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Abstract: One of the biggest problems facing the use of carbon nanotubes in reinforced composites is
agglomeration within the matrix phase. This phenomenon—caused by Van der Waals forces—leads
to dispersion problems and weakens the properties of the composites. This research presents a
multi-stage homogenization approach used to investigate the influence of the aspect ratio, volume
fraction, and agglomeration of the nanofillers on the effective mechanical properties of a polymer
biocomposite containing randomly dispersed carbon nanotubes and graphene nanoplatelets. The
first stage consisted in evaluating the properties of the reinforced polymers by the CNT/GNP. The
second step consisted in combining the reinforced polymers with different natural and synthetic
unidirectionally oriented fibers. It was found that agglomeration has a huge influence on the
mechanical properties of the composite. The novelty of this work consisted of the consideration of
the parameters influencing the elastic properties using different micromechanics approaches and
numerical techniques.

Keywords: biocomposites; carbon nanotubes; graphene nanoplatelets; homogenization; agglomeration;
wind energy

1. Introduction

Several factors are considered while selecting materials for wind energy turbines,
mainly stiffness and density. High rigidity prevents blades from bending, and low density
allows for lighter blades, which mean higher turbine efficiency [1–4]. Traditionally, turbines
were made from metal, although these could not resist the permanent stress cycles. Fiber-
reinforced composites (FRC) presented a decent replacement for metallic blades, with glass
and carbon fibers being the most commonly used fibers in the industry because of their
superior properties; however, their unrecyclable nature and price (about $10.0 per lb. for
carbon fibers) [5,6] are the biggest inconveniences that need to be overcome. Biocomposites,
which consist of natural fibers such as flax, sisal or alfa immersed in a polymer, offer the
best solution to the waste and price issue as they can behave in a mechanically similar way
to synthetic fibers [7]. As they are a combination of two materials or more, biocomposites
are considered to be heterogeneous materials, therefore their effective properties need to be
evaluated for a more comprehensive understanding of these materials.

Recently, nanofillers have made considerable advances in the fiber-reinforced compos-
ites industry because of their ability to significantly improve mechanical, electrical, and
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thermal properties [8–10]. Since their discovery by Iijima [11], CNT’s exceptional struc-
ture and physical properties, which include their remarkable conductivity, have attracted
enormous interest in scientific research [7,12]. For practical applications, it is necessary to
establish structure–property relationships for a reliable design of these materials, which
has inspired several research works to evaluate physical properties of CNT-reinforced
composites, such as the study Thostenson et al. [13] which investigated the influence of
an MWCNT-reinforced polystyrene composite and found that the mechanical properties
were significantly improved. Bonnet et al. [14] studied thermal properties of single-walled
carbon nanotube (SWNT)/polymethyl methacrylate composite thick films. The com-
posite’s thermal conductivity was improved by 55% and its electrical conductivity was
increased by orders of magnitude with the addition of 7% SWNT to the polymer matrix.
Fidelus et al. [15] examined the thermo-mechanical properties of epoxy-based nanocom-
posites based on low weight fractions (from 0.01 to 0.5 wt.%) of randomly oriented single-
and multi-walled carbon nanotubes and observed important improvements in the elastic
modulus and tensile strength. On the other hand, graphene nanoplatelets (GNP), which
are composed of several 2D layers of graphene, can provide better mechanical properties
than CNTs [16,17]. In Rafiee et al.’s investigation [18], the mechanical characteristics of
epoxy nanocomposites containing single-walled carbon nanotubes, multi-walled carbon
nanotubes, and graphene platelets were compared. Young’s modulus, ultimate tensile
strength, fracture toughness, fracture energy, and the material’s resistance to fatigue crack
propagation were the mechanical parameters that were measured. The findings showed
that carbon nanotube additives drastically underperform graphene platelets in terms of
performance. In Gao’s [17] study, a micromechanical model was proposed to predict the
thermomechanical properties of graphene reinforced metal matrix. Results of the study
showed that the yield strength of the nanocomposites can be dramatically enhanced by
adding a small volume percent of GNP, for example, an increment of 92.0% by 0.7 v%
GNP/Al2024, 128.0% by 1.5 v% GNP/Al and 78% by 2.5 v% GNP/Cu, respectively.

However, the main challenge facing the use of CNTs and GNPs is their poor dispersion,
which leads to the formation of agglomerated regions due to the high length-to-diameter
ratio and the small elastic modulus in the radial direction of the nanofillers that generate
van der Waals attractive forces the main cause of this phenomenon. Several research inves-
tigated the effect of the agglomeration of nanofillers. Narh et al. [19] studied the effect of
agglomerated and de-agglomerated MWCNT on the thermal and mechanical character-
istics of polyethylene oxide and found that nanocomposites containing deagglomerated
nanotubes appear to show marginal improvement in toughness over those containing
agglomerated MWCNTs. Alian et al. [20] proposed a multi-scale model based on molecular
dynamics and micromechanical models to determine the effect of waviness and agglom-
eration of CNTs on the bulk elastic properties of epoxy composites and found that both
limited their reinforcement effect. Daghigh et al. [21] investigated the nonlocal bending and
buckling behaviors of agglomerated CNTRC nanoplates numerically and concluded that
the elastic properties of the nanoplates are extremely affected by any type of agglomeration
of CNTs, and also that ignoring clustering in the numerical model can lead to significant
errors. Shi et al. [22] examined the effect of the agglomeration and found that clustering
significantly reduces the stiffening effects of CNTs by 80% in the most severe cases. In Ji’s
study [23], GNP agglomerations were investigated theoretically and it was shown that any
type of agglomeration damages the stiffening effect. Maghsoudlou et al. [9] studied the
elastic modulus of single-walled carbon nanotubes/epoxy composites computationally and
experimentally and found that Young’s modulus increased while increasing the SWCNT
weight fraction until 0.3 wt% and dropped sharply. This was explained by the agglomera-
tion effect on the nanofillers. García-Macias et al. [8] presented a comparison of mean-field
homogenization approaches for randomly and aligned oriented CNT-reinforced polymers
and found that agglomeration caused detrimental effects for the mechanical properties,
and more severely for the aligned CNTs. From this short review, the importance of, and the
need for, considering the agglomeration effect in the modelling of CNT/GNP-reinforced
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composites can be concluded. For this purpose, we proposed a two-stage homogenization
procedure (Figure 1) considering the agglomeration of the nanofillers. First, we evalu-
ated the mechanical properties of the reinforced polymer by CNTs and GNPs using the
Mori–Tanaka analytical approach and the numerical study was conducted using Digimat
MF and FE. The obtained results were used in a second homogenization using Chamis’s,
Hashin–Rosen and Halpin–Tsai approaches for isotropic alfa and glass fibers. For trans-
versely isotropic carbon fibers, we used Hahn’s and Halpin–Tsai approaches. Results were
compared with the numerical results calculated using Digimat.
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Figure 1. Multi-stage approach for mechanical homogenization of three-phased nanocomposite.

2. First Homogenization
2.1. Mathematical Model
2.1.1. CNT Inclusion

CNTs can be employed as a nanofiller to enhance the mechanical properties of a
polymeric matrix. For this purpose, the matrix is supposed as isotropic and characterized
by the Young’s modulus Em and the Poisson’s ratio νm. The CNT inclusion is considered as
transversely straight with an infinite aspect ratio. In this work, the Eshelby–Mori–Tanaka
homogenization scheme (Figure 1) was used to determine the elastic properties of the
CNT-reinforced matrix [1,24,25]. For a CNT embedded in the composite, it is related to a
local coordinate system (O, x1, x2, x3), where the x3-axis lies along its longitudinal direction
and the (x1, x2) plane coincides with its transversely isotropic plane. The carbon nanotube
CNT is considered as a rolled graphene sheet and is only strong in its length direction as
seen in Figure 2a. Comparably, a single-layered graphene sheet GNP is strong along all
its in-plane directions, as seen in Figure 2b, and offers a large surface/volume ratio [26].
When the nanofillers are perfectly randomly distributed in the matrix, the overall elastic
property of the reinforced composite is isotropic as an average effect of orientation.
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It should be noted that the superscript (*) is employed to identify the property related
to the reinforced matrix. The bulk K∗m and shear modulus G∗m of the reinforced composite
can be given by Equations (1) and (2).

K∗m = Km +
Vr (δr − 3Kmαr)

3 (Vm + Vrαr)
(1)

G∗m = Gm +
Vr (ηr − 2Gmβr)

2 (Vm + Vrβr)
(2)

where

αr =
3 (Km + Gm) + kr − lr

3 (Gm + kr)
(3)

βr =
1
5

[
4Gm + 2kr + lr

3(Gm + kr)
+

4Gm

Gm + pr
+

2Gm(3Km + Gm) + 2Gm(3Km + 7Gm)

Gm(3Km + Gm) + mr(3Km + 7Gm)

]
(4)

δr =
1
3

[
nr + 2lr +

(2kr + lr)(3Km + 2Gm − lr)
Gm + kr

]
(5)

ηr =
1
5

[
2
3
(nr − lr) +

8Gm pr

Gm + pr
+

2(kr − lr)(2Gm + lr)
3(Gm + kr)

+
8mrGm(3Km + 4Gm)

3Km(mr + Gm) + Gm(7mr + Gm)

]
(6)

It should be pointed out that Km and Gm specify the bulk and the shear moduli of
isotropic matrix, which can be evaluated from Equations (7) and (8).

Km =
Em

3(1− 2νm)
(7)

Gm =
Em

2(1 + νm)
(8)

The reinforced matrix is evidently isotropic. Therefore, the Young’s modulus E∗m
and the Poisson’s ratio ν∗m are required to define its properties. They can be computed in
Equations (9) and (10).

E∗m =
9K∗mG∗m

3K∗m + G∗m
(9)

ν∗m =
9K∗m − 2G∗m
6K∗m + 2G∗m

(10)
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Finally, the density ρ∗m of the reinforced matrix can be defined by using the rule of
mixture as

ρ∗m = (ρr − ρm)Vr + Vm (11)

2.1.2. GNP Inclusion

For the case of the nanoplatelet-reinforced composites, the expressions for effective
bulk modulus and shear modulus are in Equations (12) and (13).

K∗m = Km +
Vr (δr − 3Kmαr)

3(cm + Vrαr)
(12)

G∗m = Gm +
Vr (ηr − 2Gmβr)

2(cm + Vrβr)
(13)

where
αr =

3km + 2nr − 2lr
3nr

(14)

βr =
4Gm + 7nr + 2lr

15nr
+

2Gm

5pr
(15)

δr =
3km(nr + 2lr) + 4

(
krnr − lr2)

3nr
(16)

ηr =
2

15

(
kr + 6mr + 6Gm −

lr2 + 2Gmlr
nr

)
(17)

Then, the Young’s modulus E∗m and the Poisson’s ratio ν∗m for the GNP-reinforced
matrix can be defined from Equations (9) and (10).

2.2. Numerical Model
2.2.1. RVE Geometry

In this research, an RVE method was used to predict the overall properties of the rein-
forced polymers. The different microstructures were created using Digimat FE.; Digimat
is a commercial code from e-Xstream Engineering that includes a number of microme-
chanics tools for both homogenization and dehomogenization. In our study, Digimat MF
(semi-analytical approach) and Digimat FE (numerical approach) were used.

For the smooth running of the calculation, some assumptions are made:

- The CNT inclusions are considered to have an ellipsoidal (prolate) shape. GNP
inclusions are considered as disc-shaped spheroidal inclusions with aligned and
random orientations.

- The phases are considered as perfectly bounded.

The dimension of the representative volume element (RVE) is considered as (1, 1, 1)
units, as seen in Figure 3, and for each one, a uniaxial loading strain test was performed to
evaluate the elastic properties using the Mori–Tanaka homogenization scheme (Figure 1).
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2.2.2. Materials Properties

The elastic parameters of CNT and GNP are taken from [27] and written in terms of
Hill’s elastic moduli in Table 1.

Table 1. Mechanical properties of nanofillers in form of Hill’s elastic moduli.

kr (GPa) lr (GPa) mr (GPa) nr (GPa) pr (GPa)

CNT 536 184 132 2143 791
GNP 850 6.8 369 102,000 102,000

Analogously, the engineering constants Er
11, Er

22, Er
33, νr

12, νr
13, νr

23, Gr
12, Gr

13, Gr
23 are em-

ployed to define the elastic behavior of the equivalent continuum model from Equations (18)–(23).
Then, the five transversely isotropic constants are calculated in Table 2.

Er
11 =

4mr
(
krnr − lr2)

krnr − lr2 + mrnr
(18)

Er
33 = Er

22 = nr −
lr2

kr
(19)

νr
13 = νr

12 =
lr

2kr
(20)

νr
23 =

nr (kr −mr)− lr2

nr (kr + mr)− lr2 (21)

Gr
13 = Gr

12 = pr (22)

Gr
23 = mr (23)
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Table 2. Mechanical properties of CNT and GNP in terms of engineering constants.

Er
11

(GPa)
Er

22 = Er
33

(GPa)
νr

23 νr
12 = νr

13
Gr

23
(GPa)

Gr
12 = Gr

13
(GPa)

CNT 421.14 2079.8 0.17164 0.59522 132 791
GNP 1029.204 102,000 0.004 0.4 369 102,000

The remaining engineering constants must be found through the following relations
in Equation (23).

νr
ij

Er
i
=

νr
ji

Er
j
, Gr

ij = Gr
ji for i, j = 1, 2, 3 (24)

The mechanical properties of polypropylene PP and unsaturated polyester UP poly-
mers are described in Table 3 [1].

Table 3. Mechanical properties of polymers.

Materials PP UP

Model Elastic Elastic
Symmetry Isotropic Isotropic

Density ρ (g/cm3) 0.9 1.3
Young’s modulus E (GPa) 1.4 3.8

Poisson’s ratio v 0.45 0.42

The mechanical properties used in Digimat MF are depicted in Table 4, by using 103

and 10−4 as aspect ratios for CNT and GNP, respectively.

Table 4. Mechanical properties of CNT and GNP as inputs in Digimat MF.

Elastic Properties CNT GNP

Axial Young’s modulus (GPa) 2079.8 102,000
In plane Young’s modulus (GPa) 421.14 1029.204

In plane Poisson’s ratio 0.59522 0.4
Transverse Poisson’s ratio 0.17164 0.004

Transverse shear modulus (GPa) 791 102,000
In plane shear modulus (GPa) 132 369

Density (g/cm3) 1.2 2.2

2.3. First Homogenization Results

The elastic moduli result of (E∗m, ν∗m) with Digimat MF and the Mori-Tanaka-Eshelby
model were validated for CNT embedded in a PP polymer matrix in Figure 4a,b, to know
the viability of the numerical model. Then, by just using the numerical results of Digimat
MF, we compared the mechanical properties of CNT embedded in PP and UP, with GNP
embedded in PP and UP as seen in Figure 5a,b.
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As seen in Figure 4a, the two approaches show an acceptable agreement between the
Mori–Tanaka scheme and Digimat MF. The computational tool offers accurate results with
an error in the range of 1% for small volume fraction (≤10%), and as the volume fraction
goes up, the error for the effective Young’s modulus reaches 36%, and for the Poisson’s
ratio, 7%.

It is also apparent from the figures that increasing the volume fraction of the inclu-
sions increases the effective Young’s modulus and decreases the Poisson’s ratio. The best
properties were obtained from the GNP-UP mixture, which reached 260 GPa for the elastic
modulus, and the lowest properties were obtained from the CNT-PP. The combination of
any matrix with GNP offered better elastic properties because of their excellent mechanical
properties, contrary to previous works where we usually find that the CNT inclusions offers
better enhancement. These results can be explained by the non-validity of the isotropy
assumptions of CNTs that can lead to an overestimation of the effective properties of the
reinforced matrix [8].
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3. Second Homogenization
3.1. Mathematical Model
3.1.1. Isotropic Fiber

The elastic properties of alfa and glass fibers are considered as isotropic, as described
in Table 5.

Table 5. Mechanical properties of isotropic fibers.

Materials Alfa E-Glass

Model Elastic Elastic
Symmetry Isotropic Isotropic

Density ρ (g/cm3) 1.52 2.54
Young’s modulus E (GPa) 19.4 73

Poisson’s ratio v 0.34 0.23

a. Chamis approach

The method of Chamis [28] represents the most used homogenization technique, with
five independent constants used to describe the mechanical behavior of the composite. The
equations defining the elastic properties of a unidirectional lamina made of anisotropic
fibers in an isotropic matrix are formulated by Equations (25)–(30). Alfa and e-glass fibers
are considered as isotropic; the axial and in-plane Young’s and shear modulus are the same
E f

11 = E f
22) and (G f

12 = G f
23).

The relations shown below define the elastic properties of a unidirectional lamina
made of anisotropic fibers in an isotropic matrix.

E11 = E f
1 Vf + E∗mV∗m (25)

E22 = E33 =
E∗m

1−Vf

(
1− E∗m/E f

2

) (26)

G23 =
G∗m

1−Vf

(
1− G∗m/G f

23

) (27)

G12 = G13 =
G∗m

1−Vf

(
1− G∗m/G f

12

) (28)

ν23 =
E22

2G23
− 1 (29)

ν12 = ν13 = ν
f
12Vf + ν∗mV∗m (30)

It should be noted that the properties along the third direction coincide with the
ones in the second direction due to the assumption of a transversely isotropic medium.
Therefore, five independent constants are required to describe the mechanical behavior
of the composite. Due to its simplicity, it is one of the most exploited homogenization
techniques. It is easy to find many recent works in the literature where the term “rule of
mixture” is introduced to define the current approach.

b. Hashin–Rosen model

The homogenization technique based on a variational method illustrated in the work
by Hashin and Rosen [29] represents a simple approach to compute the mechanical proper-
ties of a unidirectional fiber-reinforced composite in which both the fibers and the matrix
have isotropic features. As explained in the previous sections, this assumption is valid
if the fibers are made of e-glass. On the contrary, this approach cannot be employed for
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carbon or Kevlar fibers since these kinds of reinforcing phases are transversely isotropic.
The engineering constants for the current method assume the following aspect.

E11 = E f
1 Vf + E∗mV∗m +

4Vf V∗m
(

ν f − ν∗m

)2

V∗m/k f + Vf /k
∗
m + 1/G∗m

(31)

E22 = E33 =
4 ktGt

kt + Gt

(
1 + 4kt(ν12)

2/E11

) (32)

ν23 =
E22

2Gt
− 1 (33)

ν12 = ν13 = ν f Vf + ν∗mV∗m +
Vf V∗m

(
ν f − ν∗m

)(
1/k

∗
m + 1/k f

)
V∗m/k f + Vf /k

∗
m + 1/G∗m

(34)

G23 =
E22

2(1 + ν23)
(35)

G12 = G13 = G∗m
V∗mG∗m +

(
1 + Vf

)
G f(

1−Vf

)
G∗m + V∗mG f

(36)

where the following quantities are required

k f =
E f

2(1− ν f −
(

ν f

)2 (37)

k
∗
m =

E∗m
2(1− ν∗m − ( ν∗m)

2 (38)

kt =
k
∗
mk f +

(
Vf k f + V∗mk

∗
m

)
G∗m

V∗mk f + Vf k
∗
m + G∗m

(39)

Gt = G∗m

(
α + β∗mVf

) (
1 + ξ

(
Vf

)3
)
− 3Vf (V∗mβ∗m)

2

(
α−Vf

)(
1 + ξ

(
Vf

)3
)
− 3Vf (V∗mβ∗m)

2
(40)

α =
Gt/G∗m + β∗m
Gt/G∗m − 1

(41)

β∗m =
1

3− 4ν∗m
(42)

β f =
1

3− ν f
(43)

ξ =
β∗m − β f G f /G∗m
1 + β f G f /G∗m

(44)

For the sake of completeness, it should be noted that k f and k
∗
m denote the plane strain

bulk moduli for the fibers and the hybrid matrix, respectively.

c. Halpin–Tsai model

The Halpin–Tsai model equations have been used for a long time to predict the
properties of composites reinforced with short fibers. These equations were originally
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developed for long-fiber composites [30]. For composites with aligned short fibers, the
Halpin–Tsai model describes the modulus of elasticity as

P
Pm

=
1 + ζηVf

1− ηVf
(45)

η =
Pf /Pm − 1
Pf /Pm + ζ

(46)

where P represents the property of the composite while Pf and Pm are the corresponding
fibers and matrix properties, which can be Young’s modulus E, Shear modulus G or
Poisson’s ratio ν. Where Vf denotes the fiber volume fraction and ζ is geometry parameter
that depends on the geometry of the filler as follows:

• ζ = 2 L/d for calculation of the longitudinal modulus.
• ζ = 2 for calculation of the transversal modulus.

3.1.2. Transversely Isotropic Fiber

a. Hahn model

The homogenization technique proposed by Hahn in his work is used to obtain the
mechanical properties of a fibrous composite made of fibers with a circular cross-section
randomly distributed in a plane normal to the direction of the oriented fibers. As a
consequence, the composite turns out to be macroscopically transversely isotropic and five
independent elastic constants are needed to characterize it. The following quantities below
are required

∆1 =
1 + G∗m/G f

12
2

(47)

∆2 =
3− 4ν∗m + G∗m/G f

23
4(1− ν∗m)

(48)

∆K =
1 + G∗m/K f

2(1− ν∗m)
(49)

where K f is the bulk modulus of the reinforcing fibers defined as follows

K f =
E f

2

3
(

1− 2ν
f
23

) (50)

The plane strain bulk modulus of the composite KT can be now evaluated

KT =
Vf + ∆KV∗m

Vf /K f + ∆KV∗m/K∗m
(51)

where K∗m is the bulk modulus of the hybrid matrix that assumes the following aspect

K∗m =
E∗m

3 (1− 2ν∗m)
(52)

First, the following elastic parameters are obtained

E1 = E f
1 Vf + E∗mV∗m (53)

ν12 = ν13 = ν
f
12Vf + ν∗mV∗m (54)

G12 = G13 =
Vf + ∆1V∗m

Vf /G f
12 + ∆1V∗m/G∗m

(55)
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G23 =
Vf + ∆2V∗m

Vf /G f
23 + ∆2V∗m/G∗m

(56)

Once the five independent constants KT , E1, ν12 = ν13, G12 = G13, G23 are evaluated,
the remaining quantities can be computed as follows

E2 = E3 =
4E1KTG23

E1KT + G23

(
E1 + 4KT(ν12)

2
) (57)

ν23 = ν
f
12Vf + ν∗mV∗m

(
1 + ν∗m − ν12E∗m/E1

1 + (ν∗m)
2 + ν∗mν12E∗m/E1

)
(58)

It should be noted that relations (57) and (58) are equal to the corresponding formulas
of the previous approach. The methodology proposed by Hahn belongs to the mechanics
of material methods as well.

b. Halpin-Tsai model

The homogenization method, which takes its name from the works by Halpin and by
Tsai [30], evaluates the mechanical properties of the three-phase multiscale composite by
using the Hill’s elastic moduli and a semi-empirical approach. As far as the reinforcing
fibers are concerned, the Hills’s elastic moduli takes the following form:

k f =
E f

2

2
(

1− ν
f
23 − 2ν

f
21ν

f
12

) (59)

l f =
ν

f
12E f

2

2
(

1− ν
f
23 − 2ν

f
21ν

f
12

) = 2ν
f
12k f (60)

m f =
E f

2

2
(

1 + ν
f
23

) =
1− ν

f
23 − 2ν

f
21ν

f
12

1 + ν
f
23

k f (61)

n f =
E f

1

(
1− ν

f
23

)
(

1− ν
f
23 − 2ν

f
21ν

f
12

) = 2
(

1− ν
f
23

)E f
1

E f
2

k f (62)

pr = G f
12 (63)

where k f , l f , m f , n f , p f denote the properties of the fibers in terms of Hill’s moduli. On the
other hand, if the isotropic hybrid matrix is considered, one obtains

In which k∗m, l∗m, m∗m, n∗m, p∗m are the Hill’s moduli of the hybrid matrix. The overall
mechanical properties of the composite in terms of the Hill’s moduli can be now evaluated

k =
k∗m
(

k f + m∗m
)

V∗m + k f (k∗m + m∗m)Vf(
k f + m∗m

)
V∗m + (k∗m + m∗m)Vf

(64)

l = Vf l f + V∗ml∗m +
l f − l∗m
k f − k∗m

(
k−Vf k f −V∗mk∗m

)
(65)

m = m∗m
2Vf m f (k∗m + m∗m) + 2V∗mm f m∗m + V∗mk∗m

(
m f + m∗m

)
2Vf m∗m(k∗m + m∗m) + 2V∗mm f m∗m + V∗mk∗m

(
m f + m∗m

) (66)

n = Vf n f + V∗mn∗m +

(
l f − l∗m
k f − k∗m

)2 (
k−Vf k f −V∗mk∗m

)
(67)
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p =

(
p f + p∗m

)
p∗mV∗m + 2p f p∗mVf(

p f + p∗m
)

V∗m + 2p∗mVf

(68)

Finally, the engineering constants of the composite are found

E1 = n− l2

k
(69)

E2 = E3 =
4m
(
kn− l2)

kn− l2 + mn
(70)

ν12 = ν13 =
l

2k
(71)

ν23 =
n (k−m)− l2

n (k + m)− l2 (72)

G12 = G13 = p (73)

G23 = m (74)

It should be noticed that expressions (69)–(74) coincide with the definitions shown in
Equations (18)–(23) for the CNT-equivalent continuum model.

3.2. Numerical Model

The second homogenization of reinforced matrix and fiber was performed by using
Digimat FE (see Figure 6). The RVE size was automatically defined, and by applying a
uniaxial loading, the transversely isotropic properties were computed. The diameter of
the alfa fiber is 95 µm. At this point, this reinforced matrix can be combined with the
reinforcing fibers to obtain the desired three-phase multiscale composite.
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3.3. Second Homogenization Results

To evaluate the validity of the approaches used in this study, we tried to compare
results from the analytical methods (Chamis, Hashin–Rosen, Halpin–Tsai for isotropic
alfa and e-glass fibers and Hahn and Halpin–Tsai for transversely isotropic carbon fibers)
and the numerical methods using Digimat MF and FE. In Figures 7 and 8, a comparison
between the approaches was illustrated. The use of different micromechanics approaches
provides in some cases different results, so it is important to discuss these variations. It
can be observed for all the elastic parameters that all the approaches show an excellent
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agreement for small volume fractions. However, the more the amount of the nanofillers is
increased, the more differences are observed. In particular, the axial Young’s modulus is
underestimated when the Chamis approach is employed. Contrarywise, when evaluating
the transverse Young’s modulus, it is observed that this property is underestimated by the
numerical methods and the various analytical approaches give similar and higher values,
thus two curve groups can be noticed, the first group curve is composed of analytical
approaches and is above the second group by 30%.
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Figure 7. The transversely elastic moduli of CNT-PP matrix reinforced by alfa-aligned fiber, using 
numerical and analytical methods: (a) 𝐸ଵଵ  axial Young’s modulus; (b) 𝐸ଶଶ  in-plane Young’s 
modulus; (c) νଶଷ  in-plane Poisson’s ratio; and (d) 𝜈ଵଶ  axial Poisson’s ratio. 

Figure 7. The transversely elastic moduli of CNT-PP matrix reinforced by alfa-aligned fiber, using
numerical and analytical methods: (a) E11 axial Young’s modulus; (b) E22 in-plane Young’s modulus;
(c) ν23 in-plane Poisson’s ratio; and (d) ν12 axial Poisson’s ratio.
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Figure 8. The transversely elastic moduli of CNT-PP matrix reinforced by carbon-(T-300) aligned 
fiber, using numerical and analytical methods: (a) 𝐸ଵଵ axial Young’s modulus; (b) 𝐸ଶଶ  in-plane 
Young’s modulus; (c) 𝜈ଶଷ  in-plane Poisson’s ratio; and (d) 𝜈ଵଶ  axial Poisson’s ratio. 
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Figure 8. The transversely elastic moduli of CNT-PP matrix reinforced by carbon-(T-300) aligned fiber,
using numerical and analytical methods: (a) E11 axial Young’s modulus; (b) E22 in-plane Young’s
modulus; (c) ν23 in-plane Poisson’s ratio; and (d) ν12 axial Poisson’s ratio.

The longitudinal Young’s modulus increases as a function of CNT and GNP volume
fraction-reinforced alfa and glass fibers with PP and UP polymers. The glass-reinforced
matrix has a longitudinal Young’s modulus greater than the alfa-reinforced matrix, espe-
cially for UP polymer (Figure 9a). Alfa fiber-reinforced polymer has maximum values
of longitudinal Young’s modulus in the order of 70 GPa, 68 GPa, 64 GPa and 62 GPa for
CNT-UP, GNP-UP, CNT-PP and GNP-PP, respectively. Concerning the glass fiber-reinforced
polymer, the longitudinal Young’s modulus has maximum values in the order of 140 GPa,
138 GPa, 112 GPa and 110 GPa for CNT-UP, GNP-UP, CNT-PP and GNP-PP, respectively.
Enhanced elastic properties were observed for the CNT-UP effective matrix and the worst
were observed for GNP-PP. In addition, the transversal Young’s modulus was lower than
the longitudinal Young’s modulus (Figure 9b). The alfa-reinforced composite has a higher
transverse Poisson’s ratio ν12 than the glass-reinforced composite (Figure 9c). The in-plane
Poisson’s ratio ν23 of the glass-reinforced composite decreased for all volume fractions,
while that of the alfa-reinforced composite decreased until 30% and then remained con-
stant for the UP matrix (Figure 9d). It was concluded that CNT inclusion and glass fibers
have a greater effect than GNP inclusion and alfa fibers on the mechanical performance
of the biocomposite. When the volume fraction of CNT and GNP inclusions is large, their
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mechanical properties dominate over those of the alfa and glass fibers. Due to their high
elastic properties, UP polymer, CNT inclusion and glass fiber can improve the composite
properties more than PP polymer, GNP inclusion and alfa fibers. GNPs have a higher
Young’s modulus than CNTs, but because of their plate shape, the composite does not
have increased mechanical stiffness. Focusing on the alfa fiber, for the polymer, E11 of
alfa CNT-UP has a higher value than alfa CNT-PP by 23%. For inclusion, alfa CNT-UP
has an E11 value greater than alfa GNP-UP by 17.01%. In the same way, the longitudinal
Young’s modulus of glass CNT-UP is 45% greater than alfa CNT-UP. The same observations
were found for the other elastic properties of transversal Young’s modulus, out-of-plane
Poisson’s ratio, and in-plane Poisson’s ratio. It was observed that in the three phases of
the biocomposite, CNT and GNP inclusions dominated the mechanical properties at high
volume fractions.
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Figure 9. Comparison of the transversely elastic moduli of an effective matrix reinforced by aligned
fibers, by using the numerical method with Digimat MF: (a) E11 axial Young’s modulus; (b) E22

in-plane Young’s modulus; (c) ν23 in-plane Poisson’s ratio; and (d) ν12 axial Poisson’s ratio.

4. Effect of Aspect Ratio on the Mechanical Properties

To investigate the geometry effect of the inclusions, we studied the effect of the aspect
ratio on the elastic properties of the reinforced matrix. These results were calculated using
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the Digimat MF tool, considering the aspect ratio of CNTs to vary between 50 and 1000,
and of GNP to vary between 1 and 10−4.

For CNT inclusions (Figure 10a), increasing the aspect ratio means increasing the
effective stiffness of the reinforced matrix and decreasing Poisson’s ratio. Increasing the
aspect ratio by 100 from 100 to 200 doubles the effective Young’s modulus. However, the
more we increase the aspect ratio, the slower the increase rate, until reaching a Young’s
modulus of 180 GPa, where increasing the aspect ratio has no effect. For GNP inclusions
(Figure 10b), the effective Young’s modulus increases with increasing the volume fraction
and the aspect ratio; however, for the Poisson’s ratio, increasing the aspect ratio decreases
ν∗m, and we can also notice that for low aspect ratios, Poisson’s ratio varies linearly.
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modulus for GNP-PP, and ν∗m Poisson’s ratio for GNP-PP.

5. Effect of Agglomeration on the Mechanical Properties
5.1. Agglomeration of CNTs

First, the nanosized reinforcing phase is apt to agglomerate, causing a spatially non-
uniform distribution of the fillers in composites. To theoretically examine the agglomeration
effect, we assumed that some graphene sheets are concentrated in some spherical regions
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in the matrix, while the rest keep a desired uniform dispersion, as illustrated in Figure 11.
Then, the composite was divided into two parts with different loadings of reinforcement
which can be considered as two different phases in calculation. We gave the names
agglomeration phase and effective matrix phase to the regions inside and outside the
spheres, respectively, and further recommend that in both phases the graphene sheets
are randomly oriented. In our model, a two-parameter description was employed to
characterize such a special distribution [23], where the agglomeration parameters are
written as

µ =
Win

W
; η =

Win
r

Wr
(75)

If Wr denotes the total volume of CNTs inserted in the matrix, it can be defined as the
sum of two contributes

Wr = Win
r + Wm

r (76)

In which Win
r and Wm

r represent the volume of nanofillers within the inclusions and
scattered in the matrix, respectively. Thus, the total volume W of a representative element
is given by the following relation

W = Wr + Wm (77)

where Wm stands for the matrix volume.
The volume fraction of CNTs Vr and of the matrix Vm can be expressed as follows

Vr =
Wr

W
and Vm =

Wm

W
(78)

In which the relation Vr+ Vm = 1 allows to relate these two quantities. The reinforcing
phase Vr can be seen as the sum of the volume fraction of CNT within the inclusions Vin

r
and the volume fraction of the nanoparticles scattered in the matrix Vm

r as shown below

Vr = Vin
r + Vm

r (79)

Then the volume fraction of nanofillers in the agglomeration phase Vin
r and that in the

effective matrix phase Vm
r can be formulated as

Vin
r =

Win
r

Win =
ηVr

µ
(80)

Vm
r =

Wr −Win
r

W −Win =
(1− η)Vr

(1− µ)
(81)

A two-step procedure was applied to reckon the above model. First, the overall
elastic properties of the agglomeration and the effective matrix phases are calculated
from Equations (80) and (85) by replacing Vr with Vin

r and Vout
r given in Equation (84),

respectively. The bulk modulus of the spherical inclusions K∗in, and the effective matrix
K∗out are computed as

K∗in = Km +
ηVr (δr − 3Kmαr)

3[µ + ηVr(1− αr)]
(82)

K∗out = Km +
(1− η)Vr (δr − 3Kmαr)

3[1− µ + Vr(1− η)(αr − 1)]
(83)

Whereas the corresponding shear modulus of the spherical inclusions G∗in, and the
effective matrix G∗out are computed as

G∗in = Gm +
ηVr (ηr − 2Gmβr)

2[µ + ηVr( βr − 1)]
(84)
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G∗out = Gm +
(1− η)Vr (ηr − 2Gmβr)

2[1− µ + Vr(1− η)(βr − 1)]
(85)

It should be pointed out that Km and Gm specify the bulk and the shear moduli of the
sole isotropic matrix, can be formulated from Equation (90). For the elastic Hill’s moduli,
CNT inclusions are computed from Equations (3)–(6).

Gm =
Em

2 (1 + νm)
Km =

Em

3 (1− 2νm)
(86)

Secondly, the agglomeration phase is considered as spherical inclusions embedded
in the effective matrix. The effective bulk moduli K∗m and shear moduli G∗m of this hybrid
matrix, enriched by CNTs or GNP both included in the spherical inclusions and scattered
in the matrix can be computed as

K∗m = K∗out

1 +
µ
(

K∗in
K∗out
− 1
)

1 + (1− µ)
(

K∗in
K∗out
− 1
)(

1+ν∗out
3−3ν∗out

)
 (87)

G∗m = G∗out

1 +
µ
(

G∗in
G∗out
− 1
)

1 + (1− µ)
(

G∗in
G∗out
− 1
)(

8−10ν∗out
15−15ν∗out

)
 (88)

In which ν∗out stands for the Poisson’s ratio defined as follows

ν∗out =
3K∗out − 2G∗out
6K∗out + 2G∗out

(89)

The hybrid matrix is evidently isotropic. Therefore, the Young’s modulus E∗m, the
Poisson’s ratio ν∗m and the density ρ∗m are required to define its properties. They can be
computed from Equations (9)–(10), respectively
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Figure 11. Agglomeration model of CNTs for the hybrid matrix: (a) partial agglomeration; (b) null
agglomeration; and (c) complete agglomeration.

For η ≥ µ, with µ, η ∈ [0, 1]. The first parameter µ defines the width of the spherical
inclusion Win with respect to the total volume W. On the other hand, the second agglomer-
ation parameter η quantifies the volume of CNTs inside the inclusions Win

r with respect to
total volume of CNTs Wr. In general, three limit cases of the agglomeration ratio can be
defined depending on the values of µ, η.

For µ < η and µ < 1 th, the agglomeration is partial, and the nanofibers are both
included in the inclusions and scattered in the matrix (Figure 11b). It should be noted that
the heterogeneity of CNTs is amplified for µ < 1, by increasing the value of the parameter
η. In contrast, if µ = η = 1 is set, the volume of CNTs is completely concentrated in the
inclusions Wr = Win

r , which coincide with the whole reference domain (Win = W). This
circumstance is depicted in Figure 11a and represents a null level of agglomeration. Finally,
the complete agglomeration of CNTs is defined by µ < η and η = 1 (Figure 11c). In other
words, all the CNTs are located within the spherical inclusions.
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5.1.1. Method Comparison

Before studying the agglomeration effect using Shi’s model [22], we investigated
the validity of the model by comparing results from the analytical model (Table 6) with
semi-numerical results from Digimat MF.

Table 6. Mechanical properties used in the Matlab code and Digimat MF for CNT and GNP.

CNT GNP

Axial Young’s modulus (GPa) 2079.8 102,000
In plane Young’s modulus (GPa) 421.14 1029.204

In plane Poisson’s ratio 0.59522 0.4
Transverse Poisson’s ratio 0.17164 0.004

Transverse shear modulus (GPa) 791 102,000
In plane shear modulus (GPa) 132 369

Density (g/cm3) 1.2 2.2

It was supposed that the inclusions had a prolate ellipsoid with an aspect ratio of
104, and the agglomeration to have a spherical shape. The volume fraction of CNTs was
assumed to be equal to 1%.

As seen in Figure 12, there is an acceptable agreement between the two approaches:
until µ = 0.4, the results from Digimat MF tend to be linear. The errors between the two
approaches can be explained by several explanations: errors can come from the fact that
inclusions in the analytical model are assumed to have an infinite aspect ratio, in addition
the low value of η used in this study plays a role in the validity of this comparison as when
we increased the latter parameter, agreement was no longer found.
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Figure 12. Effective elastic moduli E∗m of a matrix reinforced by agglomerated randomly oriented
nanofillers, a comparison between Digimat MF and Mori–Tanaka scheme.

5.1.2. Results and Discussions

The influences of the parameters µ and η on the effective modulus were investigated
individually by fixing another for only a small volume fraction, as in reality the use of
nanofillers is limited to low levels. First, we considered the most severe case of agglomera-
tion where all the inclusions were concentrated in the same place which we can express
mathematically by η = 1. We plotted the effective Young’s modulus and Poisson’s ratio
under different volume fractions in function of µ (Figure 13).
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Figure 13. Effective elastic moduli of composite reinforced by randomly CNT inclusion in PP
matrix, in function agglomeration parameter µ at small volume fraction (1–4%): (a) effective Young’s
modulus E∗m; and (b) effective Poisson’s ratio ν∗m.

The effective elastic modulus has a maximum value when the CNTs are uniformly
distributed in the composite. As the agglomeration parameter decreases, the effective
stiffness also decreases rapidly. It is also noted that for µ ≤ 0.6, the addition of CNTs has no
effect on the elastic properties of the reinforced polymer. Both agglomeration parameters
are required to describe this phenomenon. The first η indicates the amount of inclusions
located in the agglomeration and the other indicates the size of the agglomerations.

The effective properties are shown in Figure 14 for µ = 0.2, where it is seen that with the
increase of the relative amount of CNTs in the concentrated regions, the effective Young’s
modulus increases slightly to a maximum value of 20 GPa for a volume fraction of 4% and
η = 0.15 before dropping sharply to reach its minimum value when η reaches the unity.
For µ = 0.5 (Figure 15), we can observe that the curves keep the similar tendency but with
greater magnitudes, so it can be concluded that increasing the volume of the concentrated
regions leads to an increase in the effective properties.
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5.2. Agglomeration of GNPs

For the agglomeration of GNPs, a similar mathematical model was used for modelling
the different agglomeration phases with a slight difference in the mathematical expression
of the bulk and shear modulus where [23]

K∗m = K∗out

1 +
µ
(

K∗in
K∗out
− 1
)

1 + (1− µ)
(

K∗in
K∗out
− 1
)(

3K∗out
3K∗out+4G∗out

)
 (90)

G∗m = G∗out

1 +
µ
(

G∗in
G∗out
− 1
)

1 + (1− µ)
(

G∗in
G∗out
− 1
)(

6 (K∗out+2G∗out)
5 (3K∗out+4G∗out)

)
 (91)

Using the same technique for CNT agglomeration, we investigated the influence of the
two agglomeration parameters by fixing one and varying the other. Figure 13 shows the
variation of effective Young’s modulus and Poisson’s ratio in function of µ under η = 1 which
indicated that all the nanofillers are agglomerated in some spherical areas. The variation of
the same properties with η under µ = 0.2 and µ = 0.5 are presented in Figures 14 and 15.

Results and Discussions

In the extreme case where η = 1 (Figure 16), we can observe that the graphene sheets
have the same agglomeration behavior (the curves have similar shapes with a difference in
the magnitudes) as the carbon nanotubes, where the elastic property of the reinforced matrix
drops as the agglomeration parameter decreases. It is concluded from Figures 17 and 18
that increasing µ indicates that the amount of the fillers located in the agglomeration areas
reduce the effective Young’s modulus and Poisson’s ratio. However, increasing the second
agglomeration parameter η enhances the elastic properties of the matrix, which can be
explained by the fact that η signifies the size of the agglomeration sub-regions; consequently,
the bigger the concentrated areas are, the more uniform the distribution.
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6. Conclusions

In this paper, we studied the elastic behavior of a biocomposite based on Alfa fibers
and CNT/GNP-reinforced polymer compared with synthetic fibers used in the wind
energy field. As the elastic behavior is characterized by the Young’s modulus and Poisson’s
ratio, we evaluated those two properties using analytical and numerical approaches, and
also investigated the effect of the volume fraction, aspect ratio, and agglomeration of
the inclusions.

The key conclusions of this work can be summarized as follows:
Computational and numerical approaches show a good agreement for small volume

fraction up to 10%;
Due its shape, the CNT-reinforced composite has better overall properties in the

axial direction and the GNP-reinforced composite has better properties in the transversal
direction. The effect of the aspect ratio was also studied, and by increasing the aspect
ratio from 1 t 0.0001, the elastic modulus increases for the GNP and reaches a maximum of
260 GPa. By increasing the aspect ratio from 50 to 1000, the elastic modulus increases for
the CNT and reach a maximum of 180 GPa;

In the second homogenization, the axial and transverse Young’s modulus increases
with increases in the volume fraction of CNT and GNP. The glass reinforcement shows the
best mechanical behavior with a maximum axial Young’s modulus of 140 GPa; surprisingly,
mixing alfa fibers with GNP inclusions gave us better elastic properties than that of the
carbon fibers, with a maximum of axial Young’s modulus of 90 GPa.

Finally, as the agglomeration parameter decreases, the effective stiffness also decreases
rapidly. It was also noted that for µ ≤ 0.6, the addition of CNTs has no effect on the elastic
properties of the reinforced polymer. Results indicated that with the increase of the relative
amount of CNTs in the concentrated regions, the effective Young’s modulus increases
slightly to a maximum value of 20 GPa for a volume fraction of 4% and η = 0.15 before
dropping sharply to reach its minimum value when η reaches the unity.
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