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Abstract. As a web search engine can find relevant sources for a key-
word query, the web of data needs a source selection engine to find rele-
vant endpoints for a SPARQL query. However, source selection requires
getting information about the content of endpoints and currently, it re-
mains difficult to automatically explore the content of endpoints as web
robots explore the content of web servers. Thanks to the web preemp-
tion principle, we propose to automatically build RDF summaries of
endpoints through SPARQL queries. We propose an approach to com-
pute the source selection of a query Q by evaluating a rewriting of
Q on summaries. As all queries terminate under the web preemption
paradigm,DeKaloG can provide a web automated source selection ser-
vice relying on preemptable SPARQL servers. We empirically demon-
strate that various summaries can be extracted with a data transfer
proportional to the size of the summary, and highlight the trade-off be-
tween the size of the summaries, the accuracy of source selection, and
the execution time of source selection.

Keywords: Linked Data; Semantic Web; SPARQL query service

1 Introduction

Context and motivation: Following the Linked Data principles [2] hundreds
of interconnected knowledge graphs are available through public SPARQL End-
points [21]. However, executing a SPARQL query at the web scale is still chal-
lenging. The main issue concerns source selection, i.e. given a SPARQL query,
find the minimal number of relevant sources on the web of data to be contacted
to execute the query.

Existing Federated Query Engines (FQE) [17] perform source selection just
over a local catalog of sources and not over the web. In these conditions, a
federated query engine builds a federated database, not a global data space. As
a web search engine can find relevant sources for a keyword query, the web of
data needs a source selection engine to find relevant endpoints for a SPARQL
query. As web search engines help the web to be decentralized, a source selection
engine should help the web of data to be decentralized.



Related works and problem: Source selection has been extensively stud-
ied [17, 15]. Efficient source selection requires knowing what are inside endpoints.
This can be done by asking endpoints [17] but this cannot scale to many end-
points. Another option relies on summaries but this supposes that summaries can
be obtained or computed in a fully automated and reliable way at web scale [7].
There is no equivalent to web robots of web search engines able to crawl the
whole set of endpoints. This prevents the automation of indexing of endpoints
at the web-scale. Recently, web preemption[9] allowed SPARQL queries to be ex-
ecuted sliced time, and [6] presented how it can be used to compute aggregates.
This opens the door to the traversing of endpoints while collecting summaries.

Approach and Contributions: In this paper, we foster on web preemption
to build DeKaloG; a source selection service for SPARQL endpoints.DeKaloG
is a SPARQL endpoint hosting an RDF dataset containing summaries of end-
points. Thanks to preemptable servers, summaries of endpoints are obtained
by executing summary functions as SPARQL queries over endpoints. The same
summary functions can also be applied to any query Q to be executable on
DeKaloG. The mappings produced by the execution of a query overDeKaloG
allow the computation of the source selection of the query Q over endpoints. The
contributions of this paper are the following:

– We define a model for building a source selection service at web scale using
only the semantic web technologies RDF and SPARQL.

– We demonstrate that summaries can be obtained with a data transfer pro-
portional to the size of the summary and not to the size of data sources.

– We demonstrate how source selection can be obtained by executing SPARQL
queries on summaries.

– We validate empiricallyDeKaloG on a subset of LargeRDFBench.

This paper is organized as follows. Section 2 summarizes related works. Sec-
tion 3 details the approach ofDeKaloG for building summaries and source
selection. Section 4 presents our experimental results. Finally, conclusions and
future work are outlined in Section 5.

2 Related Works

The source selection for a SPARQL query, finds the minimal number of relevant
sources on the web of data to be contacted to execute the query. In this paper,
we focus on RDF data hosted in SPARQL endpoints.

SPARQL 1.1 Federated queries [18] allow executing queries over different
SPARQL endpoints. The SERVICE clause advises a federated query processor
to execute a portion of SPARQL query against a remote SPARQL endpoint. In
this case, the source selection is performed by users when authoring SPARQL
queries.

Federated query engines [17, 5] suppose the existence of a catalog of SPARQL
endpoints and achieves automatic source selection based on the catalog. In its
simplest form, this catalog is just a set of endpoints. Automatic source selection



can be seen as the rewriting of a SPARQL query into SPARQL 1.1 federated
query is given a catalog of endpoints.

Different techniques for source selection are proposed [14]. We can distin-
guish two categories of source selection: catalog/index-free and catalog/index-
assisted. In catalog/index-free source selection, the federated query engine per-
forms source selection without using any stored data summaries, in contrast,
in catalog/index-assisted source selection, the federated query engine uses data
summaries that have been collected in a pre-processing step.

FedX [17] is a representative of index-free SPARQL federated query engine.
The source selection relies completely on a simple catalog of URLs of SPARQL
endpoints and SPARQL ASK query. For each triple pattern of a query, FedX
sends ASK queries to all endpoints in the catalog, and those that pass the
SPARQL ASK test are selected. The source selection of FedX does not require
storing any data summaries. However, it requires a lot of communication with
the endpoints before starting the query execution. For instance, for a catalog
of 100 endpoints and a query with 10 triple patterns, FedX sends 100*10=1000
ASK queries to compute source selection before starting the execution of the
federated query.

Index-assisted federated query engines improve the source selection but re-
quire preprocessing. Different levels of detail of statistics of SPARQL endpoints
are pre-computed and used by the federated query engine during query pro-
cessing. Different techniques and formats are proposed for precomputed indexes.
Some approaches require sources to compute and maintain statistics[5, 10], other
do not [12, 15].

Both Odyssey[10] Splendid[5] requires data sources to compute and share
statistics. Odyssey uses sophisticated statistics for source selection. The statis-
tics detail information about the data provided by remote endpoints and links
between them. Splendid[5] relies on VOID statistics and ASK queries to per-
form source selection. The statistics of VOID descriptions are aggregated in a
local index. This index maps triple patterns with a bound predicate to relevant
data sources. A SPARQL ASK query is used when the subject or object of the
triple pattern is a bound or unbound predicate. WoDQA [1] is another feder-
ated query engine that uses VOID; more precisely, it uses linksets description to
retrieve relevant datasources.

Relying on statistics precomputed by data sources is a promising solution
for source selection. However, recent studies [7] observed that only a third of
public SPARQL endpoints give a static description of their content using VOID
vocabularies, and even when they are provided, it is unclear the level of details.
To mitigate the burden on publishers to describe of their endpoints’, Sportal [7]
proposes to compute VOID descriptions directly from the endpoints. Sportal de-
fines sources self-description queries that allow computing VOID. Unfortunately,
as highlighted in [7], Sportal naturally inherits the limitations of SPARQL end-
points, many endpoints do not return results or produce incomplete results.

DARQ [12] and HiBISCuS[15] pre-compute the indexes directly from data
in the endpoints. DARQ uses an index known as service description for source



selection. The description includes hand-crafted source description similar to
the Vocabulary of Linked Datasets VOID [?]. DARQ source selection matches
the predicates in the query against the predicates in the service description.
HbiBISCuS [15] proposes a join-aware source selection algorithm. HbiBISCuS
relies on the authority fragments of resources URIs to estimate whether combing
data from multiple sources can lead to any join results. An ASK query is used
for source selection for unbound predicates or common predicates.

Relying on statistics precomputed by federated query engines seems afford-
able. However, existing federated query engines propose different levels of in-
formation and different formats for storing the indexes. Moreover, the index
is locked up by the federated query engine and cannot be shared with other
federated query engines.

Different summary approaches for source selection with different accuracy
and granularity have been proposed [20, 4]. Some summaries are approximative
such as QTree, while others are exact, such as schema-level indexing.

Overall, many techniques have been proposed to build catalogs for source
selection, but currently, there is no reliable method to build and maintain such
catalogs over the web. In DeKaloG, we foster on web preemtion[9] that allows
SPARQL queries to terminate. Thanks to preemptable servers, it is possible
to compute aggregations as proposed in [6]. This allows relying on endpoints
to compute summaries and transfer only summaries. Using the same summary
functions, a query Q over endpoints can be rewritten as a query Qs, to be
executed on DeKaloG. The provenance of the mappings of Qs contains the
source selection of Q.

3 TheDeKaloG approach

A source selection service for the linked data has the same objective than a
keyword search service in the web of documents, i.e., ensuring the findability of
sources over a decentralized web of data. The general use-case is the following:

1. A user aims to execute the SPARQL query Q1 of the figure 1a over the whole
set of SPARQL endpoints with no prior knowledge.

2. She loads a SPARQL 1.1 query engine in her web browser, as proposed by
Communica [19] or SaGe [9] , and launchs the execution.

3. The query engine contacts a source selection service that returns the set of
endpoints to contact per triple pattern. The query engine is free to refine the
source selection, optimize the query, and finally rewrites the original query
into the SPARQL 1.1 federated query Q2 as in Figure 1a.

4. Finally, the web browser starts the execution of Q2 and returns complete
results.

Such a scenario raises many issues: how to build this source selection service?
How to contact it? Is the source selection optimal? What is the execution time
of the source selection? The objective of DeKaloG is to answer the above
questions and makes the above use-case possible.



SELECT ∗ WHERE {
? p r e s <i s a > <dba/ p r e s i d e n t >. ( tp1 )
? pe r son <sameas> ? p r e s . ( tp2 )
? pe r son <b i r t h > ? date ( tp3 )

}

(a) Q1

SELECT ?p ?o WHERE {
{ SERVICE <dba . org>

? s <sameas> <ht tp :// dba . org /b_obama> } .
SERVICE <wda . com> {? s ?p ?o } .

} UNION {
SERVICE <dba . org>
? s <sameas> <ht tp :// dba . org /b_obama> } .

SERVICE <nyt . com> {? s ?p ?o } .
}}

(b) Q2

Fig. 1: SPARQL queries Q1 and Q2

3.1 Preliminaries

We consider three disjoint sets I (IRIs), L (literals) and B (blank nodes) and
denote the set T of RDF terms I ∪ L ∪B.

An RDF triple(s p o) ∈ (I ∪B)× I × T connects subject s through predicate
p to object o. An RDF graph G is a finite set of RDF triples. We denote V al(G)
the set of all values (IRI, blank nodes and literals) in G. A mapping µ from V to
T is a partial function µ : V → T , the domain of µ, denoted dom(µ) is the subset
of V where µ is defined. Mappings µ1 and µ2 are compatible on the variable ?x,
written µ1(?x) ∼ µ2(?x) if µ1(?x)= µ2(?x) and ?x ∈ dom(µ1) ∩ dom(µ2).

RDF graphs are published on the web following the Linked data principles [2].
These RDF graphs could be accessible through public SPARQL endpoints. A
SPARQL endpoint is defined as a couple (Ei, Gi), where Ei is the URL of the
endpoint and Gi is the RDF graph accessible by Ei. A SPARQL query has the
form Head← Body where Head is an expression indicating how to construct the
answer of the body and the body is a complex RDF graph pattern expression.
Assume the existence of an infinite set V of variables, disjoint with previous sets.
A SPARQL graph pattern expression P is defined recursively as follows [8, 11,
16].
1. A tuple from (I ∪ L ∪ V )× (I ∪ V )× (I ∪ L ∪ V ) is a triple pattern.
2. If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT

P2), and (P1 UNION P2) are graph patterns (a conjunction graph pattern,
an optional graph pattern, and a union graph pattern, respectively).

3. If P is a graph pattern and R is a SPARQL built-in condition, then the
expression (P FILTER R) is a graph pattern (a filter graph pattern).
The evaluation of a graph pattern P over a SPARQL endpoint Ei denoted

by JP KGi
returns a set of mappings, called result set. Each element of the result

of a query is a set of variable bindings.
We define a federation of SPARQL endpoint F (E,G) as a set of couple of

F (E,G) = {(E1, G1), . . . , (En, Gn)} where E = {E1, . . . , En} and G =
⋃n
i=1Gi,

respectively. For the sake of simplicity, we consider the RDF graphs of endpoints
do not have blank nodes. We consider federated SPARQL queries as queries
defined over a federation of SPARQL endpoints. Given a SPARQL query Q, a
data source Ei ∈ E is said contribute to the query Q if at least one of the variable
bindings in the result set of Q can be found in Ei.



3.2 DeKaloG definitions and problem description

In this paper, we focus on a federation of SPARQL endpoints F (E,G). Dis-
covering and maintaining E is out of the scope of the paper. For instance, E
could be discovered and maintained by crawling the web as proposed by Google
Datasearch[3]. We define source selection as :

Definition 1 (Source Selection). Given a query Q, a source selection of Q
over F is the set of sources Etpi ⊆ E per triple pattern of Q that potentially
contributes to the result set of Q.

Ideally, a source selection provides a minimal set of endpoints to contact to
produce the complete results of the query. We formalize the problem of source
selection service as follows:

Definition 2 (Source Selection Service Problem (SSS-P)). A source se-
lection service S is a SPARQL service hosting an RDF graph SC extracted from
G. Given a query Q, S computes the source selection of Q over G by evaluating
a rewriting of Q over SC.

Building a source selection service raises critical challenges:
SC is constructed thanks to SPARQL queries, following the idea pro-

posed in Sportal [7]. Computing summaries based on SPARQL queries overcomes
the poor adoption of service description conventions and the impracticability of
dumps practices for web automation.

SC is a summary of G . We expect the data transfer from E to SC to be
proportional to the size of the summary of graphs and not to the original size of
graphs, e.g., extracting a summary of 1000 triples from DBpedia should transfer,
ideally 1000 triples.

Source selection is minimal, sound and complete. Source selection re-
turns, as possible, the minimal sources per triple pattern. According to the ”ac-
curacy” of the summary, source selection could be overestimated, i.e., contain
false positives. However, it should always produce sound and complete answers.

Source selection time complexity. The complexity of the source selec-
tion should be proportional to the number of sources selected per triple pattern.

3.3 BuildingDeKaloG Summaries

We rely on structural graph summarization to define SC. Structural graph
summarization is essentially a reduced version of the original RDF graphs where
nodes have been merged according to some notion of structural similarity [4].
Consequently, we consider summaries defined as an RDF graph homomorphism.

Definition 3 (RDF graph homomorphism). Let G,G′ be two RDF graphs.
A function ψ : V al(G)→ V al(G′) is a homomorphism from G to G’ iff for every
RDF triple (s, p, o) ∈ G there is an RDF triple (ψ(s), ψ(p), ψ(o)) ∈ G′.



dba nyt
<dba/b_obama> <isa> <dba/president>
<dba/b_obama> <sameas> <wda/barack_o>

<nyt/ba> <sameas> <dba/b_obama>
<nyt/ba> <said> "hello"

wda
<wda/barack_o> <isa> <wda/person>
<wda/barack_o> <birth> "1967"
SC(ψp,{dba,nyt,wda}) SC(ψh,{dba,nyt,wda})
<s1> <isa> <o1> <dba>
<s1> <isa> <o1> <wda>
<s1> <sameas> <o1> <dba>
<s1> <sameas> <o1> <nyt>
<s1> <said> <o1> <nyt>
<s1> <birth> <o1> <wda>

<dba> <isa> <dba> <dba>
<wda> <isa> <wda> <wda>
<dba> <sameas> <wda> <dba>
<nyt> <sameas> <dba> <nyt>
<nyt> <said> "lit" <nyt>
<wda> <birth> "lit" <wda>

SC(ψs,{dba,nyt,wda}) SC(ψ1,{dba,nyt,wda})
<dba/ma> <isa> <dba/nt> <dba>
<wda/_o> <isa> <wda/on> <wda>
<dba/ma> <sameas> <wda/_o> <dba>
<nyt/ba> <sameas> <dba/ma> <nyt>
<nyt/ba> <said> "lit" <nyt>
<wda/_o> <birth> "lit" <wda>

<s1> <p1> <o1> <dba>
<s1> <p1> <o1> <nyt>
<s1> <p1> <o1> <wda>

Fig. 2: Three RDF Graphs hosted by dba,nyt and wda and their 4 summaries

A homomorphism from G to G′ ensures that the graph structure present in
G has an “image” in G′.

Definition 4 (DeKaloG summary). Let F (E,G) be a federation of SPARQL
endpoints, the summary of E using ψ, SC(ψ) is a set of quads such that:

SC(ψ,E) = {(ψ(s), ψ(p), ψ(o), g)|(s, p, o) ∈ Gi andEi ∈ E}

For a federation F (E,G), we can define summaries with different "accuracy"
using different ψ functions. Figure 2 describes summaries of three dummy graphs
dba,nyt, and wda.

Identity summary: For this summary, ψid is defined as the identity func-
tion. SC(ψid, E) is composed of all graphs in the federation. This is the most
accurate summary, but unrealistic.

1-triple summary For this summary, ψ1 is defined as:

(ψ1(s), ψ1(p), ψ1(o)) = (: s1, : p1, : o1)

where : s1, : p1 and : o1 are Literals. A 1-triple summary SC(ψ1, E) contains
a single triple per endpoint. SC(ψ1, E) represents the set of all endpoints in
the federation, i.e., the catalog of the endpoints. The size of this summary is
proportional to the number of endpoints.

predicate-aware summary: ψp is defined as:

(ψp(s), ψp(p), ψp(o)) =

{
(: s1, p, : s1) if s, o ∈ I)
(: s1, p, ”lit”) if s ∈ I, o ∈ L



Table 1: Source selection for query Q1 (Figure 1a) and ψh summary (Figure 2)
Q triple pattern TP Source selection BGP source selection

tp1 nyt nyt
tp2 dba,wda, nyt nyt

This function projects all subjects and objects to two constants : s1 and ”lit”.
SC(ψp, E) is the set of all predicates of E. In the worst case, if all sources have all
predicates, the size of this summary is proportional to the number of predicates
(#predicates) multiplied by the number of sources (#sources).

authorities-aware summary: psih function is defined as:

(ψh(s), ψh(p), ψh(o)) =

{
(auth(s), p, auth(o)) if s, o ∈ I
(auth(s), p, ”lit”) if s ∈ I, o ∈ L

Auth(s) is a function that returns the domain of a URI. ψh builds a summary
inspired by the hibiscus summaries [15]. In the worst case, a predicate could
have all authorities (#auth) as subjects and as objects If all sources have a such
predicate, then the size of the summary is (#predicates ∗#auth2) ∗#sources.

suffix-authority-aware summary: ψs function is defined as:

(ψs(s), ψs(p), ψs(o)) =

{
(cc(auth(s), lt(s, 2)), p, cc(auth(o), lt(o, 2))) if s, o ∈ I
(cc(auth(s), lt(s, 2)), p, ”lit”)) if s ∈ I, o ∈ L

The function lt(string, 2) returns the last two characters of the string, and cc()
is the string concatenation function. This summary is an extension of ψh with
suffixes of URIs. The summary is more accurate than the psih summary. How-
ever, its size grows quickly. Considering only 26 different letters, the number of
nodes in the summary is now equal to #auth∗262. Therefore, the summary size
is bounded by (#predicates∗ (#auth∗262)2)∗#sources. The summary is more
accurate but it is much bigger.
The different summaries behave as Russian dolls, for instance:

SC(ψh, SC(ψs, E)) = SC(ψh, E)

The extraction of the most accurate summary allows for building less accurate
ones.

SC(ψ1, E)← SC(ψp, E)← SC(ψh, E)← SC(ψs, E)← SC(ψid, E)

3.4 Source selection onDeKaloG summaries

Source selection for a query Q as defined in section 3.2 computes a set of end-
points to contact per a triple pattern of Q.



Triple-pattern based source selection (TPSS) As a triple pattern of Q
is defined on G, it cannot be executed directly on the summary to find the
endpoints to contact. To make a triple pattern executable of a summary, we need
to extend ψ function to handle triple patterns, i.e. summarization functions are
defined for RDF triples; they cannot be applied to variables of triple patterns.

In the following, we extend the definition of function ψh to handle triple
patterns. As a triple pattern can have one the following forms [20], where ?
denotes variables: (?s1 ?p1 ?o1), (s1 ?p1 ?o1), (?s1 p1 ?o1), (?s1 ?p1 o1), (s1 p1
?o1), (s1 ?p1 o1),(?s1 p1 o1), (s1 p1 o1). We distinguish the following cases:

ψh(s), ψh(p), ψh(o)) =



s, p, o if s, p, o ∈ V
auth(s), p, o if s ∈ I, o ∈ V
auth(s), p, auth(o) if s, o ∈ I
auth(s), p, ”lit” if s ∈ I, o ∈ L
s, p, auth(o) if s ∈ V, o ∈ I
s, p, ”lit” if s ∈ V, o ∈ L

We define the source selection query for a triple pattern as:

Definition 5 (TPSS query). The source selection query for a triple pattern
(s, p, o) on a summary SC(ψ,E) is defined by the query:

SS(ψ, (s, p, o)) = πg(ψ(s), ψ(p), ψ(o), g) and g ∈ V

By abusing of notations, we consider πx(q) as the projection operator on variable
x of a quad q. JSS(ψ, (s, p, o))KSC(ψ,E) returns the source selection of (s, p, o).
Table 1 presents the the results of TPSS of query Q1 defined in (Figure 1a).

The source selection has different time complexity according to the form of
the triple pattern, and the summary.

For (?s ?p ?o), SS(ψ1(?s, ?p, ?o)) returns results in a time complexity pro-
portional to the number of selected sources, i.e. O(|SS(?s, ?p, ?o)|).

For (?s p ?o), SS(ψp(?s, p, ?o)) returns results in O(|SS((?s, p, ?o)|).
For (s p ?o), SS(ψh(s, p, ?o)) returns the results in the worst case inO(#auth∗

#sources).
For (s p ?o), SS(ψs(s, p, ?o)) maybe return a more accurate selection but,

in the worst case, in O((#auth ∗ 262) ∗#sources).
It possible to choose among different summaries according to the form of

triple patterns. Summaries that handle constants such ψh or ψs cannot answer
in O(|SS((s, p, o)|), but will depend of the selectivity of the constants.

The TPSS overestimates the number of sources to contact because it is not
aware of the join variables, i.e.variables shared among triple patterns of the
query. For instance, for the triple #tp2 (?s?p?o) of query Q1 (cf. figure 1a),
TPSS selects all the sources present in the summary (Table 1) even if a subset
of sources really contributes to the results of the query.

BGP-Based source selection query (BGPSS) For the sake of simplicity,
we focus on queries with conjunctive graph patterns (BGP queries). However,



any SPARQL query with union graph patterns, optional graph patterns, etc,
can be rewritten following the same approach. A BGP query is a set of triple
patterns.

Definition 6 (BGPSS Query).
Let Q a BGP query a set of triple patterns (si, pi, oi), the source selection

query is defined as:

SS(ψ,Q) = πgi 1(si,pi,oi)∈Q (ψ(si), ψ(pi), ψ(oi), gi), gi ∈ V

The evaluation of SS(ψ,Q) over SC(ψ,E) returns for all triple patterns tpi
of Q their respective selected sources in gi. As the homomorphic query of the
original query is executed on the summary, the source selection is optimal for
that summary.

Following this definition, the query Q1 with ψh can be rewritten as:

SELECT DISTINCT ?g1, ?g2 WHERE {
graph ?g1 {?s <sameas> <http://dba.org>}
graph ?g2 {?s ?p ?o}
}

Then the execution of this query on the ψh summary of the figure 2, return the
result of described in Table 1. As we can see, the BGP-aware source selection is
more accurate than the previous TP-based source selection.

Therefore, executing SS(ψid, Q) on SC(ψid, E) returns the exact source se-
lection for Q. executing SS(ψ1, Q) on SC(ψ1, E) returns all sources for all triple
patterns of Q.

The BGPSS requires executing all triple patterns of the query on the same
summary because mappings of join variables are shared among the triple pat-
terns. This is not the case of TPSS where different summaries can be used.
In the worst case, each triple pattern scans the whole summary, so complex-
ity is the number of triple patterns multiplied by the size of the summary.
For example, executing a source selection on ψh is now in the worst case in
(#predicates ∗#auth2) ∗#sources multiplied by the number of triple patterns
in the query. However, in an average case, for a bounded authority and a bounded
predicate in a triple pattern, the worst time complexity is #auth∗#source which
is much more tractable. Concretely, there is a trade-off between the accuracy of
the source selection and the time for source selection. For example, for the BGP
query Q1 of figure 1a, executing the source selection query for Q1 on the ψs sum-
mary returns a better source selection than executing the source selection for
Q1 on the ψh. However, the source selection query for Q1 on the ψh, generally,
returns the source selection much faster than with ψs.

3.5 Implementing summaries with web preemption

We can implement ψ functions as a SPARQL 1.1 query. For example, computing
authorities-aware summary ψh can be done by executing the following SPARQL
query over the SPARQL endpoints of the federation.



CONSTRUCT { ? ps ?p ?po } where { ? s ?p ?o
FILTER i s i r i (? s )
BIND(URI (REPLACE(STR(? s ) ,

"^( h t t p s ? : / / ? . ∗ ? ) / . ∗ " , "$1" ) ) AS ? ps )
BIND( i f ( i s i r i (? o ) , URI (REPLACE(STR(? o ) ,

"^( h t t p s ? : / / ? . ∗ ? ) / . ∗ " , "$1" ) ) , " l i t " ) as ?po )}

However, executing this query over an endpoint is challenging:

– A public SPARQL endpoint will interrupt the query after a time quota as
reported in[7].

– A TPF server [22] or SaGe [9] server return complete results for queries,
but FILTERS, BIND and CONSTRUCT operators are executed on client
side. Consequently, the query execution first transfers all mappings for the
(?s, ?p, ?o) triple pattern from the server to the client, then the summary is
computed on client-side. This clearly require to transfer all the RDF graphs
of the federation to compute a summary.

An affordable solution is to follow the approach of SaGe-agg [6] to imple-
ment this query without interruption and low data transfer. In SaGe-agg, the
SaGeserver can compute partial aggregates per quantum, thanks to the decom-
posability property of aggregate functions.

We extended the SaGe server to handle BIND operation to express sum-
mary functions in SPARQL. We also extended the SaGe server to handle CON-
STRUCT per quantum, i.e., a graph is constructed during one quantum and
transferred to the client at the end of the quantum. As BIND statements sum-
marize subjects and objects, most of the element of the graph is likely to be
duplicated. Consequently, the compression of the graph is mostly done on the
server side, and data transfer is dramatically reduced, as demonstrated in the
experimental study.

The transfer is optimal if all the summary queries can be processed in one
quantum. If not, some triples can be transferred from the server to the client
several times. This is an overhead intrinsic to the web preemption approach.

This overhead mainly depends on the summary function and the order of
scanned triples. To illustrate, suppose we are computing the ψh summary. It is
important to scan triples following a PSO index or POS index. As triples are
ordered by the predicate, followed by the subject or object, it is very likely that
all duplicates are eliminated during the same quantum. The the following table
illustrates this process for the POS index:

birthyear 1967 http://dbp/Bob
birthyear 1967 http://dbp/Alice

ψh−−→ birthyear lit http://dbp
birthyear lit http://dbp

The result of the CONSTRUCT is only one triple:birthyear lit http://dbp.
The ψs summary is less likely to remove all duplicates in a quantum. SaGe

should provide low overhead for authorities-aware summaries.

4 Experimental Study



We want to empirically answer the following questions: (i) What is the data
transfer and execution time of computing different kinds of summaries on online
SPARQL servers? (ii) How good is the source selection for TP-based and BGP-
based source selection? (iii) What is the execution time of the source selection
for a source selection service?

We extended the SaGe server to support the execution of summaries func-
tions. The SaGe server now supports CONSTRUCT, REDUCED keyword,
BIND operations and custom functions for efficient computation. All extensions
and experimental results are available at https://github.com/momo54/semcat.

Dataset and Queries: We consider a workload (SP) of 14 SPARQL queries ex-
tracted from the LargeRDF Benchmark [13]. These queries run on the 9 datasets
presented in figure 3a (orig).

Summaries and source selection We compare the performances of the TPSS
and BGPSS services on ψp, ψh and ψs summaries, named respectively void, hib
and suf . In the experimentations, the TPSS engine uses the same summary for
all triples of the query.

Server configuration: We run experimentations on personal computer 4 GHz
Intel Core i5 four CPU, 8 Go 2133 MHz LPDDR3.

Evaluation Metrics: (i) Summary Data transfer : is the number of triple trans-
ferred from a SPARQL server toDeKaloG to compute a summary. (ii) Summary
Execution time: is the time required by DeKaloG to compute the summary per
a SPARQL server. (iii) Summary size: is the number of triples in the summary
per graph. (iv) SSQ : is the sum of sources selected per query. For example, if a
query has two triple patterns tp1 and tp2 and the source selection for tp1 is s1
and the source selection for tp2 is s1, s2, then SSQ is 3. (v) SSt : is the source
selection time, i.e., time to perform the source selection of a query.

4.1 Building ψ summaries

For this experiment, we set up a SaGe server configured with a quantum of 60s.
We ingested the nine datasets and executed the different summary functions as
SPARQL queries on the server. We measured the data transfer and the execution
time as shown in Figure 3.

Figure 3a presents the number of triples in the summary (unique), the number
of triples retrieved to compute this summary (transferred), and the original size
of the graph (orig). For most endpoints, the data transfer is optimal; in one
quantum, the SaGe server can scan all the graphs and return the summary. For
large graphs, several quanta are necessary and duplicates appear for DBpedia
and Geonames. However, the overheads remain marginal.

Figure 3b presents the time required to compute the summary. We observe
that the time remains slightly the same, whatever the summary. This is normal
because computing the summary requires scanning the complete graph and the
scan speed remains the same whatever the summary function.



(a) Summary data transfer and sum-
mary size

(b) Summary execution time

Fig. 3: Results for a federation of nine SPARQL endpoints using void, hib and
suf summaries. orig is the size of the original RDF graph

4.2 The number of sources selected per query (SSQ)

Figures 4a, 4b present, respectively, the selected sources by BGPSS engine and
TPSS engines. As expected, for both source selection engines, a more accurate
summary improves the accuracy of the source selection, i.e. produces less SSQ.
For instance, the suf summary (ψs), returns the best results. The void summary
(ψp) makes no difference between engines. For hib and suf , the BGPSS engine
improves the source selection compared to TPSS engine. For instance, for S2
using the hib summary SSQ is 7 with TPSS and pruned to 3 with BGPSS, for
S4 is pruned from 20 to 5. In total, the SSQ for all queries is improved with
BGPSS engine except for S14 and S11. The SSQ of S8 remains unchanged.

The suf summary with BGPSS, as hib with BGPSS, improves most of
the queries SSQ. Compared to hib with BGPSS only the SSQ of 4 queries
S1, S11, S13 and S6 is improved. Overall, the suf summary with the BGPSS
dominates the source selection accuracy.

4.3 Execution time Source selection

Figues 4a and 4b present, respectively, the execution time of BGPSS engine and
TPSS engine. We run the experiment with RDFLib, Virtuoso (without quota),
and SaGe. For space limitations, only the execution time obtained with Virtuoso
is presented. All the results are available at *anonymized*.

As in previous experimentations, TPSS uses the same summary for all triple
patterns of the query, i.e., do not choose the summary according to the charac-
teristic of the triple pattern.

For both source selection engines, the suf summary is more expensive than
the others. This is normal as the size of the suf summary impacts significantly



(a) SSQ for BGPSS (b) SSQ for TPSS

(c) ET for BGPSS (d) ET for TPSS

Fig. 4: Source selection and execution times

the evaluation of any triple pattern, especially the (?s, ?p?o) triple pattern. Con-
cerning the void summary, the execution time is better with TPSS engine than
with BGP engine. Joins with the void summary are just useless and slow down
the execution. Concerning the hib summary, the execution time with the BGPSS
engine is better than suf . Using authority makes the joins selective. But when
used in the suf summary, the performances degrade quickly. The suf summary
creates a dense graph that negatively impacts the performances of joins.

Overall, considering the accuracy of the source selection and the execution
time, the hib summary (ψs) delivers a good trade-off.

5 Conclusions

In this paper, we highlighted the need for a source selection service to make
endpoints findable. Such a service requires web automation for its creation and
maintenance. Thanks to web preemption, we demonstrated how to query end-
points and collect efficient summaries based on SPARQL queries. We define



different summary functions. We presented how a query Q on endpoints can be
rewritten as a query Q′ on summaries that returns the source selection of Q on
endpoints. If all endpoints support web preemption, then any federated query
terminates and delivers complete results.

We empirically demonstrated the different trade-offs between the accuracy
of the source selection, the execution time of the source selection, and the size
of the summary. An interesting conjecture could be that one dimension has to
be sacrificed to preserve the others.

This approach raises several perspectives. First, it is an open garden, i.e., it
exists other summary functions and certainly many different ways to combine
summaries. We can imagine a BGP-based source selection combining different
summaries. Bindings obtained on one summary can be transformed to be injected
into other summaries. Second, in this paper, we focused on source selection; the
next step is to extend the summary functions to collect statistics for join ordering.
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