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On the evolution of speech representations for affective computing

A brief history and critical overview

Sina Alisamir & Fabien Ringeval

R
ecent advances in the field of machine learning have shown great potential for the automatic recognition of

apparent human emotions. In the era of Internet of Things (IoT) and big-data processing, where voice-based

systems are well established, opportunities to leverage cutting-edge technologies to develop personalised and human-

centered services are genuinely real, with a growing demand in many areas such as education, health, well-being

and entertainment. Automatic emotion recognition from speech, which is a key element for developing personalised

and human-centered services, has reached a degree of maturity that makes it of broad commercial interest today.

However, there are still major limiting factors that prevent a broad applicability of emotion recognition technology.

For example, one open challenge is the poor generalisation capabilities of currently used feature extraction techniques

to interpret expressions of affect across different persons, contexts, cultures and languages.

Since speech and emotion involve interdependent cognitive processes, emotion can be observed both in the spoken

words and in the acoustic properties of the speech signal, where many other factors such as gender, age, culture

and personality come into play. Even though features derived from speech science have permitted to describe

and predict some expressions of affect relatively well, these representations do not encompass all the perceptual

cues that humans may sense during an emotional experience. With the advancement of machine (deep) learning,

computational methods have been proposed for learning representations from raw speech data. Newly introduced

deep representations, although not as easily interpretable as most descriptors from speech science, promise to

disentangle many existing issues in affective computing research, such as lack of labelled data, robustness to noise,

and domain mismatch [1, 2, 3].

In this contribution, we provide a brief history and critical overview of the different speech representations that

have been used in automatic emotion recognition over the years (cf. Figure 1), focusing on how and why the

new unsupervised representations in particular can provide major unprecedented benefits in affective computing.

Thus, in here, we stay mainly on the topic of speech representations but also mention the new trend to integrate
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Figure 1: Overview of popular speech representations exploited for emotion recognition as covered in this article. Abbreviations

used in the figure are GeMAPS: Geneva Minimalistic Acoustic Parameter Set, MFCC: Mel-Frequency Cepstral Coefficients,

BoAW: Bag of Audio Word, FV: Fisher Vector, AAE: Advarsarial AutoEncoder, VAE: Variational AutoEncoder, SSL: Self-

Supervised Learning

linguistic information with them. For more information on the models reaching emotion from speech representations

and exemplary applications of representation learning for automatic emotion recognition, we refer the reader to the

article ”Deep Representation Learning for Affective Speech Signal Analysis and Processing” in this special issue [4].

The Usual Suspects: Representations derived from Speech Sciences

Mostly based on established procedures in speech sciences to measure different aspects of phonation, articulation

and perception of different patterns of speech, affective computing researchers have been exploiting a large number

of – rather hand-crafted – acoustic parameters to identify emotional cues in speech. First automatic emotion

recognition systems relied on very-short term energy coefficients describing the frequencies contained in the speech

signal according to the human’s ear non-linear perception properties. Mel-Frequency Cepstral Coefficients (MFCCs)

were later introduced as a deconvolution step between the glottal excitation and the vocal tract in order to preserve

the signal variability coming from the source. Even though MFCCs date back to the 80s, they are still the most

popular representation used today for emotion, music, and speech recognition. As acoustic correlates of emotion were

fairly well documented in the early days of affective computing, researchers explored the acoustic space of speech

in a comprehensive way, by combining relevant descriptors identified in speech science with statistical measures, to

summarise the temporal trajectories into a vector of fixed-length usable for machine learning.

As many different techniques were proposed to extract speech descriptors such as prosodic (pitch, loudness,
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and rhythm), and voice quality, in combination with several sets of statistical measures utilised to summarise their

temporal trajectories, results achieved in the first emotion recognition studies were neither easily comparable nor

really explainable. As a result, joint efforts have been undertaken to define a reduced set of acoustic descriptors based

on expert knowledge, resulting for example in representations such as the Geneva Minimalistic Acoustic Parameter

Set (GeMAPS) [5]. Even though such reduced set of acoustic descriptors based on expert knowledge has contributed

in the standardisation of the feature extraction step, thereby increasing research reproducibility, it generally achieves

relatively poor performance in emotion recognition tasks compared to more comprehensive feature sets.

Representations derived from speech science have been used for decades and are arguably the most dominant

approach in affective computing so far. However, such descriptors have been engineered with our - rather limited -

understanding of the human perception of speech, and therefore do not surely encompass all information that are

perceived from the voice, especially in the context of affect.

As a first step in the integration of machine learning techniques for learning representations of speech, a clustering

of the acoustic descriptors was proposed instead of their stochastic analysis. Bag of Audio Words (BoAWs) is one

such approach where clusters of speech descriptors define a dictionary, which is further used to extract features as

the distribution of clusters from the dictionary. Another popular approach is Fisher Vectors (FVs), where Gaussian

Mixture Models (GMMs) are employed to estimate gradients of the log-likelihood of the data with respect to the

GMM parameters, which are concatenated to form the feature set.

Meanwhile, the advent of deep learning models has paved the way towards the extraction of new representations

of speech that can be obtained when solving a given machine learning task. Those approaches have incredibly

changed the face of today’s speech processing technology, where representations derived from speech science are

gradually – and respectfully – told Adieu [6], to welcome deep representations that can be tailored to address issues

such as data sparsity, robustness to noise, and domain mismatch, which are today’s major limiting factors of affective

computing.

Learning Deep Representations of Speech

Three main stages of data transformation are usually involved in emotion recognition from speech: (i) extraction

of Low-Level Descriptors (LLDs) carrying relevant cues of emotion from the input signal, (ii) quantification and

contextualisation of temporal patterns in the LLDs, and (iii) mapping of those patterns to high-level representations
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Figure 2: Flowchart of the different processing stages used in emotion recognition from speech; LLD: low-level descriptors

derived from speech science; CNN: Convolutional Neural Networks; RNN: Recurrent Neural Networks; Attention: Models that

use attention mechanism such as Transformers; FCNN: Fully Connected Neural Network; SVM: Support Vector Machine.

as contained in the labels, cf. Figure 2. Whereas first emotion recognition systems performed these processing

stages separately, Deep Neural Networks (DNNs) have made it possible to address all of them jointly, using specific

architectures where the level of abstraction of the representations extracted at different stages of processing increases

progressively, from the raw waveform to the emotion labels.

DNNs, which are inspired by the hierarchical structure of the brain, are composed of hierarchical layers that

perform non-linear transformations of a sequence of low-level representations of the input signal (e.g., MFCCs or

the raw speech waveform), to predict a sequence of high-level representations such as emotion labels or dimensions.

The last layer of this hierarchical structure would thus be generally less sensitive to most local variations of the

input signal, while being more representative of abstract patterns that can be detected from speech and exploited

for emotion recognition [7].

Learning Representations from End-to-End

One such paradigm, which learns speech representations at different levels of abstraction, is called end-to-end

learning. It is mainly realised by convolutional neural networks (CNNs), which are composed of filters extracting

relevant representations from the input signal using the convolution operation. Unlike fully connected neural networks

(FCNNs), where each node in each layer is fully connected to all nodes in the next layer, CNNs reduce the number of

parameters learned in the network by using only local connections between layers. They also preserve the temporal

structure of the speech signal by sharing the parameters across the temporal dimension. When used as front-end,

CNNs can thus be viewed as a data-driven feature extractor, where representations are obtained by convolutional
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filter banks, and the optimal configuration of the filters is learnt through data instead of being pre-defined from

human’s auditory properties as with MFCCs. First experimental evaluations on exploiting the raw speech signal to

recognise emotion from speech in an end-to-end manner have shown the superiority of this approach compared to

hand-crafted representations [6].

However, the caveat of end-to-end learning is that it requires a large amount of labelled data. Indeed, the

extraction of relevant descriptors being trained jointly with the prediction of labels, more parameters need to be

optimised compared to the use of descriptors derived from speech science as inputs. This is problematic because

collecting and annotating emotion data is expensive and we do not have access to large amounts of labelled data

in emotion research. In addition, emotion labels are defined by a very small population of annotators who transfer

their subjective perception of emotion into either discrete or continuous labels. Learning representations of speech

for emotion recognition in an end-to-end manner therefore implies that the set of representations learnt from speech

depends on the level of subjectivity present in the annotations of emotion. This complicates the development of

emotion models that need to generalise well across people with different age, gender, personality, and culture, as

each emotion data set involves specific populations of annotators, with the possible use of different psychological

paradigms for describing emotion.

The Grass is Greener on the Other Side: Deep Spectrum

End-to-end systems are therefore limited by the amount of labelled data available to solve the emotion recognition

task, which is problematic because emotion annotation is expensive and available data sets are scarce. However, as

speech can be represented as an image through its time-frequency representation, one could take benefits of models

trained to solve computer vision tasks such as object detection in images, and for which the number of labelled

corpora is largely superior to the ones available for emotion recognition. Although describing a speech representation

as the probability of identifying a wide variety of objects or animals may seem counter-intuitive, the presence of

regular or irregular patterns in a spectrogram is exactly what phoneticians look for to characterize a given speech

signal. Such representations are referred to as Deep Spectrum and have proven to match or outperform conventional

representations derived from speech science for emotion recognition [8].

However, a major drawback of this approach is the difficulty in predicting the extent to which knowledge gained

in solving computer vision tasks can be transferred to emotion recognition from speech using spectrograms. The

accumulation of knowledge from various tasks into one can also be considered, however it poses its own challenges
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[9]. Furthermore, representations of speech that are transferred from other domains might ignore some patterns that

are specific to emotion.

Into the Unknown: Unsupervised Learning

The lack of emotion labels for a diverse range of data, when there is an abundance of unlabelled recordings from

a plethora of individuals of different ages and cultures, and directly accessible at (almost) zero cost, has motivated

the research in affective computing towards the definition of more agnostic approaches for extracting representations

of speech, where human expert knowledge is exploited to define machine learning tasks for extracting abstract

representations of speech.

Learning to Copy: Autoencoders

An autoencoder is a neural network that trains an encoder and a decoder model in a tandem in order to reconstruct

the input signal from an intermediate representation. Assuming that the representation between the encoder and

the decoder model is smaller in size than the input, the encoder model learns a mapping from the raw data to

the intermediate representation, which can then be used to reproduce the original signal. Therefore, the encoder

model, once trained, can be used as a feature extraction module, as the intermediate representation encompasses

some generic information relevant to the reproduction of the original signal. Reducing the dimension of the data

representation also implies that the encoder model discards information common to the training data. As a result,

training a DNN model based on this representation generally achieves better performance in different domains for a

reduced training time.

Recurrent neural networks (RNN), which are particularly useful for modeling the context of a speech signal,

have also been investigated in an autoencoder architecture for emotion recognition [10]. In this approach, a la-

tent representation of emotional speech is generated by an RNN-based autoencoder trained on a large amount of

unlabelled data, thus improving emotion recognition. The success of RNNs for speech modeling is mainly due to

the fact that these models take into account the order of the data, which is useful for speech since the meaning

of a speech signal comes not only from the phonemes but also from the way they are ordered in time. The use of

convolutional layers first to model low-level features, and then recurrent layers to model context has also proven to

be a more generalisable approach for emotion recognition especially in cross-corpora settings [11]. These studies

show the benefits of bypassing the lack of labelled data through autoencoders in the context of emotion recognition.
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The best of both worlds: Semi-Supervised Learning

Although traditional autoencoders can learn generic high-level features using only unlabelled data, in many cases

these features do not perform as well as a model trained in an end-to-end manner [1]. On the other hand, we generally

do not have access to a sufficient number of labelled samples to obtain more affect-related features through end-to-

end learning. Thus, many researchers use semi-supervised learning, which utilises both the ability of unsupervised

learning in terms of learning representations from unlabelled data and also using labelled data to find more important

features for the task at hand.

Semi-supervised learning can be done through separate steps in which a generic pattern is first reached in an

unsupervised manner and then more important features are extracted towards a specific task by using labels. For

example, CNNs can be used to first learn unsupervised representations and then the same layers can be used to

reach more affect salient features through the use of labels [12]. To remove the unsupervised pre-training step,

Ladder networks, which are a kind of denoising autoencoders, were extended in a way to minimise the supervised

and unsupervised cost functions at the same time [13]. This method was later used to learn strong emotional

representations for dimensional emotion prediction showing a better generalisation for the emotion prediction model

[14]. In a similar approach, the idea of semi-supervised autoencoders, which can achieve state of the art performance

for automatic emotion recognition using only a small number of labelled data, is introduced [15]. This method also

relies on a joint loss function that minimises both the reconstruction error (similar to autoencoders), and the

classification error (similar to supervised learning).

Encoding Meaning into Autoencoders

Traditional autoencoders focus primarily on reconstructing the data by removing common information and not

detecting patterns that can explain it. While this has the advantage of reducing the dimensionality of the data,

finding generic features, and thus making it easier to reach more complex targets such as emotion, it does not

necessarily result in a higher-level representation that embodies the meaning of the data.

One popular way to encode the meaning of speech signals into a latent representation space reached by autoen-

coders is to enforce similarity between different samples in that space. It can be achieved through a regularisation

term in the loss function, which assumes a probabilistic distribution of the latent space, e.g. normal distribution.

This implies that small differences among samples in the latent space would be the variations observed between
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similar data points and thus this approach is called Variational AutoEncoders (VAEs). It has also been shown that

features reached through this method are able to learn latent representations of emotion from speech and reach state

of the art results [16]. They show that VAEs can learn powerful features that, when combined with popular RNN

models, yield better results than other mentioned techniques so far for both categorical and dimensional emotion

recognition.

Another recently adopted approach to achieve better results is to generate additional samples for training the

emotion recognition model using generative adversarial networks (GANs). GANs use a generative model to generate

samples similar to the actual data, while a discriminative model in an adversarial process attempts to detect whether or

not the generated samples have the same distribution as the data at hand. Thus, the generative model ideally contains

patterns explaining the distribution of data. As GANs can generate samples that contain higher discriminative

power compared to the original data, they achieve better performance than standard augmentation techniques for

recognizing underrepresented emotions [17].

Apart from generating samples, the adversary process of GANs has gained much attention in recent years

especially since it seems to be the element that enables us to encode patterns found in the data into the generative

model. This pattern encoding part is what traditional autoencoders were lacking and thus by combining the two

ideas, Advarsarial AutoEncoders (AAEs) were born. In [18], they show that not only can synthetic sample generation

from AAEs improve emotion classification results, but also that the representations obtained using AAEs retain their

discriminatory power across different emotion categories, meaning that AAEs are able to capture the underlying

patterns related to different emotion expressions.

The Rise of Self-Supervised Learning

Another unsupervised learning technique that has recently become wildly popular is Self-Supervised Learning (SSL).

This approach comes from methods used to build language models in the field of Natural Language Processing

(NLP). These models used for text processing have shown great performance for downstream NLP tasks. Since both

text and speech are first mapped into vectors in their first stage processing, the idea of applying language models

to process speech has recently become an area of interest.

In SSL, the model learns a general purpose representation of data through training for a pre-defined task using

only data. Most common used task in the literature is Contrastive Predictive Coding (CPC), which tries to distinguish

the masked frame from another frame, which is usually randomly chosen from a proposed distribution. This way the
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model can maximise mutual information over longer context instead of local ones [19]. The choice of CPC makes the

model solve a classification task instead of a regression one and thus usage of cross-entropy based losses are usually

considered. There are also approaches that solve a regression task, which seems to be more in-line with speech.

One of them is Autoregressive Predictive Coding (APC), which tries to minimise an L1 loss for the prediction of the

masked frame. It has also been argued that APC can gain better performance than CPC because it only gathers

information sufficient for predicting the next frame rather than finding discriminatory factors between the next frame

and another randomly chosen one [20].

Although, roughly speaking, SSL is similar to VAEs and AAEs in terms of the objective, which is to reach a

representation from data that also considers the patterns seen on the data, there are differences between them.

For example, in AAEs a separate generative process is used to model the distribution of data, whereas in SSL data

distribution is learnt throughout the same model by an auxiliary task. Also, in VAEs a regularisation term has to

be added to the loss function used for training the model, while in SSL, the loss function usually has only one

term, which would not give rise to more complications during training the model such as optimising coefficients for

different terms involved in the loss function. However, regarding the performance of each technique, all of these novel

unsupervised approaches seem to be capable of reaching good representations in recent papers and a comparison

between them highly depends on specific techniques and models used as well as the methods used for training them.

Moreover, as far as comparing the results goes, given that these techniques are new, a comprehensive study on the

performance differences between them especially in the context of affective computing from speech is yet to be done.

Although being novel, SSL has already been applied to many speech related tasks achieving state of the art

results. For example, recently introduced Wav2Vec model [21], outperforms the best semi-supervised method for

the task of speech recognition while using 100 times less labelled data for fine-tuning the representation learning

model using transcribed speech. Although SSL approaches are new, they have also been used for emotion recognition.

For example in [22], Problem-Agnostic Speech Encoder (PASE) is introduced, which tries to reach different low level

features from raw wave form including MFCC, fundamental frequency, zero-crossing rate and energy (to account for

prosody and emotional speech). They also compare their work to classical features such as mel-scaled filter bank,

and show that their features can better classify emotions by a simple MultiLayer Perceptron (MLP) classifier. Later

in [2], a contrastive representation learning approach has shown to reach better accuracies using a simple FCNN

classifier compared to representations derived from speech science and PASE. They also show better performance

across different data sets using different languages and show that performance can even be further improved by
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fine-tuning the model on a small subset of targeted data. SSL techniques using APC has also been investigated in

[23], reaching state of the art results for the task of emotion recognition. They show that by pre-training their model

with an SSL approach, and then fine-tuning their model for the specific task, they can obtain a more general model

that can be more easily transferred and used on other data sets, making it more practical for industrial applications.

Exploiting Linguistic Information

So far the focus was mainly on acoustic representations from speech. However, emotion is not only perceived by how

something is said, but also by what was said. We can easily understand and differentiate words by simply hearing

a speech and this plays a role in our perception of another person’s emotion. However, for a machine, the verbal

message can be understood by text much more easily because speech contains many other kinds of information

such as ambient noise, different speakers and microphones. On the other hand, acoustic features contain helpful

information for affective computing like prosody that can not always be found in text. Given that affect related

behaviours can be found in both verbal and non-verbal communication, by using the two modalities, one expects to

reach a representation from which emotion can be more easily recognised.

Textual Information

To understand how to incorporate linguistic information with acoustic ones, we first need to understand how each

one of these modalities are processed. For processing text, we first need to tokenise it into recognisable units by

a machine. Then an algorithm is used to reach embeddings (vectorised textual representations) from the tokens.

For example, to reach word embeddings, the text is divided into words as sub-units of a sentence so that each word

corresponds to a feature vector. Thus, for textual data, a token is mapped into and represented only by one unique

deterministic embedding, which allows for having a finite set of targets. However, an embedding vector related to

the speech wave of a spoken word is not unique because it is affected by different factors such as different speakers,

microphones and environments.

This difference makes treating the two forms of signal different and thus the same exact method applied for

text does not apply to speech signals. For example, training a self-supervised learning method on text can be done

through a classification task which is usually achieved by minimising the negative log-likelihood over a sequence of

tokens. On the other hand, self-supervised learning for speech is usually achieved either through a binary classification
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task considering a contrastive loss or through a regression task by calculating some form of distance between an

actual signal and its predicted version [20]. Thus, given that there are different methods of training required for

each modality, one can not expect to simply fuse the two modalities through a straightforward multi-modal model.

Nevertheless, to reach a representation that includes both modalities, researchers either try to align speech with

textual embeddings or to reach a joint space from the embeddings of the two.

Joint representation of speech and text

Instead of learning a mapping between speech embeddings and textual ones, one can also reach a joint latent

representation from both modalities. For example, AAEs have been used to reach a joint representation to recognise

different categories of emotion with state of the art accuracy [3]. The results achieved by this representation also

required a much simpler model (linear) versus using only the classical LLDs as features, which required a more

complex model (SVM) to reach emotion categories. Fusion of two of the known self-supervised learning methods

for both speech and text has also shown that one can use a very simple linear classifier and still reach better results

when using the two representations for text and speech than using each of the modalities alone [24]. These studies

are consistent with the hypothesis that unsupervised representations contain more high-level information, compared

to handcrafted features, from which we can detect complex information such as emotion more easily.

Being Realistic: Performance of Different Representations

Ideal representations for affective computing are a set of comprehensive features that could best encompass the

space of all possible latent representations of emotion. Towards reaching the ideal representation, many different

methods have been proposed during the last decades. Hence, one may wonder how well these different techniques

would actually perform on different affect related tasks. However, we should remember that the representation used

is only one part of the equation and other parts consist of - but are not limited to - the model reaching the specific

target like emotion from the features, the way models are trained, the data used, and the targeted labels.

Starting from more traditional features, we have looked at all the papers that have reported on the test set of

RECOLA data set [25] with the same metric and for the same task of dimensional continuous emotion recognition.

This data set has been worked on for years (mainly between 2015 to 2019) by different researchers across the world

using different models and features and thus can provide us with a broad overview of representations ensued in the
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Figure 3: Results achieved for recent affect related challenges according to different representation learning methods that

they have used. UAR: Unweighted Average Recall, PC: Pearson’s Correlation, CCC: Concordance Correlation Coefficient. The

results are only for tasks that were affect related and did provide results using different audio only or acoustics fused with

linguistics representations.

past years. By studying the results achieved from different laboratories on this data set, one can recognise that

Mel-filter bank features are overally the features through which the best results were achieved for both dimensions

of Arousal and Valence compared to other representations derived from speech science such as MFCC or clustering

methods like BoAWs or even more complex features such as convolutional filters either learnt through end-to-end

learning or used in a transfer learning paradigm.

To investigate the effectiveness of more recent representation learning techniques, we decided to also look into

some of the recent affect related challenges such as Interspeech Computational Paralinguistics ChallengE (ComParE)

[26] and audio/visual emotion challenge (AVEC) [8]. Since in these challenges, different representations are used

for different tasks and different data, one may be able to get a broader overview of the effectiveness of different

representation learning methods mentioned in this article. The detailed results of these challenges with respect to

the type of representation used is presented in Figure 3. By looking at the results, one can notice all different forms

of representations can be effective on almost all affect related tasks. Moreover, representations derived from speech

science, which has been long used in different speech related tasks are still present today and can achieve comparable

performances to more novel representations. This shows that the effect of other variables involved toward reaching
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the results, such as different models used on top of the representations, can not be ignored. For example, one

common theme seen throughout all of the challenges was fusion of the outputs or decisions reached by different

representations independently, which often led to the best results.

Some of the other points that we have noticed is that by looking specifically at Compare 2017 and 2018,

end-to-end learning seems to have mainly achieved worse results than utilising hand-crafted features, which can be

explained by lack of labelled data available at these challenges. Also regarding the usage of textual information, the

baseline results of Compare 2020 Challenge show that for continuous dimensional emotion, by incorporating linguistic

information into acoustic ones, we can reach better performance especially for the Valence dimension, which is more

susceptible to perception of meaning of the uttered words [26].

The way these representations are reached can also play an important role. For example, in ComParE 2020

challenge, unsupervised learning has the lowest results, however this can easily be due to the fact that these

representations were achieved by using a limited amount of data available on the challenge. In fact, in all the

recent challenges, unsupervised learning still remains highly unexplored. However, there are recent studies using

unsupervised learning in the context of affective computing showing a better accuracy and transferability of knowledge

over representations derived from speech science while requiring a more simple model to reach emotion [2, 24]. Even

though many studies have been provided on this area to date, we still lack exhaustive comparisons over a wide

range of different representations for different affect related tasks using different models and under different context,

languages, and cultures. Thus, despite the progress made in recent years, there is still a long way to go to be able

to confidently answer the most seemingly basic question, such as what kind of features to use.

Discussion

In Figure 4, we conceptualised our view of the link between the theory and application of emotion recognition from

speech. The task of automatically detecting an observable emotional event from a given raw, possibly noisy, speech

signal is currently achieved with machine learning techniques. Such techniques are designed to solve tasks that are

clearly defined, i.e., wherein labels have a clear and objective definition providing almost no variations across different

annotators. However, in the case of an emotion recognition system, these labels are subjective and represent the

perception of a few different human annotators of the observed event, based on a psychological affect model. This

approach induces a large amount of subjectivity in the labels because of the natural dependency of emotion with
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Figure 4: Emotion recognition from speech: overview and challenges.

a myriad of idiosyncratic contextual factors. Moreover, tools used to provide emotion annotations inherently add

noise themselves. This means that, we cannot build truly objective emotion recognition models as we could achieve

for automatic speech recognition. It also means that comparisons between different emotion recognition models are

inherently vague as they can be defined in a myriad of ways. This vagueness in defining emotion targets also makes

end-to-end learning methods not an ideal solution for reaching representations of speech relevant for emotion, as

the error that is back-propagated in the model is directly quantified from the labels. Using speech representations

that are generic and contain high-level information makes the use of subjective and scarce emotion labels less crucial

for the emotion recognition task itself, even though we still need emotion labels at the end to guide the learning

of the decision stage. Therefore, under this light, the trend toward the use of speech representations derived from

an unsupervised machine learning model makes a lot of sense for affective computing, as we can expect the model

to capture generic latent representation of speech for different speaker traits and states. This trend can therefore

be seen as another approach to holistic speaker analysis, where various high level generic information are directly
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captured in the representation of speech, instead of adopting a multi-target learning paradigm [27].

Emotion can be conveyed through both verbal and non-verbal communication. In theory, the verbal message is

what can be written and the non-verbal part can only be found in the acoustic. However, there has been studies

(mainly for text to speech applications) showing that textual and prosodic features are correlated. In addition, it

has been recently shown that a text based SSL representation can outperform other methods for the detection of

prosodic prominence from text with just ten percent of the training data [28].Those results suggest that it is not

only the help of the verbal communication from textual representations that contains useful information to reach

emotion but text can also contain information related to non-verbal communication, albeit the result of the natural

correlation found between the two forms of verbal and non-verbal communication in a language.

Whereas most of hand-crafted representations of speech can be easily interpreted, we know that such representa-

tions have a large variability across speakers, which make emotion recognition models prone to generalisation errors

when confronted to unknown speakers. On the other side, deep learning-based representations can be designed

to be more robust for affect sensing, but they cannot provide acoustic and linguistic representations that can be

directly explained in the light of emotion. As emotion recognition technology has many real-life applications with –

either direct or indirect – educative or training purposes, it might be very much desired to not only provide accurate

measurements of a given apparent emotion, but also some additional information on the insights of the taken deci-

sion. There are hopefully different possibilities to make deep learning representations more explainable for emotion

recognition, such as directly identifying CNNs’ activation functions that correlate well with specific hand-crafted

representations [6], or using local attention that can explain which specific parts of the speech signal is emotionally

salient.
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Conclusions

Automatically sensing emotion from speech waves requires multiple stages of data transformation. After each stage,

we expect to reach a set of representation of the input data that is more informative of the emotion experienced

by the subject at the time of affect expression. However, many challenges still limit how emotion can be robustly

detected from speech using acoustic and linguistic representations that vary significantly across a large amount of

inter-dependent factors, such as age, gender, personality, social role, health condition, language, and culture.

Recently, a new machine learning trend has emerged and shown great promises toward solving the aforementioned

issues. Research has shown that newly introduced unsupervised techniques, especially representations reached by

self-supervised learning methods, can deal with many of the issues in affect related tasks much better than traditional

approaches based on hand-crafted representations. This is due to the fact that these techniques can recognise high

level patterns from only unlabelled data without any supervision or assumption defined by limited human knowledge.

These high level abstractions can later be related to the subjective emotion annotations with simple models. Even

though these approaches are still in their infancy, they have already been investigated rather exhaustively in many

closely related domains such as speech recognition. It has been shown that by using representations reached by these

techniques, we require much less labelled data and a simpler model that can generalise better and be less susceptible

to low level changes of the signal and other issues like noise and domain mismatch.

In our view, future works in this domain will continue to use representations derived from speech sciences, as they

are still the most comprehensive and widely used features today. As many new unsupervised learning methods have

been recently introduced, we expect more investigations of these techniques to be conducted in the coming years.

Since SSL methods show very promising results so far, they will certainly be the subject of further studies in this area.
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Interestingly, predicting unseen frames, which is the basis of SSL methods, has strong roots in neuroscience, and it

has been shown that each brain has its own model constantly making predictions of the world at different levels of

abstraction [19]. Thus, in view of current trends, the gap between the perception of the world, being emotional or

not, by humans and by machines, seems to have already begun to narrow.
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