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Abstract: The Chinese government introduced regulations to control emissions and reduce the
level of NOx pollutants for the first time with the 12th Five-Year Plan in 2011. Since then, the
changes in NOx emissions have been assessed using various approaches to evaluate the impact of
the regulations. Complementary to the previous studies, this study estimates anthropogenic NOx

emissions in 2015 and 2019 over Eastern China using as a reference the Hemispheric Transport of
Air Pollution (HTAP) v2.2 emission inventory for 2010 and the new variational inversion system the
Community Inversion Framework (CIF) interfaced with the CHIMERE regional chemistry transport
model and OMI satellite observations. We also compared the estimated NOx emissions with the
independent Multi-resolution Emission Inventory for China (MEIC) v1.3, from 2015. The inversions
show a slight global decrease in NOx emissions (in 2015 and 2019 compared to 2010), mainly limited
to the most urbanized and industrialized locations. In the locations such as Baotou, Pearl River Delta,
and Wuhan, the estimations in 2015 compared to 2010 are consistent with the target reduction (10%)
of the 12th Five-Year Plan. Comparisons between our emission estimates and MEIC emissions in 2015
suggest that our estimates likely underestimate the emission reductions between 2010 and 2015 in the
most polluted locations of Eastern China. However, our estimates suggest that the MEIC inventory
overestimates emissions in regions where MEIC indicates an increase of the emissions compared
to 2010.

Keywords: top-down estimation; inverse modeling; NOx emissions; air quality; CIF; CHIMERE;
OMI; remote sensing

1. Introduction

Nitrogen oxides (NOx = NO2 + NO) are a family of highly reactive trace gases that
cause air quality deterioration in the troposphere. They play a key role in the forma-
tion of ozone (O3) through photochemistry [1] and the formation of secondary organic
aerosols [2]. Most tropospheric NOx are emitted as NO and rapidly converted to NO2 by
various reactions [3]. Anthropogenic activities such as fossil fuel combustion are domi-
nant NOx emission sources, especially in industrialized regions [4]. On the other hand,
natural and biogenic sources can be a major source of NOx, such as soil NOx emissions in
agricultural areas [5].
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Over the past few decades, NOx emission levels in China increased due to growth in
industrial activities and weak pollution regulations [6–8]. The control of NOx emissions
was added to the regulations in March 2011 with the 12th Five-Year Plan (2011–2015)
to reduce the annual Chinese NOx emissions nationwide by 10% compared to 2010 [9].
Studies have shown that the Chinese government met its emission reduction target due to
these regulations in this period and even exceeded the plan’s target e.g., [10,11]. This plan
is followed by a 13th Five-Year Plan (2016–2020) with a target of reducing Chinese NOx
emissions nationwide by 15% in 2020, compared to 2015 [12].

Chemistry transport models (CTMs) have been widely used to study the efficiency
of environmental regulations, assess their impacts, and make future predictions through
different scenarios [11,13–16]. Emission inventories are one of the main inputs of CTMs,
and their spatial and temporal accuracies are essential for simulations and forecasts. One
common way to build an emission inventory is the bottom-up approach. This approach
quantifies emissions based on the local distribution of activities, emission factors, and
annual self-declarations by emitters. Numerous studies estimated China’s NOx emissions
using these activity rates and species’ emission factors [17,18]. For example, Li et al. [19]
calculated the annual anthropogenic Chinese NOx emissions for 2008 as 26.55 Tg using
the Multiresolution Emission Inventory for China (MEIC) v1.0 and 20.66 Tg using Hemi-
spheric Transport of Air Pollution (HTAP) v2.2 bottom-up emission inventories. For 2010,
Li et al. [19] and Zheng et al. [20] estimated annual NOx emissions as 26.5 Tg and 29.1 Tg,
respectively, using two different versions of MEIC bottom-up inventory (v1.3 and v1.0,
respectively). However, even though the information comes firsthand, significant uncer-
tainties remain. Using Monte Carlo simulations, Zhao et al. [21] predicted Chinese annual
NOx emissions’ uncertainties to be 35% of estimated emissions in 2010. Crippa et al. [22]
estimate NOx emission uncertainties in 2012 as 56.2% for top emitting regions in China. It is
worth noting that the uncertainties are given on an annual and national basis. They might
be larger when considering grid points or smaller timescales. Moreover, the collection of
data to build bottom-up inventories is time-consuming; then, updating these inventories
may take several years [23].

On the other hand, using inverse modeling techniques, which constrain emissions by
atmospheric observations, brings complementary information and, in some regions such as
China, captures current emission trends better than traditional bottom-up inventories [16].
In addition, unlike bottom-up inventories, these top-down inventories provide broad spatial
coverage and have a fast update ability, as emissions can be estimated when observations
are ready to interpret. Nevertheless, top-down inventories have some limitations and
uncertainties related to the performances of CTMs on transport and chemical processes [24]
and the observations themselves (e.g., limited sensitivity to the surface and cloud coverage
for satellite observations) [25]. Thus, different inversion techniques have been developed
to estimate NOx emissions. For example, earlier studies used a mass balance approach to
constrain NOx emissions on various spatial scales [26–30]. Most of the studies assume a
linear relationship between NOx prior emissions and NO2 columns, and do not consider
horizontal emission transport. With the increase in computational capacity, advanced
inversion techniques such as the Kalman filter [31] and variational data assimilations [32]
have been developed to take into account the transport of emissions and nonlinearities
in chemical reactions. Van der A et al. [33] derived anthropogenic NOx emissions on a
25 × 25 km2 provincial level using the DECSO v4 algorithm [23,34,35], which estimates
emissions using Kalman filter, the regional CHIMERE v2013 CTM [36], MEIC v1.0 inventory
for 2010 [20,37,38] and Ozone Monitoring Instrument (OMI) NO2 observations using the
DOMINO v.2 algorithm [39] for the period 2005–2015 in Eastern China. They found an
increasing trend in total NOx emissions until 2012, except for 2009. Even though the
total NOx emission peak occurs in 2012, different peaks occur between 2011 and 2014 on a
provincial level. Qu et al. [40] co-assimilated anthropogenic and biomass burning NOx, SO2,
and CO emissions from bottom-up inventory HTAP v2.2 2010 [41] in China using a sector-
based variational algorithm and GEOS-Chem Adjoint model [42] for January 2005–2012.



Atmosphere 2023, 14, 154 3 of 19

Unlike Van der A et al. [33], their inversion captures the NOx emissions peak for 2011.
Moreover, they found that all estimated NOx emission top-down inventories (sector-based
and species-based) are smaller than HTAP v2.2 bottom-up inventory by 21–26% in January
2010. Zheng et al. [20] quantified anthropogenic NOx emissions using a combination of
MEIC v1.3 bottom-up inventory [38] and index decomposition analysis. They compared
their bottom-up emission estimates with other studies, which include OMI observations
and top-down emission estimates between 2010 and 2015 for China and Eastern China.
According to their study, all top-down NOx emission inventories calculated by inverse
modeling using OMI NO2 columns show smaller relative differences between these two
years than bottom-up estimations and OMI observations [20] (p. 14106, Table 2).

The previous studies show a significant range of uncertainties regarding the NOx
emissions from bottom-up and top-down approaches and a significant spread in the
emissions derived from different approaches [23]. The changes in the emissions such as the
emission reduction targets of governmental mitigation strategies, which the inventories
need to assess, are usually smaller than the uncertainties on the emissions and then an
important challenge for the inventories. A variety of tools to estimate emissions is essential
to assess the emissions and their related uncertainties better. Our study proposes the
use of a new inverse modeling system, the Community Inversion Framework (CIF) [43],
interfaced with the CHIMERE chemistry-transport model [36] and its adjoint [44] and OMI
satellite observations to estimate Chinese NOx emissions in 2015 and 2019. The objectives
of this study are twofold: (i) testing the new CIF-CHIMERE over China and evaluating if
the derived emissions and concentrations simulated using them are closer to independent
inventory and measured concentrations, respectively; (ii) evaluating if the NOx emission
regulations planned in the two last Five-Year Plans are visible in the emissions derived
with the new CIF-CHIMERE system. We choose to focus on the last year (2015) of the
12th Five-Year Plan. We do not consider the last year of the 13th Five-Year Plan, 2020 as it
was perturbed by the COVID pandemic. We analyze the NOx emission estimates at the
scale of Eastern China and at the scale of the most urbanized and industrialized Chinese
locations. We evaluate the estimated NOx emissions by comparing with the independent
inventory MEIC v1.3 and surface NO2 observations from the Chinese air quality network.
Section 2 describes the methodology and tools used in this study. Results and discussions
are presented in Section 3.

2. Materials and Methods
2.1. Inversion-Related Tools and Data
2.1.1. Inverse Modeling and the CIF System

The atmospheric inverse modeling approach applied to emission estimates aims at
constraining a prior knowledge of emissions with atmospheric observations (concentra-
tions or columns). A chemical transport model combined with an observation operator
is used to map the emissions into the observation space. The emissions are usually con-
strained at the model grid point and at a temporal resolution better than annual. Due
to the high dimension of the problem, sophisticated approaches [45] are necessary. The
evaluation of the estimated or posterior emissions can only be performed indirectly by com-
paring concentrations simulated using these posterior emissions (named in the following
Conc_Post) to independent measured concentrations. This step is often named “experiment
run”. To evaluate if the inversion succeeds to better assess the emissions compared to
our prior knowledge used, it is also necessary to perform a “control run” to simulate
the concentrations using the prior emissions (named Conc_Prior in the following) and
quantify if the Conc_Post are closer to the measured concentrations than the Conc_Prior.
Figure 1 summarizes the different steps needed to perform atmospheric inversions and to
evaluate them.

As the dimension of the problem to solve is high, we use a variational approach based
on a Bayesian framework and normal distributions of the errors and uncertainties. The
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system aims to find an optimal solution of the control vector x by minimizing the cost
function J (Equation (1)).

J(x) =
1
2
(x − xb)

T B−1(x − xb) +
1
2
(H(x)− yo)

T R−1(H(x)− yo) (1)

where xb is a prior estimate of the control vector, B is the prior error covariance matrix,
H(x) is the observation operator matrix which links control variables to atmospheric
measurements at specified locations and time using a CTM (CHIMERE in this study), yo is
the observation vector (OMI NO2 columns in this study), and R is the covariance matrix of
the observation errors. In our case, the control variables are not emissions, but rather daily
multiplicative factors applied to NOx emissions. During a given day, the corresponding
multiplicative factor is used to scale homogeneously the hourly emission values, retaining
the relative variations of the diurnal profile. This, the relationship between control variables
and emission can be stated as follows:

ENOx (time, altitude, latitude, longitude) = x (day, altitude, latitude, longitude) ×ENOx, ref
(time, altitude, latitude, longitude) with ENOx, ref the reference emissions from the inventory.
Thus, the values of xb are all set to 1 and the control covariance matrix B is expressed in rela-
tive terms and not in emission covariances. The dimension of x and xb is 24 × 16 × 64 × 60
and corresponds to the hours in a day, the level of altitude and the number of latitudi-
nal and longitudinal grid cells in the domain, respectively. The dimension of y is 1D
(e.g., 780) and determined by the selection of the observations (selection criteria explained
in the Section 2.1.3).
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We use the CIF inversion system interfaced with the CHIMERE CTM and its adjoint
and the OMI NO2 columns to perform the inversion experiments. The CIF is an open-source
unified system designed to allow the use of different atmospheric inversion approaches,
atmospheric transport models, and observations with large flexibility [43]. It is designed to
estimate the fluxes of various greenhouse gases and reactive species both at the global and
regional scales. As we consider reactive species, the inversion problem is non-linear. We
then use the M1QN3 limited-memory quasi-Newton minimization algorithm [46] to mini-
mize the cost function J (Equation (1)). It is worth noting that computing the uncertainties
on the posterior emissions is very challenging when using variational approaches due to the
dimensionality of the problem and constraints on time and computing sources [43,44,47].
These uncertainties are then not estimated here.
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2.1.2. HTAP v2.2 Emission Inventory

The Hemispheric Transport Atmospheric Pollution (HTAP) inventory, version 2.2 [41]
is used to prescribe anthropogenic emissions of pollutants to the CHIMERE model. For
the country of China, HTAP v2.2 is constructed using regional emission inventories in
collaboration with the MICS Asia Scientific Community (MICS-Asia) and REAS experts
with a horizontal resolution of 0.25◦ × 0.25◦ converted to 0.1◦ × 0.1◦ [48]. Emissions are
estimated from seven main sectors of anthropogenic activities: air, ships, energy, industry,
transport, residential, and agriculture. The HTAP v2.2 emissions correspond to the year
2010 and used as the prior in the inversion runs (Figure 1), whatever the considered year.
In this study, emissions will be called Prior when they are used as a prior in the inversion.
In parallel, they are also used as a reference for the emissions of the year 2010, the starting
point to evaluate the 12th and the 13th Five-Year Plans. In this study, they are called
HTAP v2.2 when they are used as a reference in the simulations. In addition, the biogenic
NOx emissions are given by the Model of Emissions of Gases and Aerosols from Nature
version 2.1 (MEGAN v2.1) model [49].

In this study, we set prior uncertainties B by taking diagonal terms as 70% for the
anthropogenic NOx emissions [50] and 100% for the biogenic NOx emissions. We use
horizontal correlations that decay exponentially with the correlation length scale derived
from the model (CHIMERE) resolution. Noting that, in this study, NOx emissions are
expressed as nitrogen oxides (NO2 and NO) in kilotons (hereinafter, kt NOx or Tg NOx is
referred to as kt or Tg).

2.1.3. OMI Satellite Observations

The Ozone Monitoring Instrument (OMI) is a nadir-viewing ultraviolet-visible spec-
trometer on National Aeronautics and Space Administration’s (NASA) Earth Observing
System (EOS) Aura polar satellite, launched in July 2004 [51]. The instrument is a result
of the contribution of the Netherlands’ Institute for Air and Space Development and the
Finnish Meteorological Institute to the EOS Aura mission. It has been providing daily
data since 9th August 2004 by making full global measurements of the solar radiation
backscattered from the Earth’s atmosphere and surface, along with measurements of the
solar irradiance with a spatial resolution of 24 × 13 km2 at nadir (across × along-track)
with a local overpass time 13:40 LT [52].

This study uses OMI NO2 tropospheric columns from the European Quality Assur-
ance for Essential Climate Variables (QA4ECV) project’s NO2 ECV precursor version 1.1
product [53]. This QA4ECV retrieval consists of an improved spectral fitting method and
data assimilation scheme using the TM5-MP model in 1◦ × 1◦ degree horizontal resolution
to estimate stratospheric background NO2 and to reinforce the air mass factor [54,55]. OMI
tropospheric NO2 column data is defined as the vertical integrations of the NO2 molecules
between the surface and the tropopause [56]. The data set is collected from the Tropospheric
Emission Monitoring Internet Service (TEMIS, [57]). We first select OMI observation data
of which, (i) the processing error flag equals 0 for a pixel, (ii) the solar zenith angle is lower
than 80◦, (iii) the snow ice flag is lower than 10 or equal to 255, (iv) the ratio of tropospheric
air mass factor (AMF) over geometric AMF is higher than 0.2 to avoid situations in which
the retrieval is based on very low (relative) tropospheric AMFs, and (v) the cloud fraction
is lower than 0.5. Second, we filter out these selected daily OMI observation data with a
maximum of 100% error.

2.1.4. The Regional CHIMERE CTM

CHIMERE is a state-of-the-art three-dimensional regional CTM that simulates hourly
atmospheric concentrations of a number of pollutants of interest over a given domain [58].
External forcings are required to run a simulation, such as meteorological fields, primary pol-
lutant emissions (anthropogenic and biogenic emissions), and initial and boundary conditions.

In this study, we use CHIMERE v2013 [36] with the following inputs to simulate NO2
concentrations. Boundary conditions are given by a climatology from the global model
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LMDZ-INCA [59]. Meteorological conditions come from the European Centre for Medium-
Range Weather Forecasts (ECMWF) and are interpolated hourly. Biogenic emissions are
estimated from the MEGAN v2.1 model [49]. Finally, anthropogenic emissions are those
from the HTAP v2.2 bottom-up inventory [41].

Our study configuration is based on a 0.5◦ × 0.5◦ horizontal resolution with 17 vertical
layers from surface to 200 hPa and 8 layers within the first three kilometers. It includes
65 (longitude) × 61 (latitude) grid cells that correspond to 18◦ N–50◦ N; 102◦ E–132◦ E and
covers eastern and southern China, seas and Korean Peninsula (Figure 2).
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The gaseous chemical scheme used in CHIMERE is MELCHIOR-2 [37]. The aerosol
module of CHIMERE is not considered in the simulations and inversions, as the adjoint of
this module is not available [44].

For the comparison between the observations and the model during the inversion
process (Figure 1), super-observations at the model resolution (0.5◦ × 0.5◦) are considered.
As the number of OMI observations lying in the model grid-cell is generally small and will
not allow one to decrease observation errors by averaging, we choose to use the median
of corresponding OMI NO2 columns. The averaging kernel A and the observation errors
associated with the median columns are considered too. The observation errors are used to
fill the R matrix.

To compare with OMI super-observations, simulated NO2 concentrations in the same
grid cells as the super observations are selected. The hourly-simulated concentrations are
interpolated in time and OMI’s pressure levels. OMI averaging kernels are applied to these
NO2 vertical profiles using Equation (2) [56].

y =
n

∑
i=1

ys
i Ai (2)
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where; y is the model equivalent of the satellite data, n is the number of levels of the satellite
observations, ys

i is the simulated concentration interpolated at the i-th level, Ai is the aver-
aging kernel of the i-th level. Finally, modelled NO2 tropospheric columns are calculated
and compared to OMI NO2 columns (the 2nd term of the cost function J, Equation (1)).

2.1.5. Inversion Experiments

This study performs CIF-CHIMERE inversions with a daily assimilation window
for 2015 and 2019. The inversion is considered convergent when the gradient norm of
the J function is reduced by more than 95% [44]. By this criterion, there are 267 and
296 convergent days per year, respectively. Due to the variability of the daily spatial
coverage of OMI observations, we consider monthly averaged corrections to build the final
posterior emission inventories. Examples of monthly corrections are shown in Figure S1 in
the Supplementary Material. The main configurations of the inversion runs made for 2015
and 2019 are summarized in Table 1.

Table 1. Summary of the inversions and simulations performed in this study. The output column
gives the short names, which will be used in the following.

Type Target Year Emission Inventory Objective Output

Inversion 2015 HTAP v2.2 2010 Estimate monthly anthropogenic NOx Emissions Emis_Post15
Inversion 2019 HTAP v2.2 2010 Estimate monthly anthropogenic NOx Emissions Emis_Post19
Control 2015 HTAP v2.2 2010 Simulate hourly NO2 Concentrations Conc_Prior15
Control 2019 HTAP v2.2 2010 Simulate hourly NO2 Concentrations Conc_Prior19

Experiment 2015 Emis_Post15 Simulate hourly NO2 Concentrations Conc_Post15
Experiment 2019 Emis_Post19 Simulate hourly NO2 Concentrations Conc_Post19

Evaluation 2015 MEIC v1.3 for NOx + HTAP v2.2
for other species Simulate hourly NO2 Concentrations Conc_MEIC15

2.2. Evaluation Data and Method
2.2.1. MEIC Bottom-Up Emission Inventory

MEIC (Multi-resolution Emission Inventory for China) is a bottom-up emission in-
ventory developed and maintained at Tsinghua University since 1990 [38]. It is designed
to track anthropogenic emissions over mainland China in various spatial resolutions. In
this inventory, NOx emissions are mainly presented in five sectors: energy, transportation,
industry, agriculture, and residential. More details about inventory construction and sectors
can be found in Li et al. [37] and Zheng et al. [20].

In this study, we use MEIC v1.3 from 2015 [20,60] as an independent inventory to
evaluate the estimated posterior emissions for the same year (Emis_Post15). It should be
noted that this version of MEIC contains the impacts of the implementation of China’s Air
Pollution Prevention and Control Action Plan. The MEIC inventory is also named MEIC15
in the following.

2.2.2. CNEMC Ground-Based Observations

The China National Environmental Monitoring Centre (CNEMC) network, operating
under the China Ministry of Ecology and Environment (MEE), has provided nationwide
hourly in-situ concentrations of pollutants such as SO2, O3, NO2, CO, PM2.5, and PM10
since 2014. These measurements are carried out using a commercial chemiluminescence
analyzer equipped with a molybdenum converter.

This study considers surface NO2 concentration measurements from 648 stations in
2015 and 626 stations in 2019, located in Eastern China.

2.2.3. Evaluation and Analysis Methodology

The emission estimates (Emis_Post15 and Emis_Post19) are evaluated indirectly by
comparing the NO2 concentrations simulated in the experiment runs defined in Table 1 with
the surface measurements. The simulated and observed daily concentrations are calculated
from the hourly simulated and observed concentrations, and compared. The simulated
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concentrations are bilinearly interpolated at the location of the stations. The normalized
mean biases (NMB), the root-mean-square error (RMSE), and the Pearson correlation
coefficient (r) are the metrics used for the evaluation (Supplementary Material: Statistical
Indicators). The measured concentrations are taken as the reference. As already mentioned,
it is also necessary to perform a control run based on the prior emissions to evaluate if
the inversions help to better assess the emissions compared to the prior (for simplicity,
we will use the term of improvement in the following). In addition, calculating the ratios
of the statistical indicators between the experiment run and the control run for the same
year allows one to quantify the improvement brought by the inversions (Supplementary
Materials: Ratios). Indeed, when the ratios of the mean bias and of the RMSE are smaller
than one and/or the correlation ratio is higher than one, we can consider that the new
emission estimates are improved compared to the prior knowledge of these emissions.
In addition, we also performed a run for 2015 where the emissions from HTAP v2.2 are
replaced with the NOx emissions from MEIC version 1.3. This allows an evaluation of the
emission estimates against an independent inventory.

It is worth noting that, for the comparison between models and surface stations, Lamsal
et al. [61] recommended to apply a correction factor to the measured NO2 concentrations.
Indeed, due to the measurement analyzer which catalyzes NO2 into NO, other reactive
oxidize nitrogen compounds (NOz) such as peroxyacetyl nitrate (PAN), and nitric acid
(HNO3) can be also converted to NO, to a certain extent, which results in an overestimation
of ambient NO2 concentrations [61]. For this reason, Lamsal et al. [61] suggested using the
following correction factor (CF) formula to alleviate and avoid this overestimation of NO2.

CF =
NO2

NO2 + ∑ AN + 0.95PAN + 0.35HNO3
(3)

We use CHIMEREv2013 to simulate NO2, the sum of all alkyl nitrates (AN), PAN, and
HNO3 at a resolution of 0.5◦ × 0.5◦ for 2015 and 2019, respectively. Calculated CFs are
bilinearly interpolated according to the location of the stations (latitude, longitude) before
being applied to the hourly measured ground-based NO2 concentrations.

To avoid representativeness issues during the comparison of simulated concentrations
at the coarse model resolution and the surface measurements, we first classify the stations
according to their environment type. The types of the stations follow the classification in
Lachatre et al. [62] using the method of Flemming [63]. Flemming et al. [63] use ozone and
its diurnal variability to evaluate whether stations represent rural, suburban, urban, or
traffic environments. In our analyses, we include stations in rural, suburban and urban
environments and exclude stations in the traffic environment, as they are near sources and
are not comparable to the coarse model resolution.

In addition to the evaluation of the emission estimates using surface measurements, we
also analyze the emissions Emis_Post15 and Emis_Post19 in terms of annual, monthly, and
regional emission budget. The emission budgets are calculated as the sum of emissions in
each grid cell of the region/domain and over the time period considered. Comparison with
the independent MEIC inventory for 2015 on an annual and monthly basis over Eastern
China and selected urbanized locations are also performed and analyzed in Section 3.

3. Results and Discussion
3.1. Evaluation of the CIF-CHIMERE System and NOx Emission Estimates with
Ground-Based Measurements

The emission estimates evaluation is not direct and is based on the experiment and con-
trol runs described in Section 2. Then, we compared simulated surface NO2 concentrations
using prior (Conc_Prior), posterior (Conc_Post), and MEIC (Conc_MEIC) NOx emissions
for 2015 and 2019 with NO2 ground-based measurements over Eastern China. Although
the global north/south gradient observed by the ground-based measurements is rather
well captured by the simulations using prior and MEIC inventories (Figure 3b,c), the model
tends to overestimate concentrations in the North China Plain (NCP) and underestimate
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them in the western, northeastern, and southern regions except in the Pearl River Delta
(PRD) (Figure 3d) for 2015. It is worth noting that this behavior is similar in simulations
using posterior emissions (not shown). In 2019, we observe the same north/south pattern
with an underestimation in the south (except in the PRD) and an overestimation in the
NCP region (Figure S2).
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The statistics of the comparison between the simulations and the surface measurement
are reported in Table 2.

Table 2. Annual statistics for the comparison between simulated and measured NO2 hourly surface
concentrations for 2015 and 2019. Mean = annual mean, SD = standard deviation, RMSE = root mean
square error are in µg/m3. r = Pearson correlation coefficient. NMB = normalized mean bias in %
(r, NMB and RMSE formulas are given as statistical indicators in the Supplementary Material),
(SDs are calculated using annual means of the concentrations).

Station Conc_Prior Conc_Post Conc_MEIC
Year Mean SD Mean SD r NMB RMSE Mean SD r NMB RMSE Mean SD r NMB RMSE
2015 27.4 11.6 29.2 18.6 0.63 7 22.1 28.8 18.1 0.64 5 21.6 25.5 15.8 0.62 −7 20.6
2019 24.8 9.8 30.3 19.2 0.67 22 21.9 29.5 18.2 0.68 19 20.8
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For 2015, the annual mean of surface NO2 concentrations calculated from hourly
concentrations at the stations is 27.4 µg/m3 over East China. The annual mean value
of NO2 Conc_Prior15 and NO2 Conc_Post15 are higher than the stations’ mean value,
whereas NO2 Conc_MEIC15 is smaller, suggesting that while NO2 Conc_Prior15 and NO2
Conc_Post15 tend to overestimate measured surface concentrations, NO2 Conc_MEIC15
underestimates them. Note that the annual mean value of NO2 Conc_Post15 is slightly
closer to the stations (~4.7%) than NO2 Conc_Prior15 (~6.6%) and NO2 Conc_MEIC15
(~−7%). In 2019, the annual mean value of NO2 Conc_Post19 (29.5 µg/m3) is also slightly
closer to the stations (24.8 µg/m3) than NO2 Conc_Prior19 is (30.3 µg/m3).

The other statistical indicators in Table 2 show also that they are globally slightly better
for NO2 Conc_Post than for NO2 Conc_Prior for the two years and for NO2 Conc_MEIC for
2015. The larger impact of the use of the posterior emissions to simulate NO2 concentrations
is visible on the NMB, which decrease by about 30% and 15% compared to the prior in 2015
and 2019, respectively.

These first results suggest that the CIF-CHIMERE system constrained with OMI NO2
observations behaves as expected, bringing the simulated NO2 concentrations closer to the
truth—given by the surface measurements—when the emissions estimates are used in a
CTM. However, it is worth noting that the improvement remains small.

To complete this global evaluation of Chinese annual means, we also evaluated the
statistics, station by station, to see how homogeneous they are over the domain and if
spatial features appear. As described in Section 2, we calculated the ratios of the experiment
and control run statistical indicators (r ratios, mean bias ratios, and RMSE ratios) at each
station (Figure 4 for 2019, Figure S3 for 2015 and Ratios in the Supplementary Material).
The r ratios are mainly larger than one for most stations both in 2015 and 2019, showing a
better agreement with the surface measurements in terms of temporal correlation when the
Emis_Post is used to simulate NO2 concentrations. The improvement is more significant in
the south of the domain, especially in the highly urbanized locations of the PRD and the
Yangtze River Delta (YRD). The improvement is relatively small, but it might be explained
by the fact the correlation coefficient is calculated on hourly concentrations, whereas the
emissions are corrected on a monthly basis (Section 2). Concerning the mean bias and
the RMSE, the situation is more contrasted with ratios smaller than one (showing an
improvement), mainly above the most urbanized area of the PRD, Wuhan, and YRD. This
is particularly the case in 2019. In these regions, the reduction of the mean bias of the
simulated NO2 concentrations compared to the surface measurements can reach up to
30–40% when the posterior emission estimates are used.
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As a result of these analyses, the inversions using OMI observations and CIF-CHIMERE
seem to correct NOx emissions towards the truth as the NO2 concentrations simulated
using these emissions are closer to the surface measurements. The improvements compared
to the surface measurements remain small over the whole domain, but are much more
significant in large urbanized regions suggesting that the OMI NO2 observations allow a
better constrain on polluted regions than on background regions. Figure 5 show an example
of the comparison of monthly averaged NO2 surface concentrations from simulations and
stations for 2015 and 2019 for Wuhan, where the emission corrections are the largest.
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(top) 2015 and, (bottom) 2019.

The stations selected for this comparison correspond to grid cells in Wuhan with
minimum 60 kT emissions (Figures S4 and S5). In both years, simulations using prior NOx
emission inventory overestimate NO2 surface concentrations compared to the stations.
Using posterior NOx emission inventory decreases the differences between simulated NO2
surface concentrations and measurements, especially from May to October 2015 and March
to October 2019. In both years, the highest decrease is in the summer months (−22% in
August 2015 and −42% in August 2019).

3.2. Analysis of the Estimated Chinese Annual Anthropogenic NOx Emissions in 2015 and 2019

The annual NOx emission budget over East China and the larger domain of Figure 2
are reported in Table 3 for several inventories. In 2015, the MEIC inventory gives NOx
emissions 12.8% smaller than our estimation for East China. Liu et al. [64] estimates NOx
emissions for 2015 using the DECSO algorithm [34] also combining CHIMERE v2013b and
OMI but a different version (DOMINO v2 [39]), with a finer resolution (0.25◦ × 0.25◦).
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According to this study, their annual anthropogenic NOx budget estimation (21.5 Tg) is
calculated over the entire domain of Figure 2, also including, e.g., the Korean Peninsula, a
part of Japan, and is 5.2% larger than our calculations (Table 3).

Table 3. The annual NOx emission budget (in Tg) over East China and the entire domain in the
Figure 2 with respect to different inventories.

Inventory East China Domain—Figure 2

HTAP 2010 18.6 20.5
Emis_Post15 (this study) 18.5 20.4
Emis_Post19 (this study) 18.4 20.3
MEIC15 16.4 -
DECSO15 [64] - 21.5

The different emission inventories are in rather good agreement, especially when
comparing to the typical emission uncertainties (30–50%). This is particularly the case for
two based on top-down approaches involving OMI observations and the CHIMERE model.

The global annual NOx emission budget over East China does not show significant
changes from 2010 to 2019. However, significant spatial differences between HTAP v2.2 for
2010 and Emis_Post15 and Emis_Post19 inventories are visible as shown in Figure 6.
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In 2015 and 2019, a global increase compared to 2010 is estimated in the northern part
of China and a decrease in the south and large urbanized and industrialized locations.
When the emissions are reduced compared to 2010, this reduction remains moderate and
varies from region to region. For some locations, such as PRD, the reduction can reach up to
−12% in 2015, which is in fairly good agreement with the 12th Five Year Plan’s nationwide
target of a 10% reduction for 2015 compared to 2010 [9]. In 2019, the estimated reduction is
more confined around urbanized locations than in 2015, especially in the south.

To evaluate how important these reductions in NOx emissions are between 2015 and
2019, we analyzed the relative differences between the posterior emissions for 2019 and
2015 (Figure S6). The differences between these two years range from ±8% at the pixel
scale. In the south, the emissions tend to slightly increase in 2019 compared to 2015; on
the contrary, in the north and the locations such as Wuhan, YRD, and NCP, the emission
reduction continues between 2015 and 2019 showing that the regulation effects are still
ongoing. However, the reductions are smaller than 5%, below the expected levels in the
13th Five-Year Plan in which the emissions should decrease by 15% compared to 2015 [12].
It is important to note that the changes in emissions inferred from our inversions as well as
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the target reductions of the 12th and 13th Five-Year Plans are smaller than the commonly
assessed uncertainties on the emissions (30–50%).

3.3. Analysis of the Estimated Annual Anthropogenic NOx Emissions at Selected Urbanized and
Industrialized Locations
3.3.1. Evaluation of the Estimated Annual Anthropogenic NOx Emissions in 2015 and 2019

As discussed in Section 3.1, the inversions seem more relevant in polluted regions. We
analyze emission changes focusing on the most urbanized and industrialized locations.
For this, we select only the locations with a minimum of NOx emissions of 60 kt for 2010,
which should represent the most urbanized and industrialized locations, where we expect
stronger emissions control (Figure S4). According to this selection, we have detected 15
locations reported from the north to the south, in Table 4. They are also reported in Figure 2.

Table 4. Definition of the locations and their annual NOx budgets concerning the different emission
inventories and years.

Location Latitude & Longitude HTAP v2.2
(kt)

Emis_Post15
(kt)

MEIC15
(kt)

Emis_Post19
(kt)

Daqing 46–47◦ N, 124–125.5◦ E 78.9 71 72.5 70.1
Shenyang 41–44◦ N, 123–125◦ E 82.8 84.9 114.5 81.1

Baotou 40–42◦ N, 108–111◦ E 136.3 116.2 116.4 122.3
Beijing-Tianjin 38–41◦ N, 115–118.5◦ E 450.8 447.3 381.2 431.7

Dalian 38–41◦ N, 120–122◦ E 74.2 77.4 88.4 76.3
Shijiazhuang 37–39◦ N, 113–115◦ E 151.1 152.2 107.2 144.5

Shandong 35–38◦ N, 115–119◦ E 296.6 295.8 245.4 279.2
Henan 34–37◦ N, 112–114◦ E 145.5 136 84.2 132.2
Anhui 32–33◦ N, 116–118◦ E 76.4 71.8 39.8 70.1

Yangtze River Delta 29–32◦ N, 118–122◦ E 1229.4 1162.1 963.8 1129.8
Wuhan 29–32◦ N, 113–116◦ E 260.7 237.8 123.2 222

Chengdu 30–32◦ N, 103–105◦ E 79.9 76.7 109.2 77.9
Chongqing 29–30◦ N, 106–107◦ E 87.4 82.6 72.3 84.5

Hunan 27–28◦ N, 112–113◦ E 94.1 87.5 99.9 85.6
Pearl River Delta 22–24◦ N, 112–115◦ E 420.8 370.9 390 375

In 8 out of 15 locations (Daqing, Beijing–Tianjin (BT), Shandong, Henan, Anhui, YRD,
Wuhan, and Hunan), there is a decrease in NOx annual emission budget between 2010,
2015, and 2019 (Table S1). The highest decrease is observed in Baotou in 2015, with a 14.8%
decrease, and in Wuhan in 2019, with a 14.9% decrease. Four locations (Baotou, Chengdu,
Chongqing, and PRD) show a reduction in 2015 compared to 2010 but an increase in 2019
compared to 2015. At two locations, Shenyang and Shijiazhuang, NOx emissions increase
in 2015 but decrease in 2019 compared to 2010. Dalian is the only location where estimated
NOx emissions for 2015 and 2019 are higher than HTAP v2.2 emissions in 2010, but a
decrease is observed between 2015 and 2019. Finally, there are no locations that show a
monotonic increase between 2010, 2015 and 2019.

The annual emission budgets derived from the independent MEIC inventory for each
location are also reported in Table 4 for comparison. The estimated posterior NOx emissions
for 2015 are closer to MEIC emissions at all locations, except for Shijiazhuang, Chengdu,
and Hunan. Note that the correction of the emissions (Emis_Post-HTAP v2.2) is relatively
small in Shijiazhuang, with only 0.75% corrections. In Chengdu and Hunan, MEIC NOx
emissions are higher than HTAP v2.2 emissions, whereas the inversion tends to decrease
them. These results also suggest that the corrections made to the emissions during the
inversion are consistent.

3.3.2. Monthly Evaluation of the Anthropogenic NOx Emissions

Figure 7 shows the time series of monthly anthropogenic NOx emissions for the
different emission inventories considered in this study. In terms of seasonal variations,
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NOx emissions are larger during wintertime, especially in December, at all the locations.
However, a drop is observed for most of the locations in February, likely related to the
Chinese New Year. This temporal evolution is consistent with the study of Ding et al. [23],
in which a 10% reduction in February is estimated because of the Spring Festival and a
peak is observed in December.
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For the winter months, very few emissions changes between the years (2010, 2015
and 2019) are observed. These very small changes may be explained either because prior
emissions do not need to be corrected or because the emissions remained stable between
the years or because few or no observations are available to constrain the inverse modeling
system (2010 being also used as prior emissions). For example, the latter is the case in
Daqing for January and December 2015, where no OMI observation data are available over
the location.

At Daqing, Baotou, Henan, YRD, and PRD, posterior emissions decrease compared to
2010 throughout both years, with the largest reduction in YRD and PRD during summer-
time, 20% and 26%, respectively.

At Wuhan, Chongqing, Hunan, and Anhui, there are no significant changes in the
NOx emissions between 2010, 2015 and 2019 in the first half of the year, but a decrease
compared to 2010 occurs mainly in the second half of the years, with the highest reduction
observed in Wuhan (22% in 2015 and 41% in 2019) in August.

In the northern locations, particularly around the Yellow Sea, such as Dalian, BT,
and Shijiazhuang, the 2015 emissions are increased during spring compared to 2010. The
emissions decrease between 2015 and 2019 and come back to the 2010 levels for Dalian and
BT and below the 2010 levels for Shijiazhuang.

In the southern locations (below 33◦ N), such as Anhui, YRD, Wuhan, Chongqing,
Hunan, and PRD, 2015 and 2019, emissions are reduced compared to 2010, especially
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during the summer months. It is worth noting that the summer months correspond to the
months where we have more days with OMI observations.

Concerning the MEIC inventory for 2015, MEIC shows lower emissions than the 2010
HTAP inventory over the year 2015 in almost all locations, except in Shenyang, Dalian,
Chengdu, and Hunan where MEIC shows larger emissions in 2015 compared to 2010
(HTAP). Note that, as already noticed on the global analysis, the Emis_Post15 emission
estimations tend to get closer to the MEIC inventory.

3.3.3. Comparison with In-Situ Stations

The NO2 surface concentrations simulated using Emis_Post for 2015 and 2019 as well
as the ones simulated using MEIC15 are compared with ground-based measurements
at each of the 15 selected locations. The statistics of the comparison are displayed in
Tables S2 and S3. As for Section 3.1, the comparison results of the concentrations simulated
in the control runs and the surface measurements are also reported in Tables S2 and S3.
In 2015, the Emis_Post15 emissions allow the improvement of the simulated NO2 surface
concentrations compared to these simulated in the control runs for nine locations in terms
of NMB, RMSE and/or r. In 2019, this number increases to 13 locations but the NMB tends
to be larger than in 2015. This is consistent with the results discussed in Section 3.1, showing
that the CIF-CHIMERE system constrained by OMI observations performs as expected.

By comparison, the use of MEIC15 emissions to simulate NO2 concentrations in 2015
gives better statistics for eight locations compared to the emission estimated in this study
for 2015. The better performances when using MEIC emissions correspond to locations
where the MEIC emissions are significantly smaller than the Emis_Post15 and HTAP v2.2
(Beijing-Tianjin, Shijiazhuang, Shandong, Henan, Anhui, YRD, and Wuhan). This point
out that the posterior emission corrections derived from OMI observations and the CIF-
CHIMERE are likely underestimated. This might be partly explained by the limited daily
spatial coverage of OMI measurements, which does not allow sufficient corrections of the
emissions. TROPOMI satellite instrument observations with their better spatial resolution
and coverage should help resolving this issue. On the contrary, when MEIC15 emissions are
larger than Emis_Post15 or HTAP v2.2, a degradation of the statistics is observed compared
to Conc_Post15 (Dalian, Chengdu, Hunan, PRD), suggesting that MEIC overestimate
emissions at these locations. These results illustrate the complementariness of bottom-up
and top-down approaches to assess NOx emissions and the need of robust ground-based
measurement network to evaluate the emissions inventories.

4. Conclusions

This study estimates anthropogenic NOx emissions over Eastern China for 2015 and
2019 using the new inverse modeling system CIF-CHIMERE and OMI NO2 satellite obser-
vations. One of the objectives was to evaluate if this new inversion system constrained by
OMI observations can infer emissions closer to the truth. As true emissions are unknown,
ground-based measurements of NO2 surface concentrations are considered as the refer-
ence to evaluate the emission estimates indirectly. The analyses performed in this study
show that using the NOx emissions estimates to simulate NO2 surface concentrations im-
proves the comparison with ground-based measurements, as is expected when atmospheric
inversion approaches are applied. The results also suggest that the OMI observations
provide a better constraint to the NOx emissions in the polluted areas compared to the
background areas.

The annual anthropogenic NOx emission budgets estimated in this study for East
China are in fairly good agreement with the annual emission budgets derived from in-
dependent inventories such as MEIC (~13%) and DECSO (~5%) when considering the
uncertainties on NOx emissions (30–50%). Nevertheless, the analysis at the finer spatial
scale of the most populated and urbanized locations of East China shows situations more
contrasted. In terms of the evolution of the emissions between 2010, 2015, and 2019, accord-
ing to our emissions’ estimates, some locations such as Baotou, PRD, and Wuhan show
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a reduction of emissions between 2010 and 2015 close to the target reduction defined in
the 12th Five-Year Plan. The evolution of the emissions between 2015 and 2019 is rather
small. Our estimates show very slightly increased emissions, mainly in the southern lo-
cations, and a small decrease (<5%) in the NCP or locations such as Wuhan and the YRD.
The comparison of our emission estimates with MEIC emissions in 2015 stresses that our
estimates likely underestimate the emission reductions between 2010 and 2015 in the most
polluted locations of East China. In parallel, our emission estimates, when used to simu-
late NO2 surface concentrations, lead to a better agreement with surface measurements
in regions where MEIC indicates an increase of the emissions compared to 2010—our
estimates often suggest reduced or stable emissions. These results illustrate the benefit
of having a variety of inventories derived from different approaches and of using their
complementariness to assess NOx emissions better. They also stress the need for a robust
ground-based measurement network to evaluate the emission inventories.
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