetry to reduce

the dimension of the problem, but this does not transfer to

other farm layouts.

To address this issue, decentralized learning schemes are

a promising way towards more scalable farm control algo-

rithms. They have been shown to lead to significant increase

in total power production on wind farms, but only on low-

fidelity simulators. [7] uses a decentralized Deep Q-learning

approach in a wind farm with 3 turbines, but only tests the

algorithm in a simulation experiment with a simple analytical

model ignoring temporal effects. [8] splits the farm in groups

of turbines to create several smaller minimization problems,

and designs a distributed algorithm based on a linear policy

search combined with the alternating direction method of

multipliers. The method is evaluated with a 6-turbines layout

on FLORIS. Similarly, in [9] and [10], the authors provide

a proof-of-concept for a decentralized tabular Q-learning

algorithm. It is implemented on a 3-turbines layout in a

quasi-dynamic version of FLORIS, but this still ignores the

temporal dynamics of turbulent wind and wake propagation.

The validation of a decentralized approach in simulations

with realistic dynamics of wake propagations is therefore
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still an open problem. This is especially critical because de-

centralized algorithms limit the observability of the problem

for each turbine, rendering their environment non-stationary.

Meanwhile, realistic wake dynamics prevent the observation

of a controller’s impact until the wake has propagated

downstream, and make the assignment of variation to any

controller harder because of wake merging.

Few strategies have been used to address wake propagation

time in wind farm optimization problems. In [9], the farm is

split in subsets within which only one turbine is allowed to

operate at a time, but this locking strategy excessively slows

down convergence, and is only tested in a semi-dynamic

environment. We rather propose to overcome that difficulty

with a delayed reward RL approach.

Our contributions are the following. We show that the

wake steering problem can be framed as a Delayed Reward

RL problem. This allows us to draw from that literature to

design a delay-aware Q-learning algorithm that is decentral-

ized, agnostic to farm layouts, and does not rely on turbine

locking. We evaluate this algorithm on 2 different layouts

on the mid-fidelity simulation environment FAST.Farm. We

are, to the best of our knowledge, the first to validate a

decentralized reinforcement learning algorithm for wind farm

control in a dynamic simulation. Our experiments show

that our method is scalable and robust to simulations with

turbulent wind and wake dynamics.

The remainder of this paper is organized as follows.

Section II provides background information on reinforcement

learning. Section III discusses issues raised by the application

of decentralized Q-learning to wind farm control, and intro-

duces a new algorithm based on a Delayed Reward problem

formalization. In section IV, we show that our algorithm

successfully increases the total power output for two farm

layouts in FAST.Farm, and can be combined with steady-

state models in a two-step warm start approach. Finally,

Section V summarizes our results and discusses possible

paths forward.

II. BACKGROUND: REINFORCEMENT LEARNING

In reinforcement learning (RL), agents try to directly learn

the best mapping from states to (probabilities on) actions

by interacting with an environment. Formally, we define a

Markov Decision Process (MDP) {S,A, r, P}, with S the

state space, A a discrete action space, P the matrix of

transition probabilities of the environment and r : S×A −→ R
a reward function. We write A(s) the subset of actions a ∈ A
available in state s. An agent interacts with the environment

by following a stochastic policy a ∼ π(s), s ∈ S, a ∈ A(s),
where π(a|s) is the probability of choosing action a when

in state s. If the policy is deterministic, there exists an a′

for which π(a′|s) = 1 and we directly write a′ = π(s).
The agent’s goal is then to find a policy π∗ that maximizes

the expectation of its infinite-horizon discounted reward, or

discounted return:

max
π

E[G] = max
π

E

[

∞
∑

k=0

βkr(sk, ak)

]

with 0 < β < 1 the discount factor, s0 the initial state, and

{sk, ak}k=0...∞ the trajectory of the agent in the environment

under policy π.

For a policy π, we define the state-action value function,

or q function Q, as:

Qπ(s, a) := E

[

∞
∑

k=0

βkr(sk, ak)|s0 = s, a0 = a

]

with ak ∼ π(sk). For any state-action pair (s, a), Qπ(s, a) is

therefore the expected value of choosing action a in state s,
and then following policy π. We define an optimal q function

Q∗ such that:

∀(s, a), Q∗(s, a) = max
π

Qπ(s, a)

A. Q-learning

To search for the best policy in a given environment, one

can directly attempt to learn Q∗. The optimal q function sat-

isfies the following fixed point Bellman optimality equation:

Q∗(s, a) = E
[

r(s, a) + βmax
ā

Q∗(s′, ā)
]

(1)

with s′ ∼ Ps,a. Watkins’ Q-learning algorithm [11] keeps

estimates of the q values for each (s, a) pair - an approach

known as tabular -, and iteratively updates an estimation Q̂
of the optimal q function Q at each timestep k:

Q̂k+1(sk, ak) = Q̂k(sk, ak) + lk · TDk

where TDk is the Bellman error estimator defined as:

TDk = rk + β max
ā∈A(sk+1)

Q̂k(sk+1, ā)− Q̂k(sk, ak)

with β ∈ (0, 1) the discount factor and lk a learning rate at

step k. It is proven in [11] that Q̂ converges with probability

one to Q∗ under mild conditions.

Q-learning is an off-policy algorithm: the learning of the

optimal q values is decoupled from the policy followed by

the agent, and the latter should ensure sufficient exploration

of all action-state pairs to guarantee convergence. Many

exploring schemes have been introduced in the literature,

we chose the Boltzmann strategy which has been found

to outperform other strategies for Q-learning in several toy

examples [12]. Instead of following a greedy policy which

picks the action with the largest q value estimate in each state

(i.e. a′ = argmaxa Q̂(s, a)), one samples an action from the

Boltzmann distribution:

a′ ∼ b(a|s), ∀a ∈ A, b(a|s) =
e

Q̂(s,a)
τ

∑

e
Q̂(s,a)

τ

(2)

with the parameter τ > 0 controlling the probability of taking

a non-greedy action.



B. Zap Acceleration

It is well known that Watkins’ Q-learning converges

slowly [13] [14]. Following a stochastic approximation ap-

proach, Zap Q-learning [13] proposes a matrix-gain improve-

ment to accelerate the convergence of the algorithm. It is

shown to have the optimal rate of convergence in the sense

of the minimization of the asymptotic covariance [13].

The algorithm relies on the following updates, presented

here for the tabular case:

θk+1 = θk − lkÂ
−1
k+1TDkψ(sk, ak)

Âk+1 = Âk + ζk[Ak+1 − Âk]

(Ak+1)l,j =















−1 if l = j and ψ(sk, ak)l = 1
β if ψ(sk, ak)l = 1

and ψ(sk+1, π(sk+1))j = 1
0 else

(3)

with

π(s) ∈ argmax
a

Qθk(s, a), ∀s ∈ S,

ζk a sequence to chose such that lim
n→∞

lk
ζk

= 0, d = |S||A|,

θ ∈ Rd the vector storing q-function estimates for all state

action pairs Q̂ = Qθ, and ψ(sk, ak) ∈ {0, 1}
d an indicator

vector for (sk, ak). To avoid stability issues, we can compute

Â−1
k using the Moore±Penrose inverse as suggested in [15].

C. Delayed Reward Problem

When there is a known delay between the moment an

action is sent to the environment and the moment the

associated reward is collected by the agent, the environment

is said to have a delayed reward. Following the method

proposed in [16], this problem can be formalized as a

deterministic delayed MDP (DDMDP) {S,A, P, r, c, o, a},
for an observation delay o, an action delay a , and a reward

delay c. We moreover define the timestep delays (cd, od, ad),
such that with h the sampling period, cd = c

h
, od = o

h
, ad =

a
h

. ⌈cd⌉ is then the number of timesteps before the reward

becomes available. Acting in a DDMDP is in fact equivalent

to acting in a standard MDP with a modified reward function,

but at the cost of augmenting the state space with all actions

taken during the delay [16]. This increase of the state space to

inject a memory of passed events would lead to a particularly

strong increase of the problem’s dimension in our tabular

case. In [17], the authors rather propose a modification of

Q-learning called dQ(0) for the case of the action delay:

at timestep k, instead of updating Q̂(sk, ak), updates are

performed for the action âk that took effect at timestep k,

but had been selected at timestep k−⌈ad⌉. By restoring the

temporal match between states and actions, dQ(0) ensures

convergence to the optimal q function of the equivalent

undelayed MDP.

D. Multi-Agent RL for distributed optimization

When several agents seek to learn optimal policies to

maximize a shared reward, the task is one of cooperative

multi-Agent RL (MARL). The agents can equally be thought

of as solving a distributed optimization problem [18]. This

γ

Fig. 1: Simulation of our 3-turbines layout on low-fidelity

simulator FLORIS. The wind is blowing from the left. The

wind velocity deficit is visible behind every turbine, but the

time-averaged predictions remain smooth. The first turbine’s

yaw γ is reported. The last turbine is still facing the wind,

its yaw is of 0◦.

is a challenging task: because all agents concurrently inter-

act with the environment, the stationarity assumptions sup-

porting convergence guarantees do no longer hold. Several

algorithms have been designed to inject awareness of other

agents, or force coordination [19]. They however increase

the complexity of the problem and are harder to implement.

A naive approach can be to simply apply the single-agent

Q-learning algorithm to the multi-agent case: much simpler,

this decentralized approach has also been empirically shown

to converge to a good equilibrium in certain settings [19],

and a good proof-of-concept has been provided by [10] for

the wind farm optimization case.

III. APPLICATION TO WIND FARM CONTROL

A. Multi-agent optimization problem

We consider a wind farm with M turbines. Each tur-

bine’s position can be described by a pair of coordinates:

(Cx,i, Cy,i), i = 1 . . .M . At each time step k, the freestream

wind conditions wk = (u∞k , ϕk) are observed at the entrance

of the farm, with u∞k the speed and ϕk the direction of

the wind. For a space of admissible angles Y , each turbine

i has current yaw γi,k ∈ Y and generates power Pi,k.

For any given k we want to maximize the total power

output of the wind farm Pk =
∑M

i=1 Pi,k. This problem

can be seen as a distributed optimization task, where every

turbine is an agent interacting with the environment and all

maximize a common objective. Under the cooperative multi-

agent RL framework mentioned in II-D, this can be done

in a decentralized fashion with M RL agents independently

learning local optimal policies to maximize a shared reward.

With each agent strictly observing his local state and action,

we consider M state spaces Si,1≤i≤M , Si = Y × R
2, such

that at each timestep k we have M local states:

si,k = [γi,k,wk]
T γi,k ∈ Y.

If wind conditions are supposed stationary, this can be

restricted to si,k = [γi,k].
The local action spaces are defined as ∀i, Ai = A =

{−1, 0, 1}. Each chosen action ai ∈ A leads to an update
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Fig. 2: Simulation of the 3-turbines layout on mid-fidelity

simulator FAST.Farm with TurbSim generated turbulent wind

at 8 m/s. Compared to FLORIS, FAST.Farm simulates turbu-

lence and wake dynamics, including wake meandering and

merging.

in the corresponding yaw defined by a × (∆γ), with ∆γ
a predefined step size matching the real constraints and

limitations on turbine yaw actuation. As mentioned in II-

D, we can then learn M single-agent Q-learning algorithms

simultaneously.

This approach has been shown to lead to an increase of 8

% in the total power output for a farm of 3 turbines simulated

with simplified wake models on the FLORIS environment

[10], but it fails as soon as the farm’s dynamics are con-

sidered, even partially [9]. Indeed, value updates executed

on successive time steps (k, k + 1) become decoupled from

the assessment of the real impact of a yawing action ak:

positive effects of the induced wake deflection are delayed

in time and ignored by the immediate update, while only

the immediate decrease in power production at the turbine

can be assigned to the action. A turbine locking scheme has

been proposed in [9], but this is an unnecessary slowdown of

the algorithm: the problem of delayed reward assignation is

recurrent in many control problems, and we can draw from

this literature to find a faster solution.

B. Delayed Reward Q-learning

We adapt the method in [17] introduced in II-C to the

case of the deterministic reward delay c, which similarly

leads to a temporal mismatch between state-action pairs

and rewards. Like in [17] we can restore that matching

by waiting for cd time steps before updating Q̂. Note that

this does not suffice to guarantee convergence, because the

non-stationarity induced by the multi-agent configuration

remains.

This approach requires the definition of a reward delay for

each agent c, which should correspond to the time it takes for

the impact of an action to be fully observed on downstream

turbines. This time should differ according to the location

of the turbine in the layout, and the decentralized approach

allows us to define different reward delays for all agents.

Inspired by [9], we approximate this time delay from

upstream turbine i to downstream turbine j with Taylor’s

frozen wake hypothesis [20]

di,j =
ci,j
u∞

with ci,j the downwind distance between the 2 turbines and

u∞ the freestream velocity at the entrance of the farm.

Wake effects should be negligible above a certain distance,

so a cutoff distance dcutoff is introduced. Finally, we add a

safeguard by using a multiplier m > 1. This gives us a wake

delay matrix Di,j for all 0 ≤ i, j ≤M :

Di,j =

{

mdi,j if j downstream and ci,j ≤ dcutoff

0 otherwise

It is then natural to define the timestep reward delay ci
for each turbine i as the number of time steps of the largest

wake delay, ie. ci = ⌈max
j

Di,j

h
⌉. Our Q-learning update is

therefore for all i ∈ 1 . . .M :

θk+1 = θk − lkÂ
−1
k+1 · TDdadQ,k · ψ(κk−ci)

Âk+1 = Âk + ζk[Ak+1 − Âk]

π(s) ∈ argmax
a

Qθk(s, a), ∀s ∈ Si

TDdadQ,k =
(

ri,k + β max
ā∈A(sk−ci+1)

Q̂k(sk−ci+1, ā)

− Q̂k(κk−ci)
)

(Ak+1)l,j =















−1 if l = j and ψ(κk−ci)l = 1
β if ψ(κk−ci)l = 1

and ψ(sk−ci+1, π(sk−ci+1))j = 1
0 else

(4)

with κk = (sk, ak), ak ∼ b(a|sk) following (2), Â0 = I
and the Zap acceleration activated only if ζk > 0. Following

[14], we use a polynomial decrease for our learning rate:

lk ∝
1
kp , 0 < p < 1.

One issue with decentralized cooperative multi-agent

learning tasks is the assignment of the observed reward to

the right agent. This is amplified by the reward delay: when

any change of total production is observed by an agent after

a delay, several factors compete as a probable explanation:

the delayed impact of the agent’s own action, the immediate

consequence of other agents changing their yaws, but also the

combined delayed effects of previous wake deflections by all

agents. We reduce this uncertainty by measuring the power

generation of an agent’s downstream turbines at the moment

of the estimated impact. Every agent therefore receives a

slightly different reward function. Moreover, to account for

the variance in instantaneous power due to turbulent wind,

we average the measures of power output at every turbine:

we define λ ≥ 1, the size of the averaging window. Finally,

to reduce the influence of the nominal power output on

the evaluation of yawing strategies, increases in percentage

rather than raw values are considered. Inspired by [9], we

use the sign of the measured variation as the reward signal,

and apply a threshold to filter out noise. We define for

i = 1, · · · ,M the reward function:

ri,k =















1 if
V i
2−V i

1

V i
1

> δ

−1 if
V i
2−V i

1

V i
1
≤ −δ

0 otherwise

(5)

with δ > 0, V i
1 =

∑M

j=1 Pj,k and V i
2 =

∑M

j=1 Pj,k+Di,j
.



Algorithm 1 Delay-Aware Decentralized Q-learning

Require: Agent ID i, Delay Matrix Di,j,1≤i,j≤M , Sampling

period h, RL parameters β ∈ (0, 1), τ > 0, T ≥ 0, w, δ, λ
Init γ0, stack S, table Q̂, List P

c←− max
j

Di,j

h

for t = 1 . . . T do

if t ≡ 0 (mod w) then

S.push(t)

st, pt ←− observe()

pλ,t ←− compute average(λ)
at ←− select action(st, Q̂, τ )

take action(at)
P.push(pλ,t)

end if

if S not empty AND t ≥ S.top() +c then

k ←− S.pop()

rk ←− get reward(i, k, D, P, δ) (following (5))

update(Q̂) (following (4))

end if

end for

The pseudo-code of our final algorithm can be found in

Algorithm 1. It runs simultaneously at every agent.

Information about the region of optimal yaws can be

injected in the algorithm by modifying two initial values: the

initial yaw vector γ0, and the initial Q-table values Q̂(s, a).
In a two-step warm start approach, such information can

be obtained from time efficient simulations in environments

models like FLORIS, and allow for significant increase of

the total energy production over the period. We expand on

this approach in Section IV-C.

IV. SIMULATION RESULTS

We first seek to validate our approach: in the absence of

any turbine locking, is our delay aware Q-learning robust to

delayed wake propagation with turbulent wind? To answer

that question, we first test Algorithm 1 without acceleration

or any prior knowledge of optimal yaws in an environment

with simulated wake dynamics. Then, we evaluate conver-

gence acceleration with Zap updates, and a two-step warm

start approach with yaw and Q-table initialization.

A. Simulation Setup

The choice of the wind farm simulator is a trade-off

between computation complexity and fidelity of the predicted

wind fields. Steady-state models like the ones used in the

FLORIS simulator [3] estimate the time-averaged features

of the wind flow while ignoring the dynamics of short-

term effects. FAST.Farm provides a higher fidelity simulation

environment [1]: it takes into account the wake deficits, ad-

vection, deflection, meandering, and merging, and its results

are validated against high-fidelity large-eddy simulations. All

our subsequent experiments are done on FAST.Farm [4].

We consider two farms of NREL offshore 5-MW turbines

with a diameter D = 126m. On the first farm (Layout 1),

3 turbines are spread in a row in the center of the farm,

separated by a distance of 4D meters. The second farm

(Layout 2) has 6 turbines, spread in 2 × 3 layout. The

distance between the 2 rows in of 4D meters. On this layout,

because the two rows are mirror images of each other, spread

around an axis that coincides with the reference point of

the simulated inflow wind, we expect symmetrically opposed

turbines to reach similar yaws: this is a primary test of the

consistency of our algorithm when the number of turbines

increases. A snapshot of the first simulation can be seen on

Figure 2

In order to replicate realistic wind conditions, we use the

turbulent-wind simulator TurbSim [21] to simulate a time

series of 3D wind velocity vectors in the flow field. Our

wind inflow has an average freestream velocity u∞k = 8m/s
with a turbulence of 8%. The wind is directed orthogonally

to the axis of the turbine rows, i.e ϕk = 0◦. The sampling

period in FAST.Farm is set to 3s. Since the wind conditions

are stationary, we can restrict our local state spaces Si to

the admissible yaw space Y . It is adapted to the tabular

case with a discretization of the interval [−40, 40] in bins

of 1◦. We therefore learn 3 (resp. 6) Q-tables of dimension

81× 3 for the first (resp. second) layout. We use a constant

Boltzmann exploration parameter of τ = 0.1, a discount

factor β = 0.75, and an averaging window of λ = 10min.

To evaluate the performance of the algorithm without any

prior knowledge, all values in the Q-table are initialized at

q0 = 0.15. The yaws are initialized at 0◦, which corresponds

to a naive greedy strategy where all turbines are made to face

the wind.

B. Results

We first train Algorithm 1 in FAST.Farm for 600ks, cor-

responding to 2.3× 105 iterations. The complete simulation

in FAST.Farm takes 72 hours for Layout 1, and 120 hours

on Layout 2, on a single 2.6GHz Intel Xeon Gold CPU with

36 cores. The results are depicted on Figure 3. Compared

to the greedy strategy baseline, our algorithm increases the

total power output of the farm of 20% for Layout 1 and

of 14% for Layout 2. In both cases, the algorithm reaches

convergence around 450ks, corresponding to 150k iterations.

Despite doubling the size of the farm, we are therefore able to

sensibly keep the same time of convergence, demonstrating

a key advantage over both centralized or locking approaches.

Figures 3c and 3b show the efficient yaw misalignment

strategy learned by the algorithm on Layout 1, with the

first turbine upstream of the farm yawing towards 33◦,

significantly decreasing its own power output to deflect the

wake away from downstream turbines. The most downstream

turbine 3 correctly learns that yawing leads to no significant

increase, and keeps its rotor axis aligned with the inflow

wind at 0◦. Results for Layout 2 are displayed on Figures

3f and 3e. As expected, pairs of turbines with the same

y-axis coordinates converge towards similar values. These

preliminary results validate our decentralized, delay-aware

Q-learning approach even with realistic turbulent wind and

accurate wake dynamics.

We now turn to accelerate the learning speed of the

algorithm. We repeat the experiments, changing the updates



(a) Total farm power output (b) Individual turbine power production (c) Turbine yaws

(d) Total farm power output (e) Individual turbine power production (f) Turbine yaws

Fig. 3: Results of Algorithm 1 without two-step warm start on 2 wind farms simulated on FAST.Farm: 3 turbines (first row)

and 6 turbines in 2 × 3 layout (second row). Evolution of total power output [kW], individual turbine power [kW], and

turbine yaws [◦]. Power measures are averaged over 1 hour.

(a) Layout 1: 3 turbines (b) Layout 2: 6 turbines

Fig. 4: Performance of Algorithm 1 for different initialization schemes: evolution of total farm power output averaged over

1 hour on the 3-turbines (a) and 6-turbines (b) wind farm simulated on FAST.Farm.

in Algorithm 1 to use Zap acceleration, by setting ζk =
(lk)

0.85 for all timesteps. A comparison of total farm power

outputs with and without acceleration is provided in Figure

4a for Layout 1. The Zap Q-learning experiment indeed

converges faster toward the final 20% increase, with the total

production increasing of 43kW per hour on average. We use

Zap Q-learning in our subsequent experiments.

C. Two-Step Warm Start Approach

The time needed for Algorithm 1 to converge creates

a significant loss of production. We could increase the

total power output over the period by exploiting known

information about the region of optimal yaws in the search

space. A valuable clue can be given by industry practices,

that use low-fidelity steady-state models to tune the yaws in

a simplified environment. As reported in Table I, that simple

heuristic performs relatively well: an increase of 17% over

the baseline is observed when yaws obtained in FLORIS

are subsequently evaluated on FAST.Farm. Unsurprisingly,

modeling uncertainties however clearly prevent this method

from finding the optimal yaws. In a two-step warm start

approach, we can use Algorithm 1 to fine-tune initial results.



TABLE I: Algorithm 1 with and without initialization in the

3 turbines layout. Results after 600ks. Mean power output

measured during the learning period, and final percentage

increase compared to the 0◦ yaw initialization.

Method Avg Measure [kW] Final Performance (%)

FLORIS Routine 3312.22 17.3

Classic Q learning 3164.30 20.29

+ Yaw init 3374.11 20.04

+ Yaw init + Q-Table init 3381.25 20.18

Zap 3213.77 20.17

+ Yaw init + Q-Table init 3371.63 19.59

We evaluate two different initialization techniques based on

this approach:

• Yaw initialization in low-fidelity environments. Initialize

the yaws with FLORIS’s optimization routine.

• Yaw and Q-table initialization in low-fidelity environ-

ments Train a simple decentralized Q-learning algorithm

in the steady-state simulation environment before pur-

suing the learning on the dynamic environment.

A comparison of total power output evolution under the

various initialization methods is displayed on Figure 4a,

along with the classic Algorithm 1 with uniform initialization

described in IV-B. Results for Layout 2 are displayed on

Figure 4b.

All initialization methods compensate for the loss of pro-

duction of the classic algorithm’s learning phase: initialized

values are quickly adapted to dynamic conditions and all

experiments have a production within 1% of the classic

algorithm’s maximal power output after 220ks. However, ini-

tializing the yaws in the neighborhood of that local maximum

make them less robust to the persistent exploration of the

policy, and the learned yaws are less stable under the Two-

Step Warm Start methods. With that regard, Zap updates

seem to lead to more stable policies, especially on Layout

1, which is consistent with its theoretical role as variance

minimizer. We report for all methods the increase over the

baseline for the last measure of total power output, which

represents the performance of the algorithm at convergence.

To account for different strengths and weaknesses of all

approaches in terms of rapidity of convergence, stability, and

final performance, we also compute the average value of all

measures during the learning period. All measures are one

hour averaged. These results are reported in Table I.

V. CONCLUSIONS AND FUTURE WORKS

We introduced a new reinforcement learning algorithm for

wake steering by yaw control in wind farms. We showed

that decentralized single agent Q-learning algorithms can be

made robust to realistic wake dynamics when augmented

with a simple delayed update component. The similar con-

vergence times observed for 3 and 6 turbines are a promising

indication towards subexponential complexity in the number

of turbines, and further experiments on larger farms should

be pursued to validate that intuition. Moreover, because it

relies on one measure of freestream wind conditions, this

method can in principle also be extended to changing wind

conditions while maintaining deterministic delays, and future

work could address this adaptation to non-stationary wind

conditions.
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