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Judy Najnudel, Thomas Hélie, David Roze, Rémy Müller

S3AM Team, Laboratory STMS (UMR 9912), IRCAM-CNRS-SU, 1 Place Igor Stravinsky, 75004
Paris, France

Abstract

This paper proposes to build a bridge between microscopic descriptions of matter with
internal energy, composed of many fast interacting particles inside an environment, and
their port-Hamiltonian (PH) descriptions at macroscopic scale. The environment, as-
sumed to be slow, is modeled through experimental constraints on macroscopic quantities
(e.g. energy, particle number, etc), with a partitioning into two classes: non fluctuating
and fluctuating values. The method to derive the PH macroscopic laws is detailed in sev-
eral steps and illustrated on two standard cases (ideal gas, Ising ferromagnets). It revisits
equilibrium statistical physics with a focus on this partitioning. First, the Boltzmann’s
principle is used to provide the statistic law of the matter. It defines a macroscopic
equilibrium characterized by a scalar value, the entropy, together with thermodynamic
quantities emerging from each constraint. Then, the port-Hamiltonian system is derived.
The Hamiltonian (macroscopic energy) is derived as a function of the macroscopic state
(entropy and the macroscopic quantities associated with the fluctuating class). The ports
(flows/efforts) are related to the time-derivative of the state and the Hamiltonian gra-
dient in a conservative way. This open system defines the reversible laws that govern
standard thermodynamic quantities. Lastly, this paper presents a strategy to extend this
PH system to an irreversible conservative one, given a macroscopic dissipative law.

Keywords: equilibrium statistical physics, macroscopic port-Hamiltonian Systems,
statistical entropy, experimental conditions

1. Introduction

A macroscopic system (of size 10−2 m or bigger) is constituted of matter, that is,
billions of microscopic particles (of size 10−9 m or smaller) which are collectively re-
sponsible for the system’s behavior. However, studying a single particle tells nothing
about the macroscopic system, just as following the trajectory of a single person is not
sufficient to predict a crowd movement. Yet, solving exhaustive equations with billions
of variables would be all at once much too complex and irrelevant: at a high enough
scale, individual behaviors do not matter. Indeed, one is usually not interested in the
particular trajectories of water molecules in one’s glass, but rather in the volume, on
Preprint submitted to Physica D January 12, 2023



average, that they take. Likewise, one is not only interested in the day’s weather report,
but rather in the global tendency .

Averages and tendencies belong to the domain of statistics, which aims to describe
complex systems with a reduced number of variables. Thus, Statistical Physics (SP)
computes averages on (fast) fluctuations of complex systems in order to derive (slower)
macroscopic quantities, given some experimental conditions. Statistical arguments for
the description of a system transitioning towards thermodynamic equilibrium were intro-
duced by Ludwig Boltzmann in 1877 [1]. This framework allows the prediction of macro-
scopic thermodynamic phenomena such as temperature, entropy creation, and phase
transitions [2].

Thermodynamics has been broadly studied in the context of port-Hamiltonian system
(PHS), as well as their modeling and their control (see e.g. [3, 4, 5, 6, 7, 8, 9]). However,
the proper derivation of macroscopic thermodynamic PHS from complex systems with
numerous degrees of freedom is seldom addressed. As it happens, the choice of a system
representation for this kind of model reduction is all but inconsequential, and must be
handled with care [10, 11]. In this paper, we propose a series of systematical steps in
order to construct a simplified yet physically-based structured macroscopic PHS from a
system that can be described by SP.

Note that in the scope of this work, we limit ourselves to equilibrium SP, in the
sense that average quantities are determined for a system at thermodynamic equilibrium,
given some experimental conditions. It is compatible with studying the system dynam-
ics, assuming that thermodynamic relaxation (the process of reaching thermodynamic
equilibrium) is infinitely faster than the rate of change of experimental conditions. Based
on this assumption, a macroscopic trajectory is to be understood as a succession of ther-
modynamic equilibrium states.

This paper is structured as follows. In Section 2, we formalize the description of
the microscopic configurations of a system through the choice of (i) an ad hoc parti-
cle representation and (ii) a set of characterization functions that evaluate macroscopic
quantities . Section 3 addresses the experimental conditions at the macroscopic level and
their influence on the system configuration space. In section 4, we introduce a stochas-
tic description for microscopic configurations . Then, in Section 5, we determine the
conditional probability distribution according to the Boltzmann principle for a system at
thermodynamic equilibrium. This allows the derivation of relevant macroscopic variables
as expectations for this probability distribution. In Section 6, we introduce the ports and
relates them to those macroscopic variables, leading to the macroscopic PHS model. Fi-
nally, section 7 summarizes the practical sequence of these steps to derive the macroscopic
PHS model from the microscopic description. In addition, it presents how to derive a
conservative irreversible PHS model from an additional macroscopic dissipation law.
All the steps are detailed in the following sections, as recapped in Fig. 1.

2. Microstate of a system

2.1. Particle representation (p ∈ P)

In order to describe a system at a microscopic level, each of its particles must be
described in a relevant way. Depending on the system under study, one may choose to
represent a particle by its position, momentum, charge, magnetic moment, etc.
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A. Microscopic description - Section 2
1. P-valued particle representation
2. Particle configuration m ∈ M = P⋆

3. Set of characterizing functions F

B. Experimental conditions - Section 3
4. F = Ffixed ∪ Ffree

5. Fixed values θfixed

6. Set of accessible configurations Ma(θ
fixed)

C. Stochastic setting - Section 4
7. Probability distribution p
8. Surprisal Sb

p(m) (in base b)

9. Statistical entropy Sk(p), k = 1/ln b

D. Boltzmann principle - Section 5
10. Ergodicity Ep

[
Fi ∈ Ffree

]
= F i

11. Maximum entropy given
experimental conditions (B.)
→ Thermodynamic entropy Sk(F i)
and Lagrange mult. λi

E. Macroscopic PHS - Section 6
12. Entropy to energy representation
Sk(E , F j) ↔ E(S, F j︸ ︷︷ ︸

x

)

13. Connection to ports (effort u, flow y)
F j ↔ ẋ ↔ u,
λj ↔ ∇E(x) ↔ y

Figure 1: from equilibrium statistical physics to macroscopic port-Hamiltonian systems (PHS): method
recap with the labels of the main mathematical objects introduced in each step.

Definition 1 (Particle set P). Given a chosen representation to encode a particle state,
we denote P the set of all its possible values.

Example 1 (Particle represented by its position and momentum). For a particle chosen
to be represented by its position in space r ∈ R3 and momentum p ∈ R3, such as in a
gas, the particle set is defined as P = R

3 × R
3.

Example 2 (Particle represented by its magnetic moment). For a particle chosen to be
represented by its magnetic moment s ∈ {−1, 1} such as in the Ising model [12, 13], the
particle set is defined as P = {−1, 1}.

2.2. Configuration space (m ∈ M)

As an element of P represents the state of one particle, a natural way to represent
a configuration of particles is to concatenate elements of P. By analogy with formal
language theory [14], a particular configuration of particles is chosen to be encoded as a
word over the alphabet P (see remark 1 for other choices) .

Definition 2 (Encoding space W). We denote W := P⋆ the space of encodable config-
urations (or, for short, the encoding space) , where ⋆ is the Kleene operator defined by

P = {ǫ}, P
i+1 =

{
p1 · p2 | (p1, p2) ∈ P

i × P

}
∀i ≥ 0, (1a)

P
⋆ =

⋃

i≥0

P
i, (1b)

with ǫ the empty configuration and · the concatenation operation.

Property 1 (W is a monoid). By construction, the encoding space W is a monoid
(see Def. (3)) with associative binary operation · (concatenation) and identity element ǫ
(empty configuration).
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(a) Examples of microstates for a system of two particles described by their spin s ∈ {−1 (blue) , 1 (red)}.

(b) Examples of microstates for a system with three particles described by their position (circle) and momentum
(arrow).

Figure 2: Examples of microstates for different systems.

Definition 3 (Monoid). A set S is a monoid if it is equipped with an associative binary
operation · : S × S 7→ S and identity element ǫ, such that for all (s1, s2, s3) ∈ S

3, the
following properties hold

1. s1 · (s2 · s3) = (s1 · s2) · s3,

2. ǫ · s1 = s1 · ǫ = s1.

Based on the chosen representation, some configurations may not be physically ad-
missible 1, therefore we introduce the set of microstates as follows.

Definition 4 (Admissible configuration set M and microstate m ∈ M). We denote
M ⊆ W the set of encodable configurations that are also physically admissible . An
element m ∈ M is called a microstate of the system.

In the following, we choose M = W (see remark 1(i) for an interpretation and (ii-iii)
for examples with M 6= W) . Figure 2a shows examples of microstates for a system of
particles described by their spin, and Fig. 2b shows a system of particles described by
their position and momentum.

Property 2 (M is measurable). The pair
(
M,P(M)

)
where P(M) denotes the powerset

of M is a measurable space, that is, it verifies

1. M ∈ P(M),

2. P(M) is closed under complements: M\P ∈ P(M), ∀P ∈ P(M),

3. P(M) is closed under countable unions:
⋃∞

i=1 Pi ∈ P(M) ∀P1,P2, . . . ∈ P(M).

As mentioned above, the set M could be defined on encoding spaces generated with
operators other than the concatenation. Examples are outlined in the following remark 1.

1For instance, if the chosen representation assigns a unique label to each particle, configurations in
which several particles share the same label are not admissible (see remark 1(iii) for more more details) .
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Remark 1 (Examples of combinatorial structures and interpretations). The monoid W

provides a simple and natural way to encode microscopic configurations, which consists
in choosing a prioritized and distinguishable representation of particles (see specification
(i) below). But the configuration encoding can be addressed by using any appropriate
combinatorics of particles, possibly choosing other specifications (see e.g. [15, § I.2] for
details on operators Seq, Mset, Pset, etc., mentioned below):

(i) Distinguishability with prioritization. A word pi · pi−1 · · · · · p1 ∈ P
i ⊂ W can be

interpreted as describing the state values pn ∈ P of particles number n = 1, . . . , i.
In this sense, definition 2 encodes a physics with distinguishable particles and with
a priority ordering on involved particles (particle 1 can be encoded alone, particle 2
only if 1 is involved, etc). From the combinatorics point of view, the encoding space
W = P⋆ corresponds to the sequence construction, also denoted Seq(P) in [15].

(ii) Undistinguishability. A natural encoding of a physics described with undistinguish-
able particles is the multiset W(ii) =Mset(P) composed of all the finite sets of P

(the order between elements does not count), in which arbitrary finite repetitions
of elements are allowed. Examples of admissible configuration sets M(ii) are W(ii),
or the powerset Pset(P) ⊂Mset(P) (no repetition allowed) if the physics under
consideration forbids two particles of a microstate to be excited by the same state
value.

(iii) Distinguishability without priorization. A means other than (i) to encode configu-
rations with distinguishable particles is to add a distinct label to each particle such
as its number n ∈ L ⊆ N. In this case, the encoding space can be the powerset
W(iii) =Pset(Plabeled), where the set of labeled particles Plabeled is the cartesian
product L× P. An admissible configuration set that forbids the particle ubiquity or
replication is a subset M(iii) of W(iii) for which all the elements make the number
of occurrences of each label n ∈ L be 0 or 1.

(iv) Complex structures. More generally, the encoding space can be composed of complex
elements, with structures involving sequences, cycles (for e.g. aromatic molecules),
trees (etc.) and their combination according to precise combinatorial specifications
(see [15, I.2.3].

2.3. Characterizing functions (Fi ∈ F)

In order to characterize the system at a microscopic level, one may choose to equip
M with a finite set of characterizing functions, labeled by i ∈ I, denoted Fi : M → Fi.

Definition 5 (Extensivity). A function Fi is extensive if Fi is a R
+-semimodule (see

Def. 6) and if it verifies

m3 = m1 ·m2 ⇒ Fi(m3) = Fi(m1) + Fi(m2) ∀(m1,m2,m3) ∈ M
3. (2)

Definition 6 (R+-semimodule). A set S is a R+-semimodule if for all (r1, r2) ∈ R+2

and (s1, s2) ∈ S
2, the following properties hold

1. r1 (s1 + s2) = r1 s1 + r2 s2,
5



2. (r1 + r2) s1 = r1 s1 + r2 s1,

3. (r1 r2) s1 = r1 (r2 s1),

4. 1 s1 = s1,

5. 0 s1 = 0.

Example 1 (Continued). For a gas of N identical, non-interacting particles, the function
Fe : M 7→ R+ defined as

Fe : m 7−→ Fe(m) =

N∑

i=1

∥∥pi(m)
∥∥2

2m
(3)

gives the energy of the system in microstate m, where pi(m) is the momentum of particle
i, and m is the mass of a particle. It fulfills the extensivity property defined in Eq. (2).

Example 2 (Continued). In the Ising model [16] , the function Fe : M 7→ R defined as

Fe : m 7−→ Fe(m) = −
1

2
m⊺ Jex m (4)

gives the energy of the system in microstate m, where each coefficient Jexi,j is the ex-
change energy between atom i and atom j. It does not fulfill the extensivity property
defined in Eq. (2).

Example 3. The function Fn : M 7→ N+ defined as

Fn : m 7−→ Fn(m) (5)

where Fn(m) is the number of particles of the system in microstate m is extensive .

Example 4. The function Fr defined as

Fr(m) =
(
ri
)
1≤i≤Fn(m)

, (6)

where ri ∈ R3 is the position of particle i, gives the set of all particle positions for the
system in microstate m. It is not extensive.

Example 5. The function Fv : M 7→ R+ defined as

Fv : m 7−→ Fv(m) (7)

where Fv(m) is the volume occupied by the system in microstate m. The choice of such
function Fv is hardly unique (see remark 2 below). Here, we propose to define Fv(m)
as the minimal bounding volume enclosing all particle positions of microstate m that
accounts for the container geometry and its degrees of freedom. For instance, for a
cylindrical container of fixed base A closed by a piston moving freely along axis z, we can
define the volume as

Fv(m) = A× h(m), with h(m) = max{riz | r
i ∈ Fr(m)}. (8)

This function does not fulfill the extensivity property defined in Eq. (2).
6



Remark 2 (Volume). The mathematical conceptualization of the volume is a challenging
issue2. In the context of SP, its physical conceptualization is also an issue:

(i) a possible choice could be the volume occupied by the particles, e.g. that delimited
by the 3D simplicial envelope of all the particle positions,

(ii) an alternative is to consider the volume of a container, in which the particle are
authorized to evolve.

The case (i) allows the definition of a characterizing function Fv, the volume being intrin-
sically related to the microstate. In (ii), the microstate does not encode the information
of the container volume: its set of particles in contact with the container boundary can
even be empty. This information is an "experimental constraint" (presented in section 3
below). Note also that example 5 corresponds to a hybrid description in between (i) and
(ii).

In the following, we denote F = {Fi}i∈I the set of characterizing functions on M.

3. Experimental conditions and accessible microstates (m ∈ Ma)

Experimental conditions may constrain characterizing functions to take values that
are compatible with these experimental conditions. Thus, under experimental conditions,
the configuration space becomes restricted to a set of accessible microstates Ma ⊂ M.

Definition 7 (Set of accessible microstates Ma). Denote Ifixed ⊆ I the set of labels of
characterizing functions that are experimentally constrained. Due to the constraints, a
function Fi, i ∈ Ifixed can only take admissible values in Ffixed

i ⊆ Fi.
Denote θfixed :=

(
Ffixed
i

)
i∈Ifixed

. The set of accessible microstates Ma

(
θfixed

)
is

Ma

(
θfixed

)
=
{
m ∈ M | Fi(m) ∈ F

fixed
i ∀i ∈ I

fixed
}
. (9)

Remark that Ifixed = I defines an isolated system with respect to the chosen charac-
terizing functions.

Example 1 (Continued). Consider a gas of N particles in a closed tank. The system
cannot exchange particles with the environment, therefore the number of particles Fn(m)
is fixed to N . Denote Ffixed

n = {N}. The set of accessible microstates is Ma (N) ={
m ∈ M | Fn(m) ∈ Ffixed

n

}
.

Example 1 (Continued). Consider a gas of N particles in a closed tank occupying a
space Π ⊂ R3. Denoting Ffixed

n = {N} and Ffixed
r = ΠN , the set of accessible microstates

is Ma (N, Π) =
{
m ∈ M | Fn(m) ∈ F

fixed
n , Fr(m) ∈ F

fixed
r

}
. Note that the constraint on

Ffixed
r corresponds to the case (ii) in remark 2, the container being described by Π.

Other examples of experimental conditions are shown on Fig. 3.

2In [17, Chap. 3,p.3], Grothendieck mentions the absence (in most textbooks) of any "serious" defi-
nition of the notion of length (of a curve), of area (of a surface), of volume (of a solid).
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(a) Fixed number of particles
and fixed volume.

(b) Fixed number of particles. (c) Fixed volume.

Figure 3: Examples of experimental conditions for a gas in a tank.

Intermediate point. At this step, the physics is described through: M (microscopic rep-
resentation of physical particles, i.e. microstates), Ma ⊆ M (microstates accessible under
fixed macroscopic experimental constraints), F (links to quantities that can be observed
at the macroscopic scale). This is not sufficient to derive an autonomous physical law at
macroscopic scale. This issue can be solved by: (i) completing F with a single new func-
tion, namely, the surprisal, which is elaborated from a stochastic description, giving rise
to the entropy; and (ii) applying the fundamental principle introduced by Boltzmann [1]
to derive a microstate probability that physically makes sense.

The following sections revisit this approach, focusing on the propensity of macroscopic
quantities to communicate with their peer in an external environment. To this end, we
assume that all characterizing functions that are not explicitly fixed by experimental
conditions can still depend on microstate m, and we denote Ifree := I\Ifixed the set of
labels of characterizing functions not fixed by experimental conditions.

4. Stochastic representation and measure of uncertainty

4.1. Microstate stochastic description

The system fluctuates from one accessible microstate to another. It is considered to
be impossible to predict these fluctuations in a deterministic fashion at the macroscopic
level: SP adopts a stochastic framework that model their random description. Indeed,

from Prop. (2),
(
M,P(M)

)
is measurable, therefore so is

(
Ma,Tr

(
P(M)

)
Ma

)
, where

Tr
(
P(M)

)
Ma

denotes the trace of P(M) on Ma [18]. Assuming that Ma is countable and

that the distribution p is discrete3, we can define a probability distribution p
(
. | θfixed

)
:

Ma

(
θfixed

)
7→ [0, 1], denoted p for short below, which assigns to each microstate m ∈

Ma

(
θfixed

)
a probability p(m) to be the actual microstate of the system (the Boltzmann

principle in section 5 will provide a tool to determine this probability).
The average of a random quantity F(m) is given by its expectation Ep[F ], defined as

Ep[F ] =
∑

m∈Ma(θfixed)

p(m)F(m). (10)

3Extensions to continuous measurable spaces are available and similar, replacing the sum by an
integral with a Lebesgues measure and using distributions in (10).
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4.2. Statistical entropy

Given some basis of information units b > 1, a microstate m with probability p(m)
has a surprisal Sb

p(m) defined as

Sb
p(m) = logb

1

p(m)
with logb =

1

ln(b)
ln . (11)

The surprisal, or information content, quantifies how much the occurrence of microstate
m is surprising. For example, if some microstate m is the state of the system for certain,
it has probability 1 and surprisal 0.

As the probability of two independent events m1 and m2 verifies

p (m1 ·m2) = p(m1) p(m2), (12)

the surprisal function Sb
p verifies the extensivity property defined in Eq. (2).

The surprisal allows the definition of a measure of lack of information on average for a
probability distribution p and a basis b, namely, the statistical entropy Sb(p) [19] defined
as

Sb(p) = Ep[S
b
p]. (13)

The statistical entropy can be interpreted of as “the average number of questions to ask
with b possible answers per question” in order to know the actual microstate for certain.

Example 6. Consider the outcomes of tossing a coin twice. The coin can come up heads
or tails after each toss, hence 2 × 2 = 4 possible outcomes (Fig. 4). If all outcomes are
equiprobable, one needs at least two questions with two possible answers each to know the
exact outcome:

1. Did the coin come up heads or tails after the first toss?

2. Did the coin come up heads or tails after the second toss?

As it happens, taking p1 : m 7→ p1(m) = 1
4 and b = 2 in Eq. (13) yields Sb(p1) =

− log2
1
4 = 2.

However, if the probability distribution is not uniform, some outcomes are more prob-
able than others, and the uncertainty is lower; ditto the entropy. For instance, with
a probability distribution p2 assigning 1

2 to outcome (A), 1
4 to outcome (B), and 1

8 to
outcomes (C) and (D), the entropy becomes Sb(p2) = 1.75 < Sb(p1) = 2.

In information theory, statistical entropy relates to optimal encoding of information.
Suppose you repeat the coin toss experiment of Ex. (6) for a long period of time, and wish
to record every outcome on a computer. For a sequence of two tosses with distribution
p1, an outcome cannot be encoded in less than two bits; while with distribution p2,
outcome (A) can be encoded on one bit, outcome (B) on two, and outcomes (C) and (D)
on three, that is, 1× 1

2 +2× 1
4 +6× 1

8 = 1.75 bits on average. The most frequent outcome
takes the least encoding space; conversely, the comparatively large encoding space taken
by outcomes (C) and (D) is compensated by the rarity of their occurrence. On the
whole, exploiting the knowledge underpinned by distribution p2 reduces the encoding
cost. This principle underlies Morse code (and, more generally, lossless entropy encoding
like Huffman coding [20]): very common letters such as “e” or “i” take much fewer dots
than less common letters like “j” or “q”.

9



(a) (b) (c) (d)

Figure 4: Possible outcomes for a coin tossed twice.

For compacity, the statistical entropy becomes in the following

S
k(p) := Sb=exp(1/k)(p) = −k

∑

m∈Ma(θfixed)

p(m) ln p(m), (14)

for all p defined on Ma(θ
fixed).

Remark 3 (Random structures). Following remark 1, the cases of microstates involving
combinatorial structures based on elaborated specifications (such as molecules and chem-
ical reaction processes) require elaborate tools addressing random structures (see e.g. [15,
part. C]) that are out of the scope of this paper.

5. Microstate probability distribution at equilibrium and partition function

5.1. Thermodynamic equilibrium

A system is at thermodynamic equilibrium when its statistics stops evolving. At this
point, the ergodic hypothesis postulates that over a “sufficiently long” period of time t,
the system explores all its accessible microstates. Assuming that a microstate m can
be measured at a time τ through M : R+ 7→ Ma, this means that at thermodynamic
equilibrium, the temporal mean of a quantity F i coincides with its expectation Ep[Fi]:

F i := lim
t→+∞

1

t

∫ t

0

(Fi ◦M) (τ)dτ = Ep[Fi]. (15)

Therefore, for a given set θfree of mean values (F i)i∈Ifree , the ergodic hypothesis
translates into a set of hypotheses H

(
θfree

)
defined as

H

(
θfree

)
=
(
Ep[Fi] = F i

)
i∈Ifree

. (16)

While still discussed [21] (especially regarding the definition of “sufficiently long”),
this hypothesis is the foundation of equilibrium statistical physics, and we assume its
validity in the following.

5.2. Boltzmann principle: maximum entropy at thermodynamic equilibrium (reminder)

By definition, a system at equilibrium does not evolve. Since change is new informa-
tion, the information given by a system at equilibrium is minimal. As statistical entropy
is a measure of lack of information, it follows that at equilibrium, the entropy is maximal:
this is the Boltzmann principle.
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It follows that the microstate probability distribution at thermodynamic equilibrium
p⋆ is

p⋆ = argmax
p

S
k(p) subject to

∑

m∈Ma(θfixed)

p(m) = 1

= arg
p

max
p,λ

S
k(p) + λ




∑

m∈Ma(θfixed)

p(m)− 1


 , (17)

where the second line specifies the constraint using a Lagrange multiplier λ.

5.3. Boltzmann principle in a macroscopic external environment

The macroscopic quantities (Fi∈Ifree(m)) whose fluctuation is experimentally allowed
are prone to communicate with the external environment (for example, through exchanges
of particle, energy, etc). Assuming ergodicity and an infinite ratio between macroscopic
and microscopic time scales, this means that the expectation of these fluctuating quanti-
ties (with value F i∈Ifree) can change over time (at the slow macroscopic scale), while the
thermodynamic equilibrium is satisfied (at the fast microscopic scale) and continuously
updated (at the slow macroscopic scale).

As a main step of this paper, this issue is addressed by deriving the conditional

probability p⋆
(
m | H

(
θfree

))
that maximizes entropy (Boltzmann principle) constrained

by the given macroscopic values θfree = (F i)i∈Ifree , namely,

p⋆ =argmax
p

S
k(p) subject to





∑

m∈Ma(θfixed)

p(m) = 1,

H

(
θfree

)
,

=arg
p

max
p,λ0,λi∈Ifree

S
k(p) + λ0




∑

m∈Ma(θfixed)

p(m)− 1




+
∑

i∈Ifree

λi

(
Ep[Fi]−F i

)
, (18)

where H
(
θfree

)
accounts for the experimental conditions (see Eq. (16)).

Note that, by definition, this probability naturally restores that of (17), if the values
F i∈Ifree are the expectations of Fi∈Ifree computed for probability (17).

Theorem 1. Let θfree :=
(
F i

)
i∈Ifree

∈ ×
i∈Ifree

Fi, where ×
i∈Ifree

Fi denotes the Cartesian

product of the (Fi)i∈Ifree
.

Then for all m ∈ Ma

(
θfixed

)
,

p⋆
(
m | H

(
θfree

))
=

exp
(∑

i∈Ifree
λi Fi(m)

k

)

Z
(
λfree

) , (19a)
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where

Z
(
λfree

)
:=

∑

m∈Ma(θfixed)

exp

(∑
i∈Ifree

λi Fi(m)

k

)
(19b)

is the partition function of the system, and, for all i ∈ Ifree, λi verifies

∂

∂λi

k lnZ
(
λfree

)
= F i. (19c)

The proof is in Appendix A.

Definition 8 (Thermodynamic entropy). The thermodynamic entropy Sk
(
θfree

)
is de-

fined as the statistical entropy for the probability distribution at equilibrium given θfree:

Sk
(
θfree

)
= S

k

(
p⋆
(
· | H

(
θfree

)))
. (20)

Property 3. The thermodynamic entropy function Sk is a Legendre transform of k lnZ
and we have

Sk
(
θfree

)
= k lnZ

(
λfree

)
−
∑

i∈Ifree

λi F i. (21)

Proof.

Sk
(
θfree

)
(a)
= S

k

(
p⋆
(
· | H

(
θfree

)))

(b)
= −k

∑

m∈Ma(θfixed)

p⋆
(
m | H

(
θfree

))
ln p⋆

(
m | H

(
θfree

))

(c)
= −k

∑

m∈Ma(θfixed)

p⋆
(
m | H

(
θfree

))
ln



exp

(∑

i∈Ifree
λi Fi(m)

k

)

Z
(
λfree

)




= −k
∑

m∈Ma(θfixed)

p⋆
(
m | H

(
θfree

))(∑
i∈Ifree

λiFi(m)

k
− lnZ

(
λfree

))

(d)
= −

∑

i∈Ifree

λi F i + k lnZ
(
λfree

)
,

using (a) Eq. (20), (b) Eq. (14), (c) Eq. (19a), and (d) Eqs. (10)-(15).
We deduce that Sk is a Legendre transform of k lnZ (see also [22]).

Property 4. It follows from Prop. (3) that for all i ∈ Ifree, the Lagrange multiplier λi

is the derivative of the thermodynamic entropy function with respect to average F i

λi = −
∂Sk

∂F i

(
θfree

)
. (22)
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Example 7. In particular, this defines the system temperature T , chemical potential µ,
and pressure P as

1

T
:=

∂Sk

∂Fe

(
θfree

)
,

µ

T
:= −

∂Sk

∂Fn

(
θfree

)
,

P

T
:=

∂Sk

∂Fv

(
θfree

)
. (23)

Adiabatic process. For a system going through an adiabatic process (no thermal exchange
with the environment), the surprisal is independent of m so that

Sb
p⋆(m) = S ∀m. (24)

That implies that for such systems, all microstates have the same probability

p⋆(m) =
1

Ω
, with Ω = card

(
Ma

(
θfixed

))
. (25)

From Eq. (19a), it follows that for such a system, we have
∑

i∈Ifree

λi Fi(m) = C, (26)

where C is independent of m.

Example 8. In particular, a system that can only exchange volume with its environment
verifies Fe(m) + P Fv(m) = C, where C is independent of m.

5.4. Identification of Boltzmann constant

To ensure that the statistical entropy does coincide with the thermodynamic entropy
at equilibrium, the constant k must be chosen as the Boltzmann constant4 kB = 1.38×
10−23 J.K−1. Indeed, consider an ideal gas of N non-interacting atoms in a box of
volume V at temperature T , represented by their position and momentum. The partition
function Z is given by

Z(T |N, V ) = V N

(
2 πmk T

h2

)3 N/2

, (27)

where here m denotes the mass of an atom, and h is the Planck constant. From Prop. (3),
the thermodynamic entropy Sk(Fe, N, V ) is given by

Sk(Fe, N, V ) = k lnZ(T |N, V ) +
Fe

T
. (28)

Moreover, from Eq. (23), the pressure P is given by

P = T
∂Sk

∂V
(Fe, N, V ) =

N k T

V
. (29)

Therefore, k must be identified with kB so that the ideal gas law P V = N kB T is
verified.

4Note that, from definition (14), choosing the unit USI reference k0 = 1 J.K−1 as a unit information
quantity, this value corresponds to the question number base bB = exp(k0/kB) = exp(1023/1.38) ≈

103.147e+22
≈ 29.4736e+21 . This means that explaining +1 J.K−1 requires about 1022 bits for a gas.
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6. Final PHS model

The macrosopic description of open system can be achieved by using balanced equa-
tions of variations of entropy, energy, mass, etc. Port-Hamiltonian systems provide an
adapted framework for such physical descriptions. This section addresses this issue by
using a standard formulation (recalled in section 6.1), in which the energy is expressed as
a function of entropy and state variables: this requires to invert S : (E, . . . ) 7→ S(E, . . . )
w.r.t. E, to introduce the hamiltonian H = E : (S, . . . ) 7→ H(S, . . . ) in a first step. Note
that this inversion is a technical step that could be avoided (to still use the entropy func-
tion) by considering contact forms as in [23] (see also [24] for the alternative GENERIC
formulation).

6.1. Reminder on port-Hamiltonian systems

The PHS formalism provides a unified formalism for the modeling of multiphysical
systems, in the sense that it recognizes energy as a universal currency. Indeed, any phys-
ical system can be divided into parts that interact with each other via energy exchanges.

Detailed presentations of PHS are available in [25, 26]. In this paper, we rely on a
differential-algebraic formulation adapted to multiphysical systems [27, 28]. This formu-
lation allows the representation of a dynamical system as a network of

1. storage components of state x and energy E(x);

2. passive memoryless components described by an effort law z : w 7→ z(w), such as
the dissipated power Pd = z (w)

⊺
w is non-negative for all flows w;

3. connection ports conveying the outgoing power Pext = u⊺y where u are inputs and
y are outputs.

The system flows f and efforts e are coupled through a (possibly dependent on x) skew-
symmetric interconnection matrix S = −S⊺, so that



ẋ

w

y




︸ ︷︷ ︸
f

= S



∇E(x)
z(w)
u




︸ ︷︷ ︸
e

. (30)

Such systems satisfy the power balance

Ps + Pd + Pext = 0 (31)

where Ps = ∇E(x)⊺ ẋ denotes the stored power.

Proof.

Ps + Pd + Pext = ∇E(x)⊺ ẋ+ z (w)
⊺
w+u⊺ y = e⊺f = e⊺Se = (e⊺Se)⊺ = −e⊺Se = 0

due to the skew-symmetry of S.

Note that in this paper, we adopt the passive sign convention (also called receiver
convention) for all components, including external sources. This means that a flow is
defined positive when entering the component [29].
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6.2. Macroscopic state and energy

In the previous sections, we derived the thermodynamic entropy as a function of
the energy and other macroscopic variables. In order to obtain a port-Hamiltonian
formulation such as Eq. (30), we choose to express the energy as a function of the
thermodynamic entropy and other macroscopic variables instead.

Denote S := Sk
(
θfree

)
, and θx := θfree\Fe the set of macroscopic quantities that are

not the energy, with corresponding set of labels Ix. We choose to define the (extensive)
macroscopic state x as

x =
[
S, θx

]⊺
, (32)

so that the flow ẋ accounts for the time variation of extensive quantities. Assuming
that the entropy function Sk is invertible with respect to Fe, we define the macroscopic
energy function E as

E : x 7−→ E
(
Sk(Fe, θ

x), θx
)
= Fe, (33)

so that the effort ∇E accounts for intensive quantities. Otherwise, the macroscopic
energy function can be defined implicitly via Eq. (21) and contact forms [23, 8].

Remark: the energy function E should be homogeneous of degree 1, so that it verifies
for all γ

E(γ x) = γ E(x). (34)

6.3. Connection to ports

Ext

Sys

(isolated) {Sys + ext}
fsys

fext

esys = eext

Figure 5: Flows f and efforts e of a system and its environment. The considered system and its
environment as a whole form an isolated system.

The environment acts on the system flow so that at thermodynamic equilibrium, the
flows are balanced, and the effort is shared at the system interface (Fig 5):

∂Esys

∂F
sys

i

=
∂Eext

∂F
ext

i

∀i ∈ I
x. (35)

(see Appendix B for proof).
Adopting the notations of Eq. (30), together with Eq. (22), we obtain the relations

between flows, efforts and external ports in Table 1.
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Table 1: Port variables and their relations.

State x
[
S, F i

]
u+ ẋ = 0

Effort ∇E(x) [T, T λi] y = ∇E(x)

6.4. Conservative, reversible PHS

Denoting σext the outgoing entropy flow, the conservative PHS interconnection matrix
of an open system is found to be

∇E(x) u

T µ −P σext Ṅext V̇ext





Ṡ . . . −1 . .

ẋ Ḟn . . . . −1 .

Ḟv . . . . . −1
Text 1 . . . . .

y µext . 1 . . . .
−Pext . . 1 . . .

. (36)

7. Summary of the method and generalization route to irreversible systems

This section first summarises the main steps to derive a reversible conservative macro-
scopic PHS from a microscopic description of matter in an experimental context. Second,
a process is proposed to complete this modelling under a macroscopic irreversible con-
servative form, given a dissipation law.

7.1. Reversible conservative macroscopic PHS

In summary, the macroscopic PHS can be described from the microscopic description
by completing the following steps:

1. Microstate representation Define P, W = P⋆ and M ⊆ W equipped with char-
acterizing functions F = {Fi : M 7→ Fi}i∈I

.

2. Experimental conditions and accessible microstates

(a) Partition F = Ffixed ∪ Ffree into the set Ffixed of functions the values of which
are physically constrained by the experiment and its complement Ffree, with
corresponding sets of indices I

fixed and I
free.

(b) Denote θfixed ⊂ ×i∈IfixedFi the set of experimentally admissible values for
functions in Ffixed.

(c) Denote Ma

(
θfixed

)
the corresponding set of admissible microstates.

3. Stochastic description For all probability distributions p : Ma

(
θfixed

)
7−→ [0, 1],

(a) Derive the surprisal Sb
p : m ∈ Ma

(
θfixed

)
7−→ logb

1
p(m) ∈ R+.

(b) Derive the statistical entropy function Sk : p 7−→ Ep

[
S
b=exp(1/k)
p

]
∈
[
0, 1

Ω

]
.

4. Boltzmann principle for ergodic systems at thermodynamic equilibrium
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(a) Introduce θfree :=
(
Fi

)
i∈Ifree

the values of functions in Ffree observed at a

macroscopic scale.

(b) Define p⋆
(
m | H

(
θfree

))
according to Th. 1.

(c) Define the thermodynamic entropy function Sk : θfree 7→ Sk

(
p⋆
(
. | H

(
θfree

)))
.

For common experimental constraints (i.e., constraints on F =
{
Fe, Fn, Fv, S

b
p

}
), we

obtain the results in Table 2 (see also [30]).
Note that if there is no analytic solution for Fe 7→ Sk(Fe, . . . ) and its inverse (note

that
∂Sk

∂Fe

is monotonic), approximation strategies can be used (see [31] for an example).
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Table 2: Statistical ensembles and associated constraints for usual experimen-
tal conditions. Ω denotes the cardinal of Ma (set of accessible microstates).

Ensemble θfixed θfree p⋆(m) Entropy Example

Micro-canonical (E, N, V, S) 1
Ω kB lnΩ Gas in an isolated tank

Isoenthalpic-isobaric (N, S)
(
Fe, Fv

)
1
Ω kB lnΩ

Gas in a closed tank

No

with a piston,
thermally insulated

thermal contact Unnamed (V, S)
(
Fe, Fn

)
1
Ω kB lnΩ

Gas in a porous tank,
thermally insulated

Unnamed S
(
Fe, Fn, Fv

)
1
Ω kB lnΩ

Gas in a porous tank
with a piston,
thermally insulated

Thermal contact

Canonical (N, V ) Fe
exp

(

−Fe(m)
kB T

)

Z(T )
kB lnZ(T ) + Fe

T

Gas in a closed tank,
in contact with a thermostat

Isothermal-isobaric N
(
Fe, Fv

)
exp

(

−Fe(m)+P Fv(m)
kB T

)

Z(T, P )
kB lnZ(T, P ) + Fe+P Fv

T

Gas in a closed tank
with a piston,
in contact with a thermostat

Grand-canonical V
(
Fe, Fn

)
exp

(

−Fe(m)−µ Fn(m)
kB T

)

Z(T, µ)
kB lnZ(T, µ) + Fe−µFn

T

Gas in a porous tank,
in contact with a thermostat

Unnamed
(
Fe, Fn, Fv

)
exp

(
−Fe(m)+P Fv(m)−µFn(m)

kB T

)
Fe+P Fv−µFn

T

Gas in a porous tank
with a piston,
in contact with a thermostat

1
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7.2. Irreversible conservative macroscopic PHS from a macroscopic dissipative law

The system (36) models some conservative reversible physics at macroscopic scale. In
some cases, dissipative phenomena can be observed, for which laws are available only at
this scale.

In this part, we assume that such a dissipative phenomenon is described by

(i) a flow-to-effort mapping law

zd : fd 7→ ed = zd(fd) such that for all fd, zd(fd)
⊺fd =: Pd ≥ 0, (37)

(ii) interconnected to the conservative part according to matrix given by

∇E(x) z(w) u

T es ed σext eext





ẋ
Ṡ . . . −1 .
fs . Jx −K . −Gx

w fd . K⊺ Jw . −Gw

y
Text 1 . . . .
fext . G⊺

x G⊺

w . Jy

, (38)

(iii) the dissipated power Pd being totally converted into an entropy rate

σi = Pd/Td ≥ 0 where Td > 0, (39)

denotes the instantaneous macroscopic temperature at which the phenomenon is
experienced. The positivity of σi reflects the irreversible nature of dissipation.

From zd, we form the irreversible thermodynamic converter with law

z : w =
[
f
⊺

d , Td

]⊺
7−→


zd(fd)

⊺,−zd(fd)
⊺fd/Td︸ ︷︷ ︸

−σi




⊺

(40)

where −σi ≤ 0 accounts for the entropy rate incoming into the converter.
This law is conservative as z(w)⊺w = 0. Due to irreversibility (σi ≥ 0), it naturally

fulfills the second principle of thermodynamics.
Finally, from (iii), the irreversible conservative thermodynamic macroscopic PHS is

given by
∇E(x) z(w) u

T es −σi ed σext eext





ẋ
Ṡ . . −1 . −1 .
fs . Jx . −K . −Gx

w
Td 1 . . . . .
fd . K⊺ . Jw . −Gw

y
Text 1 . . . . .
fext . G⊺

x . G⊺

w . Jy

. (41)
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8. Conclusion

In this paper, we revisited equilibrium SP in order to model complex systems with
numerous degrees of freedom as macroscopic PHS with a reduced number of variables.

Starting from the choice of a particle’s description and ad hoc characterizing functions,
we recalled how to derive the probability of a configuration of particles at equilibrium
based on given experimental conditions. In the end, macroscopic variables are revealed
to be expectations of the chosen characterizing functions for this probability, and the
thermodynamic entropy to be a function of these macroscopic variables. Provided that
the energy has been chosen as a characterizing function from the start, the macroscopic
energy can in turn be expressed as a function of the thermodynamic entropy and other
macroscopic variables. Through the PHS formalism, experimental conditions are repre-
sented as an input flow that acts on the system so that the resulting output is an effort
shared with the system. With this formulation, the externality of the environment, as
well as its interactions with the system via exchanges of energy and entropy, are made
explicit.

As a result, we proposed two PHS formulations for conservative open systems, a
reversible one (with no entropy creation), and an irreversible one (with entropy creation).

An immediate perspective would be to extend this work to non-equilibrium SP [24],
so that a macroscopic trajectory would not only be a succession of equilibrium states,
and experimental conditions could change faster.
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Appendix A. Proof of Theorem 1

Proof. To solve Eq. (18), we introduce Lagrange multipliers λ0 and λfree := (λi)i∈Ifree ,
and optimize [32] the Lagrangian L defined by

L :
(
p, λ0, λ

free
)
7−→ S

k(p) + λ0




∑

m∈Ma(θfixed)

p(m)− 1


+

∑

i∈Ifree

λi

(
Ep[Fi]−F i

)
.

(A.1)
A necessary condition to optimize L is to solve δL

δp = 0, where δ denotes the functional

derivative. From Eq. (A.1)-(14)-(10),

δL

δp
= 0 ⇒

∑

m∈Ma(θfixed)


−k

(
ln p(m) + 1

)
+ λ0 +

∑

i∈Ifree

λi Fi(m)


 = 0.

This is true in particular if p verifies

− k
(
ln p(m) + 1

)
+ λ0 +

∑

i∈Ifree

λi Fi(m) = 0 ∀m ∈ Ma

(
θfixed

)

⇒p(m) = exp

(∑
i∈Ifree

λi Fi(m)

k

)
exp

(
λ0

k
− 1

)
∀m ∈ Ma

(
θfixed

)
.

A second necessary condition is to solve
∂L

∂λ0

= 0, which, combined to the first

condition, yields

∂L

∂λ0

= 0 ⇒
∑

m∈Ma(θfixed)

p(m) = 1 ⇒
∑

m∈Ma(θfixed)

exp

(∑
i∈Ifree

λi Fi(m)

k

)
= exp

(
1−

λ0

k

)
,

so that for all m ∈ Ma

(
θfixed

)
, p⋆(m) is of the form

p̂⋆
(
m | H

(
θfree

)
, λfree

)
=

exp
(∑

i∈Ifree
λiFi(m)

k

)

Z
(
λfree

) , (A.2)

with Z
(
λfree

)
:=

∑

m∈Ma(θfixed)

exp

(∑
i∈Ifree

λi Fi(m)

k

)
. (A.3)

A third necessary necessary condition is to solve
∂L

∂λi

= 0 for all i ∈ Ifree, which,

combined with Eq. (A.3), yields

∂L

∂λi

= 0 ⇒Ep[Fi] = F i

⇒

∑
m∈Ma(θfixed) Fi(m) exp

(∑

i∈Ifree
λi Fi(m)

k

)

Z
(
λfree

) = F i

⇒
∂

∂λi

k lnZ
(
λfree

)
= F i.
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We deduce that the optimal distribution p⋆ is

p⋆
(
m | H

(
θfree

))
= p̂⋆

(
m | H

(
θfree

)
, λfree

)
,

with λfree such that
∂

∂λi

k lnZ
(
λfree

)
= F i ∀i ∈ I

free.

Appendix B. Proof of effort equality at the system interface

Proof. Consider the isolated total system constituted by the system under study and its
environment. For all i ∈ Ifree, we have

F
total

i = F
sys

i + F
ext

i .

The entropy is extensive, therefore,

Sk
total

(
θfree
total

)
= Sk

sys

(
θfree
sys

)
+ Sk

ext

(
θfree
ext

)
. (B.1)

The total system is isolated, therefore the total entropy is maximal with respect to any
variable, so that for all i ∈ I

free,

∂Sk
total

∂F
sys

i

= 0

⇒
∂Sk

sys

∂F
sys

i

+
∂Sk

ext

∂F
sys

i

= 0

⇒
∂Sk

sys

∂F
sys

i

−
∂Sk

ext

∂F
ext

i

= 0

⇒λsys
i − λext

i = 0.

Moreover, for all i ∈ Ix

∂E

∂F i

= T λi,

since

Sk
(
E(S, F i), F i

)
= S

⇒
∂Sk

∂Fe

∂E

∂F i

+
∂Sk

∂F i

= 0

⇒
1

T

∂E

∂F i

− λi = 0.

We deduce that ∂Esys

∂F
sys
i

= ∂Eext

∂F
ext
i

∀i ∈ Ix.
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