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As a web search engine can find relevant sources for a keyword query, the web of data needs a source selection engine to find relevant endpoints for a SPARQL query. However, source selection requires getting information about the content of endpoints and currently, it remains difficult to automatically explore the content of endpoints as web robots explore the content of web servers. Thanks to the web preemption principle, we propose to automatically build RDF summaries of endpoints through SPARQL queries. We propose an approach to compute the source selection of a query Q by evaluating a rewriting of Q on summaries. As all queries terminate under the web preemption paradigm,DeKaloG can provide a web automated source selection service relying on preemptable SPARQL servers. We empirically demonstrate that various summaries can be extracted with a data transfer proportional to the size of the summary, and highlight the trade-off between the size of the summaries, the accuracy of source selection, and the execution time of source selection.

Introduction

Context and motivation: Following the Linked Data principles [START_REF] Bizer | Linked data -the story so far[END_REF] hundreds of interconnected knowledge graphs are available through public SPARQL Endpoints [START_REF] Vandenbussche | SPARQLES: monitoring public SPARQL endpoints[END_REF]. However, executing a SPARQL query at the web scale is still challenging. The main issue concerns source selection, i.e. given a SPARQL query, find the minimal number of relevant sources on the web of data to be contacted to execute the query.

Existing Federated Query Engines (FQE) [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF] perform source selection just over a local catalog of sources and not over the web. In these conditions, a federated query engine builds a federated database, not a global data space. As a web search engine can find relevant sources for a keyword query, the web of data needs a source selection engine to find relevant endpoints for a SPARQL query. As web search engines help the web to be decentralized, a source selection engine should help the web of data to be decentralized.

Related works and problem: Source selection has been extensively studied [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF][START_REF] Saleem | Hibiscus: Hypergraph-based source selection for sparql endpoint federation[END_REF]. Efficient source selection requires knowing what are inside endpoints. This can be done by asking endpoints [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF] but this cannot scale to many endpoints. Another option relies on summaries but this supposes that summaries can be obtained or computed in a fully automated and reliable way at web scale [START_REF] Hasnain | SPORTAL: profiling the content of public SPARQL endpoints[END_REF]. There is no equivalent to web robots of web search engines able to crawl the whole set of endpoints. This prevents the automation of indexing of endpoints at the web-scale. Recently, web preemption [START_REF] Minier | Sage: Web preemption for public SPARQL query services[END_REF] allowed SPARQL queries to be executed sliced time, and [START_REF] Grall | Processing sparql aggregate queries with web preemption[END_REF] presented how it can be used to compute aggregates. This opens the door to the traversing of endpoints while collecting summaries.

Approach and Contributions: In this paper, we foster on web preemption to build DeKaloG; a source selection service for SPARQL endpoints.DeKaloG is a SPARQL endpoint hosting an RDF dataset containing summaries of endpoints. Thanks to preemptable servers, summaries of endpoints are obtained by executing summary functions as SPARQL queries over endpoints. The same summary functions can also be applied to any query Q to be executable on DeKaloG. The mappings produced by the execution of a query overDeKaloG allow the computation of the source selection of the query Q over endpoints. The contributions of this paper are the following:

-We define a model for building a source selection service at web scale using only the semantic web technologies RDF and SPARQL. -We demonstrate that summaries can be obtained with a data transfer proportional to the size of the summary and not to the size of data sources. -We demonstrate how source selection can be obtained by executing SPARQL queries on summaries. -We validate empiricallyDeKaloG on a subset of LargeRDFBench. This paper is organized as follows. Section 2 summarizes related works. Section 3 details the approach ofDeKaloG for building summaries and source selection. Section 4 presents our experimental results. Finally, conclusions and future work are outlined in Section 5.

Related Works

The source selection for a SPARQL query, finds the minimal number of relevant sources on the web of data to be contacted to execute the query. In this paper, we focus on RDF data hosted in SPARQL endpoints. SPARQL 1.1 Federated queries [START_REF] Steve | SPARQL 1.1 query language[END_REF] allow executing queries over different SPARQL endpoints. The SERVICE clause advises a federated query processor to execute a portion of SPARQL query against a remote SPARQL endpoint. In this case, the source selection is performed by users when authoring SPARQL queries.

Federated query engines [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF][START_REF] Görlitz | Splendid: Sparql endpoint federation exploiting void descriptions[END_REF] suppose the existence of a catalog of SPARQL endpoints and achieves automatic source selection based on the catalog. In its simplest form, this catalog is just a set of endpoints. Automatic source selection can be seen as the rewriting of a SPARQL query into SPARQL 1.1 federated query is given a catalog of endpoints.

Different techniques for source selection are proposed [START_REF] Saleem | A fine-grained evaluation of sparql endpoint federation systems[END_REF]. We can distinguish two categories of source selection: catalog/index-free and catalog/indexassisted. In catalog/index-free source selection, the federated query engine performs source selection without using any stored data summaries, in contrast, in catalog/index-assisted source selection, the federated query engine uses data summaries that have been collected in a pre-processing step.

FedX [START_REF] Schwarte | Fedx: Optimization techniques for federated query processing on linked data[END_REF] is a representative of index-free SPARQL federated query engine. The source selection relies completely on a simple catalog of URLs of SPARQL endpoints and SPARQL ASK query. For each triple pattern of a query, FedX sends ASK queries to all endpoints in the catalog, and those that pass the SPARQL ASK test are selected. The source selection of FedX does not require storing any data summaries. However, it requires a lot of communication with the endpoints before starting the query execution. For instance, for a catalog of 100 endpoints and a query with 10 triple patterns, FedX sends 100*10=1000 ASK queries to compute source selection before starting the execution of the federated query.

Index-assisted federated query engines improve the source selection but require preprocessing. Different levels of detail of statistics of SPARQL endpoints are pre-computed and used by the federated query engine during query processing. Different techniques and formats are proposed for precomputed indexes. Some approaches require sources to compute and maintain statistics [START_REF] Görlitz | Splendid: Sparql endpoint federation exploiting void descriptions[END_REF][START_REF] Montoya | The odyssey approach for optimizing federated SPARQL queries[END_REF], other do not [START_REF] Quilitz | Querying distributed rdf data sources with sparql[END_REF][START_REF] Saleem | Hibiscus: Hypergraph-based source selection for sparql endpoint federation[END_REF].

Both Odyssey [START_REF] Montoya | The odyssey approach for optimizing federated SPARQL queries[END_REF] Splendid [START_REF] Görlitz | Splendid: Sparql endpoint federation exploiting void descriptions[END_REF] requires data sources to compute and share statistics. Odyssey uses sophisticated statistics for source selection. The statistics detail information about the data provided by remote endpoints and links between them. Splendid [START_REF] Görlitz | Splendid: Sparql endpoint federation exploiting void descriptions[END_REF] relies on VOID statistics and ASK queries to perform source selection. The statistics of VOID descriptions are aggregated in a local index. This index maps triple patterns with a bound predicate to relevant data sources. A SPARQL ASK query is used when the subject or object of the triple pattern is a bound or unbound predicate. WoDQA [START_REF] Akar | Querying the web of interlinked datasets using void descriptions[END_REF] is another federated query engine that uses VOID; more precisely, it uses linksets description to retrieve relevant datasources.

Relying on statistics precomputed by data sources is a promising solution for source selection. However, recent studies [START_REF] Hasnain | SPORTAL: profiling the content of public SPARQL endpoints[END_REF] observed that only a third of public SPARQL endpoints give a static description of their content using VOID vocabularies, and even when they are provided, it is unclear the level of details. To mitigate the burden on publishers to describe of their endpoints', Sportal [START_REF] Hasnain | SPORTAL: profiling the content of public SPARQL endpoints[END_REF] proposes to compute VOID descriptions directly from the endpoints. Sportal defines sources self-description queries that allow computing VOID. Unfortunately, as highlighted in [START_REF] Hasnain | SPORTAL: profiling the content of public SPARQL endpoints[END_REF], Sportal naturally inherits the limitations of SPARQL endpoints, many endpoints do not return results or produce incomplete results.

DARQ [START_REF] Quilitz | Querying distributed rdf data sources with sparql[END_REF] and HiBISCuS [START_REF] Saleem | Hibiscus: Hypergraph-based source selection for sparql endpoint federation[END_REF] pre-compute the indexes directly from data in the endpoints. DARQ uses an index known as service description for source selection. The description includes hand-crafted source description similar to the Vocabulary of Linked Datasets VOID [?]. DARQ source selection matches the predicates in the query against the predicates in the service description. HbiBISCuS [START_REF] Saleem | Hibiscus: Hypergraph-based source selection for sparql endpoint federation[END_REF] proposes a join-aware source selection algorithm. HbiBISCuS relies on the authority fragments of resources URIs to estimate whether combing data from multiple sources can lead to any join results. An ASK query is used for source selection for unbound predicates or common predicates.

Relying on statistics precomputed by federated query engines seems affordable. However, existing federated query engines propose different levels of information and different formats for storing the indexes. Moreover, the index is locked up by the federated query engine and cannot be shared with other federated query engines.

Different summary approaches for source selection with different accuracy and granularity have been proposed [START_REF] Umbrich | Comparing data summaries for processing live queries over linked data[END_REF][START_REF] Cebiric | Summarizing Semantic Graphs: A Survey[END_REF]. Some summaries are approximative such as QTree, while others are exact, such as schema-level indexing.

Overall, many techniques have been proposed to build catalogs for source selection, but currently, there is no reliable method to build and maintain such catalogs over the web. In DeKaloG, we foster on web preemtion [START_REF] Minier | Sage: Web preemption for public SPARQL query services[END_REF] that allows SPARQL queries to terminate. Thanks to preemptable servers, it is possible to compute aggregations as proposed in [START_REF] Grall | Processing sparql aggregate queries with web preemption[END_REF]. This allows relying on endpoints to compute summaries and transfer only summaries. Using the same summary functions, a query Q over endpoints can be rewritten as a query Q s , to be executed on DeKaloG. The provenance of the mappings of Q s contains the source selection of Q.

TheDeKaloG approach

A source selection service for the linked data has the same objective than a keyword search service in the web of documents, i.e., ensuring the findability of sources over a decentralized web of data. The general use-case is the following:

1. A user aims to execute the SPARQL query Q1 of the figure 1a over the whole set of SPARQL endpoints with no prior knowledge. 2. She loads a SPARQL 1.1 query engine in her web browser, as proposed by Communica [START_REF] Taelman | Comunica: A modular SPARQL query engine for the web[END_REF] or SaGe [START_REF] Minier | Sage: Web preemption for public SPARQL query services[END_REF] , and launchs the execution. 3. The query engine contacts a source selection service that returns the set of endpoints to contact per triple pattern. The query engine is free to refine the source selection, optimize the query, and finally rewrites the original query into the SPARQL 1.1 federated query Q2 as in Figure 1a. 4. Finally, the web browser starts the execution of Q2 and returns complete results.

Such a scenario raises many issues: how to build this source selection service? How to contact it? Is the source selection optimal? What is the execution time of the source selection? The objective of DeKaloG is to answer the above questions and makes the above use-case possible. 

Preliminaries

We consider three disjoint sets I (IRIs), L (literals) and B (blank nodes) and denote the set T of RDF terms

I ∪ L ∪ B.
An RDF triple(s p o) ∈ (I ∪ B) × I × T connects subject s through predicate p to object o. An RDF graph G is a finite set of RDF triples. We denote V al(G) the set of all values (IRI, blank nodes and literals) in G. A mapping µ from V to T is a partial function µ : V → T , the domain of µ, denoted dom(µ) is the subset of V where µ is defined. Mappings µ 1 and µ 2 are compatible on the variable ?x,

written µ 1 (?x) ∼ µ 2 (?x) if µ 1 (?x)= µ 2 (?x) and ?x ∈ dom(µ 1 ) ∩ dom(µ 2 ).
RDF graphs are published on the web following the Linked data principles [START_REF] Bizer | Linked data -the story so far[END_REF]. These RDF graphs could be accessible through public SPARQL endpoints. A SPARQL endpoint is defined as a couple (E i , G i ), where E i is the U RL of the endpoint and G i is the RDF graph accessible by E i . A SPARQL query has the form Head ← Body where Head is an expression indicating how to construct the answer of the body and the body is a complex RDF graph pattern expression. Assume the existence of an infinite set V of variables, disjoint with previous sets. A SPARQL graph pattern expression P is defined recursively as follows [START_REF] Kaminski | Query nesting, assignment, and aggregation in sparql 1.1[END_REF][START_REF] Pérez | Semantics and complexity of SPARQL[END_REF][START_REF] Schmidt | Foundations of SPARQL query optimization[END_REF]. The evaluation of a graph pattern P over a SPARQL endpoint E i denoted by P Gi returns a set of mappings, called result set. Each element of the result of a query is a set of variable bindings.

1. A tuple from (I ∪ L ∪ V ) × (I ∪ V ) × (I ∪ L ∪ V ) is
We define a federation of SPARQL endpoint F (E, G) as a set of couple of

F (E, G) = {(E 1 , G 1 ), . . . , (E n , G n )} where E = {E 1 , . . . , E n } and G = n i=1 G i , respectively.
For the sake of simplicity, we consider the RDF graphs of endpoints do not have blank nodes. We consider federated SPARQL queries as queries defined over a federation of SPARQL endpoints. Given a SPARQL query Q, a data source E i ∈ E is said contribute to the query Q if at least one of the variable bindings in the result set of Q can be found in E i .

DeKaloG definitions and problem description

In this paper, we focus on a federation of SPARQL endpoints F (E, G). Discovering and maintaining E is out of the scope of the paper. For instance, E could be discovered and maintained by crawling the web as proposed by Google Datasearch [START_REF] Brickley | Google dataset search: Building a search engine for datasets in an open web ecosystem[END_REF]. We define source selection as :

Definition 1 (Source Selection). Given a query Q, a source selection of Q over F is the set of sources E tpi ⊆ E per triple pattern of Q that potentially contributes to the result set of Q.
Ideally, a source selection provides a minimal set of endpoints to contact to produce the complete results of the query. We formalize the problem of source selection service as follows:

Definition 2 (Source Selection Service Problem (SSS-P)). A source selection service S is a SPARQL service hosting an RDF graph SC extracted from G. Given a query Q, S computes the source selection of Q over G by evaluating a rewriting of Q over SC.

Building a source selection service raises critical challenges: SC is constructed thanks to SPARQL queries, following the idea proposed in Sportal [START_REF] Hasnain | SPORTAL: profiling the content of public SPARQL endpoints[END_REF]. Computing summaries based on SPARQL queries overcomes the poor adoption of service description conventions and the impracticability of dumps practices for web automation.

SC is a summary of G . We expect the data transfer from E to SC to be proportional to the size of the summary of graphs and not to the original size of graphs, e.g., extracting a summary of 1000 triples from DBpedia should transfer, ideally 1000 triples.

Source selection is minimal, sound and complete. Source selection returns, as possible, the minimal sources per triple pattern. According to the "accuracy" of the summary, source selection could be overestimated, i.e., contain false positives. However, it should always produce sound and complete answers.

Source selection time complexity. The complexity of the source selection should be proportional to the number of sources selected per triple pattern.

BuildingDeKaloG Summaries

We rely on structural graph summarization to define SC. Structural graph summarization is essentially a reduced version of the original RDF graphs where nodes have been merged according to some notion of structural similarity [START_REF] Cebiric | Summarizing Semantic Graphs: A Survey[END_REF]. Consequently, we consider summaries defined as an RDF graph homomorphism. Definition 4 (DeKaloG summary). Let F (E, G) be a federation of SPARQL endpoints, the summary of E using ψ, SC(ψ) is a set of quads such that:

Definition 3 (RDF graph homomorphism). Let G, G ′ be two RDF graphs. A function ψ : V al(G) → V al(G ′ ) is a homomorphism from G to G' iff for every RDF triple (s, p, o) ∈ G there is an RDF triple (ψ(s), ψ(p), ψ(o)) ∈ G ′ .
SC(ψ, E) = {(ψ(s), ψ(p), ψ(o), g)|(s, p, o) ∈ G i and E i ∈ E}
For a federation F (E, G), we can define summaries with different "accuracy" using different ψ functions. Figure 2 describes summaries of three dummy graphs dba,nyt, and wda.

Identity summary: For this summary, ψ id is defined as the identity function. SC(ψ id , E) is composed of all graphs in the federation. This is the most accurate summary, but unrealistic.

1-triple summary For this summary, ψ 1 is defined as:

(ψ 1 (s), ψ 1 (p), ψ 1 (o)) = (: s1, : p1, : o1)
where : s1, : p1 and : o1 are Literals. A 1-triple summary SC(ψ 1 , E) contains a single triple per endpoint. SC(ψ 1 , E) represents the set of all endpoints in the federation, i.e., the catalog of the endpoints. The size of this summary is proportional to the number of endpoints. predicate-aware summary: ψ p is defined as: 1a) and ψ h summary (Figure 2) This function projects all subjects and objects to two constants : s1 and "lit". SC(ψ p , E) is the set of all predicates of E. In the worst case, if all sources have all predicates, the size of this summary is proportional to the number of predicates (#predicates) multiplied by the number of sources (#sources). authorities-aware summary: psi h function is defined as:

(ψ p (s), ψ p (p), ψ p (o)) = (: s1, p, : s1) if s, o ∈ I) (: s1, p, "lit") if s ∈ I, o ∈ L Table 1: Source selection for query Q 1 (Figure
Q
(ψ h (s), ψ h (p), ψ h (o)) = (auth(s), p, auth(o)) if s, o ∈ I (auth(s), p, "lit") if s ∈ I, o ∈ L
Auth(s) is a function that returns the domain of a URI. ψ h builds a summary inspired by the hibiscus summaries [START_REF] Saleem | Hibiscus: Hypergraph-based source selection for sparql endpoint federation[END_REF]. In the worst case, a predicate could have all authorities (#auth) as subjects and as objects If all sources have a such predicate, then the size of the summary is (#predicates * #auth 2 ) * #sources. suffix-authority-aware summary: ψ s function is defined as:

(ψ s (s), ψ s (p), ψ s (o)) = (cc(auth(s), lt(s, 2)), p, cc(auth(o), lt(o, 2))) if s, o ∈ I (cc(auth(s), lt(s, 2)), p, "lit")) if s ∈ I, o ∈ L
The function lt(string, 2) returns the last two characters of the string, and cc() is the string concatenation function. This summary is an extension of ψ h with suffixes of URIs. The summary is more accurate than the psi h summary. However, its size grows quickly. Considering only 26 different letters, the number of nodes in the summary is now equal to #auth * 26 2 . Therefore, the summary size is bounded by (#predicates * (#auth * 26 2 ) 2 ) * #sources. The summary is more accurate but it is much bigger. The different summaries behave as Russian dolls, for instance:

SC(ψ h , SC(ψ s , E)) = SC(ψ h , E)
The extraction of the most accurate summary allows for building less accurate ones.

SC(ψ 1 , E) ← SC(ψ p , E) ← SC(ψ h , E) ← SC(ψ s , E) ← SC(ψ id , E)

Source selection onDeKaloG summaries

Source selection for a query Q as defined in section 3.2 computes a set of endpoints to contact per a triple pattern of Q.

Triple-pattern based source selection (TPSS) As a triple pattern of Q is defined on G, it cannot be executed directly on the summary to find the endpoints to contact. To make a triple pattern executable of a summary, we need to extend ψ function to handle triple patterns, i.e. summarization functions are defined for RDF triples; they cannot be applied to variables of triple patterns.

In the following, we extend the definition of function ψ h to handle triple patterns. As a triple pattern can have one the following forms [START_REF] Umbrich | Comparing data summaries for processing live queries over linked data[END_REF], where ? denotes variables: (?s 1 ?p 1 ?o 1 ), (s 1 ?p 1 ?o 1 ), (?s 1 p 1 ?o 1 ), (?s 1 ?p 1 o 1 ), (s 1 p 1 ?o 1 ), (s 1 ?p 1 o 1 ),(?s 1 p 1 o 1 ), (s 1 p 1 o 1 ). We distinguish the following cases:

ψ h (s), ψ h (p), ψ h (o)) =                s, p, o if s, p, o ∈ V auth(s), p, o if s ∈ I, o ∈ V auth(s), p, auth(o) if s, o ∈ I auth(s), p, "lit" if s ∈ I, o ∈ L s, p, auth(o) if s ∈ V, o ∈ I s, p, "lit" if s ∈ V, o ∈ L
We define the source selection query for a triple pattern as:

Definition 5 (TPSS query). The source selection query for a triple pattern (s, p, o) on a summary SC(ψ, E) is defined by the query:

SS(ψ, (s, p, o)) = π g (ψ(s), ψ(p), ψ(o), g) and g ∈ V
By abusing of notations, we consider π x (q) as the projection operator on variable x of a quad q. SS(ψ, (s, p, o)) SC(ψ,E) returns the source selection of (s, p, o). Table 1 presents the the results of TPSS of query Q1 defined in (Figure 1a). The source selection has different time complexity according to the form of the triple pattern, and the summary.

For (?s ?p ?o), SS(ψ 1 (?s, ?p, ?o)) returns results in a time complexity proportional to the number of selected sources, i. ((s,p,o)|), but will depend of the selectivity of the constants.

The TPSS overestimates the number of sources to contact because it is not aware of the join variables, i.e.variables shared among triple patterns of the query. For instance, for the triple #tp2 (?s?p?o) of query Q 1 (cf. figure 1a), TPSS selects all the sources present in the summary (Table 1) even if a subset of sources really contributes to the results of the query.

BGP-Based source selection query (BGPSS)

For the sake of simplicity, we focus on queries with conjunctive graph patterns (BGP queries). However, any SPARQL query with union graph patterns, optional graph patterns, etc, can be rewritten following the same approach. A BGP query is a set of triple patterns.

Definition 6 (BGPSS Query).

Let Q a BGP query a set of triple patterns (s i , p i , o i ), the source selection query is defined as:

SS(ψ, Q) = π gi 1 (si,pi,oi)∈Q (ψ(s i ), ψ(p i ), ψ(o i ), g i ), g i ∈ V
The evaluation of SS(ψ, Q) over SC(ψ, E) returns for all triple patterns tp i of Q their respective selected sources in g i . As the homomorphic query of the original query is executed on the summary, the source selection is optimal for that summary.

Following this definition, the query Q1 with ψ h can be rewritten as:

SELECT DISTINCT ?g1, ?g2 WHERE { graph ?g1 {?s <sameas> <http://dba.org>} graph ?g2 {?s ?p ?o} }

Then the execution of this query on the ψ h summary of the figure 2, return the result of described in Table 1. As we can see, the BGP-aware source selection is more accurate than the previous TP-based source selection. Therefore, executing SS(ψ id , Q) on SC(ψ id , E) returns the exact source selection for Q. executing SS(ψ 1 , Q) on SC(ψ 1 , E) returns all sources for all triple patterns of Q.

The BGPSS requires executing all triple patterns of the query on the same summary because mappings of join variables are shared among the triple patterns. This is not the case of TPSS where different summaries can be used. In the worst case, each triple pattern scans the whole summary, so complexity is the number of triple patterns multiplied by the size of the summary. For example, executing a source selection on ψ h is now in the worst case in (#predicates * #auth 2 ) * #sources multiplied by the number of triple patterns in the query. However, in an average case, for a bounded authority and a bounded predicate in a triple pattern, the worst time complexity is #auth * #source which is much more tractable. Concretely, there is a trade-off between the accuracy of the source selection and the time for source selection. For example, for the BGP query Q1 of figure 1a, executing the source selection query for Q1 on the ψ s summary returns a better source selection than executing the source selection for Q1 on the ψ h . However, the source selection query for Q 1 on the ψ h , generally, returns the source selection much faster than with ψ s .

Implementing summaries with web preemption

We can implement ψ functions as a SPARQL 1.1 query. For example, computing authorities-aware summary ψ h can be done by executing the following SPARQL query over the SPARQL endpoints of the federation.

CONSTRUCT { ? p s ? p ? po } where { ? s ? p ? o FILTER i s i r i ( ? s ) BIND ( URI (REPLACE(STR( ? s ) , " ^( h t t p s ? : / / ? . * ? ) / . * " , " $1 " ) ) AS ? p s ) BIND ( i f ( i s i r i ( ? o ) , URI (REPLACE(STR( ? o ) , " ^( h t t p s ? : / / ? . * ? ) / . * " , " $1 " ) ) , " l i t " ) a s ? po ) } However, executing this query over an endpoint is challenging:

-A public SPARQL endpoint will interrupt the query after a time quota as reported in [START_REF] Hasnain | SPORTAL: profiling the content of public SPARQL endpoints[END_REF]. -A TPF server [START_REF] Verborgh | Triple pattern fragments: A low-cost knowledge graph interface for the web[END_REF] or SaGe [START_REF] Minier | Sage: Web preemption for public SPARQL query services[END_REF] server return complete results for queries, but FILTERS, BIND and CONSTRUCT operators are executed on client side. Consequently, the query execution first transfers all mappings for the (?s, ?p, ?o) triple pattern from the server to the client, then the summary is computed on client-side. This clearly require to transfer all the RDF graphs of the federation to compute a summary.

An affordable solution is to follow the approach of SaGe-agg [START_REF] Grall | Processing sparql aggregate queries with web preemption[END_REF] to implement this query without interruption and low data transfer. In SaGe-agg, the SaGeserver can compute partial aggregates per quantum, thanks to the decomposability property of aggregate functions.

We extended the SaGe server to handle BIND operation to express summary functions in SPARQL. We also extended the SaGe server to handle CON-STRUCT per quantum, i.e., a graph is constructed during one quantum and transferred to the client at the end of the quantum. As BIND statements summarize subjects and objects, most of the element of the graph is likely to be duplicated. Consequently, the compression of the graph is mostly done on the server side, and data transfer is dramatically reduced, as demonstrated in the experimental study.

The transfer is optimal if all the summary queries can be processed in one quantum. If not, some triples can be transferred from the server to the client several times. This is an overhead intrinsic to the web preemption approach.

This overhead mainly depends on the summary function and the order of scanned triples. To illustrate, suppose we are computing the ψ h summary. It is important to scan triples following a PSO index or POS index. As triples are ordered by the predicate, followed by the subject or object, it is very likely that all duplicates are eliminated during the same quantum. The the following table illustrates this process for the POS index: The result of the CONSTRUCT is only one triple:birthyear lit http://dbp. The ψ s summary is less likely to remove all duplicates in a quantum. SaGe should provide low overhead for authorities-aware summaries.

We want to empirically answer the following questions: (i) What is the data transfer and execution time of computing different kinds of summaries on online SPARQL servers? (ii) How good is the source selection for TP-based and BGPbased source selection? (iii) What is the execution time of the source selection for a source selection service?

We extended the SaGe server to support the execution of summaries functions. The SaGe server now supports CONSTRUCT, REDUCED keyword, BIND operations and custom functions for efficient computation. All extensions and experimental results are available at https://github.com/momo54/semcat.

Dataset and Queries: We consider a workload (SP ) of 14 SPARQL queries extracted from the LargeRDF Benchmark [START_REF] Saleem | Largerdfbench: a billion triples benchmark for sparql endpoint federation[END_REF]. These queries run on the 9 datasets presented in figure 3a (orig).

Summaries and source selection

We compare the performances of the TPSS and BGPSS services on ψ p , ψ h and ψ s summaries, named respectively void, hib and suf . In the experimentations, the TPSS engine uses the same summary for all triples of the query.

Server configuration: We run experimentations on personal computer 4 GHz Intel Core i5 four CPU, 8 Go 2133 MHz LPDDR3.

Evaluation Metrics: (i) Summary Data transfer : is the number of triple transferred from a SPARQL server toDeKaloG to compute a summary. (ii) Summary Execution time: is the time required by DeKaloG to compute the summary per a SPARQL server. (iii) Summary size: is the number of triples in the summary per graph. (iv) SSQ: is the sum of sources selected per query. For example, if a query has two triple patterns tp1 and tp2 and the source selection for tp1 is s1 and the source selection for tp2 is s1, s2, then SSQ is 3. (v) SSt: is the source selection time, i.e., time to perform the source selection of a query.

Building ψ summaries

For this experiment, we set up a SaGe server configured with a quantum of 60s. We ingested the nine datasets and executed the different summary functions as SPARQL queries on the server. We measured the data transfer and the execution time as shown in Figure 3.

Figure 3a presents the number of triples in the summary (unique), the number of triples retrieved to compute this summary (transferred), and the original size of the graph (orig). For most endpoints, the data transfer is optimal; in one quantum, the SaGe server can scan all the graphs and return the summary. For large graphs, several quanta are necessary and duplicates appear for DBpedia and Geonames. However, the overheads remain marginal.

Figure 3b presents the time required to compute the summary. We observe that the time remains slightly the same, whatever the summary. This is normal because computing the summary requires scanning the complete graph and the scan speed remains the same whatever the summary function. Figures 4a, 4b present, respectively, the selected sources by BGPSS engine and TPSS engines. As expected, for both source selection engines, a more accurate summary improves the accuracy of the source selection, i.e. produces less SSQ. For instance, the suf summary (ψ s ), returns the best results. The void summary (ψ p ) makes no difference between engines. For hib and suf , the BGPSS engine improves the source selection compared to TPSS engine. For instance, for S2 using the hib summary SSQ is 7 with TPSS and pruned to 3 with BGPSS, for S4 is pruned from 20 to 5. In total, the SSQ for all queries is improved with BGPSS engine except for S14 and S11. The SSQ of S8 remains unchanged.

The suf summary with BGPSS, as hib with BGPSS, improves most of the queries SSQ. Compared to hib with BGPSS only the SSQ of 4 queries S1, S11, S13 and S6 is improved. Overall, the suf summary with the BGPSS dominates the source selection accuracy.

Execution time Source selection

Figues 4a and 4b present, respectively, the execution time of BGPSS engine and TPSS engine. We run the experiment with RDFLib, Virtuoso (without quota), and SaGe. For space limitations, only the execution time obtained with Virtuoso is presented. All the results are available at *anonymized*.

As in previous experimentations, TPSS uses the same summary for all triple patterns of the query, i.e., do not choose the summary according to the characteristic of the triple pattern.

For both source selection engines, the suf summary is more expensive than the others. This is normal as the size of the suf summary impacts significantly 

Conclusions

In this paper, we highlighted the need for a source selection service to make endpoints findable. Such a service requires web automation for its creation and maintenance. Thanks to web preemption, we demonstrated how to query endpoints and collect efficient summaries based on SPARQL queries. We define different summary functions. We presented how a query Q on endpoints can be rewritten as a query Q ′ on summaries that returns the source selection of Q on endpoints. If all endpoints support web preemption, then any federated query terminates and delivers complete results.

We empirically demonstrated the different trade-offs between the accuracy of the source selection, the execution time of the source selection, and the size of the summary. An interesting conjecture could be that one dimension has to be sacrificed to preserve the others.

This approach raises several perspectives. First, it is an open garden, i.e., it exists other summary functions and certainly many different ways to combine summaries. We can imagine a BGP-based source selection combining different summaries. Bindings obtained on one summary can be transformed to be injected into other summaries. Second, in this paper, we focused on source selection; the next step is to extend the summary functions to collect statistics for join ordering.
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 1 Fig. 1: SPARQL queries Q 1 and Q 2
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 2 Fig. 2: Three RDF Graphs hosted by dba,nyt and wda and their 4 summaries

  birthyear 1967 http://dbp/Bob birthyear 1967 http://dbp/Alice ψ h --→ birthyear lit http://dbp birthyear lit http://dbp

  (a) Summary data transfer and summary size (b) Summary execution time
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 3 Fig. 3: Results for a federation of nine SPARQL endpoints using void, hib and suf summaries. orig is the size of the original RDF graph

Fig. 4 :

 4 Fig. 4: Source selection and execution times

  It possible to choose among different summaries according to the form of triple patterns. Summaries that handle constants such ψ h or ψ s cannot answer in O(|SS

e. O(|SS(?s, ?p, ?o)|). For (?s p ?o), SS(ψ p (?s, p, ?o)) returns results in O(|SS((?s, p, ?o)|). For (s p ?o), SS(ψ h (s, p, ?o)) returns the results in the worst case in O(#auth * #sources). For (s p ?o), SS(ψ s (s, p, ?o)) maybe return a more accurate selection but, in the worst case, in O((#auth * 26 2 ) * #sources).
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