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In a recent work, we introduced a finite element approximation for the shape optimization of an elastic structure in sliding contact with a rigid foundation where the contact condition (Signorini's condition) is approximated by Nitsche's method and the shape gradient is obtained via the adjoint state method. The motivation of this work is to propose an a priori convergence analysis of the numerical approximation of the variables of the shape gradient (displacement and adjoint state) and to show some numerical results in agreement with the theoretical ones. The main difficulty comes from the non-differentiability of the contact condition in the classical sense which requires the notion of conical differentiability.

Introduction

In many industrial applications, shape optimization has become an essential tool to improve the quality and performance of mechanical structures. In some contexts, complexity arises while the mathematical formulations involve non-linear or non-differentiable terms. In this study, the motivation is based on the shape optimization of an elastic structure in sliding contact via a gradient descent strategy that requires in particular the shape derivative of the optimization criterion. Unfortunately, the introduction of a non-linear frictionless contact condition in the mechanical problem leads to a tricky formulation of the shape gradient. The elastic problem with sliding contact becomes an elliptic variational inequality whose differentiation is difficult to obtain especially since it is not well defined in the classical sense. We refer to [START_REF] Hilding | Optimization of structures in unilateral contact[END_REF] for an overview of shape optimization results for contact problems.

A first approach consists in defining a weak notion of the differentiability, the so-called conical differentiability initially introduced by F. Mignot in [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF], leading to optimality conditions. We refer to the work of J. Sokolowski and J.-P. Zolesio [START_REF] Sokolowski | Shape sensitivity analysis of unilateral problems[END_REF][START_REF] Sokolowski | Introduction to shape optimization[END_REF][START_REF] Sokolowski | Shape sensitivity analysis of contact problem with prescribed friction[END_REF][START_REF] Sokolowski | Differential stability of solutions to unilateral problems[END_REF][START_REF] Sokolowski | Dérivée par rapport au domaine de la solution d'un problème unilatéral[END_REF][START_REF] Sokolowski | Shape sensitivity analysis of variational inequalities[END_REF]. A way to get optimality conditions is to consider a sequence of penalized problems (see for instance [START_REF] Barbu | Optimal control of variational inequalities[END_REF][START_REF] Amassad | Optimal control of an elastic contact problem involving Tresca friction law[END_REF][START_REF] Touzaline | Optimal control of a frictional contact problem[END_REF] and for numerical applications see [START_REF] Páczelt | Optimal shape design for contact problems[END_REF][START_REF] Kim | Structural optimization of finite deformation elastoplasticity using continuum-based shape design sensitivity formulation[END_REF][START_REF] Desmorat | Structural rigidity optimization with frictionless unilateral contact[END_REF]). B. Chaudet and J. Deteix prove the conical differentiability of the solution to the contact problem using the penalization method in [START_REF] Chaudet-Dumas | Shape derivatives for the penalty formulation of elastic contact problems with Tresca friction[END_REF] and the augmented Lagrangian method in [START_REF] Chaudet-Dumas | Shape derivatives for an augmented Lagrangian formulation of elastic contact problems[END_REF].

A second approach to deal with the non-differentiability in the classical sense consists in formulating the discrete variational inequality and then differentiating the discrete formulation. We refer to the work of J. Haslinger et al. [START_REF] Haslinger | Shape optimization in contact problems based on penalization of the state inequality[END_REF][START_REF] Haslinger | Signorini problem with Coulomb's law of friction. shape optimization in contact problems[END_REF][START_REF] Haslinger | Shape optimization in unilateral contact problems using generalized reciprocal energy as objective functional[END_REF][START_REF] Haslinger | Shape optimization in 2D contact problems with given friction and a solution-dependent coefficient of friction[END_REF][START_REF] Haslinger | On the existence of optimal shapes in contact problems[END_REF][START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF][START_REF] Haslinger | Shape optimization in contact problems. approximation and numerical realization[END_REF] where the mechanical problem is approximated by the finite element method. In particular, a convergence analysis is performed in [START_REF] Haslinger | Finite element approximation for optimal shape, material, and topology design[END_REF] according to the discretization parameter. Penalising [START_REF] Haslinger | Shape optimization in contact problems based on penalization of the state inequality[END_REF][START_REF] Kim | Shape design sensitivity analysis and optimization of elasto-plasticity with frictional contact[END_REF][START_REF] Kim | Optimization of a hyper-elastic structure with multibody contact using continuum-based shape design sensitivity analysis[END_REF][START_REF] Amassad | Optimal control of an elastic contact problem involving Tresca friction law[END_REF][START_REF] Stupkiewicz | Sensitivity analysis for frictional contact problems in the augmented Lagrangian formulation[END_REF] or regularising [START_REF] Strömberg | Topology optimization of structures with contact constraints by using a smooth formulation and nested approach[END_REF][START_REF] Strömberg | Topology optimization of structures in unilateral contact[END_REF] the contact condition can make it easier to obtain the shape derivatives, at the cost of an additional approximation.

While friction is considered in the contact conditions, the derivation is even more tricky. The Tresca model for friction is studied in [START_REF] Sokolowski | Introduction to shape optimization[END_REF] and a conical derivative is reached for specific directions and only in a two-dimensional framework. Some results are given for Coulomb friction in [START_REF] Haslinger | Signorini problem with Coulomb's law of friction. shape optimization in contact problems[END_REF].

In the recent work [START_REF] Bretin | Shape optimization of a linearly elastic rolling structure under unilateral contact using Nitsche's method and cut finite elements[END_REF], we are interested in the optimization of an elastic structure under contact conditions while trying to minimize criteria that couple compliance terms and additional terms allowing pressure uniformizations. We propose the use of Nitsche-based methods [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF] to efficiently discretize the contact terms. The optimization of the elastic structure is also performed using gradient descent strategy where the gradient is estimated via the adjoint state method applied directly on the discrete formulation of the problem. Although the proposed method allows us to obtain convincing structure optimization, no results of convergence analysis about the discretization of the adjoint state problem were given in [START_REF] Bretin | Shape optimization of a linearly elastic rolling structure under unilateral contact using Nitsche's method and cut finite elements[END_REF]. The aim of this paper is therefore to analyze and propose a first result in this direction.

First of all, in Section 2, we recall the elastic formulation with the contact problem. We recall then, in Section 3, some results about the conical directional differentiability of the solution to the contact problem and the link with the shape gradient mainly following [START_REF] Chaudet-Dumas | Shape derivatives for an augmented Lagrangian formulation of elastic contact problems[END_REF][START_REF] Maury | Shape optimization for contact and plasticity problems thanks to the level set method[END_REF]. In a second step, as in [START_REF] Bretin | Shape optimization of a linearly elastic rolling structure under unilateral contact using Nitsche's method and cut finite elements[END_REF], we present in Section 4 the discretization of the adjoint state problem consisting in applying the adjoint state method on the discrete Nitsche version of the direct problem. Unfortunately, we note a lack of consistency of this approach. We then consider alternatively the discrete Nitschebased approximation of the continuous adjoint state. We then show an a priori convergence result of this numerical discretization under assumptions of convergence rate of the discrete contact area. By slightly modifying the Nitsche-based formulation of the adjoint state, we introduce a method that allows to dispense with this assumption. Finally, numerical experiments will illustrate in Section 5 these convergence results on the discretization of the adjoint state.

Formulation of the contact problem

We consider a linearly elastic structure occupying in its reference configuration a domain Ω ⊂ R d , d = 2 or 3 whose shape is to be optimized. An example is depicted in Figure 1. The boundary ∂Ω of Ω is split into three non-overlapping parts, Γ N , Γ D and Γ C . We consider a Neumann condition on Γ N , where a force density g N is prescribed, and a homogeneous Dirichlet condition on Γ D . Moreover, Γ D is supposed to be of non-zero Lebesgue measure to ensure the coercivity of the elastic problem. A frictionless contact might occur with a flat and horizontal rigid obstacle on Γ C . Let n y be the inward unit vector to the rigid flat obstacle and g be the initial gap at each point x ∈ Γ C , i.e. the distance function to the obstacle (see Figure 1). It is defined by

g = n y • (y -x),
where y is the orthogonal projection of x upon the obstacle. We adopt the following decomposition into normal and tangential components for displacement fields and contact stresses on Γ C :

u n = u • n y , u t = (I -n y ⊗ n y )u, σ n (v) = (σ(v) n) • n y , σ t (v) = (I -n y ⊗ n y )(σ(v) n),
where n is the outward unit vector to Ω. Then, the unilateral contact problem consists in finding u Ω : Ω → R d the displacement of the body according to its reference configuration as the solution to the following problem:

       -div σ(u Ω ) = f in Ω with σ(u Ω ) = A ε(u Ω ), σ(u Ω ) n = g N on Γ N , u Ω = 0 on Γ D , (u n -g) ≤ 0, σ n (u) ≤ 0, (u n -g) σ n (u) = 0 on Γ C , (1) 
where A is the fourth order symmetric tensor of elasticity, ε(u) = (∇u + ∇u T )/2 is the small deformation tensor and f is an external volumic force density. Assuming the isotropy of the material and denoting µ and λ the constant positive Lamé material parameters, the tensor A reads A ε(u) = 2µε(u) + λtr(ε(u))I.

Let us introduce the Hilbert space V and the convex cone K of admissible displacements satisfying the non-penetration condition on the contact boundary Γ C :

V := {v ∈ H 1 (Ω; R d )|v = 0 on Γ D }, K := {v ∈ V |v n -g ≤ 0 on Γ C },
where here and in the rest of the paper, H s (Ω) denotes the usual Hilbert functional space (see [START_REF] Adams | Sobolev spaces[END_REF], for instance). In order to derive the weak formulation, we introduce two applications a :

V × V → R and : V → R, defined for all (u, v) ∈ V × V by a(u, v) = Ω Aε(u) : ε(v) dx, (v) = Ω f (x) • v dx + Γ N g N • v ds(x).
We deduce from the previous assumptions that a(•, •) is a bilinear, V-elliptic and continuous form on V × V and (•) is a linear continuous form on V . The weak formulation of Problem (1) in case of frictionless contact reads as a variational inequality (see [START_REF] Fichera | Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, atti acc, Naz. Lincei[END_REF][START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF][START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and finite element methods[END_REF][START_REF] Haslinger | Handbook of Numerical Analysis[END_REF]):

Find u Ω ∈ K such that a(u Ω , v -u Ω ) ≥ (v -u Ω ), ∀v ∈ K. (2) 
Under standard assumptions, the existence and uniqueness of the solution to problem (2) is a direct consequence of Stampacchia's theorem (see [START_REF] Ekeland | Convex analysis and variational problems[END_REF]). Moreover, the solution to (2) is the unique minimizer on K of the functional

inf v∈K ϕ(v) := inf u∈K 1 2 a(u, u) -(u).
Contact conditions are often approximated in numerical application using the penalty method, which has the advantage of simplicity and robustness at the price of a supplementary approximation. Another classical strategy is the use of Lagrangian or augmented Lagrangian formulations which are fully consistent in contrary to the penalty approach but requires supplementary unknowns (the Lagrange multipliers) and the satisfaction of inf-sup conditions. In this work, we consider a third approach, namely Nitsche's method, which is also fully consistent and avoid the use of supplementary unknowns.

Geometric shape optimization

The geometric shape optimization aims at minimizing a criterion J(Ω) = J(Ω, u(Ω)). It explicitly depends on the domain Ω, but also implicitly on the solution u Ω to Problem [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF] 1). The generic formulation for the target criterion can be expressed as

J(Ω) = Ω M(u Ω ) dx + ∂Ω N (u Ω ) ds(x), (3) 
where the properties of M and N will be specified later. In the following, we denote

Γ m = Γ o C ∪ Γ o D ∪ Γ o
N the optimizable (moving) boundary.

Notions of shape derivative

We recall here some results coming mainly from [START_REF] Chaudet-Dumas | Shape derivatives for an augmented Lagrangian formulation of elastic contact problems[END_REF][START_REF] Maury | Shape optimization for contact and plasticity problems thanks to the level set method[END_REF]. The differentiation with respect to the domain aims at modifying the reference state of the domain Ω using the boundary method first described by J. Hadamard in [START_REF] Hadamard | Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées[END_REF] and then developed for instance in [START_REF] Murat | Étude de problèmes d'optimal design[END_REF][START_REF] Pironneau | Optimal shape design for elliptic systems[END_REF][START_REF] Simon | Differentiation with respect to the domain in boundary value problems[END_REF][START_REF] Sokolowski | Introduction to shape optimization[END_REF][START_REF] Henrot | Shape variation and optimization[END_REF].

Let Θ ∈ W 1,∞ (R d ; R d ) ∩ C 1 (R d
) be a vector field displacing the reference domain Ω towards different admissible shapes Ω t . The associated transported domain Ω t in the direction Θ is defined by

Ω t = (Id + Θ)(Ω),
for Θ small enough so that Id + Θ is a diffeomorphism (see for instance [START_REF] Henrot | Variation et optimisation de formes: une analyse géométrique[END_REF]). Then the classical notion of differentiability in Banach spaces can define shape differentiability. We refer to [START_REF] Delfour | Shapes and geometries: metrics, analysis, differential calculus, and optimization[END_REF] for the different notions of differentiability. We recall the definition of a conical derivative as expressed in [START_REF] Mignot | Contrôle dans les inéquations variationelles elliptiques[END_REF].

Definition 1. Let V 1 and V 2 be two Banach spaces. A continuous function u : V 1 → V 2 admits a conical derivative at x if there exists an operator Q : V 1 → V 2 positively homogeneous such that:

∀h ∈ V 1 , ∀t ≥ 0, u(x + th) = u(x) + tQ(h) + o(t).
For u Ω ∈ V the solution of a variational formulation posed on Ω, there are two ways to define the derivative of u according to Ω as proposed for instance in [START_REF] Maury | Shape optimization for contact and plasticity problems thanks to the level set method[END_REF]: a Lagrangian and an Eulerian one. First we define the Lagrangian derivative or material derivative following the point x during its transportation by the diffeomorphism I d + Θ. Definition 2. Let V be a reflexive Banach set and assume that u Ω (x) ∈ V , and u (I d +Θ)Ω (x + Θ(x)) ∈ V . We call d Ω u[Θ], the directional Lagrangian derivative of u Ω (x) in the direction Θ, the linear form in Θ from W 1,∞ (R d , R d ) to V satisfying:

u (I d +Θ)Ω (x + Θ) = u Ω (x) + d Ω u[Θ] + o(Θ).
where o(Θ) is to be understood as

lim Θ→0 o(Θ) V Θ W 1,∞ (R d ,R d ) = 0.
The other definition refers to the Eulerian derivative or shape derivative which is more easy to use but causes additional difficulties to be properly defined. There is actually no difficulty if we define it for a point x belonging to both Ω and (I d + Θ)(Ω). Yet it is much more intricate for points located in the boundary ∂Ω which do not belong to (I d + Θ)(Ω) or its boundary. We only differentiate the point values of u(x), without carrying the points on the boundary which does not lead to rigorous definitions of functional space for u and its derivative. Definition 3. We call D Ω u[Θ], the directional Eulerian derivative of u Ω (x), the linear form in Θ that satisfies:

u (I d +Θ)Ω (x) = u Ω (x) + D Ω u[Θ] + o(Θ).
Note that while the additional condition ∇u

Ω • Θ ∈ V holds for Θ ∈ W 1,∞ (R d ; R d ) ∩ C 1 (R d
), we use the following notation of the directional Eulerian or shape derivative of an element u according to Ω in the direction Θ:

D Ω u[Θ] = d Ω u[Θ] -∇u Ω • Θ. (4) 
The relation (4) correctly defines the Eulerian derivative, preventing from the difficulties previously mentioned. Finally, we note that the solution u Ω is directionally shape differentiable if it admits a directional derivative for any admissible direction Θ. In case the map

Θ → D Ω u Ω [Θ] is positively homogeneous from C 1 (R d ) to V , u Ω is conically differentiable. Finally, this map is shape differentiable if it is linear continuous from C 1 (R d ) to V .

Shape differentiability

It is known that the projection operator used in the contact condition is not Fréchet-differentiable, the consequence being that u Ω is not differentiable in a classical sense. However, it has been proved that the solution u Ω of (2) admits conical material derivative and conical shape derivatives, as for instance [START_REF] Sokolowski | Shape sensitivity analysis of contact problem with prescribed friction[END_REF] for the Signorini's problem.

In view of Zolésio-Hadamard structure theorem, we make the usual choice to limit the geometric deformation fields Θ ∈ C 1 (R d ) along the direction of the normal n (see [START_REF] Chaudet-Dumas | Shape derivatives for an augmented Lagrangian formulation of elastic contact problems[END_REF] for instance). The vector n is extended to C 1 (R d ) as ∂Ω is assumed to have C 1 regularity. In order to perform a domain transport, the variables must have a certain regularity for usual reasons of differentiability. This is the aim of the following assumption.

Assumption 4. f ∈ H 1 (Ω; R d ) and g ∈ H 2 (Ω; R d ).
We suppose also as in [START_REF] Chaudet-Dumas | Shape derivatives for an augmented Lagrangian formulation of elastic contact problems[END_REF][START_REF] Chaudet-Dumas | Shape derivatives for the penalty formulation of elastic contact problems with Tresca friction[END_REF] 

that for u Ω ∈ H ( 3 2 +ν) (Ω) with ν ∈ ]0, 1[. This implies in particular σ n (u Ω ) ∈ L 2 (Γ C ). The contact boundary Γ C is split into three parts (with σ n (u Ω ) a particular representative of its class in L 2 (Γ C )): Γ C,a := {x ∈ Γ C |σ n (u Ω ) < 0, (u Ω ) n = g}, the active set, or effective contact area, Γ C,i := {x ∈ Γ C |σ n (u Ω ) = 0, (u Ω ) n < g}, the inactive set, or non-contact area, Γ C,b := {x ∈ Γ C |σ n (u Ω ) = 0, (u Ω ) n =
g}, the bi-active set, or grazing contact area. Theorem 5. Under Assumption 4, the solution u Ω of (2) is conically shape differentiable with respect to the domain Ω and its conical shape derivative [START_REF] Sokolowski | Shape sensitivity analysis of contact problem with prescribed friction[END_REF] where

D Ω u[Θ] in the direction Θ satisfies D Ω u[Θ] ∈ S(K 0 ) and a(D Ω u[Θ], φ -D Ω u[Θ]) ≥ (φ -D Ω u[Θ])[Θ] -a (u Ω , φ -D Ω u[Θ])[Θ], ∀φ ∈ S(K 0 ),
S(K 0 ) = {φ ∈ V |φ n ≤ 0 a.e. on Γ C,a ∪ Γ C,b and (a(u Ω , φ) = (φ))} and where a (u, v)[Θ] = Γm (Θ • n) Aε(u) : ε(v) ds(x), (v)[Θ] = Γm (Θ • n) f • v ds(x) + Γm∩Γ N (Θ • n) (κ m g N • v + ∇(g N • v) • n) ds(x).
Here Γ m is still the optimizable boundary of Ω and κ m is the mean curvature of ∂Ω.

The proof can be found in [START_REF] Maury | Shape optimization for contact and plasticity problems thanks to the level set method[END_REF], Section 5.2. Note that Formulation (5) relies on the set S(K 0 ) that is not easy to handle. It is however possible to rewrite this formulation as a standard optimization problem under the assumption that there exists no isolated point (see [START_REF] Hintermüller | Optimal shape design subject to elliptic variational inequalities[END_REF]):

Assumption 6. Γ C,a ∪ Γ C,b = int(Γ C,a ∪ Γ C,b ).
Theorem 7. Under assumptions 4 and 6, D Ω u[Θ] is solution of (5) if and only if it solves:

inf φ∈K Γ C,a 1 2 a(φ, φ) -(φ)[Θ] + a (u Ω , φ)[Θ],
where

V Γ C,a := {φ ∈ V |φ n = 0 a.e. on Γ C,a , φ = 0 a.e. on Γ D } and K Γ C,a := {φ ∈ V Γ C,a |φ n ≤ 0 a.e. on Γ C,b }.
The proof can be found in [START_REF] Chaudet-Dumas | Shape derivatives for an augmented Lagrangian formulation of elastic contact problems[END_REF] and shows in particular that S(K 0 ) = K Γ C,a in that case. Some additional results can then be obtain in the case K Γ C,a = V Γ C,a , which implies the use of the following assumption:

Assumption 8. The subset Γ C,b is of zero Lebesgue measure in Γ C .
The non-differentiability coming from the points in Γ C,b , the analysis can be simplified when the assumption 8 is considered.

Remark 9. An element x ∈ Γ C,b is a point where (u Ω ) n = g and σ n (u Ω ) = 0 at the same time which means that contact occurs with a vanishing contact pressure. The set Γ C,b is often referred as the set of grazing contact. Assumption 8 is verified while the set of grazing contact points is a zero measure set between contact and non contact areas. Interestingly, this corresponds, in fact, to most of the practical situations. Theorem 10. Under assumptions 4 and 6 and if in addition Assumption 8 holds, then u Ω solution of (2) is shape differentiable in L 2 (Ω). Its shape derivative in the direction Θ denoted D Ω u[Θ] is defined as the unique solution of

a(D Ω u[Θ], φ) = (φ)[Θ] -a (u Ω , φ)[Θ], ∀φ ∈ V Γ C,a . (6) 
The proof can be found in [START_REF] Maury | Shape optimisation with the level set method for contact problems in linearised elasticity[END_REF] section 1.3.3.

Shape gradient formulation

Still considering the generic formulation for a criterion in [START_REF] Sokolowski | Shape sensitivity analysis of unilateral problems[END_REF] given by J(Ω)

= Ω M(u Ω ) dx + ∂Ω N (u Ω ) ds(x)
, we assume that the two functions M and N are in C 1 (R d ) and their derivatives M and N are Lipschitz-continuous.

Suppose Ω is of class C 2 and Assumption 4 holds, then J(Ω) is also conically shape differentiable at Ω and its derivative in the direction Θ ∈ W 1,∞ (R d ; R d ) reads (see [START_REF] Maury | Shape optimization for contact and plasticity problems thanks to the level set method[END_REF]):

D J(Ω)[Θ] = Ω M (u Ω ) • D Ω u[Θ] dx + ∂Ω (Θ • n)M(u Ω ) ds(x) + ∂Ω (N (u Ω ) • D Ω u[Θ] + (Θ • n) (κ m N (u Ω ) + ∇N (u Ω ) • n)) ds(x). (7)
From a numerical point of view, this expression of the shape derivative is difficult to use in the sense that it does not allow to define a gradient algorithm. Therefore, in order to isolate a quantity independent of Θ and get rid of the Eulerian derivative, we classically introduce the adjoint state variable p Ω ∈ V Γ C,a solution to the following problem:

a(v, p Ω ) = - Ω M (u Ω ) • v dx - ∂Ω N (u Ω ) • v ds(x), ∀v ∈ V Γ C,a . (8) 
The corresponding strong formulation is the following:

           -div (σ(p Ω )) = -M (u Ω ) in Ω, σ(p Ω )n = -N (u Ω ) on Γ C,b ∪ Γ C,i ∪ Γ N , p Ω = 0 on Γ D , (p Ω ) n = 0 on Γ C,a , σ t (p Ω ) = -(N (u Ω )) t on Γ C,a . (9) 
This allows to rewrite the shape derivative of J in [START_REF] Sokolowski | Dérivée par rapport au domaine de la solution d'un problème unilatéral[END_REF] 

for v = D Ω u as D J(Ω)[Θ] = -a(D Ω u[Θ], p Ω ) + ∂Ω (Θ • n)M(u Ω ) dx + ∂Ω (Θ • n) (κ m N (u Ω ) + ∇N (u Ω ) • n) ds(x). ( 10 
)
Considering Assumption 8 and taking φ = p Ω in (6), it holds

D J(Ω)[Θ] = Γm (Θ • n) (M(u Ω ) + Aε(u Ω ) : ε(p Ω ) -f (x) • p Ω ) ds(x) + Γm (Θ • n) (κ m N (u Ω ) + ∇N (u Ω ) • n) ds(x) - Γm∩Γ N (Θ • n) (κ m p Ω • g N + ∇(p Ω • g N ) • n) ds(x). (11) 
In particular, this formula now allows us to easily obtain the gradient expression of J from

D J(Ω)[Θ] = ∇J(Ω), Θ L 2 (Γm) = Γm ∇J(Ω)(x) • Θ(x) ds(x),
which is defined for all x ∈ Γ m by

∇J(Ω)(x) = (M(u Ω (x)) + Aε(u Ω (x)) : ε(p Ω (x)) -f (x) • p Ω (x))n(x) + (κ m (x) N (u Ω (x)) + ∇N (u Ω (x)) • n(x))n(x) + (κ m (x) p Ω • g N (x) + ∇(p Ω (x) • g N (x)) • n(x))χ Γ N (x)n(x). ( 12 
)
Note that since a(•, •) is a continuous and coercive bilinear form whereas M and N are supposed to be Lipschitz-continuous, Lax-Milgram theorem ensures the well-posedness of problem [START_REF] Sokolowski | Shape sensitivity analysis of variational inequalities[END_REF] which admits a unique solution p Ω ∈ V Γ C,a .

Remark 11. If assumption 8 does not hold, is is not possible to obtain the formulation (11) since the shape derivative depends nonlinearly on the direction Θ. In this case, the functional J is not differentiable in the classical sense.

Nitsche-based formulations

In this section, we conduct a convergence analysis of a finite element approximation of the adjoint state equation [START_REF] Sokolowski | Shape sensitivity analysis of variational inequalities[END_REF]. We introduce Nitsche's method to deal with the boundary condition on Γ C . We verify its the consistency and finally detail its convergence analysis.

Nitsche-based formulation for the direct problem

Let V h ⊂ V be a family of finite dimensional vector spaces (see [START_REF] Ciarlet | Handbook of Numerical Analysis: VOL II: Finite Element Methods[END_REF]) indexed by h coming from a family T h of triangulations of the domain Ω (h = max T ∈T h h T where h T is the diameter of T ). The family of triangulations is supposed uniformly regular for simplicity, i.e., there exists σ > 0 and ζ > 0 such that ∀T ∈ T h , h T /ρ T ≤ σ and h T > ζh where ρ T denotes the radius of the inscribed ball in T . For instance, a standard Lagrange finite element method of degree k reads

V h := {v h ∈ C 0 ( Ω) d |v h | T ∈ (P k (T )) d , ∀T ∈ T h , v h = 0 on Γ D }. (13) 
Let γ be a piecewise constant function on the contact interface Γ C defined for any x ∈ Γ C lying on the relative interior of Γ C ∩ T for a (closed) element T having a non-empty intersection of dimension d -

1 with Γ C by γ(x) = γ 0 h T ,
where γ 0 is a positive given constant. The Nitsche-based formulation is built on the equivalent reformulation of the contact conditions which has been originally derived from the augmented Lagrangian approach [START_REF] Alart | A mixed formulation for frictional contact problems prone to Newton like solution methods[END_REF] and reads as

σ n (u Ω ) = -[σ n (u Ω ) -γ((u Ω ) n -g)] -,
where the negative part is defined by

[x] -= 1 2 (|x| -x), ∀x ∈ R. The generalized Nitsche-based approximation u h Ω ∈ V h is then the solution of a(u h Ω , v h ) + I(u h Ω , v h , n) = (v h ), ∀v h ∈ V h , (14) 
where the frictionless contact term I(u, v, n) reads

I(u, v, n) = - Γ C θ γ σ n (u)σ n (v) ds(x) + Γ C 1 γ [σ n (u) -γ(u n -g)] -(θ σ n (v) -γv n ) ds(x). (15) 
In the following proposition, we recall some results due to P. Hild, F. Chouly and Y. Renard [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF].

Proposition 12. Suppose that the solution u to Problem (2) belongs to (H

3 2 +ν (Ω)) d with ν ∈ ]0, k -1/2[ (k = 1,
2 is the degree of the finite element method given in (13))and d = 2, 3. When θ = -1, suppose in addition that the parameter γ 0 is sufficiently large. The solution u h Ω of Problem (14) satisfies the following error estimates for C > 0 a constant independent of h:

u h Ω -u Ω 1,Ω ≤ Ch 1 2 +ν u Ω 3 2 +ν,Ω , (16) 
σ n (u h Ω ) -σ n (u Ω ) 0,Γ C ≤ Ch ν u Ω 3 2 +ν,Ω , (17) 
[σ n (u h Ω ) -γ((u Ω ) h n -g)] -+ σ n (u Ω ) 0,Γ C ≤ Ch ν u Ω 3 2 +ν,Ω , (18) 
where here and in the rest of this paper, • s,ω stands for the H s (ω)-norm.

Note that these convergence results make an important use of the following classical property whose proof can be found for instance in [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF].

Lemma 13. There exists C > 0 independent of the parameter γ 0 and of the mesh size h, such that for all

v h ∈ V h γ -1 2 σ n (v h ) 2 0,Γ C ≤ C γ 0 v h 2 1,Ω . (19) 

Adjoint state of the Nitsche-based formulation

For the minimization of the discrete criterion

J h (Ω) = Ω M(u h Ω ) dx + ∂Ω N (u h Ω ) ds(x)
, where u h Ω ∈ V h solution of ( 14), a first approach is to derive the adjoint state of the discrete formulation, for instance using a Lagrangian approach. This is presented in [START_REF] Bretin | Shape optimization of a linearly elastic rolling structure under unilateral contact using Nitsche's method and cut finite elements[END_REF] and leads to the following formulation:

D J h (Ω)[Θ] = Γm (Θ • n) (M(u h Ω ) + Aε(u h Ω ) : ε(p h Ω ) -f (x) • ph Ω ) ds(x) + Γm (Θ • n) (κ m N (u h Ω ) + ∇N (u h Ω ) • n) ds(x) - Γm∩Γ N (Θ • n) (κ m ph Ω • g N + ∇(p h Ω • g N ) • n) ds(x), (20) 
where the discrete adjoint state ph Ω ∈ V h is defined by

                   Find ph Ω ∈ V h such that ∀q h ∈ V h a(p h Ω , q h ) - Γ C θ γ σ n (p h Ω )σ n (q h )ds(x) + Γ C 1 γ H(-(σ n (u h Ω ) -γ((u h Ω ) n -g))))(σ n (q h ) -γq h n )(θσ n (p h Ω ) -γ(p h Ω ) n )ds(x) = - Ω M (u h Ω ) • q h dx - ∂Ω N (u h Ω ) • q h ds(x), (21) 
with H(x) = 1 for x > 0 0 for x ≤ 0 being the Heaviside function.

Since expressions [START_REF] Haslinger | Shape optimization in 2D contact problems with given friction and a solution-dependent coefficient of friction[END_REF] and [START_REF] Touzaline | Optimal control of a frictional contact problem[END_REF] are more than similar and that there are some convergence results of u h Ω towards u Ω , a question that naturally arises is to know if a similar convergence result of ph Ω towards p Ω can be expected. Unfortunately the answer seems to be negative in the general case, due to a consistency issue in the definition of ph which does not allow to ensure the right boundary conditions on Γ C,a , at least in the case θ = 1. To be convinced of this, it is enough to notice that assuming for simplicity H(-

(σ n (u h Ω ) -γ((u h Ω ) n -g)))) = χ Γ C,a
, then ph Ω satisfies after application of Green's formula and for simplicity for θ = 0:

0 = - Ω (div (σ(p h Ω )) -M (u h Ω )) • q h dx + Γ N ∪Γ C,b ∪Γ C,i (σ(p h Ω )n + N (u h Ω )) • q h ds(x) + Γ C,a σ(p h Ω )n • q h + γ(p h Ω ) n q h n -σ n (q h )(p h Ω ) n + N (u h Ω ) • q h ds(x),
which enforces both (p h Ω ) n = 0 and σ(p h Ω )n = -N (u h Ω ) asymptotically on Γ C,a when h goes to zero. This is symptomatic of the non-self-adjoint nature of Nitsche's method for θ = 1.

Remark 14. Although we cannot demonstrate a convergence result from the discrete adjoint state to its continuous counterpart, at least for θ = 1, the use of ph Ω in (20) allows to properly define the gradient of the discrete energy J h which can be use to minimize J h using a gradient algorithm, as we proposed in [START_REF] Bretin | Shape optimization of a linearly elastic rolling structure under unilateral contact using Nitsche's method and cut finite elements[END_REF].

Nitsche-based formulation for the adjoint state and consistency

A second approach is the discretization of Problem ( 9) with a Nitsche-based method. It can be formulated as follows:

                   Find p h Ω ∈ V h such that ∀q h ∈ V h a(p h Ω , q h ) - Γ C θ γ (σ n (p h Ω ) + (N (u h Ω )) n )σ n (q h )ds(x) + Γ C 1 γ H(-(σ n (u h Ω ) -γ(u h n -g))))(σ n (p h Ω ) + (N (u h Ω )) n -γ(p h Ω ) n )(θσ n (q h ) -γq h n )ds(x) = - Ω M (u h Ω ) • q h dx - ∂Ω N (u h Ω ) • q h ds(x), (22) 
where θ ∈ R and γ > 0. Note that expressions [START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF] and ( 21) are identical in the case θ = 1 (this corresponds to the symmetric version of Nitsche's method) and when N (u h Ω ) vanishes on Γ C . The advantage of Formulation ( 22) over ( 21) is that a consistency result can be proved for [START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF].

Lemma 15. The Nitsche-based adjoint state formulation [START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF] is consistent in the following sense: suppose that the solution p Ω to (9) lies in (H

3 2 +ν (Ω)) d with ν ≥ 0 and d = 2, 3. Then if assumption 8 holds, p Ω is also solution, ∀q h ∈ V h , of a(q h , p Ω ) - Γ C θ γ (σ n (p Ω ) + (N (u Ω )) n )σ n (q h )ds(x) + Γ C 1 γ H(-(σ n (u Ω ) -γ((u Ω ) n -g))))((σ n (p Ω ) + (N (u Ω )) n ) -γ(p Ω ) n )(θσ n (q h ) -γq h n )ds(x) = - Ω M (u Ω ) • q h dx - ∂Ω N (u Ω ) • q h ds(x). (23) 
Proof. Using Green's formula on the adjoint state problem [START_REF] Barbu | Optimal control of variational inequalities[END_REF],

∀q h ∈ V h , it holds a(q h , p Ω ) - ∂Ω (σ(p Ω )n + N (u Ω )) • q h ds(x) = - Ω M (u Ω ) • q h dx - ∂Ω N (u Ω ) • q h ds(x). (24) 
As p Ω satisfies σ(p Ω )n = -N (u Ω ) in Γ C,i ∪ Γ N , we have

Γ C,i ∪Γ N (σ(p Ω )n + N (u Ω )) • q h ds(x) = Γ C,i (σ n (p Ω ) + (N (u Ω )) n )σ n (q h )ds(x) = 0.
Recall also that p Ω satisfies (p Ω ) n = 0 and σ(p

Ω ) t = -N (u Ω ) t in Γ C,a , which gives Γ C,a (σ(p Ω )n + N (u Ω )) • q h ds(x) = Γ C,a q h n (σ n (p Ω ) + (N (u Ω )) n -γ(p Ω ) n )ds(x),
and

Γ C,a
θσ n (q h )(p Ω ) n ds(x) = 0. These equalities show that the adjoint state field p Ω ∈ V satisfies a(q h , p Ω ) -

Γ C,i θ γ (σ n (p Ω ) + (N (u Ω )) n )σ n (q h )ds(x) - Γ C,a θσ n (q h )(p Ω ) n ds(x) - Γ C,a q h n (σ n (p Ω ) + (N (u Ω )) n -γ(p Ω ) n )ds(x) = - Ω M (u Ω ) • q h dx - ∂Ω N (u Ω ) • q h ds(x), ∀q h ∈ V h , (25) 
leading then to a(q h , p Ω ) -

Γ C θ γ (σ n (p Ω ) + (N (u Ω )) n )σ n (q h )ds(x) + Γ C,a 1 γ (σ n (p Ω ) + (N (u Ω )) n -γ(p Ω ) n )(θσ n (q h ) -γq h n )ds(x) = - Ω M (u Ω ) • q h dx - ∂Ω N (u Ω ) • q h ds(x). Since Γ C,a := {x ∈ Γ C |σ n (u Ω ) < 0, (u Ω ) n = g}, then H(-(σ n (u Ω (x)) -γ(((u Ω ) n (x) -g))) = χ Γ C,a = 1 if x ∈ Γ C,a , 0 otherwise. 
, which implies that ( 23) is satisfied.

Remark 16. In the event that Assumption 8 is not satisfied, one cannot expect a convergence result because (8) prescribes a Neumann condition on Γ C,b which will not necessarily be asymptotically satisfied by the solution to [START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF]. We address this problem in Section 4.5 by a slight modification of the equation satisfied by p h Ω .

Convergence analysis

The aim of this section is to present an a priori convergence result of the Nitsche-based formulation [START_REF] Sokolowski | Shape sensitivity analysis of variational inequalities[END_REF] with respect to the mesh parameter h. This result requires a supplementary assumption on the convergence of the effective contact area (i.e. a supplementary condition on the convergence of u h Ω towards u Ω ). For the sake of simplicity and clarity of this section and the next one, we will no longer indicate the dependence of the solution with respect to Ω and just use

u = u Ω , u h = u h Ω , p = p Ω and p h = p h Ω .
Moreover, we introduce the two following quantities relative to the contact status:

β h = -σ n (u h ) + γ(u h n -g), β = -σ n (u) + γ(u n -g),
and recall that Γ C,a := {x ∈ Γ C |β > 0} and introduce also the discrete effective contact area

Γ h C,a := {x ∈ Γ C |β h > 0}.
Remark 17. In practice, β actually depends on h as γ = γ 0 /h T . However, H(β) being the

characteristic function of Γ C,a , H(β) = χ Γ C,a = 1 for x ∈ Γ C,a 0 
otherwise , it does not depend on h.

We first introduce the following lemma on the weak convergence of H(β h ) that is required for the main convergence result.

Lemma 18. Suppose that the solution u to Problem (2) belongs to (H 

(β) -H(β h )| * ---0 in L ∞ (Γ C ), in the sense that ∀φ ∈ L 1 (Γ C ) lim h→0 Γ C |H(β) -H(β h )|φ ds(x) = 0. Consequently, H(β h ) * ---χ Γ C,a in L ∞ (Γ C ).
Proof. Still for σ n (u) a particular element of its class in L 2 (Γ C ), we introduce the measurable set

A δ = {x ∈ Γ C |σ n (u) ≤ -δ} ⊂ Γ C,a . ( 26 
)
It corresponds to the contact area where contact actually occurs for u and where the contact pressure is greater than δ. We also introduce N h δ a subset of A δ where the contact does not occur for u h defined by

N h δ = {x ∈ A δ |σ n (u h ) -γ(u h n -g) > 0}. So on N h δ , it holds |[σ n (u h ) -γ(u h n -g)] -+ σ n (u)| ≥ δ, which implies N h δ |[σ n (u h ) -γ(u h n -g)] -+ σ n (u)| 2 ds(x) ≥ δ 2 |N h δ |,
where | • | stands for the Lebesgue measure. Using [START_REF] Haslinger | Signorini problem with Coulomb's law of friction. shape optimization in contact problems[END_REF] in Proposition 12, it finally holds

|N h δ | ≤ Ch 2ν δ 2 . ( 27 
)
Now, introducing I δ the measurable set where no contact occurs for u with a separation greater than δ defined by

I δ = {x ∈ Γ C |u n ≤ g -δ},
and

M h δ = {x ∈ I δ , σ n (u h ) -γ(u h n -g) ≤ 0},
its subset where contact occurs for u h , we can write on

M h δ | - σ n (u h ) γ + (u h n -g) -(u n -g)| ≥ δ.
This implies

M h δ | - σ n (u h ) γ + (u h n -u n )| 2 ds(x) ≥ δ 2 |M h δ |.
Using [START_REF] Chaudet-Dumas | Shape derivatives for an augmented Lagrangian formulation of elastic contact problems[END_REF] in Proposition 12, it finally holds

|M h δ | ≤ Ch 1+2ν δ 2 . ( 28 
)
Under Assumption 8, ∀δ > 0 and ∀φ ∈ L 1 (Γ C ), we write

Γ C |H(β) -H(β h )|φ ds(x) = A δ (1 -H(β h ))φ ds(x) + I δ H(β h )φ ds(x) + Γ C /(A δ ∪I δ ) |H(β) -H(β h )|φ ds(x). ( 29 
)
However,

A δ (1 -H(β h ))φ ds(x) = - N h δ φ ds(x),
and using ( 27)

lim h→0 N h δ φ ds(x) = 0.
Similarly

I δ H(β h )φ ds(x) = M h δ φ ds(x),
and using ( 28)

lim h→0 M h δ φ ds(x) = 0.
Since the measure Γ C \ (A δ ∪ I δ ) tends to 0 when δ tends to 0 under assumption 8, we finally obtain lim

h→0 Γ C |H(β) -H(β h )|φ ds(x) = 0.
Let us consider the following assumption on the convergence of the effective contact area.

Assumption 19. There exist ω > 0, C > 0 independent of h such that Γ h C,a ∩ Γ C,i is bounded as follows:

|Γ h C,a ∩ Γ C,i | ≤ Ch ω .
We present now our main convergence result of the discrete Nitsche-based adjoint state formulation [START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF].

Theorem 20. Suppose that the solution p to Problem [START_REF] Sokolowski | Shape sensitivity analysis of variational inequalities[END_REF] and the solution u to Problem (2) belong to (H 3 2 +ν (Ω)) d with ν > 0 and d = 2 or d = 3. Suppose that the parameter γ 0 is sufficiently large and that Assumptions 8 holds, then, it exists C > 0 independent of h such that the solution

p h ∈ V h to Problem (22) satisfies p -p h 2 1,Ω + H(β h )γ -1 2 (σ n (p h -p) -γ(p h n -p n )) 2 0,Γ C ≤ C Γ C,a (1 -H(β h ))σ 2 n (p)ds(x) + Γ C,i H(β h )γp 2 n ds(x) + C inf q h ∈V h γ -1 2 σ n (q h -p) 2 0,Γ C + γ 1 2 (q h n -p n ) 2 0,Γ C + q h -p 2 1,Ω + C u -u h 2 1,Ω + (H(β h ) -H(β))(N (u)) n 0,Γ C .
Moreover, if Assumption 19 holds for ω > 1, we deduce that

lim h→0 p h -p 2 1,Ω = 0. ( 30 
)
Proof. Using the coercivity and continuity of a(•, •), we write for any

q h ∈ V h α p -p h 2 1,Ω ≤ a(p -p h , p -p h ) = a(p -p h , p -q h + q h -p h ) ≤ C p -p h 1,Ω p -q h 1,Ω + a(p -p h , q h -p h ) ≤ α 2 p -p h 2 1,Ω + C 2 2α p -q h 2 1,Ω + a(p, q h -p h ) -a(p h , q h -p h ),
where α > 0 is the ellipticity constant of a(•, •), and C > 0 a generic constant independent of h in the whole study. We can rewrite the term a(p, q h -p h ) -a(p h , q h -p h ) as p solves (8), p h solves ( 22) and using Lemma 15, it yields:

α 2 p -p h 2 1,Ω ≤ C 2 2α p -q h 2 1,Ω - Γ C θ γ σ n (p h -p)σ n (q h -p h ) ds(x) + Γ C 1 γ H(β h )(σ n (p h ) -γp h n -(σ n (p) -γp n ))(θσ n (q h -p h ) -γ(q h n -p h n )) ds(x) + Γ C 1 γ (H(β h ) -H(β))(σ n (p) -γp n )(θσ n (q h -p h ) -γ(q h n -p h n )) ds(x). + Γ C θ γ ((1 -H(β))N (u) -(1 -H(β h ))N (u h )) n σ n (q h -p h ) ds(x) + Γ C (H(β)N (u) -H(β h )N (u h )) n (q h n -p h n ) ds(x) - Ω (M (u) -M (u h )).(q h -p h )dx - ∂Ω (N (u) -N (u h )).(q h -p h )ds(x). (31) 
The first integral term in ( 31) is bounded as follows, using Young's inequality for any ξ 1 > 0:

-

Γ C θ γ σ n (p h -p)σ n (q h -p h ) ds(x) = - Γ C θ γ σ n ((p h -q h ) + (q h -p))σ n (q h -p h ) ds(x) = Γ C θ γ σ n (q h -p h )σ n (q h -p h ) ds(x) - Γ C θ γ σ n (q h -p)σ n (q h -p h ) ds(x) ≤ θ γ -1 2 σ n (q h -p h ) 2 0,Γ C + |θ| γ -1 2 σ n (q h -p) 0,Γ C γ -1 2 σ n (q h -p h ) 0,Γ C ≤ θ γ -1 2 σ n (q h -p h ) 2 0,Γ C + ξ 1 θ 2 2 γ -1 2 σ n (q h -p) 2 0,Γ C + 1 2ξ 1 γ -1 2 σ n (q h -p h ) 2 0,Γ C ≤ (θ + 1 2ξ 1 ) γ -1 2 σ n (q h -p h ) 2 0,Γ C + ξ 1 θ 2 2 γ -1 2 σ n (q h -p) 2 0,Γ C , ≤ C 0 γ 0 (θ + 1 2ξ 1 ) p -q h 2 1,Ω + p -p h 2 1,Ω + ξ 1 θ 2 2 γ -1 2 σ n (q h -p) 2 0,Γ C . (32) 
Concerning the second integral term in [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF], we derive the following estimate for any ξ 2 > 0:

Γ C 1 γ H(β h )(σ n (p h ) -γp h n -(σ n (p) -γp n ))(θσ n (q h -p h ) -γ(q h n -p h n )) ds(x) = - Γ C 1 γ H(β h )(σ n (p h -p) -γ(p h n -p n )) 2 ds(x) + Γ C 1 γ H(β h )(σ n (p h -p) -γ(p h n -p n ))(σ n (q h -p) -γ(q h n -p n )) ds(x) + (θ -1) Γ C 1 γ H(β h )(σ n (p h -p) -γ(p h n -p n ))σ n (q h -p h ) ds(x) ≤ (-1 + |θ -1| ξ 2 2 + ξ 2 2 ) H(β h )γ -1 2 (σ n (p h -p) -γ(p h n -p n )) 2 0,Γ C + 1 2ξ 2 H(β h )γ -1 2 (σ n (q h -p) -γ(q h n -p n )) 2 0,Γ C + 1 2ξ 2 |θ -1| H(β h )γ -1 2 σ n (q h -p h ) 2 0,Γ C , ≤ (-1 + |θ -1| ξ 2 2 + ξ 2 2 ) H(β h )γ -1 2 (σ n (p h -p) -γ(p h n -p n )) 2 0,Γ C + 1 2ξ 2 γ -1 2 σ n (q h -p) 2 0,Γ C + γ 1 2 (q h n -p n ) 2 0,Γ C + C 0 γ 0 1 2ξ 2 ( p -q h 2 1,Ω + p -p h 2 1,Ω ). (33) 
The third integral term in ( 31) is split as follows:

Γ C 1 γ (H(β h ) -H(β))(σ n (p) -γp n )(θσ n (q h -p h ) -γ(q h n -p h n )) ds(x) = Γ C,a 1 γ (H(β h ) -1) σ n (p)(θσ n (q h -p h ) -γ(q h n -p h n )) ds(x) + Γ C,i H(β h ) γ (σ n (p) -γp n )(θσ n (q h -p h ) -γ(q h n -p h n )) ds(x). (34) 
For the first integral term of the right hand side of (34), on Γ C,a , we obtain, using the trace inequality and for any ξ 3 > 0

Γ C,a 1 γ (H(β h ) -1) σ n (p)(θσ n (q h -p h ) -γ(q h n -p h n )) ds(x) ≤ 1 2ξ 3 Γ C,a (1 -H(β h ))σ 2 n (p)ds(x) + ξ 3 Γ C,a ( θ 2 γ 2 σ 2 n (q h -p h ) + (q h -p h ) 2 )ds(x) ≤ 1 2ξ 3 Γ C,a (1 -H(β h ))σ 2 n (p)ds(x) + ξ 3 (θ 2 γ -1 σ n (q h -p h ) 2 0,Γ C,a + C q h -p h 2 1,Ω ) ≤ 1 2ξ 3 Γ C,a (1 -H(β h ))σ 2 n (p)ds(x) + ξ 3 ( θ 2 C 0 h T γ 2 0 + C)( q h -p 2 1,Ω + p -p h 2 1,Ω ). (35) 
For the second integral term of the right hand side of (34) on Γ C,i , we obtain for any ξ 4 > 0

Γ C,i H(β h ) γ (σ n (p) -γp n )(θσ n (q h -p h ) -γ(q h n -p h n )) ds(x) ≤ 1 2ξ 4 Γ C,i H(β h ) γ (γp n ) 2 ds(x) + ξ 4 2 Γ C,i H(β h ) γ (θσ n (q h -p + p -p h ) -γ(q h n -p n + p n -p h n )) 2 ds(x) ≤ 1 2ξ 4 Γ C,i H(β h )γp 2 n ds(x) + 2ξ 4 H(β h )γ -1 2 (σ n (p h -p) -γ(p h n -p n )) 2 0,Γ C,i , + 2ξ 4 |θ -1| H(β h )γ -1 2 σ n (q h -p h ) 2 0,Γ C,i + 2ξ 4 H(β h )(σ n (q h -p) -γ(q h n -p n )) 2 0,Γ C,i ≤ 1 2ξ 4 Γ C,i H(β h )γp 2 ds(x) + 2ξ 4 H(β h )γ -1 2 (σ n (p h -p) -γ(p h n -p n )) 2 0,Γ C,i , + 2ξ 4 |θ -1| C 0 γ 0 q h -p 2 1,Ω + p -p h 2 1,Ω + 2ξ 4 γ -1 2 σ n (q h -p) 2 0,Γ C + γ 1 2 (q h n -p n ) 2 0,Γ C . (36) 
The fourth integral term in (31) can be estimated as follows using Lemma 13, the Lipschitzcontinuity of N and for any ξ 5 > 0

Γ C θ γ ((1 -H(β))N (u) -(1 -H(β h ))N (u h )) n σ n (q h -p h ) ds(x) = Γ C θ γ ((H(β h ) -H(β))N (u) + (1 -H(β h ))(N (u) -N (u h ))) n σ n (q h -p h ) ds(x) ≤ |θ| ( (H(β h ) -H(β))(N (u)) n 0,Γ C + N (u) -N (u h ) 0,Γ C ) γ -1 σ n (q h -p h ) 0,Γ C ≤ C h 1/2 γ 0 |θ|( (H(β h ) -H(β))(N (u)) n 0,Γ C + u -u h 0,Γ C ) q h -p h 1,Ω ≤ C h 1/2 γ 0 |θ| 1 ξ 5 (H(β h ) -H(β))(N (u)) n 0,Γ C + 1 ξ 5 u -u h 2 0,Γ C + ξ 5 q h -p 2 1,Ω + ξ 5 p -p h 2 1,Ω , (37) 
and similarly for the fifth integral term in [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF], we obtain

Γ C (H(β)N (u) -H(β h )N (u h )) n (q h n -p h n ) ds(x) = Γ C ((H(β) -H(β h ))N (u) + H(β h )(N (u) -N (u h ))) n (q h n -p h n ) ds(x) ≤ Γ C (H(β) -H(β h ))(N (u)) n (q h n -p h n ) ds(x) + N (u) -N (u h ) 0,Γ C q h n -p h n 0,Γ C , ≤ C 1 ξ 5 (H(β h ) -H(β))(N (u)) n 0,Γ C + 1 ξ 5 u -u h 2 1,Ω + ξ 5 q h -p 2 1,Ω + ξ 5 p -p h 2 1,Ω , (38) 
and for the two last integral terms in (31) using additionally the Lipschitz-continuity of M

-

Ω (M (u) -M (u h )).(q h -p h )dx - ∂Ω (N (u) -N (u h )).(q h -p h )ds(x) ≤ C 1 2ξ 5 u -u h 2 1,Ω + ξ 5 q h -p 2 1,Ω + ξ 5 p -p h 2 1,Ω . (39) 
Gathering now ( 32), ( 33), ( 35), ( 36), ( 37), ( 38) and ( 39) we obtain for ξ 2 , ξ 3 , ξ 4 and ξ 5 sufficiently small and for γ 0 sufficiently large the existence of C > 0 such that

p -p h 2 1,Ω + H(β h )γ -1 2 (σ n (p h -p) -γ(p h n -p n )) 2 0,Γ C ≤ C Γ C,a (1 -H(β h ))σ 2 n (p)ds(x) + Γ C,i H(β h )γp 2 n ds(x) + C γ -1 2 σ n (q h -p) 2 0,Γ C + γ 1 2 (q h n -p n ) 2 0,Γ C + q h -p 2 1,Ω + C u -u h 2 1,Ω + (H(β h ) -H(β))(N (u)) n 0,Γ C .
Finally, the proof of convergence is obtained thanks to the interpolation error exposed in [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF] (Theorem 3.8), which shows that choosing q h the Lagrange interpolate of p leads to

lim h→0 p -q h 2 1,Ω = 0, lim h→0 γ -1 2 σ n (q h -p) 2 0,Γ C = 0, lim h→0 γ 1 2 q h n -p n ) 2 0,Γ C = 0.
Moreover, thanks to Lemma 18, With assumption 19, we can bound the first term in [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and finite element methods[END_REF] as

H(β h ) * ---χ Γ C,a gives lim h→0 Γ C,a (1 - 
Γ C,i H(β h )γp 2 n ds(x) = Γ h C,a ∩Γ C,i γ p 2 n ds(x) ≤ γ 0 h Ch ω ≤ Ch ω-1 .
It suffices that ω > 1 so that lim

h→0 Γ h C,a ∩Γ C,i γ p 2 n ds(x) = 0. ( 40 
)
Note that in the numerical tests we provide in section 5.1, the condition ω > 1 is satisfied for the studied range of mesh size. of zero measure. So it gives

Γ C 1 γ (H( βh ) -H(β))(σ n (p) -γp n )(θσ n (q h -p h ) -γ(q h n -p h n )) ds(x) = Γ C,a 1 γ (H( βh ) -1) σ n (p)(θσ n (q h -p h ) -γ(q h n -p h n )) ds(x) + Γ C,i ∪Γ C,b H( βh ) γ (σ n (p) -γp n )(θσ n (q h -p h ) -γ(q h n -p h n )) ds(x). (43) 
The first integral term of the right hand side of ( 43) is treated as in [START_REF] Duvaut | Les inéquations en mécanique et en physique[END_REF]. It remains to verify that lim

h→0 1 2ξ 3 Γ C,a (1 -H( βh ))σ 2 n (p)ds(x) = 0. ( 44 
)
Let us still denote A δ the set defined by [START_REF] Kim | Optimization of a hyper-elastic structure with multibody contact using continuum-based shape design sensitivity analysis[END_REF] where the contact actually occurs for u and the contact pressure is greater than δ, and consider

Ñ h δ,ξ = {x ∈ A δ |σ n (u h ) -γ(u h n -g) > -ξ},
the subset where the discrete adjoint state is submitted to a Neumann condition. We obtain on Ñ h δ,ξ for ξ < δ,

|[σ n (u h ) -γ(u h n -g)] -+ σ n (u)| ≥ δ -ξ, so that Ñ h δ |[σ n (u h ) -γ(u h n -g)] -+ σ n (u)| 2 ds(x) ≥ (δ -ξ) 2 | Ñ h δ |,
which leads, using [START_REF] Haslinger | Signorini problem with Coulomb's law of friction. shape optimization in contact problems[END_REF] in Proposition 12 to

| Ñ h δ | ≤ Ch 2ν (δ-ξ) 2 . We have 0 ≤ Γ C,a (1 -H( βh ))σ 2 n (p)ds(x) ≤ Ñ h δ σ 2 n (p)ds(x) + Γ C,a \A δ σ 2 n (p)ds(x).
For an arbitrary δ > 0, the term

Ñ h δ σ 2 
n (p)ds(x) tends to zero as h tends to zero and the term Γ C,a \A δ σ 2 n (p)ds(x) tends to zero when δ tends to zero. So that we obtain [START_REF] Henrot | Variation et optimisation de formes: une analyse géométrique[END_REF]. Now, concerning the second integral term of the right hand side of (43), we follow [START_REF] Kikuchi | Contact problems in elasticity: a study of variational inequalities and finite element methods[END_REF] and it remains only to prove that

lim h→0 Γ C,i ∪Γ C,b H(β h )γp 2 n ds(x) = 0. (45) 
To this aim, denoting Γ

h C,a = {x ∈ Γ C | β > 0}, we obtain (Γ C,i ∪Γ C,b )∩Γ h C,a |[σ n (u h ) -γ(u n -g)] -+ σ n (u)| 2 ds(x) ≥ ξ 2 |(Γ C,i ∪ Γ C,b ) ∩ Γ h C,a |,
and still using [START_REF] Haslinger | Signorini problem with Coulomb's law of friction. shape optimization in contact problems[END_REF] we deduce

|(Γ C,i ∪ Γ C,b ) ∩ Γ h C,a | ≤ C h 2ν ξ 2 . So that Γ C,i ∪Γ C,b H(β h )γp 2 n ds(x) = (Γ C,i ∪Γ C,b )∩Γ h C,a γp 2 n ds(x) ≤ Cγ 0 h 2ν-1 ξ 2 ,
since p is bounded on Γ C . Consequently, (45) holds for ν > 1/2 and ξ > Ch ν-1/2 which ends the proof.

Extending the part of the boundary on which a Neumann condition is considered, makes the discrete adjoint problem tend to the continuous adjoint which satisfies a Neumann condition on Γ C,b . Of course, this continuous adjoint may not allow to recover the conical shape derivative given by Theorem 5 for all direction Θ. An interesting and open question would be to verify that it allows to obtain a descent direction of the shape optimization problem.

Numerical experiments

In this section, we illustrate the convergence analysis with some numerical tests on an elastic hollow cylinder in contact with a plane rigid foundation. We refer to [START_REF] Bretin | Shape optimization of a linearly elastic rolling structure under unilateral contact using Nitsche's method and cut finite elements[END_REF] for more details on our optimization strategy. The different tests are performed using GetFEM++ [START_REF] Renard | GetFEM: Automated FE modeling of multiphysics problems based on a generic weak form language[END_REF] with quadratic Lagrange finite elements on a polar mesh shown in Figure 2. 

Convergence of the Nitsche-based approximation of the adjoint state problem

We first focus on the convergence rate of the Nitsche-based approximation of the adjoint state problem [START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF]. The reference solution p h ref of ( 22) is computed on a very thin mesh (h = 0.0625 cm). The slopes plotted in Figure 3 describe the convergence rates associated to the direct problem [START_REF] Desmorat | Structural rigidity optimization with frictionless unilateral contact[END_REF] for the variable u h and the adjoint state problem [START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF] for the variable p h . The relative H 1 (Ω)-norm is

p h ref -p h 2 1,Ω p h ref 2 1,Ω for v h 2 1,Ω = Ω (v h ) 2 dx + Ω |∇v h | 2 dx.
The left graph of Figure 3 presents both the convergence rate for the solution u h to the direct problem ( 14) and the solution p h to the adjoint state problem [START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF]. Compared to the theoretical results given in [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF] and recalled in Proposition 12 and due to the limitation of regularity of the solution due to the contact transitions (typically u ∈ H ν (Ω) for ν < 5/2, see for instance [START_REF] Moussaoui | Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan[END_REF]), the convergence rate for u h is in good accordance although a little bit sub-optimal. The convergence of p h towards p solution to (8) is also observed, accordingly to our theoretical results, but with a slower convergence rate compared to u h . This slower convergence has at least two causes: a Dirichlet-Neumann transition between Γ C,a and Γ C,i , which limits the regularity of p, and the convergence of Γ h C,a towards Γ C,a which depends on u h . The convergence of the effective contact area is illustrated in the right graph of Figure 3. The coefficient ω of Assumption 19 is found approximately equal to 1.406, which is compatible with the requirement of Theorem 20 (ω > 1). One can see on the left part of Figure 4 that the maximum of difference between p and p h is indeed located on the transition between Γ C,a and Γ C,i . We can see that this strategy does not deteriorate the order of convergence of p h and starts to degrade the approximation error for a too high value of the constant (C = 10). This strategy can therefore be interesting since it ensures convergence without degradation of the approximation as soon as the constant C is taken with a moderate value.

Comparison of Nitsche-based adjoint state formulations

We focus now on the convergence rate of the adjoint state of the Nitsche-based formulation [START_REF] Haslinger | On the existence of optimal shapes in contact problems[END_REF]. Again, the reference solution p h ref is computed on problem [START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF] for a very thin mesh (h = 0.0625cm). Despite the non-consistence of this formulation, one can see on the slopes presented in Figure ( 5) that the convergence of ph solution to problem ( 21) is still ensured, with a convergence rate slightly deteriorated according to the one for the Nitsche-based approximation of the adjoint state presented in Figure 3. Finally, in Figure 6, we present an example of shape optimization process which is taken from [START_REF] Bretin | Shape optimization of a linearly elastic rolling structure under unilateral contact using Nitsche's method and cut finite elements[END_REF] and performed with an additional constraint on the periodicity of the structure. The optimizable boundary is only the interior part, which is submitted to a homogeneous Neumann condition. For the same initial geometry, the shape optimization is performed either with the adjoint state variable approximated by [START_REF] Haslinger | Introduction to shape optimization: theory, approximation, and computation[END_REF] or [START_REF] Haslinger | On the existence of optimal shapes in contact problems[END_REF]. One can see on Figure 6 that both of the two approximations lead to quasi-identical shapes, meaning that, at least for this example, the two strategies can be indifferently applied. 

Conclusion

The context of this work is the shape optimization of an elastic structure under frictionless contact where the contact condition is treated with Nitsche's method and the shape gradients are calculated using the adjoint state method.

In a previous work, we proposed an adjoint state discretization based on the discrete approximation of the optimization criterion. Unfortunately, this approach does not seem to be consistent although in practice it allows to optimize elastic structures. The objective of this work was therefore to propose a more consistent discretization based on the Nitsche approximation of the continuous adjoint state. We have thus developed an a priori convergence analysis of our new approach in the case where the bi-active contact area Γ C,b is of zero measure and under assumptions of convergence rate of the contact zones. We also explained how to slightly adapt the discretization method in order to relax these assumptions while keeping a convergence result. Some numerical experiments were also presented to illustrate these convergence results.

An interesting and open question is the obtention of a convergence result of the shape gradient [START_REF] Touzaline | Optimal control of a frictional contact problem[END_REF] itself. Such a convergence has been studied in the linear framework for instance in [START_REF] Hiptmair | Comparison of approximate shape gradients[END_REF][START_REF] Zhu | Convergence analysis of mixed finite element approximations to shape gradients in the stokes equation[END_REF][START_REF] Gong | On discrete shape gradients of boundary type for pde-constrained shape optimization[END_REF]. However, the extension to our nonlinear contact problem is a non-immediate adaptation.
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 1 Figure 1: Left: schematic representation of a possible domain Ω. Right: Contact surface representation.
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 3 +ν ) d with ν > 0 and d = 2 or d = 3 and that assumptions 8 holds. Then, |H

  H(β h ))σ 2 n (p)ds(x) = 0 and |H(β)-H(β h )| * ---0 ensures lim h→0 (H(β h )-H(β))(N (u)) n 0,Γ C = 0. Moreover, the continuity of p n ensures |p n | ≤ C with C > 0.
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 2 Figure 2: Hollow cylinder in contact with the obstacle. From left to right: structured polar mesh of the hollow cylinder; approximated displacement; approximated adjoint state.

Figure 3 :

 3 Figure 3: Error curves for θ = -1. Left: relative H 1 (Ω)-norm on the displacement and the adjoint state variable. Right: length of Γ h C,a ∩ Γ C,i .

Figure 4 :

 4 Figure 4: Left: Error map |p h -p h ref |. Right: Error curves for the adjoint state problem p h for θ = -1. Relative H 1 (Ω)-norm on the displacement and the adjoint state variable for different values of C.

Figure 5 :

 5 Figure 5: Error curves for the direct problem using Nitsche's method and for the adjoint state problem of the Nitsche-based approximation (θ = -1).

Figure 6 :

 6 Figure 6: Shape optimization. The adjoint state variable is displayed. From left to right: initial geometry, optimal geometry with adjoint state computed on formulation (22), optimal geometry with adjoint state computed on formulation (21).

  . For each part of the boundary Γ C , Γ D and Γ N , it is supposed that a part is non-optimizable, denoted Γ no C , Γ no

	D N being optimizable. To preserve the coervicity of the D and Γ o C , Γ o N , the remaining parts Γ o and Γ no problem, it is supposed that Γ no D is of non-zero Lebesgue measure. Let D ⊂ R d be a fixed bounded and smooth domain having Γ no C , Γ no D and Γ no N as part of its boundary. The shape optimization
	consists in minimizing the criterion J(Ω) on the set of admissible domains composed of all smooth
	(of class C 1 ) open domains Ω ⊂ D accompanied with a partition Γ C , Γ D and Γ N of its boundary
	with the constraint Γ no C ⊂ Γ C , Γ no D ⊂ Γ D , and Γ no N ⊂ Γ N (see Figure
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Improved convergence result with an extended Neumann zone for the adjoint state

The aim of this section is to give a convergence result without the consideration of assumptions 8 and 19, i.e. without the consideration of zero measure of Γ C,b and assumption on the rate of convergence of the effective contact area. This result is obtained with a slight modification of the discrete adjoint state, extending a bit the part of the boundary where the Neumann condition is applied and with the use of quadratic finite elements. Let us consider ξ > 0 a small parameter which is assumed to tend to zero when h → 0, then the consideration of the following modified problem for the adjoint state: Suppose that the parameter γ 0 is sufficiently large, k = 2 (k being the degree of the finite element method) and ξ ≥ Ch ν-1/2 with C > 0 arbitrary small enough and lim h→0 ξ = 0. Then, the solution

Proof. We observe first that the consistency result of Lemma 15 is still valid using the convention H(0) = 0 (i.e. replacing H(-(σ n (u) -γ(u n -g))) by χ Γ C,a ). Then the proof of Theorem 20 can be followed with limited modifications that we focus on. Let us denote βh = -σ n (u h ) + γ(u h n -g) -ξ.

The estimate [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments[END_REF] of the proof of Theorem 20 becomes

The first and second integral terms in [START_REF] Simon | Differentiation with respect to the domain in boundary value problems[END_REF] are estimated thanks to [START_REF] Maury | Shape optimization for contact and plasticity problems thanks to the level set method[END_REF] and [START_REF] Adams | Sobolev spaces[END_REF], respectively, replacing β h by βh and the same convergence to zero is obtained at the end. The third term in [START_REF] Simon | Differentiation with respect to the domain in boundary value problems[END_REF] is split similarly as in [START_REF] Fichera | Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condizioni al contorno, atti acc, Naz. Lincei[END_REF] taking into account the fact that Γ C,b is no longer supposed to be