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Abstract. A threshold public key encryption protocol is a public key
system where the private key is distributed among n different servers.
It offers high security since no single server is entrusted to perform the
decryption in its entirety. It is the core component of many multiparty
computation protocols which involves mutually distrusting parties with
common goals. It is even more useful when it is homomorphic, which
means that public operations on ciphertexts translate to operations on
the underlying plaintexts. In particular, Cramer, Damg̊ard and Nielsen
at Eurocrypt 2001 provided a new approach to multiparty computation
from linearly homomorphic threshold encryption schemes. On the other
hand, there has been recent interest in developing multiparty computa-
tions modulo 2k for a certain integer k, that closely match data manip-
ulated by a CPU. Multiparty computation would therefore benefit from
an encryption scheme with such a message space that would support a
distributed decryption.
In this work, we provide the first threshold linearly homomorphic encryp-
tion whose message space is Z/2kZ for any k. It is inspired by Castagnos
and Laguillaumie’s encryption scheme from RSA 2015, but works with
a class group of discriminant whose factorisation is unknown.
Its natural structure à la Elgamal makes it possible to distribute the
decryption among servers using linear integer secret sharing, allowing
any access structure for the decryption policy. Furthermore its efficiency
and its flexibility on the choice of the message space make it a good
candidate for applications to multiparty computation.

Keywords: Class groups of quadratic fields, Linearly homomorphic en-
cryption, Threshold cryptography

1 Introduction

Encryption protocols are the core of any communication architecture. They pro-
vide confidentiality, defined in terms of semantic security or indistinguishability
of encryptions by Goldwasser and Micali [37]. On top of this security property,
many applications require an “algebraic” property of the encryption scheme,
in the sense that an operation on the ciphertexts translates into an operation



on the underlying plaintexts. An encryption protocol possessing this property
is said to be homomorphic. While fully homomorphic encryption schemes allow
any operation to be evaluated on ciphertexts, protocols that only allow linear
transformations are also very useful and significantly more efficient.

The first linearly homomorphic encryption appears in Goldwasser and Mi-
cali’s seminal work [37]. Then a line of factoring based schemes was developed,
culminating with Paillier’s scheme [49] which was then generalized by Damg̊ard
and Jurik [26], allowing to encrypt larger messages.

An alternative was proposed by Castagnos and Laguillaumie using class
groups of quadratic fields in [17]. This allows to work with the additive group
Z/qZ as a message space where q is an odd prime, whereas Paillier and Damg̊ard
and Jurik’ schemes work modulo Ns where N is an RSA integer. The case of
message space Z/qsZ for an odd prime q, and more generally that of Z/NZ with
N =

∏
qsii for odd primes qi, were sketched in the conclusion of [17]. This was

further analyzed in [28] which gives a detailed construction and implementation.
As a consequence, the Castagnos-Laguillaumie scheme allows to construct mes-
sage spaces of any odd order N (with known factorization). There is a restriction
however: many cryptographic applications and proofs require that this order N
be relatively prime to the order of the underlying class group. This can only
be ensured with high probability if each prime qi dividing N is large enough to
make 1/qi negligible. Hence only relatively large values of odd integers N are
possible in practice. The case of message spaces defined modulo 2k were left open
in these works.

Another elegant work, by Benhamouda, Herranz, Joye, Libert [3] (refining a
scheme by Joye and Libert [41]), generalizes the Goldwasser-Micali cryptosystem
using 2k−th power residue symbols, and produces efficient protocols in terms of
bandwidth and speed (for both encryption and decryption). It is proven secure
under the quadratic residuosity assumption for RSA moduli N = pq, where
the primes p and q have a special form. The message space of their scheme
is the additive group Z/2kZ, which is a very interesting feature, especially for
the purpose of multi-party computation. Indeed, it has been used by Catalano,
Di Raimondo, Fiore and Giacomelli [19] to design a new 2−party protocol for
secure computation over the ring Z/2kZ. Their work follows a new line of secure
computation modulo 2k, initiated by Cramer, Damg̊ard, Escudero, Scholl, and
Xing in [23] who introduced a new information theoretic MAC that allows to
authenticate messages in the ring Z/2kZ to achieve security against malicious
adversaries. This choice is driven by the fact that modern CPU computations
are performed in such a ring, and it allows protocol designers to directly apply
optimizations that are often expensive to emulate modulo p or N .

On the other hand, several multi-party computation protocols, starting with
the pioneering work of Cramer, Damg̊ard and Nielsen [24], rely on thresh-
old linearly homomorphic encryption. A (t, n)−threshold public key encryption
(TPKE) scheme allows n parties to share the decryption key so that if t of
them collaborate, they can decrypt ciphertexts, whereas t− 1 users learn noth-
ing about the underlying plaintext. Katz and Yung proposed a threshold variant
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of Goldwasser-Micali in [42], but this does not extend to a message space of or-
der 2k. Furthermore, it is an open problem to devise an efficient threshold variant
of Benhamouda, Herranz, Joye, Libert’s scheme. In a nutshell, This scheme uses
an RSA integer N = pq where p ≡ 1 (mod 2k). A ciphertext for m ∈ Z/2kZ

is c = ymx2
k ∈ Z/NZ for a random x, and a public y, which is a fixed non

quadratic residue, with Jacobi Symbol 1. Decryption is done modulo p, by re-
moving the 2k−th power using an exponentiation to the power (p − 1)/2k and
then finding m thanks to an easy discrete logarithm computation using Pohlig-
Hellman’s algorithm in the subgroup of (Z/pZ)× of order 2k. As a result, lots
of operations are done modulo the secret prime p, which prevents an efficient
adaptation in a multiparty setting.

A solution would be to design an Elgamal version of this scheme, that fits
the CL framework [17] of a DDH group with an easy DL subgroup. In this
framework, one works with a cyclic group G isomorphic to H×F where H and F
are subgroups of G of respective unknown order s and known order q, with q and
s co-prime. The group H consists of q−th powers, and in F discrete logarithms
are easy to compute. This makes it possible to encode messages m ∈ Z/qZ in
fm where f is a generator of F . Then fm is hidden by a random q−th power.

To make Benhamouda et al’s scheme fit the CL framework, the idea would
be to use two primes p, q ≡ 1 (mod 2k) and encode the message in the exponent
of an element f ∈ (Z/NZ)× of order 2k both modulo p and q. A ciphertext for
m could then be of the form (gr, fmpkr), with pk = gsk. During decryption, after
recovering fm, the discrete logarithm computation could then be done modulo
the public N , and only one exponentiation would have to be distributed among
the parties. However, this simple solution has some drawbacks due to the fact
that this element f must be public and seems hard to generate without knowing
the factorization. As a consequence, such a variant would rely on ad hoc security
assumptions that include this element f . Moreover, it would be less efficient
than the scheme that we propose in this work, at least in terms of bandwidth.
Devising a variant without a trusted dealer would also be very complicated. So
this question remains open:

Is it possible to design an efficient threshold linearly homomorphic encryption
with message space Z/2kZ ?

Our contributions. In this work, we first propose a new linearly homomorphic
encryption (LHE) scheme with message space of order 2k that solves the afore-
mentioned issues (Section 4). This LHE has an Elgamal structure as it follows
the CL framework, with an element f of order 2k that is used to encrypt the
messages in the exponent. We emphasize that this element can be generated
from public parameters. Thanks to its Elgamal shape, it can be converted into
the first threshold linearly homomorphic encryption with message space Z/2kZ.

The part of the decryption which involves the secret key uses an exponen-
tiation to that secret key in a group of unknown order. We use linear integer
secret sharing schemes (LISS), introduced in [27], to share the secret key over
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the integers. This allows to set up a scheme allowing any access structure for the
decryption policy and in particular a threshold decryption (Section 5).

Furthermore, we suggest how to add robustness and a distributed setup to
our scheme. We also sketch several application domains: multiparty computation,
homomorphic secret sharing and lossy trapdoor functions (Section 6).

The security of our schemes relies on a hard subgroup membership (HSM)
assumption, which is a natural adaptation of the assumption used in the CL
framework. One could also design a variant based on the DDH assumption.

The setup of our schemes is flexible and allows to encrypt messages modulo
2k for any integer k, and in particular natural choices such as k = 1, 32, 64, 128 or
even larger values. We show that our schemes are efficient by reporting timings
from an implementation in SageMath.

Technical Overview and Challenges. Our construction uses class groups of
imaginary quadratic fields like the encryption schemes modulo an odd prime q of
[17,55]. One of the challenges is to stay within the CL framework, while working
modulo a power of 2. As we will see, plugging q = 2k does not work.

In the original framework, a class group with a cyclic subgroup of order q
is generated. This is done by considering two class groups, Cl(∆K) with dis-
criminant ∆K = −pq and Cl(∆) with discriminant −pq3. In this case, there
is a surjection from Cl(∆) to Cl(∆K), and the kernel of which is precisely the
required subgroup of order q.

However, as usual in number theory, moving from an odd prime q to 2 or
2k is not an easy task. Firstly, setting q = 2k in the construction above does
not always give a cyclic subgroup of order 2k. Further difficulties arise from the
fact that in class groups, knowing the factorization of the discriminant allows to
compute square roots, and decide if elements are squares. And as we will see,
this allows to completely break a scheme which uses an Elgamal in the exponent
with a subgroup of order 2k.

We solve this issue by constructing a discriminant from an RSA integer N
of unknown factorization. But other technical reasons make the choice of this
discriminant tricky, and lead to arithmetic conditions on the primes composing
N (which have no negative impact in practice). We thus have to delve into the
genus theory associated to class groups of quadratic fields, introduced by Gauss,
to select discriminants that make it possible to securely work with the group of
squares of cardinality 2ks where s is odd (Section 3). Indeed, we need to carefully
handle the fact that some genera can leak information on discrete logarithms.
Controlling the 2-Sylow subgroup of Cl(∆K) and expliciting the shape of the
kernel of the surjection from Cl(∆) to Cl(∆K) when the conductor is equal to
2k allows to find a element f of the group of squares of order 2k which does not
depend on the factorization of N .

Relying on the factorization assumption implies slightly larger elements (com-
pared to the original CL scheme), but the timings that we provide in Table 2
of Section 4.3 from a non-optimized implementation of our protocol with Sage-
Math, show that the scheme is actually very efficient.
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2 Background

2.1 Threshold public key encryption

In a threshold PKE (TPKE) scheme, the decryption key is divided into a number
of key shares which are distributed to multiple decryption servers, according to
a certain access structure. To decrypt a message, each server creates its own
decryption share, and these shares can be publicly combined to result in a full
decryption.

Definition 1. A monotone access structure on {1, . . . , n} is a non-empty col-
lection A ⊆ {1, . . . , n} such that ∅ /∈ A, and such that for all A ∈ A, and all sets
B such that A ⊆ B ⊆ {1, . . . , n} it holds that B ∈ A.
For a positive integer t < n, the threshold-t access structure Tt,n is the collection
of sets A ⊆ [n] for which |A| > t. The sets in A are called qualified, whereas
the sets outside A which should not be able to obtain any information about the
secret are called forbidden.

Definition 2 (Threshold PKE). Let P = {P1, . . . , Pn} be a set of par-
ties and let A be an access structure. A threshold PKE scheme for a mes-
sage space M and access structure A is a tuple of PPT algorithms TPKE =
(Setup,Encrypt,PartDec,FinalDec) with the following syntax.

Setup(1λ,A)→ (pp, ek, sk) Takes as input a security parameter 1λ and an access
structure A. It outputs public parameters pp, an encryption key ek, and a
vector of n secret-key shares sk = (sk1, . . . , skn).
Party Pi is given the share ski that allows deriving decryption shares for any
ciphertext.

Encrypt(ek,m)→ c On input the encryption key ek and a plaintext m ∈ M,
outputs a ciphertext ct.

PartDec(pp, ski, ct)→ µi ∪ ⊥ Takes as input the public parameters pp, a secret-
key share ski, and a ciphertext ct. It outputs a partial decryption share µi.

FinalDec(pp, {µi}i∈S)→ m ∪ ⊥ Given pp and a subset S ⊂ {1, . . . , n} with de-
cryption shares {µi}i∈S, this algorithm outputs either a plaintext m or ⊥.

We require a TPKE scheme to satisfy the following correctness, and security
requirements.

Definition 3 (Decryption correctness). We say that a TPKE scheme for an
access structure A satisfies decryption correctness if for all λ, and all qualified
sets S, the following holds. For (pp, ek, sk)← Setup(1λ,A), ct← Encrypt(ek,m),
µi ← PartDec(pp, ski, ct) for i ∈ S, Pr[FinalDec(pp, {µi}i∈S) = m] = 1−negl(λ).

Definition 4 (following [34]) is a classical extension of semantic security for
an encryption scheme to the threshold case. The attacker actively (but non-
adaptively) corrupts a set S of servers outside A, gets their secret keys, and
can ask for partial decryptions of ciphertexts for which he already knows the
corresponding plaintext. The idea is that partial decryptions give no information
about the private keys of non-corrupted users.
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Definition 4 (T-ind-cpa-security). We say a TPKE scheme for an access
structure A is adaptive chosen plaintext (T-ind-cpa) secure if for any large enough
λ ∈ N, and any PPT adversary A the experiments ExptA,TPKE,0 and ExptA,TPKE,1
of Fig. 1 are computationally indistinguishable.

Choose structure: On input 1λ, the adversary A chooses an access structure A.
Set up: The challenger C runs (pp, ek, sk)← Setup(1λ,A) and sends pp, ek to A.
Choose set: A outputs a set S such that S /∈ A, and C sends the set of secret

keys {ski}i∈S to A.
Partial decryption queries: A queries partial decryption on encryptions of

plaintexts mj of his choice. For ctj = Encrypt(pp, ek,mj), it then gets
PartDec(pp, ski, ctj) for i ̸∈ S

Choose challenge: A outputs a pair of challenge messages m0,m1 ∈M.
Challenge: C computes ctb ← Encrypt(ek,mb) and sends ctb to A.
Partial decryption queries: Again, A queries partial decryption on encryp-

tions of plaintexts mj of his choice : it gets ctj = Encrypt(pp, ek,mj) and
PartDec(pp, ski, ctj) for i ̸∈ S

Guess: A outputs a bit b′, which is the output of the experiment.

Fig. 1. Experiment ExptA,TPKE,b

Linearly Homomorphic Threshold Encryption. This primitive is particularly use-
ful for applications to multi-party computation.

Definition 5. Consider a TPKE with message space (M,+). A linearly homo-
morphic TPKE scheme additionally has the following evaluation algorithms:

EvalAdd(pp, c1, c2)→ c∗ Takes as input pp and two ciphertexts c1 and c2, and
outputs a new ciphertext c∗ which decrypts to m1 +m2 where each ci, i ∈
{1, 2} decrypts to mi.

EvalScal(pp, c, α)→ c∗ Takes as input pp, a ciphertexts c which decrypts to m,
and a scalar α, and outputs a new ciphertext c∗ which decrypts to α ·m.

Informally, evaluations should be correct, meaning that decryption should lead to
the correct plaintext message m1 +m2 (resp. αm).

2.2 Linear integer secret sharing

In the threshold setting for groups of unknown orders, key generation schemes
share the secret decryption key using the linear integer secret sharing (LISS)
primitive of Damg̊ard and Thorbek [27], which is similar to linear secret sharing
schemes except that it works over Z.

They show that any integer span program (ISP) as defined in [25] can be
used to build a secure LISS scheme. Roughly speaking, an ISP is specified by a
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matrix with integer entries, and these entries are used as coefficients in the linear
combinations that produce the shares from secret and randomness. They also
show that any LISS scheme can be used to build a distributed exponentiation
protocol, which is what we will use in our threshold decryption.

Goal. Let P = {1, . . . , n} denote the n shareholders and D the dealer. Let A be
a monotone access structure on P . The dealer D wants to share a secret s in a
publicly known interval [−2l, 2l] with the shareholders, such that any set A ∈ A
can reconstruct s, but any set A /∈ A gets no (or negligible) information on s.

Distributing the secret. To this end, D uses a distribution matrix M ∈ Zd×e and
a distribution vector ρ = (s, ρ2, . . . , ρe)

⊤, where s is the secret, and the ρi’s are
integers sampled uniformly at random in [−2l0+λ, 2l0+λ] for 2 ≤ i ≤ e, where l0
is a constant that is part of the description of the scheme.

The dealer D computes a vector s ∈ Zd of share units as:

s = (s1, . . . , sd)
⊤ = M · ρ.

Let ψ : {1, . . . , d} 7→ P be a surjective function. Shareholder ψ(i) is given the
i-th share unit, and is said to own the i-th row in M. For a set of shareholders
A ⊂ P , MA ∈ Zda×e denotes the restriction of M to the rows jointly owned by
A, while dA denotes the number of these rows.

Likewise, sA ∈ ZdA denotes the restriction of s ∈ Zd to the coordinates jointly
owned by the parties in A. Shareholder j’s share consists of sψ−1(j) ∈ Zdj , so
that it receives dj = |ψ−1(j)| out of the d =

∑n
j=1 dj share units. The expansion

rate µ = d/n is the average number of share units per player.
To construct LISS schemes, Damg̊ard and Thorbek [27] used integer span

programs [25], which were originally used to construct black-box secret sharing
which does not extend shares in the ring of integers.

Definition 6 (Integer Span Program (ISP) [25]). The tupleM = (M, ψ, ϵ)
is called an integer span program (ISP), if M ∈ Zd×e and the d rows of M
are labeled by a surjective function ψ : {1, . . . , d} 7→ {1, . . . , n}. Finally, ϵ =
(1, 0, . . . , 0)⊤ ∈ Ze is called the target vector. The size of M is the number of
rows d of M.

Definition 7. Let A be a monotone access structure and let M = (M, ψ, ϵ)
be an ISP. Then M is an ISP for A if for all A ⊂ {1, . . . , n} the following
conditions hold:

– If A ∈ A, there is a reconstruction vector λ ∈ ZdA such that λ⊤ ·M = ϵ⊤.
– If A /∈ A, there exists κ = (κ1, . . . , κe)

⊤ ∈ Ze such that MA · κ = 0 ∈ Zd,
and κ⊤ · ϵ = 1. The vector κ is called a sweeping vector for A.
We also define κmax = maxA/∈A(∥κ∥∞).

In other words, the rows owned by a qualified set must include the target
vector in their span, while for a forbidden set, there must exist a sweeping vector
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which is orthogonal to all rows of the set, but has inner product 1 with the target
vector. We also say thatM computes A.

Damg̊ard and Thorbek [27] showed that from an ISPM = (M, ψ, ϵ) which
computes the access structure A, a statistically private LISS scheme for A can
be obtained with M as the share generating matrix and l0 = l+ ⌈log2(κmax(e−
1))⌉+ 1, where l is the length of the secret.

Then LISS can be obtained from Cramer-Fehr [25] or Benaloh-Leichter [2].
Although this later case was designed to work over finite groups, Damg̊ard and
Thorbek generalized it to share integers using access structures consisting of any
monotone Boolean formula. Thanks to results of Valiant [56], LISS schemes can
therefore be constructed for any threshold access structure. From a monotone
Boolean function f , Damg̊ard and Thorbek’s technique from Benaloh-Leichter
results allows binary share distribution matrices in {0, 1}d×e such that d, e =
O(size(f)) and which have at most depth(f) + 1 non-zero entries, so that each
share unit has magnitude O(2l0+λdepth(f)). Valiant’s results, improved by [38]

gives a monotone formula of size O(n1+
√
2) and depth O(log n) for the majority

function (from which any threshold-t function can be built). This reduces the

average share size to O(n
√
2(l0 + λ+ log log(n))) bits.

Lemma 1 ([53, Lemma 3.1]). Let l0 = l+⌈log2(κmax(e−1))⌉+1. Consider a
secret to be shared, s ∈ [−2l, 2l], and ρ randomly sampled from [−2l0+λ, 2l0+λ]e
conditionally on ⟨ρ, ϵ⟩ = s, then the LISS scheme derived from M is private.
For any arbitrary s, s′ ∈ [−2l, 2l] and any forbidden set of shareholders A ∈ [n],
the two distributions {sA = MA · ρ | ρ ← U([−2l0+λ, 2l0+λ]e) s.t. ⟨ρ, ϵ⟩ = s},
and {s′A = MA · ρ | ρ← U([−2l0+λ, 2l0+λ]e) s.t. ⟨ρ, ϵ⟩ = s′} are 2−λ close.

2.3 Class Groups

Class Groups. Given a non square integer ∆ < 0, ∆ ≡ 0, 1 (mod 4), called
discriminant, the imaginary quadratic order of discriminant ∆, denoted O∆ is
the ring Z[(∆ +

√
∆)/2]. The associated class group Cl(∆) is defined as the

quotient of the group of invertible fractional ideals of O∆ by the subgroup of
principal ideals. Precise definitions of these objects can be found in e.g., [11].

In a nutshell, the class group Cl(∆) is a finite Abelian group, with an ef-
ficiently computable group law and a compact representation of elements. Ele-
ments are classes of ideals, with a unique reduced representative. The order of
Cl(∆), the class number, denoted h(∆) is close to

√
|∆|.

Historically, with the works of Lagrange and Gauss, the class group Cl(∆)
was defined using the language of positive definite binary quadratic forms of
discriminant ∆. Let a, b, c ∈ Z such that a > 0 and ∆ = b2 − 4ac, we will
denote for short f := (a, b, c) the positive definite binary quadratic form over
the integers, f(X,Y ) = aX2 + bXY + cY 2. Such a form is said to be primitive
if a, b and c are relatively prime. In the following, we will just call “forms” the
primitive positive definite binary quadratic forms over the integers. Two forms
f and g are said to equivalent if g(X,Y ) = f(AX +BY,CX +DY ) for integers
A,B,C,D such that AD −BC = 1.
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The class group Cl(∆) is isomorphic to the set of forms modulo this equiv-
alence relation. In fact, it is more natural to work with forms for algorithmic
purposes: the class of the form (a, b, c) corresponds to the class of the O∆−ideal
aZ+ −b+

√
∆

2 Z. Moreover, the definition of the unique representative of the class
is more natural when working with forms: it is the reduced form (a, b, c), which
satisfies −a < b ⩽ a, a ⩽ c and if a = c then b ⩾ 0. A reduced form satisfies
a ⩽

√
|∆|/3. As a result, elements of Cl(∆) can be represented by (a, b) us-

ing log2(|∆|) bits. Dobson et al. recently proposed in [32] an elegant method to
reduce this representation to 3/4 log2(|∆|) bits.

Computations in Cl(∆) can be performed with a reduction algorithm for
forms, devised by Lagrange (which corresponds to lattice reduction in dimension
2), and Gauss’ composition of forms (which corresponds to product of ideals).
More recently, efficient algorithms have been proposed for practical implemen-
tation by Shanks (cf. [40]). The neutral element of Cl(∆) is the class of the
(reduced) principal form: (1, b, (b−∆)/4) where b = ∆ mod 2.

Class Group-based Cryptography. Class group cryptography dates back to
the late 80s with the first key exchange in the class group of ideals of maximal
orders of imaginary quadratic fields, and related protocols that can be found
in Buchmann and Williams’ work [12] or McCurley’s [46]. After several years, a
family of class group based cryptosystems, NICE, was designed using class groups
of non-maximal orders [51]. The area remained dormant for another decade
until a serious cryptanalysis of this whole family of NICE cryptosystems was
proposed [16]. Since then, there has actually been a high regain of interest in class
groups to design new advanced cryptosystems, especially for secure multi-party
computation. Built upon Castagnos and Laguillaumie’s linearly homomorphic
encryption scheme (CL) [17], projective hash functions relying on class groups
allowed to design efficient inner product functional encryption [18], 2-party and
fully-threshold ECDSA signatures [14,15,58,29].

The main advantage of class-group cryptography is that it is well-suited
when multi-party protocols require a one-time transparent (or public-coin) setup
with minimal interaction among parties. For instance, [54] presented a scalable
distributed randomness generator with enhanced security and transparent setup
that relies on a variant of the CL encryption scheme. The verifiable random
functions from [57] take advantage of an exponentiation in a group of unknown
order without trusted setup, as well as accumulators in [45], and succinct non-
interactive arguments of knowledge in [13,44].

Another advantage is that the underlying algorithmic problems are harder
that equivalent problems in (Z/NZ)× or (Z/pZ)×. Indeed, the current best
known algorithms to solve the discrete logarithm problem in the class group of
ideals of order of imaginary quadratic fields, or to compute the class number have
a sub-exponential complexity of complexity L|∆|(1/2, o(1)) (cf. [4]). This means
that elements in the class group are asymptotically smaller, and this actually
matters in practice for a given security parameter. For example, a 112-bit (resp.
256-bit) security determinant will be of size 1348 bits (resp. 5971 bits), while an
RSA modulus will be of size 2048 bits (resp. 15360 bits).
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Genus Theory, Squares and Square Roots. We now give a quick introduc-
tion on genus theory and properties of squares of the class group. A comprehen-
sive exposition of the subject with a historical perspective can be found in [22].
The theory of quadratic forms was originally motivated by the representation
problem: given m ∈ Z and a quadratic form f , are there integers (x, y) ∈ Z2

such that f(x, y) = m? A first remark is that all the forms in an equivalent
class represent the same numbers. Genus theory aims at characterizing primes
represented by quadratic forms of a fixed discriminant ∆. A genus consists of
classes of forms that represent the same classes of numbers in (Z/∆Z)×. Genera
are related to squares of the class group: Gauss proved that the genus of the
principal form, the principal genus, corresponds to the subgroup of squares in
the class group Cl(∆). Moreover, genera can be identified by values of some
characters.

Before going into more details, let us make a parallel with the well-known
properties of squares in (Z/NZ)× where N = pq is an RSA integer. Given
x ∈ (Z/NZ)×, there are 4 possible values for the Legendre symbols ((x/p), (x/q))
which gives a partition in 4 sets of (Z/NZ)×. One could speak of 4 “genera”.
The value (1, 1) corresponds to squares of (Z/NZ) which is the “genus” of 1.
Given the factorization of N , one can thus identify the “genus” of an element x.
But without it, one can only compute the Jacobi symbol of x. Given an element
x of Jacobi symbol 1, the quadratic residuosity problem asks to decide if x is
in the principal genus with symbol (1, 1) or in the genus with symbol (−1,−1)
without knowing the factorization of N .

For a class group Cl(∆), the situation is similar: there are 2µ−1 genera,
where µ is related to the number of odd primes factor of the discriminant. One
can define µ “assigned characters”, whose joint values determine the genus (the
product of all characters is always one, so we indeed have 2µ−1 genera). The
characters are for the majority Legendre symbols with respect to the odd prime
factors of the discriminant. Let us describe in more details the setting that we
will use to define our cryptosystem, where ∆ = −8N and N = pq is an RSA
integer. In this case, where ∆ = 0 mod 4 and 2N = 2 mod 4 (see [22, Prop.
3.11, Th. 3.15]), it holds that µ = 3, and there are 4 genera. If f is a quadratic
form, the first two assigned characters are respectively

χp(f) :=

(
a

p

)
and χq(f) :=

(
a

q

)
where a is any integer represented by f , respectively prime to p, prime to q. The
third one, is

χ8(f) := (−1)(a
2−1)/8 or χ−8 := χ−4 · χ8(f) := (−1)(a−1)/2 · (−1)(a

2−1)/8,

depending if N ≡ 3 mod 4 or N ≡ 1 mod 4, where a is any odd integer
represented by f . The genus of the class of a form f is thus identified by
(χp(f), χq(f), χ8(f)) or (χp(f), χq(f), χ−8(f)) depending on N modulo 4. The
subgroup of squares of Cl(∆) is the subgroup of forms of genus with symbol
(1, 1, 1), the three other genera have symbols (−1,−1, 1), (−1, 1,−1), (1,−1,−1).
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Given the complete factorization of ∆ (thus of N), one can identify in polyno-
mial time the genus of an element of the class group (see also [43, Theorem 6.3]).
Without it, only χ8 or χ−8 and the Jacobi symbol relative to N , i.e., the product
χp · χq can be computed.

The situation of elements of order ⩽ 2 of the class group is similar. In the
general case, there are also 2µ−1 such elements and there are classes of forms
(a, 0, c), (a, a, c) and (a, b, a) [22, Lemma 3.10, Prop. 3.11]). As a result, find-
ing these elements is equivalent to factoring the discriminant. For example, the
discriminant of the form (a, 0, c) is −4ac.

Computing square roots can also be done efficiently given the factorization of
the discriminant [43, Theorem 6.10]. The algorithm, due to Gauss, uses reduction
of ternary forms, and the factorization of ∆ is needed to extract square roots
modulo ∆.

Two Classgroups. Starting with the NICE family of cryptosystems, the idea of
using the relationship between two class groups has enabled many developments.
Let us first consider ∆K a fundamental negative discriminant: this means that
either ∆K ≡ 1 (mod 4) and ∆K is square-free or ∆K = 4m where m is square-
free and m ≡ 2, 3 (mod 4). This discriminant defines the maximal order O∆K

of
the quadratic fieldQ(

√
∆K). Now let us consider a non fundamental discriminant

∆ℓ := ∆Kℓ
2 where ℓ is called a conductor. Then, there exists a surjective map

φℓ : Cl(∆ℓ)→ Cl(∆K), moreover, for ∆K < −4, the kernel of this surjection is
isomorphic to

(O∆K
/ℓO∆K

)
×
/ (Z/ℓZ)

×
.

This isomorphism is used in [22, Theorem 7.24] to establish that for ∆K < −4,

h(O∆ℓ
) = h(O∆K

) · ℓ ·
∏
p|ℓ

(
1−

(
∆K

p

)
1

p

)
. (1)

3 A Class Group with a Cyclic Subgroup of order 2k

In this section, we show how to generate a class group Cl(∆) that contains a
cyclic subgroup of order 2k, inspired by the CL cryptosystem of [17], that builds
a subgroup of order a prime q by using eq. 1 with a conductor ℓ = q, and a
fundamental discriminant ∆K divisible by q. Unfortunately, the situation is not
as simple as setting ℓ = 2k: as usual, working with 2 instead of an odd prime
induces a lot of technicalities.

3.1 Choice for ∆K

Let us begin with the generation of the fundamental discriminant ∆K . Firstly, as
we shall see in Subsection 3.4, we cannot reach any security in our applications if
computing square roots in the class group is easy. As mentioned in Subsection 2.3
this means ∆K must be hard to factor. As a consequence we will construct a
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discriminant ∆K from an RSA integer, N = pq, which is a first difference with
the CL encryption.

Secondly, we will need to work with a subgroup of Cl(∆) of odd order. This
subgroup will be isomorphic to the subgroup of squares of Cl(∆K). The subgroup
of squares has cardinality ŝ := h(∆)/2µ−1 where 2µ−1 is the number of elements
of order ⩽ 2. If we ensure that the 2−Sylow of Cl(∆) is restricted to the elements
of order ⩽ 2, then the subgroup of squares will correspond to the odd-part and
ŝ will be odd as required. This is done by ensuring that elements of order 2 are
not squares, thereby imposing conditions on the prime factors of ∆K .

Several choices are possible to construct ∆K from N . In order for the con-
ditions on the prime p and q to be the less restrictive possible, we choose to
work with a fundamental discriminant ∆K := −8N . The next lemma gives the
conditions that ensures that the 2−Sylow is restricted to elements of order 2.

Lemma 2. Consider two distinct odd primes p and q of same bit-size, with
values modulo 8 and Legendre symbols chosen according to Table 1. Let N =
pq, and consider the fundamental discriminant ∆k = −8N . Then the 2−Sylow
subgroup of Cl(∆K) is isomorphic to Z/2Z× Z/2Z.

p mod 8 q mod 8 (p/q) (q/p)

1 3 -1 -1

1 5 -1 -1

3 1 -1 -1

3 5 ∗
3 7 -1 1

5 1 -1 -1

5 3 ∗
5 5 ∗
5 7 -1 -1

7 3 1 -1

7 5 -1 -1

Table 1. Choices of (p, q) such that the 2−Sylow of Cl(−8pq) is isomorphic to Z/2Z×
Z/2Z. The star ∗ means that there is no restriction on the values (p/q) and (p/q).

Proof. If N = pq, and ∆k = −8N , as seen in Subsection 2.3, µ = 3, so there
are 23−1 − 1 = 3 elements of order 2 in Cl(∆K). Looking at forms of the type
(a, 0, c) of discriminant −4ac = −8N , we find the following ones :

f2 := (2, 0, N); fp := (p, 0, 2q); fq := (q, 0, 2p).

By hypothesis, N > 2, 2q > p and 2p > q so these three distinct forms are
reduced, and their classes gives the 3 elements of order 2 of Cl(∆k).

We now compute the genus of f2, fp and fq. For this, we need the value of
χp, χq and χ8 or χ−8 depending of the value of N mod 4. Let us see in details

the case of f2. We have χp(f2) =
(
a
p

)
where a is an integer represented by f2
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prime to p. One can choose a = 2 = f2(1, 0). As a result

χp(f2) =

(
2

p

)
= (−1)

p2−1
8 ,

which gives 1 if p ≡ 1, 7 (mod 8), and −1 if p ≡ 3, 5 (mod 8).
Likewise, χq(f2) = (2/q), whose value is determined by q (mod 8).
If N ≡ 3 (mod 4), to compute χ8(f2) we need an odd integer represented by

f2. We can choose f2(0, 1) = N . We then have

χ8(f2) = (−1)
N2−1

8 ,

and again this value depends only on N mod 8. If N ≡ 1 (mod 4), we can also
take N to evaluate χ−8(f2), which also depends only on N mod 8.

For fp, we use fp(0, 1) = 2q to evaluate χp(fp) =
(

2
p

)
·
(
q
p

)
. We also have

χq(fp) =
(
p
q

)
using fp(1, 0) = p, and the value of χ8 and χ−8 are also determined

using p. The genus of fp can thus be determined by the values of p mod 8

and the Legendre symbols
(
p
q

)
and

(
q
p

)
. Note that by the law of quadratic

reciprocity, these Legendre symbols are equal if p ≡ 1 (mod 4) or q ≡ 1 (mod 4)

and
(
p
q

)
= −

(
q
p

)
if p ≡ q ≡ 3 (mod 4). The determination of the genus of fq

is similar to the one of fp by exchanging the roles of q and p.
Now in order to have a 2−Sylow subgroup isomorphic to Z/2Z × Z/2Z,

fp, fq and f2 must all not be squares, which means that their genus must not
have symbols (1, 1, 1). As shown above, this only depends on the values of p, q
(mod 8) and of the relative Legendre symbols of p and q. By inspection of these
values, we fill the Table 1 which gives all possibilities ensuring that fp, fq and
f2 are all not squares. ⊓⊔

3.2 Choice for ∆

We now want to construct a non fundamental discriminant such that Cl(∆)
contains a cyclic subgroup of order 2k by using eq. 1. We will therefore consider
as conductor ℓ a power of 2. As ∆K = −8N , we get

(
∆K

2

)
= 0, and denoting,

∆ = ℓ2∆K , the class number h(∆) = ℓh(∆K), i.e, the kernel of the surjection
φℓ has order ℓ.

If we set ℓ = 2k, we thus get a subgroup of Cl(∆) of order 2k, and one can
prove that this subgroup is cyclic, in our case where ∆K = −8N . Unfortunately,
a similar computation to that of the proof of the next theorem shows that gen-
erators of this subgroup are not squares: the character χ−4 is equal to −1. This
would break all our security assumptions, as the value of this character would
leak the parity of discrete logarithms.

We thus set ℓ = 2k+1, and as a consequence, the kernel of φℓ has order 2
k+1,

and we can work in its cyclic subgroup of squares, of order 2k. Note that other
choices of ∆K depending on N lead to similar constructions.
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Theorem 1. Let ∆K = −8N with N = pq as in Lemma 2. Let ∆ = 22k+2 ·∆K ,
then the class of f := (22k, 2k+1, 1 + 8N) is a square of order 2k in Cl(∆).

Proof. Let ℓ = 2k+1 be the conductor. The strategy of the proof is as follows:
we use the fact that kerφℓ is isomorphic to

Gℓ := (O∆K
/ℓO∆K

)
×
/ (Z/ℓZ)

×
.

We will exhibit a system of representatives of this quotient group, and an element
of order 2k. As the isomorphism to kerφℓ is explicit, we will apply it to this
element to get f of the same order 2k in Cl(∆). Then a computation of the
assigned characters will show that f is a square.

The first step is to establish a system of representatives of the group Gℓ.
As ∆K = 4m, with m := −2N , O∆K

= Z + Z
√
m ≡ Z[X]/(X2 − m) and

O∆K
/ℓO∆K

≡ Z/ℓZ[X]/(X2 − m). First observe that when ℓ = 2, we have
m ≡ 0 mod ℓ and the invertible elements of O∆K

/2O∆K
are therefore 1 and

1 +X. For k ⩾ 0, we will then have

(O∆K
/ℓO∆K

)
×
=

{
a+ bX, (a, b) ∈ (Z/ℓZ)× × Z/ℓZ

}
To get the group Gℓ, we identify a + bX with ac + bcX for c ∈ (Z/ℓZ)

×
. We

then have the system of representatives:

{1 + bX, b ∈ Z/ℓZ} .

Now we show that 1 + 2X is of order 2k in this group (one could prove that
1+X is of order 2k+1 and this group is cyclic, but considering 1+2X is sufficient
for our applications). For this we first prove that for k ⩾ 2,

(1 + 2X)2
k−1

= 1 + 2kX + 2kX2 ∈ Z/2k+1Z[X]. (2)

This can been shown by induction: the equality is clear for k = 2. Now suppose,

that there exists a polynomial Q, s.t. (1 + 2X)2
k−2

= 1 + 2k−1X + 2k−1X2 +

2kQ(X). Squaring both sides, we indeed get that (1+2X)2
k−1

= 1+2kX+2kX2

modulo 2k+1, which proves eqn. 2.

As a result we get that for k ⩾ 2, (1 + 2X)2
k−1 ≡ 1 + 2km + 2kX which is

equivalent to 1+(1+2k)−12kX = 1+2kX ̸= 1 in the group Gℓ. But (1+2kX)2 =
1 which proves that 1+2X is of order 2k for k ⩾ 2. It is straightforward to verify
that 1 + 2X is also of order 2k for k = 0, 1.

The next step is to map 1 + 2X in kerφℓ using the explicit isomorphism.
This isomorphism consists in taking a representative α of the class of 1 + 2X in
O∆K

, to compute a basis of the ideal αO∆K
and then to move it to Cl(∆) by

considering the class of the ideal αO∆K
∩O∆. The element 1 + 2X corresponds

to the quadratic integer α := 1 + 2
√
m = 1 +

√
∆K . Following [10, Prop. 2.9],

one writes α = x+y
√
∆K

2 with x = y = 2. Then applying the Extended Euclidean
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algorithm on y = 2 and (x+ y∆K)/2 = 1 +∆K one gets κ = 1− 4N , λ = −1,
µ = 1 s.t. κy+λ(x+y∆K)/2 = µ. The ideal αO∆K

then corresponds to the form
(a, b, c) where a = N(α)/µ = 1 −∆ = 1 + 8N ; and b ≡ −κx − λ(x + y)∆K/2
(mod 2a). One gets b ≡ −2− 8N ≡ 8N (mod 2a), and c = 2N .

We then move this form to Cl(∆) following [39, Algorithm 2] as a is odd
so prime to the conductor 2k+1. We get the form (1 + 8N, 2k+4N, 22k+3N).
We then reduce this form, first by normalizing the b coefficient modulo 2a :
2k+4N − 2k+1a = −2k+1, and computing the new value of c, we get 22k. As a
result, this normalization gives the form (1+8N,−2k+1, 22k) which is equivalent
to the form f = (22k, 2k+1, 1+8N). Note that this form is reduced if 22k < 1+8N
which will be the case in our applications.

The final step of the proof is to prove that f is a square. In Cl(∆), the
assigned characters are χ8, χ−4, χp, χq. Using f(1, 0) = 22k which is a square,
one gets that χp(f) = χq(f) = 1. Using the odd integer f(0, 1) = 1 + 8N ,
χ−4(f) = (−1)4N = 1 and χ8(f) = 1 as 1 + 8N ≡ 1 (mod 8). ⊓⊔

3.3 The Gen2k algorithm

We depict our group generator in Algorithm 1. We first select a fundamental dis-
criminant ∆K := −8N as in Lemma 2. This ensures that the 2−Sylow subgroup
of Cl(∆K) has order 4 and h(∆K) = 4ŝ where ŝ is odd, and ŝ is the cardinality
of the subgroup of squares of Cl(∆K).

Algorithm 1: Gen2k

Input: 1λ

Result: pp
—
sample two random distinct η(λ)-bit primes p, q according to Table 1
N := pq
∆K := −8N
∆ := 22k+2 ·∆K

f := (22k, 2k+1, 1 + 8N) ∈ Cl(∆)
sample r a random square of Cl(∆)

h := r2
k

∈ Cl(∆)
compute s̃ an upper bound h(∆K)
return pp := (f, h, s̃)

We then consider the class group Cl(∆) of the non maximal order of dis-
criminant ∆ := 22k+2 ·∆K as in Lemma 1. This setting ensures that the class
of the form f := (22k, 2k+1, 1 + 8N) generates a subgroup F of order 2k of the
group of squares of Cl(∆).

For the discriminant ∆, the parameter µ equals 4 and there are h(∆)/2µ−1 =
2k+1 ·h(∆K)/8 = 2k · ŝ squares in Cl(∆) (cf. [22, Prop. 3.11]). We then consider
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h a random 2k−power of a square of Cl(∆). By construction, the order of h,
denoted s, is odd as it divides ŝ. We denote H the subgroup generated by h.
Denoting G the cycling subgroup of the squares of Cl(∆) of order 2ks, we have
the isomorphism G ≃ F × H and F (resp. H) is the subgroup of 2k−roots of
unity of G (resp. the 2k−th powers of G). Finally, we denote s̃ a known upper
bound for s: the order s is unknown in our generator, but s̃ can be computed from
an upper bound on the class number of Cl(∆K): h(∆K) < 1

π log |∆K |
√
|∆K |, or

obtain a slightly better bound using the analytic class number formula (cf [46]).

Size of p and q. The bitsize η(λ) of the primes p and q is chosen such that the
best algorithms for factoring N := pq take 2λ time. This ensures that computing
s via the class number of Cl(∆K) takes more that 2λ time as known algorithms
for computing class numbers have worse complexities. In practice, for 112 bits
(resp. 128 bits) of security, we take N of 2048 bits (resp. 3072 bits).

3.4 Assumptions

The semantic security of our linearly homomorphic encryption (and its threshold
variant) relies on the following hard subgroup membership assumption, which is
a natural extension of the HSM assumption underlying CL encryption [18]. In
a nutshell, in the group G, we assume that it is hard to distinguish elements of
the subgroup H, the 2k−th powers, from random elements. As we shall see, in
our particular context, this assumption implies the factorization assumption.

Definition 8 (HSM2k assumption). Let A be an adversary for the HSM2k prob-
lem, its advantage is defined as:

Adv
HSM

2k

A (λ) :=
∣∣∣2 · Pr[b = b∗ : pp := (f, h, s̃)

$←− Gen2k(1
λ), x←↩ DH,

u
$←− U((Z/2kZ)×), b

$←− {0, 1}, z0 := hxfu, z1 := hx, b∗ ← A(pp, zb)]− 1
∣∣∣

where DH is a distribution over the integers such that the distribution {hx, x←↩
DH} is at distance less than 2−λ from the uniform distribution in H. The HSM2k

assumption holds if for any probabilistic polynomial-time adversary A, its advan-
tage is negligible.

Relations with factoring and computing the class number. Let ∆K =
−8N , as defined in Algo. 1. The class number n := h(∆K) is an integer mul-
tiple of s, the unknown order of h. So computing n allows to break the HSM2k

assumption by checking if znb = 1 or not.
The knowledge of n also allows to find the elements of order 2 of Cl(∆K),

and, as shown in the background section, these elements gives the factorisation
of ∆K and thus of N . So computing n allows to factor N .

Conversely, there is no known method of computing h(∆K) given the factori-
sation of N , and best algorithms for computing h(∆K) have worse complexities
than algorithms to factor N . However, the factorization of N allows to break
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HSM2k . As already mentioned in Subsection 2.3, computing square roots and
deciding if an element is a square in Cl(∆) is feasible in polynomial-time if the
factorisation of the discriminant is available. The HSM2k problem asks to dis-
tinguish between an element of the form z0 = hxfu for a random odd integer u
and an element of the form z1 = hx, for a random x. As h is a 2k-th power of a
square, it is a square, and at least one of its square roots is a square itself, even
if k = 1. This is not the case for hxfu. By construction, f is a square whose
square roots are not squares: if there exists a square a such that f = a2 then a
would be a square of order 2k+1, and we get a contradiction with the fact that
the group of squares of Cl(∆) has order 2k · ŝ where ŝ is odd. So to distinguish
the two cases, one has to compute a square root of the challenge element, and
by inspection, compute the genera of the forms, check whether there exists a
square root that is a square (and in this case the attacker outputs b⋆ = 1) or not
(and in this case the attacker outputs b⋆ = 0).

It can be shown that the factorization allows in fact to compute a partial
discrete logarithm of any y = gx in the class group, i.e., the value x mod 2k

(and gives therefore a trapdoor to decrypt a ciphertext).

Class Number

HSM2k Factorization

Fig. 2. Relations between the algorithmic assumptions underlying our protocols

4 Linearly Homomorphic Encryption Scheme on Z/2kZ

4.1 Description of the new encryption scheme

Let DH (resp. DG) be a distribution over the integers, such that {x mod s :

x
$←− DH} (resp. {x mod 2ks : x

$←− DG}) is δ-close to the uniform distribution
in {1, . . . , s} (resp. {1, . . . , 2ks}), where δ ≤ 2−λ.

The distribution DG is only used in the security proof and the distribution
DH can be instantiated by sampling x uniformly in {1, . . . s̃ · 2λ+2} using the
upper bound s̃ on s (cf. [17, Appendix C]).

Our linearly homomorphic encryption scheme on Z/2kZ is described in Fig-
ure 3, where the key generation algorithm takes as input the public parameters
pp := (f, h, s̃) that come from the Gen2k algorithm. There is no condition on the
value of k, typical values are 32, 64 or 128.

Correctness and Decryption The correctness of the protocol comes from the
fact c2 · c−sk

1 = fm · pkr · (hr)−sk = fm · (hsk)r · (hr)−sk = fm. To recover
m from fm, one has to compute a discrete logarithm. In this case, this discrete
logarithm computation is trivial since f generates a subgroup of order 2k. Pohlig-
Hellman algorithm makes it possible to recover m by extracting m bit by bit.
The algorithm to retrieve the discrete logarithm is described in Fig. 4. It consists
mainly of O(k2) squaring in the class group.
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Algorithm 2: KeyGen

Input: pp
Result: (pk, sk)
—
sample sk

$←− DH
pk := hsk

return (pk, sk)

Algorithm 3: Encrypt

Input: pp, pk,m ∈ Z/2kZ
Result: ciphertext (c1, c2)
—
sample r

$←− DH
c1 := hr

c2 := fmpkr

return (c1, c2)

Algorithm 4: Decrypt

Input: pp, sk, (c1, c2)
Result: m ∈ Z/2kZ ∪ {⊥}
—
M := c2 · c−sk

1

if M /∈ F then
return ⊥

end
return logf (M)

Algorithm 5: EvalAdd

Input: pp, pk, (c1, c2), (c
′
1, c

′
2)

Result: ciphertext (c′′1 , c
′′
2 )

—
c′′1 := c1 · c′1
c′′2 := c2 · c′2
sample r

$←− DH
return (c′′1 · hr, c′′2 · pkr)

Algorithm 6: EvalScal

Input: pp, pk, (c1, c2), α
Result: ciphertext (c′1, c

′
2)

—
c′1 := cα1
c′2 := cα2
sample r

$←− DH
return (c′1 · hr, c′2 · pkr)

Fig. 3. Linearly homomorphic encryption scheme with message space Z/2kZ

4.2 Security of the encryption scheme

Semantic security

Theorem 2. The scheme described in Figure 3 is semantically secure under
chosen plaintext attacks (ind− cpa) if the HSM2k assumption holds.

Proof. The proof proceeds as a sequence of games, starting with the real ind−cpa
experiment and ending in a game where the ciphertext statistically hides the
random bit b chosen by the challenger. We denote Si the event ‘adversary A
outputs b = b∗ in Game i’.

In Game 1, instead of sampling sk from DH , it is sampled from DG. The
rest of the experiment is unchanged, so the only difference from A’s view is the

distribution of pk := hsk. The distribution DH is chosen such that {hx : x
$←−

DH} is δ-close to the uniform distribution in H. Furthermore, since s divides
2ks, sampling x in the previous expression also yields a distribution δ-close to
the uniform distribution in H, so |Pr[S1]− Pr[S0]| ≤ 2δ.
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Algorithm 7: Pohlig-Hellman

Input: pp,M ∈ F
Result: m such that M = fm

—
m := 0;

f̃ := f2k−1

;
for i = 0 to k − 1 do

if (f−mM)2
k−1−i

= f̃ then
m := m+ 2i ;

end

end
return m

Fig. 4. Pohlig-Hellman algorithm to compute logf (M)

In Game 2, the challenge ciphertext is computed as c1 := hr and c2 := fmbcsk1 ,

where r
$←− DH . As pkr = csk1 this game is identical to the previous one, i.e,

Pr[S1] = Pr[S2].

In Game 3, the challenger additionally samples u
$←− (Z/2kZ)⋆ uniformly at

random. It sets c1 := hrfu, and c2 := fmbcsk1 . Now if A could distinguish game
2 from game 3, one could use A to solve the HSM2k problem, by setting c1 to
be the HSM2k challenge. Hence, denoting ϵHSM

2k
the maximum advantage of any

polynomial time adversary for the HSM2k problem, A’s success probability in
Game 2 and Game 3 can not differ by more than ϵHSM

2k
. This implies that

|Pr[S3]− Pr[S2]| ≤ ϵHSM
2k
.

We now demonstrate that in game 3, the challenge bit b is perfectly hidden
fromA’s view. Since G ≃ H×F , the element c1 = hrfu information theoretically
fixes the value of (u mod 2k) and of (r mod s) from A’s view. Furthermore A
receives c2 = fmb+u·skpkr. Given c1 and pk, the value of pkr is information
theoretically fixed, hence an unbounded adversary could infer (mb+u·sk mod 2k).

Since sk is sampled from DG, the distribution followed by (sk mod 2ks) is
at negligible distance δ ≤ 2−λ of the uniform modulo 2ks. Furthermore, since
s and 2k are co-prime, (sk mod 2k) is δ-close to the uniform modulo 2k and is
independent of (sk mod s). So even if pk = hsk fixes the value of (sk mod s), that
of (sk mod 2k) remains δ-close to U(Z/2kZ) from A’s view. Finally since u is
invertible modulo 2k, (u · sk mod 2k) is also δ-close to U(Z/2kZ), and perfectly
masks mb. Therefore |Pr[S2] − 1/2| ≤ δ. Combining the probability equations,
we conclude the proof with the following inequality:

Advind-cpaA (λ) ≤ ϵHSM
2k
+ 3δ.

⊓⊔
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We note that a DDH assumption can also be used in the group G similarly
to [17], which would lead to slightly different encryption scheme (using g = hf
instead of h).

Circuit privacy for linear functions The ciphertexts of our encryption pro-
tocol guarantees circuit privacy, in the sense that ciphertexts obtained through
the homomorphic evaluation process are indistinguishable from fresh encryptions
of the resulting message. This property is very useful in multi-party computation
(see [19,20] for instance). More precisely, the definition is as follows.

Definition 9 (Circuit privacy for linear functions). We say that a linearly
homomorphic encryption LHE is private if there exists a probabilistic polynomial-
time simulator Sim such that for any λ ∈ N, for any (pk, sk) ← KeyGen(λ, pp),
any pair of messages m1, m2 in the message space, and two ciphertexts c1
and c2 of m1 and m2 respectively, and any scalar α, the statistical distances
between LHE.EvalAdd(pp, pk, c1, c2) and Sim(1λ, pp, pk,m1 + m2) and between
LHE.EvalScal(pp, pk, c1, α) and Sim(1λ, pp, pk, αm1) are negligible.

Theorem 3. The scheme of Fig. 3 is circuit private for linear functions.

Proof. For both pair of distributions, the simulator just encrypts the message it
has as input (m1+m2 or αm1). The randomization applied during homomorphic
evaluations (LHE.EvalAdd and LHE.EvalScal) ensures that the distributions are
statistically close. ⊓⊔

4.3 Experiments

We have implemented our encryption protocol using Sagemath with calls to the
PARI native C Library [50] for the operations in class groups. All benchmarks
were done on a standard laptop (Intel Core i5-6267U @ 2.90GHz). Our exper-
iments have been run for security levels of λ = 112 and 128 bits. The RSA
modulus N has therefore respective sizes of 2048 bits and 3072 bits. The bit size
of the ciphertexts is 2× 3

4 (5+2k+ ℓN ) where ℓN is the bit size of N . The crucial
part of KeyGen, Encrypt and Decrypt are exponentiations in class groups where
the exponent is upper bounded by s̃ ≈

√
N .

These timings show that even a straightforward implementation is practical,
and an optimized C implementation of our system would drastically improve the
running times.

5 Threshold Encryption on Z/2kZ with Trusted Setup

5.1 A TPKE scheme from class groups

In this subsection we adapt the PKE scheme from the previous section to the
threshold setting. The threshold decryption relies on the LISS construction from
Damg̊ard and Thorbek [27] based on [2]. Let n be the number of servers, from the

20



k λ (bits) ciphertext (bits) Setup KeyGen Encrypt Decrypt

32
112 3176 0.037 0.101 0.096 0.101
128 4712 0.231 0.212 0.214 0.222

64
112 3272 0.086 0.098 0.098 0.118
128 4808 0.201 0.217 0.219 0.243

128
112 3464 0.076 0.103 0.105 0.178
128 5000 0.398 0.230 0.230 0.309

Table 2. Bit size and running time of our homomorphic encryption in seconds.

threshold access structure A, the dealer generates a share-generating matrixM ∈
{0, 1}e, where e ∈ O(n1+

√
2) which computes the Boolean formula associated to

A as well as a surjective function ψ : {1, . . . , d} 7→ P as defined in Subsection 2.2.

Our new threshold encryption protocol with message space of order 2k is
described in Fig. 5. We omit the EvalAdd and EvalScal algorithm that are ex-
actly the same as the ones for our linearly homomorphic encryption scheme
(Algorithms 5 and 6 of Fig. 3).

Theorem 4. The scheme described in Fig. 5 achieves T-ind-cpa-security under
the ind− cpa security of the non-threshold scheme of Fig. 3.

Proof. This theorem is a direct corollary of the privacy of the LISS and the
ind-cpa of the non-threshold encryption scheme.

From an attacker against the T-ind-cpa-security A, we construct an attacker
against the ind-cpa security of the basic scheme, which receives public parameters
pp and a public key pk = hx for an unknown x.

After A chooses an access structure A, he is fed with pp and pk as ek. He
chooses a set S outside A, and waits for the corresponding secret keys. They are
simulated after the computation of a sharing of 0, i.e., the distribution vector is
ρ = (0, ρ1, . . . , ρd)

T and the shares are s = (s1, . . . , sd)
⊤ = M ·ρ, where M is the

matrix corresponding to the access structure A. A receives the shares belonging
to the servers in S.

Now, A can query partial decryptions: he queries the oracle on plaintext m
and server i. The message m is encrypted as ct = Encrypt(pp, ek,m) = (ct1, ct2).
We must simulate the contributions that this honest party i computes, namely
di := (c

sj
1 )j∈ψ−1(i), from pkr = ctx1 . This is done as in [27] for the distribution

of an exponentiation. Let κS be the sweeping vector of Def. 7 for S. Now, let
R be a row in the distribution matrix M belonging to the honest server Pi and
let sj be one component of the server’s share we computed from this row. Had
we used ρ′ = ρ + xκS instead of ρ, then the share component coming from R
would have been s′j = (ρ+xκS)R = sj +xκSR instead. The observation is now

that because we know ctx1 and s, we can compute ct
s′j
1 even though we do not
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Algorithm 8: Setup

Input: 1λ,A
Result: pp, ek, sk
—
generate pp := (f, h, s̃)

$←− Gen2k (1
λ)

sample sk
$←− {1, . . . , 2λ+2s̃}

ek := hsk

Set e, d ∈ O(n1+
√

2)
Compute the matrix M ∈ {0, 1}d×e that computes A // Benaloh-Leichter

sample (ρ2, . . . , ρe)
$←− [2l0+λ, 2l0+λ]e−1

ρ := (sk, ρ2, . . . , ρe)
⊤

for i ∈ {1, . . . , n} do
ski := (Mj · ρ)j∈ψ−1(i) ∈ Zdi

end
sk := (ski)1⩽i⩽n
return pp, ek, sk

Algorithm 9: Encrypt

Input: ek,m ∈ Z/2kZ
Result: ciphertext

ct := (c1, c2)
—
sample r

$←− DH
c1 := hr

c2 := fmekr

return (c1, c2)

Algorithm 10: PartDec

Input: pp, ski, ct
Result: di ∈ G ∪ {⊥}
—
parse ct as (c1, c2)
parse ski as (sj)j∈ψ−1(i)

di := (c
sj
1 )j∈ψ−1(i)

return di

Algorithm 11: FinalDec

Input: pp, {di}i∈S for S ∈ A
Result: m ∈ Z/2kZ ∪ {⊥}
—
parse S as (j1, . . . , jt)
compute λS := (λ⊤

j1 , . . . ,λ
⊤
jt)

⊤ ∈ {−1, 0, 1}dS such that

λS ·Mψ−1(S) = (1, 0, . . . , 0)⊤

where dS :=
∑
i∈S di and λji := (λj1,1, . . . , λj1,dji )

⊤ for all i = 1, . . . , t.

compute d :=
∏
i∈[t]

∏
k∈[dji ]

d
λji,k

i

M := c2 · d−1

if M /∈ F then
return ⊥

end
return logf (M) using Algo. 7

Fig. 5. TPKE scheme with message space 2k
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know x. Concretely, we simulate the contribution from P by

ct
sj
1 (ctx1)

κSR = ct
sj+xκSR
1 = ct

s′j
1 .

After this partial decryption phase, A outputs his messagesm0 andm1 which
are forwarded to the ind-cpa challenger which answers with a challenge ciphertext
c⋆ of one of this two messages mb⋆ , which is given to A. After another series
of queries for partial decryptions, answered in the same way, A outputs a bit b,
which is set as the output of the ind-cpa adversary.

To see that the simulation is correct, we see that the simulated shares are
statistically indistinguishable from the real shares by the privacy of the LISS
scheme. Second, honest parties always output the correct value ctx1 , by correct-
ness of the LISS scheme. Finally, given ct1, ct

x
1 , the simulated contributions from

honest parties are statistically indistinguishable, since the vector we use for the
simulated sharing is ρ′ = ρ + xκS which is statistically close to a uniformly
chosen sharing vector for x. The advantage of the ind-cpa attacker will therefore
be that of the T-ind-cpa attacker. ⊓⊔

In terms of efficiency, the only difference between the thresold scheme and
the encryption scheme of Section 4 is in the decryption algorithms (encryption
is exactly the same). Therefore, the additional costs come from the LISS, and
translate in an additional number of exponentiations in the class group. Exact
numbers depend on the considered access structure. For a concrete example,
taking the access structure construction for a 2-out-of-3 policy (cf [53, Example
3.4 p. 26]), the shares have roughly the same bitsize as the secret key and we get
2 exponentiations (in total) for PartDec and a negligible extra cost in FinalDec
consisting of multiplication and inversion since the reconstruction vector has
components in {−1, 0, 1}. As a result, PartDec takes twice the classical decryption
time (or the same with parallelisation).

5.2 Extensions

Some extensions and improvements (in terms of security or functionality) are
possible for our threshold encryption scheme: we suggest few of them.

– Robustness: It informally captures that no malicious adversary can prevent
a honest majority from decrypting a valid ciphertext. It can be achieved in
our context by using Σ-protocols proving equality of discrete logarithms in
groups of unknown orders to prove the validity of decryption shares.

– Removing the trusted dealer: It is one of the most interesting feature that
can be achieved, especially compared to a potential Elgamal version of Ben-
hamouda et al.’s scheme. It first requires to generate in a distributed man-
ner an RSA modulus satisfying the needed congruences. Many efficient tech-
niques can be employed, such as [21], secure against any subset of maliciously
colluding parties. The class group can then be computed publicly and the
factorization ignored. To share the secret key without trusted dealer, it is
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possible to use verifiable linear integer secret sharing [53] and techniques
from [35] to distribute key generation for discrete-log based cryptosystems.
In addition, zero-knowledge arguments for several relations (well-formdness
of a key or equality of discrete logarithms) in group of unknown orders will
be needed and can be found in the literature [5,15,58,29].

– CCA security: Using techniques of [30] for their chosen ciphertext secure
threshold cryptosystems from the Decision Composite Residuosity (DCR)
assumption, it should be possible to make our threshold encryption scheme
CCA secure (even though we would be loosing the crucial homomorphic en-
cryption), as well as adaptively secure (i.e., secure against an adversary who
dynamically corrupts servers throughout the protocol), and non-interactive
(i.e., decryption servers do not interact amongst themselves but rather con-
tribute, each, a single message). Note that several building blocks need to
be adapted: for example, a Trapdoor Σ-protocol showing that an element is
a 2k-th power. As shown at the end of Subsection 3.4, the factorization of
the discriminant could be the trapdoor of such a protocol.

6 Applications

We here discuss future work, and provide intuition for some of the many appli-
cations we see to our scheme.

6.1 Secure multi-party computation

The goal here is to devise an MPC protocol (for dishonest majority) that works
over Z/2kZ, and provides better (bandwidth) efficiency than current solutions.

The topic of malicious MPC for Z/2kZ has drawn significant attention since
2018, when Cramer et al. revelled their SPDZ2k protocol [23] which aims at
solving this issue.

Computations modulo 2k, closely match what happens in a CPU, thereby
allowing protocol designers to take advantage of tricks already known there.
Typical examples being comparison operations and bitwise operations which
seem to be easier modulo 2k (and harder to emulate modulo p).

The solution from [23] follows a blueprint that is by now standard for many
fast (maliciously) secure MPC protocols. The protocol phase is divided in two
stages. An offline (slow) phase where some precomputation is done without know-
ing the actual inputs of the computation; and a very fast, information theoretic,
phase which requires knowing the inputs and takes advantage of the data com-
puted offline.

The offline stage consists, mainly, in creating sharings of many triplets of the
form [a], [b], [ab], where a and b are random in Z/2kZ. These triplets are used to
speed up the online phase.

The computations on the input data executed in the online phase require per-
forming additions and multiplications. To add two shared secrets [x], [y], players
simply add their shares non interactively. Multiplication is less straightforward.
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In order to compute [xy] quickly, given a (yet unused) triplet [a], [b], [ab], players
proceed as follows. First jointly open [x]−[a] = c and [y]−[b] = d. Then, without
further interaction, each player can compute: [xy] = cd+ [a]d+ [b]c+ [ab]. Since
the online phase is very fast (essentially the same for all protocols following this
blueprint) the question is how to improve efficiency of the offline stage?

In SPDZ2k they use oblivious transfer, which is fast but expensive in terms
of bandwidth consumption. One way of reducing bandwidth would be to rely
on homomorphic encryption (and indeed the original SPDZ protocol uses some-
what homomorphic encryption for degree two polynomials to compute triplets).
The issue is how to do this in the Z/2kZ setting, since we don’t know many
homomorphic encryption schemes that cope well with this setting.

To our knowledge, two solutions exist to this problem, and both have issues.
The first is a protocol due to Orsini et al. [48], which presents significant effi-
ciency gains with respect to [23], but remains very complex. The second, much
simpler, is due to Catalano et al. [19]. Their protocol relies on the Joye-Libert
encryption scheme, but has lower bandwidth gain and only works in the two
party case. Indeed, though the Joye-Libert protocol allows for a message space
of order 2k, it is unclear how to enhance it with threshold decryption. Hence
each player in the [19] protocol has their own public and secret key pair, and
computing multiplications is performed via a protocol à la Gilboa [36] which
entails a number of zero-knowledge proofs – hence the small gain in bandwidth
consumption.

How does our scheme help? Our encryption scheme both allows for a message
space of order 2k, and for threshold decryption. Given both these properties,
one can easily generate triplets as follows. Each player Pi chooses a random ai,
a random bi, encrypts them Encryptpk(ai), Encryptpk(bi) and broadcasts these
values. Every player homomorphically adds the shares it sent and received to
obtain encryptions Encryptpk(a), Encryptpk(b), where a =

∑
i ai, and b =

∑
i bi.

Then, using a trick from Catalano et al. [20], every player can multiply the
underlying plaintexts to obtain Encryptpk(ab). Finally each player Pi uses the
partial decryption algorithm with its secret key ski to obtain an additive share
ci of ab.

6.2 Homomorphic secret sharing (HSS)

Homomorphic secret sharing is a form of secret sharing that allows parties to
non-interactively perform computations on shared private inputs. HSS can be
viewed as a distributed variant of homomorphic encryption: in HSS multiple
parties are given a share of the inputs, and, without further interaction, they
each perform (non interactively) homomorphic evaluations over these inputs to
obtain a share of the desired output. HSS can be used instead of fully/somewhat
homomorphic encryption in many scenarios, including low-communication MPC
(e.g. [9]), private querying to remote databases (e.g. [7]), methods of succinctly
generating correlated randomness (e.g. [6]), and more. Using our TPKE scheme,
combined with recent techniques introduced by Orlandi et al [47], one should
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be able to devise the first HSS protocol that efficiently performs computations
modulo 2k, without requiring a correctness/efficiency trade-off, and without the
need to restrict the size of the shared inputs.

Details. Based on the breakthrough work by Boyle et al. [8], Fazio et al. [33]
provided a blueprint to build an HSS scheme for an expressive class of programs5.
Precisely, from the [8] protocol, which was based on (circular secure) Elgamal
encryption, [33] abstract the key ingredients required of an encryption scheme
to build an HSS.

1. The encryption scheme must be both message and key (linearly) homomor-
phic over a finite quotient.

2. Given an encryption of a small integer w, and substractive secret sharings ⟨x⟩
and ⟨skx⟩ (where sk is the decryption key), there must be a non-interactive
method for parties to compute multiplicative shares of the group element
gxw, which lives in the ciphertext space of the encryption scheme.

3. A non-interactive technique to convert the multiplicative sharing of gxw into
an additive sharing of xw which lives in the plaintext space of the encryption
scheme.

Our TPKE scheme naturally satisfies item 1, as it is linearly homomorphic,
and threshold decryption can provide us the aforementioned key homomorphic
property.

Regarding item 2, we leverage the Elgamal-like structure of our TPKE. Con-
sider a ciphertext (hr, fwpkr) encrypting w, where pk = hmsk. For each memory
value x in the RMS program, the value of x and of skx are each held as an
additive secret sharing across parties (let us denote Pi’s shares ⟨x⟩i and ⟨skx⟩i).
Pi’s computes its’ multiplicative share of fwx as gi := (hr)−⟨skx⟩i(fwpk)⟨x⟩i .

Item 3 has for long been the tricky part of the protocol. An ingenious dis-
tributed discrete logarithm (DDLog) protocol was first suggested by [8]. In their
protocol, to obtain substractive shares of z := xw, parties P0 and P1, respec-
tively owning shares g0, g1 such that g0 = g1g

xw, agree upon some distinguished
element g̃ that is not too far away from g0, g1 in terms of multiplications by g. If
they find such a g̃, then party i can compute the distance of gi from g̃ by brute
force: by multiplying g̃ by g repeatedly, and seeing how many multiplications it
takes to get to gi. If g̃ isn’t too far away, this should not be too inefficient. The
primary challenge is agreeing upon a common point g̃. [8] had the parties first fix
a set of random, distinguished points in the group; party i then finds the closest
point in this set to gi. As long as both parties find the same point, this will
lead to a correct share conversion. To make this process efficient, the distance d
between successive points can’t be too large, as running time will be O(d). But
this induces an inherent ≈ 1/d probability of failure, in case a point lies between
the original two shares and parties fail to agree. Furthermore, Dinur et al [31]

5 Restricted Multiplication Straight-line Programs. This class captures polynomial-
size branching programs, which includes arbitrary logspace computations and NC1
circuits.
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showed that if one could do better than 1/d error probability in O(
√
d) steps,

the algorithm could be used to improve the cost of finding discrete logarithms
in an interval, a well-studied problem which is believed to be hard.

In recent work, Orlandi et al [47] overcame this barrier by leveraging the easy
discrete logarithm subgroup present in the Paillier framework. As we also have
such a setup, we benefit from their technique, and parties can both agree on
a distinguished point and efficiently find the distance of a multiplicative share
from that point, without requiring a correctness/efficiency trade-off. The high
level idea (applied to our group elements), is that both g0 and g1 can be seen

as elements of the coset Xg0 := {g0, g0f, . . . , g0f2
k−1}. If both parties agree on

a point h̃ in this set, then there exists z such that h̃ = g0f
z, and so P0 can

efficiently compute logF (h̃ · g−1
0 ) = z. Furthermore, since g0 = g1f

xw, P1 can
efficiently compute logF (h̃ · g−1

1 ) = z + xw. And it holds that z + xw − z = xw
as desired.

Now to agree on the point h̃ the parties compute the smallest element from
Xg0 . This may be done using the surjection φ2k from Cl(∆) to the class group
of the maximal order Cl(∆K). Finally, we note that in prior work, the size
of the shared inputs had to be bounded, either for efficiency, as in [8], or for
correctness of computations in [47]. The upper bound in Orlandi et al’s protocol
ensures that no wrap around occurs modulo N . On the other hand, using our
TPKE scheme with message space 2k, we can set the order of the message space
to be the modulus desired for practical computations, and potentially avoid such
constraints.

6.3 Lossy trapdoor functions (LTDFs)

Lossy trapdoor functions, introduced by Peikert and Waters [52], are families of
functions where injective functions are computationally indistinguishable from
lossy functions, which lose many bits of information about their input. Among
many interesting applications, LTDFs are known to imply chosen-ciphertext-
secure PKE [52] or deterministic encryption [1] for instance.

Huge efficiency gains were obtained by Joye and Libert [41] over previous
constructions from linearly homomorphic scheme, by leveraging the 2k order of
their message space in order to batch evaluation and process k-bit blocks of the
input at once.

Applying both techniques to our linearly homomorphic PKE of Figure 3
would yield an efficient LTDF which supports evaluation over k-bit blocks at
once. This allows for compact outputs of the functions. We note however that,
due to the Elgamal-like structure of our underlying PKE, trapdoors and func-
tion descriptions would be larger than in the Joye-Libert LTDF: for inputs of
size n, our trapdoors would require an extra n/k integers, while our function
descriptions would require an extra n/k elements in H.
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