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Abstract

Human behavior understanding requires looking at
minute details in the large context of a scene containing
multiple input modalities. It is necessary as it allows the
design of more human-like machines. While transformer
approaches have shown great improvements, they face mul-
tiple challenges such as lack of data or background noise.
To tackle these, we introduce the Forced Attention (FAt)
Transformer which utilize forced attention with a modified
backbone for input encoding and a use of additional inputs.
In addition to improving the performance on different tasks
and inputs, the modification requires less time and memory
resources. We provide a model for a generalised feature ex-
traction for tasks concerning social signals and behavior
analysis. Our focus is on understanding behavior in videos
where people are interacting with each other or talking into
the camera which simulates the first person point of view
in social interaction. FAt Transformers are applied to two
downstream tasks: personality recognition and body lan-
guage recognition. We achieve state-of-the-art results for
Udiva v0.5, First Impressions v2 and MPII Group Inter-
action datasets. We further provide an extensive ablation
study of the proposed architecture.

1. Introduction

Human social behavior provides a wealth of information.
For example, facial expressions are directly linked to emo-
tions [43], and the pattern of eye contact in a group discus-
sion has been shown to be indicative of leadership roles [13,
35]. Even the highly abstract concept of personality has
been shown to be related to body pose [38], gaze [25, 30],
and speech behavior [42]. With the goal to create machines
that are able to interact more naturally with humans, signif-
icant efforts have been made to develop approaches that are
able to sense and interpret human behavior across a wide
range of scenarios and tasks [10, 11, 33, 36, 50].

A major challenge for human social behavior analysis

approaches is the large variability in human behavior. While
a person’s personality does play a role in their observable
behavior, many other aspects such as turn-taking [12], lead-
ership [10], or rapport [37] are likewise major influences
and the contributions of different factors are difficult to dis-
entangle. This issue is exacerbated by the small scale of
available datasets. Especially modern transformer-based ar-
chitectures that were applied successfully to a variety of
tasks [3, 34, 49] struggle with such small datasets.

In this work, we introduce the novel Forced Atten-
tion (FAt) transformer which is fit for the unique challenges
present in human behavior sensing and analysis. Figure 1
shows the architecture of the main branch. The FAt trans-
former addresses the problem of large behavior variability
directly by attending to important parts and reducing noise
in the input. The small dataset problem is addressed implic-
itly as a result of faster convergence. In detail, we intro-
duce three distinct improvements to transformer-based hu-
man behavior analysis architectures.

First, we introduce a novel forced attention mechanism
that is able to focus the processing on the relevant part of
the input. Social interaction videos usually contain a sin-
gle person who is relevant to the output task interacting
with someone or something. The remaining part is back-
ground which contains potentially misleading information.
We provide the spatial localization of the target person via
a segmentation map to the network, thereby forcing the net-
work to not attend to the background. Since the background
might have important information, we observe that the net-
work learn to assign attention to parts in the background
that are also relevant to the provided background.

Second, we introduce a 2D patch partition layer in our
model which combines the advantages of transformers with
the robustness of convolutional layers. We observe that
training models with fully-transformers based architectures
results in difficulties, such as hard to converge, due to sen-
sitivity to background noise and the requirement of a large
training sample set. Instead, we break the videos into
chunks and extract features per chunk using convolutional
layers which makes the network less susceptible to pick up
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on noise (non-aligned frames and random transformations
such as stretching) as the convolution operation is known to
be more transformation invariant as compared to attention.
Extracting features from chunks allows the input to retain
its spatial structure as features are only extracted from local
patches without changing their arrangement.

Finally, integration of multimodal data is crucial for
complex human behavior analysis tasks. Cross-attention
applied on the feature level in transformers was shown to of-
fer effective multimodal integration for several tasks includ-
ing emotion recognition [18], personality recognition [39],
and multi-view video recognition [53]. We introduce a
novel variant of cross-attention in transformers which pro-
vides an optimised way to add multiple secondary inputs to
one attention module.

We evaluate our model on two different human behav-
ior analysis tasks: personality recognition (high level anal-
ysis) and body language recognition (low level analysis).
We choose personality recognition, as it is a key task in so-
cial signal processing [50] that exemplifies the challenges
faced in social behavior analysis: a non-trivial association
between behavior and ground truth with random influences
along with small sizes of available datasets [20, 39]. Per-
sonality of a person is represented as a point in the so-called
OCEAN space defined by the following five axes: O: Open-
ness, C: Conscientiousness, E: Extroversion, A: Agreeable-
ness, and N: Neuroticism. In addition, we evaluate our
model on body language recognition, i.e. the recognition
of classes of behavior such as ”fumbling”, ”gesturing”, or
”face touching”. In contrast to common action recogni-
tion tasks, body language recognition has a larger stochastic
component as a result of more subjective annotation. We
achieve state-of-the-art results on three realistic human in-
teraction datasets. These include Udiva v0.5 [39] and First
Impressions v2 [20] for personality recognition, and MPII
Group Interaction (MPIGI) [5] for action recognition. We
provide extensive ablation experiments to evaluate the im-
portance of our contributions.

To summarize, the field of behavior analysis in group
interactions has multiple tasks. Previous approaches work
well for a particular task, adhering to its intricacies. Our aim
is to introduce a generalised feature extractor which can be
easily modified for a chosen downstream task. Our contri-
butions are the following:

1. We introduce the Forced Attention (FAt) mechanism
which utilises segmentation maps to focus on relevant
information in the input. The novelty is not in its com-
putation, but in the way the segmentation map is incor-
porated in the attention mechanism of the transformer.

2. We propose an addition to Video Swin transformers.
We extract features from patches of the input using a
CNN based backbone making the model more robust.

3. We introduce a novel cross-attention module consist-
ing of one main modality along with multiple other
modalities.

2. Related Work

In the field of computer vision, CNNs have long shown
to work well and have been used as backbone architectures.
For tasks pertaining to videos, 3D models [14, 47, 48, 40,
52] have shown to give good results. But these approaches
are limited by the small size of kernels with respect to the
input. This is answered by vision transformers, which have
a bigger receptive field with fewer parameters and have
shown to have superior performance recently. Number of
parameters is important for multimodal approaches as al-
ready the input requires a lot of memory. Vision Trans-
former (ViT) [19] initialised the leaning of the community
towards transformer based approaches. Video Swin Trans-
former [34], our baseline model, uses spatio-temporal lo-
cal attention with spatio-temporal locality bias which has
shown to perform well on various video related tasks. But
its training is hard as it requires a large amount of data for
converging which is presently not available for the tasks we
are tackling. Owing to the specificity of our domain, there
are some intricacies that we can exploit. Previous works,
including our baseline, are not modified for these.

Since all input videos in this domain have interlocutors
sitting in roughly fixed places in the frame and the cam-
eras are also fixed, we utilise the best of CNNs and trans-
formers to alleviate the problem of lack of data by using a
CNN backbone on large local patches (28x28 or 112x112)
of the input. The patches generally have similar information
across time which is easy for CNN filters to learn on fine-
tuning. The drawback attributed to CNNs of having a small
receptive field is answered as the input itself is being broken
into parts and fed in parallel. It also makes for a more robust
model as CNNs converge faster and are known to work bet-
ter for noisy data, thus providing a cleaner input to the trans-
formers. The transformer based part applies attention over
the concatenated output of this backbone providing embed-
dings for higher level features for behavior analysis. This is
different from regular approaches which have a CNN back-
bone for the whole input followed by transformers.

As there is a lot of background noise in our tasks, we
use foreground segmentation maps to provide the network
with the information about which parts of the input to focus
on. Since background is not to be completely removed from
the input, providing the network with this information is not
a trivial task. Previous works introduce a custom positional
encoding for transformers which has a significant impact on
performance [7, 26, 27, 31, 41]. But there are other stages
where this information could be added. We study different
configurations to pass this information to the network and
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Figure 1. Face branch of the model showing the contributions of our work. Overall architecture is provided in the supplementary material.

show a better method for adding information to transform-
ers for our use case, which hopefully inspires others to do
similarly.

The task of combining audio and text modalities with
video is challenging as they are inherently very different
from each other. VATT [3] uses early fusion, where they
input everything together. Although the earlier the fusion,
the better the results, there is a trade-off with the amount
of data required for training as it is harder for models with
early stage fusion to converge which leads to tedious self-
supervised learning. Some works design a specialised ar-
chitecture for fusion at feature level [2, 39]. These work bet-
ter but there are limitations as the fusion is done after down-
sampling the input features which leads to loss of informa-
tion and poor cross-modality relations. [18, 29, 44] have
feature level fusion with minimal downsampling, but lack
in handling specific modalities differently. To answer this,
we introduce an architecture where each branch can benefit
from separate pre-training and benefit from each other with
feature level fusion using a custom cross-attention mod-
ule. MViT [21] is a multi-scale vision transformer for video
recognition trained from scratch that reduces computation
by pooling attention for spatiotemporal modeling. We take
their method of cross-attention as inspiration and extend it
to be used with multimodal transformers. Dyadformer [17],
which is the previous state-of-the-art for the UDIVA v0.5
dataset, uses only two modalities in each branch which
leads to loss of information present in the relations among

the secondary inputs. Our proposed cross attention module
allows to use all modalities to be incorporated into the main
branch together while including these relations.

In the next section we explain the methodology for im-
plementing each of the above mentioned contributions.

3. Proposed Methodology

3.1. Input to the Model and the Different Branches

There are multiple input modalities and each of them
have their own branches for processing before they are com-
bined together using cross-attention which is discussed in
Section 3.3. For the body language recognition task, the
inputs are face crop sequence, full frame sequence of the
target person, and audio of the conversation. For the per-
sonality recognition task, we also have full frame sequence
of the interlocutor and transcript of the target person.

Face crop sequence is treated as the main input and the
other modalities are merged into it. This is because it has
been established that face crops have the most relevant in-
formation for affective computing and we show that it is
extendable to group interaction behavior analysis. We ex-
tract face crop coordinates using OpenFace [6] and take
crops from the original full frame. This leads to some
problems as the position of the face in subsequent faces
may be different and after resizing and combining back to
make a video, there is a lot of distortion as discussed in
Section 1. This urged us to devise a way to handle them.



Figure 2. Different stages of adding segmentation map for forced attention in transformer encoder. (a) shows addition of an additional
positional encoding to the input with the original. (b) shows addition of a bias to the last linear layer of multi-head self attention module.
(c) shows adding bias similar to 3D relative bias as in [7, 26, 27, 41]. (d) shows segmentation map being concatenated as an additional
channel to raw input and then being reduced back to original shape using Conv1D. (e) shows addition of segmentation map to each channel
of the input.

The distortions in this branch include stretching and trans-
lation as the face crops are of different resolutions and they
have to be resized to the input size of 224x224. We do
not use aligned face crops from OpenFace to reduce de-
pendence on other algorithms. We break the input into
112x112 patches and pass them through a 3d convolutional
backbone, R(2+1)D (with some layers removed) and con-
catenate the output back again. The rest of the branch is
based on Video Swin Transformers [34] with our contribu-
tions added to it and is discussed later.

The full frame sequence branch has similar process-
ing as the face branch: it is broken into 64 chunks
and passed through the same convolutional backbone with
shared weights. The rest of the branch is Video Swin Trans-
former T [34].

The audio is passed through a pretrained model, Trill-

Distilled [45], which is not finetuned. The obtained embed-
ding is used as input to the cross-attention module discussed
in Section 3.3.

The transcript branch is similar to the audio one. The
only difference being the model used to extract features is
XLM-RoBERTa [16].

3.2. Forced Attention

Transformers are known to be hard to train and due to the
limited amount of data in the chosen domains, we choose to
force the attention using foreground segmentation maps. As
the background does not have relevant information, it does
not have to be attended to. There are multiple ways to pro-
vide the model with this information. Adding the informa-
tion encoded in the form of positional encodings is the most
common way [7, 26, 27, 41, 31]. We study different ways
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Figure 3. Visualisation of the operation to divide the segmentation
map into patches to be used for input to the model in the form of
the described matrix M1.

and find a more suited approach to provide the model with
this information. Figure 2 shows the different techniques
and they are explained below. We choose to show all meth-
ods that we tried here so that it can help others working on
something similar.

The first way which is the most common is to add an
additional positional encoding. It is shown in Figure 2(a).
Transformers need positional encoding to know the loca-
tion of the tokens for attention. We added another encoding
to the existing ones in Swin transformers. The encoding is
based on a matrix, M1 of size: Nc x E, where Nc is the num-
ber of chunks (refer to Video Swin transformers [34] for de-
tails) and E is the dimension of the embedding to which the
encoding has to be added. The matrix is dynamic depend-
ing on the input. Figure 3 shows how the segmentation map
is used to obtain this matrix. It is an array of ones of the
size E if the chunk has pixels from the foreground or zeros
otherwise. This matrix is by a weight array, W1 to get the
desired shape (E in this case) and added to the input.

X = X + SinusoidalPosEncoding+

ForcedAttentionPosEncoding
(1)

ForcedAttentionPosEncoding = W1 ∗ X (M1) (2)

X is a sampler function that returns an embedding of size
E from the matrix M1 corresponding to the chunk that is
needed. Figure 3 shows how the segmentation map is bro-
ken into parts and this function is needed to extract the re-
quired chunk for equation 2.

The second way we tried was to add a bias to the last
linear layer in an attention module. This is shown in Fig-
ure 2(b). The bias is multiplied by one if the chunk has
foreground pixels, otherwise by zero. If the bias is termed
as Bforced , we can write the linear layer’s output as

Output = Linear(softmax (Q ∗ kT )/
√
d) ∗ V

+X) +Bforced

(3)

Bforced = LearnedBias ∗W2 ∗ X (M1) (4)

Since attention is applied on input patches and encoders
have the same input and output size, the same matrix can be

utilised as the first approach. W2 is used to change the size
of chosen embedding from M1 to the desired shape when
required in later layers.

The third way was to add the segmentation mask as an-
other channel in the input and use a 1d convolution layer
to reduce the number of input channels back to three. This
method is straight forward and does not require much ex-
planation. It is shown in Figure 2(d).

In the fourth approach that we took, we add the segmen-
tation mask to the input multiplied by a learned parameter.
It is shown in Figure 2(e).

X = (X ∗ γ) + PositionalEncodings (5)

In the fifth, we add another bias similar to the first one
but in the attention computation similar to 3D Relative Po-
sition Bias as in Video Swin Transformers [34]. It is shown
in Figure 2(c).

Attention(Q,K, V ) = softmax (Q ∗ kT+

BRelative +B′
forced/

√
d) ∗ V

(6)

B′
forced is calculated in a similar way to Bforced . The only

difference is that the shape is different and that is taken care
by a linear layer.

The second approach gave the best results and is the one
used for providing the results in the next section. We hy-
pothesise that it is because it does not interfere with the
local feature extraction from the patches but provides im-
plicit global attention which materialises during the down-
sampling of channels during patch merging.

3.3. Cross-Attention Module

This is the module that allows us to augment the face
crop branch with information from the other modalities.
Cross-attention has gained popularity recently and has
shown to work well but there are multiple ways of imple-
menting it. Yan et al. [53] have a good comparison for
some techniques and we utilise a modification of the ap-
proach that worked best for them and we extend it to use
with multiple modalities to be added in one module.

In the third attention block of the face branch, we merge
the modalities together. As shown in Figure 4, there are
sequential cross-attention layers with full frame sequence
and audio (and also transcript for personality recognition).
We use 1d convolution for making the channel dimension
of audio and transcript features equal to 768 which is the
number of channels in the third attention block for the face
crops sequence branch.

Cross attention is defined as the same as is the norm, we
take the query as the main branch and the key and value as
the side input.

For cross-attention with full frame sequence features,
there is an additional cross attention layer after self-
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Figure 4. Cross-attention for multiple side inputs.

attention and also a residual connection imitating the self-
attention layer. The parameters of this operation are zero-
initialised as this helps in using pretrained weights which is
the common practice [9]. For Udiva v0.5, there is another
full frame sequence branch for the other interlocutor whose
features added after the target person’s as shown in Figure 4.

For cross attention with audio, the same approach is fol-
lowed. With transcript and audio, two cross attention mod-
ules are added in place of one and both have recurrent con-
nections along with another around both – the same as when
two full frame sequences are present.

For faster processing, we use performer [15] in place of
traditional transformer attention. This might have lead to
some performance loss, but it still serves as proof of con-
cept and allows for more experiments with the available re-
sources and time.

3.4. Classification Head

The outputs of the face crop and full frame sequence
branches are of the shape B × C × D × H × W , where
B is the batch size, C is the number of channels, D is the
depth, H is the height and W is the width. Using an adap-
tive 3d pooling layer, it is reduced to B × C × 1 × 1 × 1
for each branch. The embeddings from each branch are
concatenated along the channel dimension and then passed
through a linear layer to get the output.

4. Experiments
4.1. Choice of Datasets

We choose two different tasks for experiments: person-
ality recognition (high level) and body language recogni-
tion (low level). Since the work is focused on group in-
teractions, the choice of datasets is done accordingly. For
personality recognition, we use UDIVA v0.5 dataset which
was a challenge for ICCV 2021. This is the biggest dataset
available for this task. It contains dyadic interactions in-
volving talking and playing games. We also give results on
First Impressions v2 which is also a dataset for personality

recognition where people are talking facing a camera. The
dataset simulates first person point of view of interactions
and is a good benchmark for personality recognition as it
annotates YouTube videos containing people from a diverse
background and the annotations are confirmed by multiple
people, so they are less influenced by personal biases. For
body language recognition, we choose MPIGI dataset [5]. It
has 15 body language classes, such as ”fumbling”, ”scratch-
ing”, ”arms crossed”, ”face touching”, and ”grooming”. A
more detailed description of the datasets is given in the sup-
plementary material.

4.2. Training Details

We pretrain the full frame sequence branch on the
Kinetics-400 dataset to reduce training time for the other
datasets and to have a good initialisation as the other
datasets are not equally big and transformers are known to
be data hungry. We use the same configuration as in the
Video Swin Transformer paper [34]: AdamW optimiser for
30 epochs with learning rate 3e-5 for the CNN backbone
and 3e-4 for the rest of the parameters. The batch size
is taken as 64. 0.1 stochastic depth rate and 0.02 weight
decay are used. For the CNN backbone, R(2+1)D, we
use pretrained weights with the network trained on IG65-
million [22] dataset.

For UDIVA v0.5, we use the above weights as initialisa-
tion for the full frame sequence branch. The CNN backbone
is shared with the face branch. We set the learning rate for
the CNN backbone and the full frame sequence branch as
3e-5 and for the remaining part of the face crop sequence
branch as 3e-4. These are obtained from roughly scaling
the one used in [34] from the tiny variant for Kinetics-400
1K according to the batch size (divide by square root of the
ratio of batch sizes). The batch size is taken as 4. The ini-
tialisation of the face crop branch is inspired from [1]. The
shapes do not match from the full frame sequence and we
need to reshape the weights to reuse them, so we use bin-
ning methods for reshaping as described in [1].

For First Impressions v2, the configuration is the same as



Udiva v0.5 except the fact that there is no second interlocu-
tor so there is only one full frame branch. We also use some
additional information for this dataset that is provided as
metadata. We concatenate the information with audio and
transcript and pass them through a linear layer to reshape
into the original size.

For MPIGI dataset also, we do not use the information
of the other interlocutor as the annotation for dyadic inter-
action is not available and having 3 or 4 branches for full-
frame sequence is not viable due to space and time con-
straints. The learning rate used is double as compared to
the others, i.e. 6e-4 and 6e-5 for respective parameters as
explained for Udiva. Weight decay is set to 0.03. Rest of
the hyperparameters remain the same. Due to imbalance
of samples available for each class, we use oversampling
for training samples with less frequency of occurrence and
undersampling for the ones with very frequency and also a
custom sampler for the dataloader which makes sure that
the batches are not imbalanced.

4.3. Comparison with the State-of-the-Art

4.3.1 UDIVA v0.5

Table 1 presents the results of state-of-the-art approaches
on Udiva v0.5. Our approach greatly outperforms the previ-
ous approaches. We use the same metric that is used for the
challenge, mean squared error averaged over participants.
There is an interesting pattern that we saw in our exper-
iments as compared to the others. We got better results
for a few classes upon training for more epochs, but worse
mean error. So, using an ensemble of trained models would
give better results, but we leave that for future work. An-
other difference between our approach and the others is the
choice of not using metadata. Other approaches use it exten-
sively. Despite further performance improvements, we pre-
fer a more generalised approach and so we choose to avoid
the metadata, gaze and pose features. This is the reason that
we hypothesise for having worse results for the Agreeable-
ness class than hanansalam in Table 1. Their approach uses
separate branches for male and female participants and due
to data bias, it may be easy for the model to predict Agree-
ableness when there is a separation on its basis. But overall,
we show that our model outperforms previous approaches
for personality recognition in dyadic interaction videos. We
do not include one paper that has the best results after us
on this dataset as they do not provide results for individual
classes for their best configuration. They achieve a mean er-
ror of 0.722 using the same data along with metadata about
the participants which gives them a big boost. We manage
to achieve a score of 0.706 with the metadata, training for
only 4 epochs. The improvement is statistically significant
as the 95% confidence interval for MSE on UDIVA dataset
is 0.036.

Table 1. MSE results for Udiva v0.5, as cited from the 2021 ICCV
Understanding Social Behavior in Dyadic and Small Group Inter-
actions Challenge: Automatic Self-Reported Personality Recog-
nition Challenge https://chalearnlap.cvc.uab.cat/
challenge/45/track/43/result/ as of 29/08/2022.

Model O C E A N Mean

hanansalam 0.711 0.723 0.867 0.548 0.997 0.770
juliojj [39] 0.744 0.794 0.886 0.653 1.012 0.818
f.pessanha 0.752 0.687 0.917 0.671 1.098 0.825
gizemsogancioglu 0.759 0.677 0.952 0.677 1.163 0.846
FAt Transformer 0.668 0.624 0.730 0.590 0.987 0.720

Table 2. Accuracy results for First Impressions v2.

Model O C E A N Mean

Aslan et al. [4] 0.917 0.921 0.921 0.919 0.916 0.919
DCC [24] 0.912 0.911 0.911 0.916 0.909 0.912
Evolgen [46] 0.913 0.914 0.915 0.916 0.910 0.914
Gurpinar et al. [23] 0.914 0.914 0.919 0.914 0.912 0.915
PML [8] 0.914 0.917 0.918 0.917 0.913 0.917
BU-NKU [28] 0.917 0.917 0.921 0.916 0.915 0.917
Agrawal et al. [2] 0.929 0.926 0.927 0.929 0.921 0.926
FAt transformer 0.942 0.951 0.955 0.949 0.959 0.951

4.3.2 First Impressions v2

Table 2 shows the results of the best previous works on
this dataset. For this dataset also, we greatly outperform
previous work. The approach in [2] uses cross-attention
and fusion of different modalities at the feature level, but
it loses a lot of information in down sampling before cross-
attention and we feel that our approach produces superior
results compared to theirs because of this reason. We use
the same metric for comparison that is used in other work:

Accuracy = 1− 1

N

N∑
i=1

|ti − pi| (7)

where ti are the ground truth scores and pi are the predicted
scores for personality traits summed over N videos.

4.3.3 MPII Group Interaction

Table 3 shows results of state of the art algorithms that
we fine-tuned on MPIGI dataset [5]. We use accuracy and
weighted average of F1-scores over the classes (weight de-
pending on the number of samples for each class) as met-
rics. F1-score for each class is defined as the harmonic
mean of the precision and recall for that action class. As
the dataset is heavily imbalanced, accuracy alone would not
have been a good metric. We outperform even a bigger vari-
ant of the baseline that we choose, video Swin transform-

https://chalearnlap.cvc.uab.cat/challenge/45/track/43/result/
https://chalearnlap.cvc.uab.cat/challenge/45/track/43/result/


Table 3. Accuracy and F1-score results for MPII Group Interaction.

Model Accuracy Weighted F1-Score

TSN [51] 0.443 0.442
TSM [32] 0.607 0.599
Video Swin B [34] 0.656 0.637
FAt Transformer 0.692 0.685

Table 4. MSE results for Udiva v0.5 as ablation study.

Model O C E A N Mean

FAt Transformer 0.668 0.624 0.730 0.590 0.987 0.720
w/o Forced Attention 0.705 0.704 0.873 0.966 1.264 0.902
w/o CNN backbone 0.672 0.622 0.850 0.737 1.208 0.818
w/o Cross Attention 0.813 0.776 0.794 0.619 1.118 0.824
w/o Late Fusion 0.709 0.629 0.751 0.602 1.012 0.741
w/o Audio 0.797 0.919 0.874 0.844 1.079 0.903
w/o Transcript 0.839 0.876 0.832 0.760 1.150 0.911

ers [34] (we use Swin T and compare with Swin B) owing to
our contributions which shows their saliency for this field.
We also outperform other approaches that give state-of-the-
art results on action recognition which is the closest field to
this dataset with numerous previous works.

4.4. Ablation Study

4.4.1 Main contributions

When segmentation map is absent from the input, we no-
ticed that the model performance oscillates in every epoch.
In Table 4, we give results with the best mean validation
score across the OCEAN classes. Due to the bias in the
dataset and maybe even the personality classes, we saw that
in a particular epoch the model performed well either on O,
C and E classes together or A and N classes. In Table 4
for instance, it can be seen that the model does not perform
well on A and N without (w/o) forced attention for the cho-
sen epoch. We saw the same phenomenon in a separate
experiment where we tried an approach similar to VATT [3]
without contrastive learning. So, we conclude that forced
attention indeed helps the model converge.

Without patch partitioning and a CNN backbone, the
transformer behaves similarly with the exception of extro-
version class. This corroborates our assumption that this
contribution also helps in convergence.

Using only one side input and changing it in successive
blocks in place of the proposed module allows the network
to converge properly, but the performance across all classes
decreases. This contribution allows our network to better
exploit the correlations between the modalities and this ab-
lation study supports the claim.

4.4.2 Late Fusion

We try two different configurations for the classification
head using only features from the face branch, and with
both full-frame and face crop sequence branches concate-
nated along the channel dimension. The latter one gave the
best results, but they are not very different from using only
face features which is the second row in Table 4. This shows
that the cross-attention module incorporates the relevant in-
formation from the other branches (other than the face crop
sequence) properly and this explains why late-fusion does
not have a great impact on results.

4.4.3 Different Modalities

We show how the model works when audio and transcript
inputs are missing. There is significant reduction in per-
formance when either modality is missing which shows the
importance of both. It can be seen that some classes are
more affected by the absence of these modalities. Class A
has the most reduction in performance, but this might also
be explained by the fact that the model does not properly
converge for this class and having more input modalities
helps with that. On the other hand, results on C seems to be
highly dependant on these modalities as the model is able to
converge for this class in the forced attention ablation study,
but not without these. These results also show that our ar-
chitecture works well in merging information from audio
and transcript into the face crop sequence.

5. Conclusion
We presented a method to efficiently incorporate multi-

ple modalities into one model for human behavior analysis.
Our model outperforms the state-of-the-art on three differ-
ent datasets. Udiva v0.5 and First Impressions v2 tackle the
high level problem of personality recognition while MPIGI
tackles the low level problem of body language recognition.
For the respective datasets, we achieve 0.050 lower MSE
(ignoring dyadformer: described in detail in section 4.3.1),
1.3 % higher accuracy, and 3.6 % higher accuracy. Through
ablation studies, we showed that each of our contributions
has a significant impact on the performance of the model.
We studied different ways to incorporate information in a
transformer and show the impact of the one with the best
performance through the visualisation of attention on an ex-
ample input frame. We hope that this work inspires more
work in this area as it is not widely explored.
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