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 [3] is used in which the final strain is determined mathematically. Finally, it is shown how the final strains, as obtained using the new procedure, can be used to estimate the end-of-secondary compression line.

Introduction

Alexandre and Thomasi (2022) developed a non-linear consolidation theory for soils exhibiting secondary compression and applied it to a natural clay from Chicago as reported by [START_REF] Taylor | Fundamentals of soil mechanics[END_REF] [START_REF] Taylor | Fundamentals of soil mechanics[END_REF] and to a soil fabricated in the laboratory as reported in [START_REF] Carvalho | Uma Teoria de Adensamento com Compressão Secundária[END_REF] [START_REF] Carvalho | Uma Teoria de Adensamento com Compressão Secundária[END_REF].

1

In this theory, which builds on the work of [START_REF] Re Gibson | A theory of consolidation for soils exhibiting secondary compression[END_REF] [START_REF] Re Gibson | A theory of consolidation for soils exhibiting secondary compression[END_REF], the original linear viscosity is replaced by either a power law or a logarithmic function by themselves or in combination in order to represent the observed non-linear structural viscous behaviour of soils.

Due to the mathematical complexity of the phenomenon, a finite differences scheme and an approximate numerical procedure were developed as solutions for the differential equations developed in [START_REF] Alexandre | A non-linear consolidation theory for soils exhibiting secondary compression[END_REF]. Since the approximate procedure is much easier to use than the finite differences scheme, it was applied to a total of ten test stages between the work of [START_REF] Taylor | Fundamentals of soil mechanics[END_REF] and the work of [START_REF] Carvalho | Uma Teoria de Adensamento com Compressão Secundária[END_REF]. The seven loading increments from [START_REF] Taylor | Fundamentals of soil mechanics[END_REF] lasted a day each and the three tests from [START_REF] Carvalho | Uma Teoria de Adensamento com Compressão Secundária[END_REF] lasted about two years each, all reaching the end of secondary compression. From the comparisons with experimental results it was concluded that the new theory was successful in simulating all loading increments both qualitatively and quantitatively.

That said, because of the reduced number of loading increments analyzed, the conclusions reached in [START_REF] Alexandre | A non-linear consolidation theory for soils exhibiting secondary compression[END_REF] are restricted to the two soils as tested. As such, there is a need for investigating the validity of the new theory for soils from different geological settings. Therefore, the present work, which is an assessment of the new theory to a sensitive soil from eastern Canada as reported by [START_REF] Crawford | Interpretation of the consolidation test[END_REF], contributes to this broader goal.

Summary of the New Theory and Numerical Approach

In the new theory, the consolidation response of a laterally confined saturated soil subjected to a constant vertical total stress increase as well as to vertical deformation and flow is described by a rheological model comprised of a linear spring in series with a non-linear Kelvin-Voigt body as shown in Figure 1.

In essence, this new theory differs from the one developed by [START_REF] Re Gibson | A theory of consolidation for soils exhibiting secondary compression[END_REF] only in the representation of the viscous structural resistance to compression of the soil. In the latter, the structural viscosity of the soil is a linear function of the strain rate while that in the former, the soil viscosity is non-linear. In both theories, the spring which is connected to the Kelvin-Voigt body represents primary consolidation, secondary compression is represented by the Kelvin-Voigt body and the total deformation is the sum of the deformations from primary consolidation and from secondary compression. As such, the following equation can be written:

k γ w • ∂ 2 σ ′ ∂z 2 = ∂ϵ p ∂t + ∂ϵ s ∂t (1) 
Where, as usual, k is the permeability of the soil, γ w is the unit weight of the water, σ ′ is the vertical effective stress increase or gain, z is the vertical coordinate along the soil layer, ϵ p is the primary consolidation strain, ϵ s is the secondary compression strain and t is the time.

Since for primary consolidation σ ′ = E p • ϵ p , where E p is the oedometric modulus for primary consolidation (considered constant during the process), then Equation 1 can be re-written as:

k γ w • ∂ 2 σ ′ ∂z 2 = 1 E p • ∂σ ′ ∂t + ∂ϵ s ∂t (2) 
Equation 2 above is general and from it particular equations can be derived depending on the viscous function representing the behaviour of the soil. As examples, the differential equations of three models, which in turn represent different viscous functions, are presented below:

k γ w • ∂ 2 σ ′ ∂z 2 = 1 E p • ∂σ ′ ∂t + σ ′ -E s • ϵ s η (3) k γ w • ∂ 2 σ ′ ∂z 2 = 1 E p • ∂σ ′ ∂t + σ ′ -E s • ϵ s K 1/n (4) k γ w • ∂ 2 σ ′ ∂z 2 = 1 E p • ∂σ ′ ∂t + e σ ′ -Es•ϵs-B A C (5) 
In the equations above E s is the oedometric modulus for secondary compression, η is the coefficient of viscosity, n and K are constants in the power law equation σ visc = K • ∂ϵs ∂t n and A, B and C are constants in the equation

σ visc = B + A • ln(C • ∂ϵs ∂t ).
Also, σ visc is the normal viscous stress. Again, as mentioned before, Equations 3 to 5 represent models with different viscous functions. Equation 3 is for a model with a constant coefficient of viscosity (which is equivalent to the theory from Gibson and Lo, 1961), Equation 4represents a model with a power law viscous function and Equation 5 is for a model with a logarithmic viscous function. That said, it can be verified that, for n = 1, Equation 4 becomes equivalent to Equation 3. That is, the theory developed by [START_REF] Re Gibson | A theory of consolidation for soils exhibiting secondary compression[END_REF] can also be modelled numerically with Equation 4.

Regarding the compression characteristics of the soil, it is important to note that E p and E s do not represent elastic behaviour necessarily but just stress-strain constants that are time independent.

Finally, the initial and boundary conditions that Equations 3 to 5 are subjected to are the same ones from Gibson and Lo (1961), which in turn, are identical to the conditions in Terzaghi's theory.

Numerical Procedure

As shown in Alexandre and Thomasi (2022), Equations 3, 4 and 5 can be solved by finite differences schemes. On the other hand, as also shown in the same reference, an approximate procedure that gave very good results, which consists in treating the phenomenon on average terms, can be used instead with a much reduced numerical effort. In this approximate procedure, the following equations are used:

σ′ (t) = E • εs + K • dε s dt n (6) σ′ (t) = E • εs + B + A • ln C • dε s dt (7) 
In Equations 6 and 7 σ′ (t) is the average effective stress as given by Terzaghi's theory and εs and dεs dt are the average axial strain and the average axial strain rate, respectively. It is also, in the context of the new theory, the "loading" on the Kelvin-Voigt body. As such, the approximate procedure consists in replacing the non-linear partial differential equations by non-linear ordinary differential equations.

Regarding modelling, Equation 6 should be used when the soil behaviour is better represented by a power law function (a linear viscous function can also be modelled by making n = 1 in this equation) while that Equation 7should be used when the soil behaviour is better represented by a logarithmic function. That said, care must be exercised when using the latter since this quasi-viscous function has limitations regarding the minimum strain rate at which secondary compression ends. For more information on the limitations and care when using the logarithmic quasi-viscous function the reader is referred to [START_REF] Alexandre | A non-linear consolidation theory for soils exhibiting secondary compression[END_REF].

With the "loading", σ′ (t), given by Terzaghi's solution or by any suitable empirical equation that approximates the Fourier series from Terzaghi's theory, the average secondary compression strain rate can be calculate as:

dε s dt = σ′ (t) -E • εs K 1 n (8) 
dε s dt = 1 C • e σ′ (t)-E•εs-B A (9) 
Once the average secondary compression strain rate is calculated, either by Equation 8 or 9, the average secondary compression strain at time (t+∆t) can be calculated as:

εs (t + ∆t) ≈ εs (t) + dε s dt (t) • ∆t (10) 
As was done in Alexandre and Thomasi (2022), the approximation suggested by Brinch- [START_REF] Hansen | A model law for simultaneous primary and secondary consolidation[END_REF] [START_REF] Hansen | A model law for simultaneous primary and secondary consolidation[END_REF], reproduced below, will be used for simplifying and reducing the numerical effort:

Ū = 6 T 3 v T 3 v + 0.5 (11) 
Where T v is the time factor from Terzaghi's theory.

With the "loading" given by σ′ (t) = Ū •∆σ, the approximate step-by-step procedure becomes:

1. At time t = 0, σ′ (0) = 0 and εs = 0. This in turn leads to dεs dt = 0 in Equation 8 or to a very small strain rate in Equation 9 equal to

1 C • e ( -B
A ) ; 2. In the following time-step, at time (t + ∆t), the average degree of consolidation and the "loading" can be calculated as Ū = 6 T 3 v (t+∆t)

T 3 v (t+∆t)+0.5
and σ′ (t) = Ū (t + ∆t) • ∆σ, respectively;

3. With the previous calculated quantities, the average secondary compression strain rate can be calculated using Equations 8 or 9;

4. With the average secondary compression strain rate as calculated in the previous step, then the average axial strain from secondary compression at time (t+∆t) can then be calculated as εs (t+∆t) ≈ εs (t)+ dεs dt (t)•∆t; and 5. The average axial strain at time (t + ∆t) can then be calculated as ε = εp + εs where εp = σ′ (t) Ep .

Assessment of Parametres

The differential equations of the phenomenon, Equations 3 to 5, are nonlinear and as such, they are very difficult to solve analytically. That was the reason for the numerical procedures developed by [START_REF] Alexandre | A non-linear consolidation theory for soils exhibiting secondary compression[END_REF].

Without analytical solutions, the task of assessing the parametres required for making predictions becomes more difficult. That said, an approximate method was developed based on the physics of the process.

Since the linear spring which interacts with the Kelvin-Voigt body is also a "loading" on it, and also since this loading gradually increases from zero to its final value, ∆σ, over time, then secondary compression is clearly produced by primary consolidation. As such, one might expect that, during the early stages of the phenomenon, the deformation from primary consolidation is much more pronounced than the deformation contribution from secondary compression. Therefore, by assuming negligible the contribution from secondary compression in the early stages of the process, the required parametres for describing the transient deformation and water flow as assessed by Taylor's method should be a good approximation to their true values.

Likewise, it seems reasonable to assume that, after the excess pore-pressure has been (almost entirely) dissipated, the deformation due to the structural resistance to compression dominates the process from this point onward. Hence, the parametres of the viscous function can be estimated assuming the entire soil specimen as behaving like one single Kelvin-Voigt body.

Based on this understanding, two procedures are suggested below. The first procedure is from Alexandre and Thomasi (2022) and the second is specific for soils in which the viscous resistance can be represented by a power law.

General Procedure

The steps of the general procedure are:

1. Using Taylor's method, calculate the vertical coefficient of consolidation, c v ;

2. Assess ε100 , the end of primary average strain as ε100 = (10/9) • ε90 .

Here ε90 is the average strain at ninety percent average degree of consolidation in accordance to Taylor's method;

3. Calculate the oedometric modulus for primary consolidation as E p = ∆σ/ε 100 ;

4. Assess the average final strain, εf . If the process has reached its end, then εf is the last recorded strain. If the process has not ended when the loading increment was interrupted then εf can be estimated by extrapolating the general trend of the experimental curve to the end of the lifespan of the engineering project. As such one needs to be aware that this estimate is a pure guess and that final strain can be significantly different from it. This point, the assessment of the final strain, will be detailed in the discussion section of this paper;

5. Calculate the oedometric modulus for secondary compression as E s = ∆σ/(ε f -ε100 );

6. Select some points in the secondary tail of the consolidation curve and for these points:

-Determine their respective average strains and average strain rates. Say, for example, for points ε1 , ε2 , etc.; -Determine the average viscous resistance to compression as σvisc,1 =

E s • (ε f -ε1 ), σvisc,2 = E s • (ε f -ε2 ), etc.;
-Determine the viscous parametres (either A and B or K and n) using the pair of values ( dε dt , σvisc ).

Procedure for Soils Obeying a Power Law Viscous Function

In this procedure, which is valid only for soils obeying a power law viscous function, the assessment of primary consolidation parametres is identical to the assessment from the general procedure. That is, the first three steps are the same in both procedures. The procedures differ, however, in the way secondary compression is assessed. While that in the general procedure the knowledge or assessment of the final strain, εf , is required, in this procedure, this quantity is mathematically determined.

The next step is the determination of the power law exponent, n. For this determination, it is first necessary to plot the average strain rate (log scale) vs. time (log scale). In this plot, after an initial phase, the curve presents itself as a straight line. From the angular coefficient of this straight line, s, the exponent n can be determined as n = 1+s s .

Figure 2: Determination of the exponent n of the power law viscous function for primary creep in accordance to [START_REF] Alexandre | Contribuição ao Entendimento da Fluência Não-Drenada[END_REF].

The theoretical basis for this determination comes from the solution of the differential equation for primary creep as obtained by [START_REF] Alexandre | Contribuição ao Entendimento da Fluência Não-Drenada[END_REF], in accordance to [START_REF] Martins | Fundamentos de um Modelo de Comportamento de Solos Argilosos Saturados[END_REF] [START_REF] Martins | Fundamentos de um Modelo de Comportamento de Solos Argilosos Saturados[END_REF] model. For more information on this topic the reader is directed to the Appendix. After this step, the final strain, εf is determined from the plot of dε dt n vs. ε. In this plot, the relationship between dε dt n and ε is a straight line, the constants of which are α, the intercept, and β, the angular coefficient. With α and β the final strain can be determined as εf = -α β . With εf determined as above then the oedometric modulus for secondary compression is calculated as E s = ∆σ/(ε f -ε100 ).

Finally, the constant K of the power law viscous function is determined as K = -Es β . In summary, the step-by-step procedure for soils in which the viscous resistance can be represented by a power law viscous function is the following:

1. Using Taylor's method, calculate the vertical coefficient of consolidation, c v ;

2. Assess ε100 , the end of primary average strain as ε100 = (10/9) • ε90 where ε90 is the average strain at ninety percent average degree of consolidation in accordance to Taylor's method;

3. Calculate the oedometric modulus for primary consolidation as E p = ∆σ/ε 100 ;

4. Determine n from the slope, s, of the average strain rate vs. time (log-log plot) as n = 1+s s ;

5. Determine α and β from the dε dt n vs. ε plot;

6. Determine the final strain as εf = -α β ; 7. Determine the oedometric modulus for secondary compression as E s = ∆σ/(ε f -ε100 ); and 8. Determine the constant K of the power law function as K = -Es β .

In order to provide more clarity regarding the assessment of the required parametres, a step-by-step example is included in the next section for the last loading increment analyzed.

3 Comparison with the Tests from [START_REF] Crawford | Interpretation of the consolidation test[END_REF] The soil tested by [START_REF] Crawford | Interpretation of the consolidation test[END_REF] was a sensitive clay with engineering characteristics like those from the "Leda" clay deposits in the valleys of the St. Lawrence and Ottawa rivers. The author reports that uniform block samples were obtained at a depth of 33 ft in a small tunnel in Ottawa and that the characteristics of the test samples, on average, were the following:

Characteristic

Average value Natural water content (%) 58.4 Liquid limit (%) 54 Plastic limit (%) 25 Clay size particles less than 0.002 mm (%)

≈ 65 Salts in pore water (grams/l) ≈ 2 Field vane strength (kg/cm 2 ) 0.5 Sensitivity ≈ 50

Table 1: Some characteristics of the soil tested.

Of all the loading stages presented in Figures 1 and4 from Crawford (1964), only eight will be analyzed herein as the remaining curves were deemed too flat for the extraction of the experimental points. The data from these figures were obtained automatically using WebPlotDigitizer [START_REF] Rohatgi | [END_REF] and, as such, are not the original experimental data points but interpolated points extracted from Figures 1 and4.

From these loading increments, four were from specimen 96-1-18 and four from specimen 96-1-20. Both specimens had an initial height of 2 cm and loading increment ratios of ∆σ/σ ′ = 1 but different duration and different drainage distances. While that for specimen 96-1-18 the drainage distance was the full height, for specimen 96-1-20 this distance was half the height. In relation to duration, specimen 96-1-18 had loading increments that lasted a day each and specimen 96-1-20 had loading that lasted a week each increment. One last but significant difference is that the tests carried out on specimen 96-1-18 had pore-pressure measurement while that for the tests on the other specimen pore-pressure was not measured.

In the following sections the model is applied to the loading increments mentioned above. From these eight stages, six were analyzed using the parametre assessment procedure developed for the power law viscous function while the remaining two stages, Loading Increment 1 and 2, were analyzed using the general procedure. As mentioned in Section 2.2.2, this loading increment will be used to exemplify the determination of the parametres of the theory.

Loading

Determination of c v : Presented below is the strain vs. time (square root) plot for this loading increment: From Figure 25 one obtains t 90 = 182 s and ε90 = 2.12 × 10 -2 . Since, during this loading increment, the average height is 14.5 mm and considering double drainage, then c v = 2.45 × 10 -7 m 2 /s. Determination of ε100 : Since ε90 = 2.12 × 10 -2 then ε100 = 2.36 × 10 -2 .

Determination of E p : With ε100 = 2.36 × 10 -2 and ∆σ = 784.5 kP a then E p = 33.3 × 10 3 kP a.

Determination of n: From Figure 22 the slope of the line is s = -1.1164. From this value, one can calculate the exponent of the power law viscous function as n = 0.10426.

End of Primary Strain, ε100

Of all the eight loading increments analyzed, four, which are identified as Loading Increments 1 to 4 herein, had pore-pressure measurement and can be used for assessing the consistency of the end of primary strain from the new theory, ε100 , with the experimental results.

In accordance to Crawford's deflection-pore pressure extrapolation criteria [START_REF] Crawford | Interpretation of the consolidation test[END_REF], the end of primary occurred at t = 6 min, 45 min, 55 min and 40 minutes for Loading Increments 1 to 4, respectively. On the other hand, in the simulations, the time required for the average total strain to reach ε100 was about t = 1 min, t = 38 min, t = 72 min, and t = 26 min for Loading Incrementes 1 to 4, respectively. Therefore, it seems that the time for the end of primary consolidation is somewhat more consistent for Loading Increments 2 and 3 than the other two. That said, this comparison might not be that meaningful as the experimental criteria is somewhat arbitrary in accordance to Crawford himself as it is based on the extrapolation of the observed linear relationship between excess pore-pressure and deformation during the test.

Final Strain, εf

As mentioned in the section related to the determination of the parametres, the final strain is of fundamental importance in carrying out the simulations with the new theory. Having said that, since all loading increments were interrupted before the end of secondary compression could be reached, the values of εf shown in the summary tables are questionable.

The most reliable way to determine the final strain is waiting for the end of secondary compression. This, however, has a significant impact on the cost of consolidation tests and will simply not be adopted in the great majority of the jobs.

Another experimental way of determining the final strain is to carry out unloading stages to various over consolidation ratios and observing the stabilization of the tests. The problem with determining the final strain by unloading is the same as waiting for the end of secondary compression, that is, test time. Although it takes less time than waiting for the end of secondary compression, it might still need weeks or months for unloading to reach its end. For more information the reader is referred to Feijó (1991) [START_REF] Luiz | Relação entre a compressão secundária, razão de sobre-adensamento e coeficiente de empuxo no repouso[END_REF].

When such tests are not available, an assessment can, perhaps, be made if the field consolidation curve, as described by [START_REF] Bjerrum | Engineering geology of norwegian normallyconsolidated marine clays as related to settlements of buildings[END_REF] [START_REF] Bjerrum | Engineering geology of norwegian normallyconsolidated marine clays as related to settlements of buildings[END_REF], can be constructed. The advantage of this approach is that all it is needed is the determination of water contents and unit weights as well as pore-water pressures along the depth of the deposit. That said, the dispersion in the determination of the water content might be such that this curve is not well enough defined for this purpose.

As a last resource, the final strain might be determined mathematically using the procedure for the power law function described in Section 2.2.2 if the behaviour of the soil obeys this viscous function. This was the procedure adopted herein for six of the eight loading increments from [START_REF] Crawford | Interpretation of the consolidation test[END_REF].

The Viscous Function

Below are listed the power law viscous functions as assessed using the parametre procedures described in Section 2.2. The correlation coefficients shown in bold font represent the lesser of the coefficients from the two plots in accordance with Section 2.2.2. The viscous functions of the other two stages, Loading Increments 1 and 5, were assessed using the general procedure described in Section 2.2.1. As can be seen Table 10, apart from Loading Increment 1, the correlation coefficients were very high and above 0.98 (R 2 > 0.98). These coefficients are in line with the ones as determined in Alexandre and Thomasi (2022) for a natural clay from Chicago and for a soil fabricated in the laboratory from [START_REF] Carvalho | Uma Teoria de Adensamento com Compressão Secundária[END_REF].

Load. inc. Viscous function

Having said that, the viscous functions for specimens 96-1-18 and 96-1-20 for the same loading increment, apart from the first one, are significantly different from one another. Although the initial void ratios of these loading increments, apart from the first one, are different because of the difference in the duration of each stage, even the exponents are quite dissimilar. This significant difference casts a shadow on the viscous functions as true soil properties are expected to be independent of testing conditions.

Numerical Procedures

In Alexandre and Thomasi (2022) a finite differences scheme and an approximate procedure were developed for dealing with the non-linear differential equations of the process. Therein, preference was given to the approximate procedure since, with a much reduced numerical effort, results close to the finite differences scheme were obtained.

Herein, despite only showing the approximate procedure in the figures, simulations with both approaches were carried out and for the most part they agree well with one another. That said, a small difference was noticed in Loading Increments 2, 6, 7 and 8. This difference is exemplified in Figure 26 below for Loading Increment 6.

Surprisingly enough, although this difference does not seem of consequence, the approximate procedure leads to better agreements with the experimental data than the finite differences scheme. That said, this small deviation for laboratory tests might, perhaps, lead to significant deviations when field cases, where the drainage distance is much greater, are considered. In fact, the good and consistent agreements obtained so far for the soils from Alexandre and Thomasi (2022) and for the sensitive soil from [START_REF] Crawford | Interpretation of the consolidation test[END_REF] does not mean that the new theory can be applied to field cases as comparisons with actual job cases are yet to be made.

Figure 26: Example of the deviation between the finite differences method (FDM) and the approximate procedure for Loading Increments 6.

Secondary Compression

In accordance with the new theory, secondary compression is caused by primary consolidation, which can be seen as a loading on the non-linear Kelvin-Voigt body. And since the dashpot acts as a resistance to compression, delaying deformation, then less deformation is to be expected in specimens which are loaded faster. The mechanism described above, which is a tentative explanation to the observation that consolidation is faster, or that consolidation deformation is more pronounced, in the field than in the laboratory, can be tested by comparing Loading Increments 1 to 4 with Loading Increments 5 to 8.

Since the former increments had single drainage and the latter had double drainage, then, as time progresses, more deformation is expected for Loading As can be seen in the figures above times greater than about 1,000 seconds and apart from Loading Increments 1 and 5 (∆σ = 98.1 kPa), indeed specimens with double drainage presented less deformation than specimens with single drainage. Although this trend is reversed for Loading Increments 1 and 5, the situation here is more difficult to analyze since it seems that these tests start in the over-consolidation range and end in the normally consolidation range, undergoing therefore, a drastic change in compressibility.

The fact that, for times smaller than 1,000 seconds, loading increments subjected to testing with double drainage presented larger strains can be understood considering the evolution of primary consolidation. Since with double drainage primary consolidation occurs and ends faster, deformation due to secondary compression will start early when compared with single drainage. When the axial strain is plotted against the Time Factor, T v , it is clear that the contribution to secondary compression increases as the drainage distance increases. This can be seen in Figure 31 

Excess Pore-pressure

In accordance to [START_REF] Crawford | Interpretation of the consolidation test[END_REF], the excess pore-pressure, as measured in Loading Increments 1 to 4 at the beginning of the stages, was always less than the applied stress increment. This suggests that the new theory might not be applicable to this sensitive soil (at least in relation to the prediction of excess pore-pressure). That said, [START_REF] Crawford | Interpretation of the consolidation test[END_REF] seems to attribute the difference between stress increment and initial excess pore-pressure to the possible presence of gas in the specimen and to side friction despite the fact that the steel consolidation rings were coated with Teflon and that all pore-pressure lines were of copper tubing. It is also important to note that Crawford (1964) estimated the time lag in the measurement of the excess pore-pressure in the order of about half a minute. All things considered, it is hard to determine if the new theory can capture the behaviour of this clay regarding the generation of excess pore-pressure.

The New Theory

The new theory developed by Alexandre and Thomasi (2022) differs only slightly from the theory developed by [START_REF] Re Gibson | A theory of consolidation for soils exhibiting secondary compression[END_REF]. In fact the former is just an extension of the latter since the only difference is the replacing of the linear viscous dashpot for a non-linear one.

The adoption of a non-linear viscous function, which is consistent with many experimental evidence, complicated the analytical treatment of the differential equations and forced a numerical approach. This approach, in turn, has its advantages and disadvantages, which are discussed below.

The main disadvantage is not having a closed-form solution from which much can be learned. The mathematical relation between variables, their proportions, the presence or absence of singular points as well as maxima or minima cannot be readily investigated without one. Another disadvantage is that, without a closed-form solution, the determination of the parametres of the soil becomes more difficult and even questionable. Finally, another disadvantage is related to numerical issues such as spatial and time discretization, convergence as well as computing time and cost.

On the other hand, this numerical treatment opens doors for further extensions such as variable loading, layered profiles, other viscous functions, non-linear compressibility, variable permeability, large strains, etc. In addition, the approximate procedure can be easily implemented with a spreadsheet.

All things considered, the new theory can be seen as an interesting extension of the theory from Gibson and Lo (1961) in the same way that the theory from [START_REF] Barden | Consolidation of clay with non-linear viscosity[END_REF] [START_REF] Barden | Consolidation of clay with non-linear viscosity[END_REF] in an extension of Theory B from [START_REF] Wood | Research on consolidation of clays[END_REF] [START_REF] Wood | Research on consolidation of clays[END_REF].

End of Secondary Compression Line

Since the tests from [START_REF] Crawford | Interpretation of the consolidation test[END_REF] did not reach the end of secondary compression and since a "field consolidation curve" as described by [START_REF] Bjerrum | Engineering geology of norwegian normallyconsolidated marine clays as related to settlements of buildings[END_REF] could not be constructed due to lack of data, then the third approach was adopted for assessing the final strain required for the simulations. With the final strain for each loading increment it is then possible to build an endof-secondary compression line. This was carried out for this sensitive clay and it is shown in Figure 32 below. As can be seen in Figure 32, the final strain points from specimen 96-1-18 do not coincide with the points from specimen 96-1-20. As there can be only one end-of-secondary compression line then these curves as well as the procedure described in section 2.2.2 are questionable. In addition, although not seen in the loading increments from [START_REF] Crawford | Interpretation of the consolidation test[END_REF], there is always the possibility that the strain vs. time curves might dip downward as observed in the long-term tests carried out by [START_REF] Carvalho | Uma Teoria de Adensamento com Compressão Secundária[END_REF] as shown in [START_REF] Alexandre | A non-linear consolidation theory for soils exhibiting secondary compression[END_REF]. Therefore, the end-of-secondary compression curve as determined in section 2.2.2 should be the last resource when assessing the final strain, at least for this sensitive clay.

Conclusions

Considering the comparisons made between the theory from Alexandre and Thomasi (2022) and the experimental results from [START_REF] Crawford | Interpretation of the consolidation test[END_REF] for a sensitive clay from eastern Canada it can be concluded that, apart from small differences, the new theory is able to represent well the behaviour of this sensitive clay in the laboratory. That said, more research is needed regarding the determination of the final strain, the determination of the viscous functions as well as the predictions of the new theory to field conditions.

(1992) for saturated soils, which is an attempt to extend the Principle of Effective Stresses in order to explain time-dependent processes such as creep, stress relaxation and secondary compression. In [START_REF] Alexandre | Contribuição ao Entendimento da Fluência Não-Drenada[END_REF], a differential equation for primary creep and its analytical solution for soils obeying a power law viscous function under undrained conditions were obtained. These equations are reproduced below, respectively:

σ d = E • ϵ a + K • dϵ a dt n ( 12 
)
ϵ a = σ d E - K E • 1 K σ d 1-n n + 1-n n • E•t K n 1-n (13) 
In the equations above, σ d is the deviatoric stress, ϵ a is the axial strain and dϵa dt is the axial strain rate. All the other symbols are the same as before. Differentiating Equation 13 in respect to the time t gives the expression of the strain rate as a function of the time, which is:

dϵ a dt = 1 K σ d 1-n n + 1-n n • E•t K 1 1-n (14) 
When plotted, Equation 14 reveals that, after an initial period, the relationship between strain rate and time is linear in a log-log plot, the angular coefficient of which is 1 1-n , as shown in Figure 2 in Section 2.2.2. Once n is determined as explained above, the final strain, ϵ f , can be obtained as described below.

At the end of the process the axial strain reaches the final strain, ϵ f , and therefore the axial strain rate drops to zero. Considering also that σ d = E •ϵ f then Equation 12 can be re-written as:

E • ϵ f = E • ϵ a + K • dϵ a dt n (15) 
Re-arranging Equation 15 one can get to:

dϵ a dt n = E • ϵ f K - E K • ϵ (16) 

Figure 1 :

 1 Figure 1: Rheological model adopted in the new theory.

Figure 3 :

 3 Figure 3: Estimated viscous function.

Figure 4 :

 4 Figure 4: Experimental data and simulation.

  × 10 -1 t 90 (s) 1.86 × 10 3 E p (kP a) 3.15 × 10 3 E s (kP a) 3.12 × 10 3 c v ( m 2 s ) 1.54 × 10 -7 k(m/s) 4.81 × 10 -10 Viscous function σvisc = 2, 667 • dε dt 0.218

Figure 5 :

 5 Figure 5: Strain rate vs. time plot.

Figure 6 :

 6 Figure 6: dε dt n vs. axial strain plot.

Figure 7 :

 7 Figure 7: Experimental data and simulation.

  × 10 -2 t 90 (s) 2.92 × 10 3 E p (kP a) 5.98 × 10 3 E s (kP a) 16.3 × 10 3 c v ( m 2 s ) 8.00 × 10 -8 k(m/s) 1.31 × 10 -10 Viscous function σvisc = 11, 841 • dε dt 0.254

Figure 8 :

 8 Figure 8: Strain rate vs. time plot.

Figure 9 :

 9 Figure 9: dε dt n vs. axial strain plot.

Figure 10 :

 10 Figure 10: Experimental data and simulation.

  × 10 -2 t 90 (s) 1.12 × 10 3 E p (kP a) 17.9 × 10 3 E s (kP a) 25.2 × 10 3 c v ( m 2 s ) 1.74 × 10 -7 k(m/s) 9.51 × 10 -11 Viscous function σvisc = 8, 487 • dε dt 0.1928

Figure 11 :

 11 Figure 11: Strain rate vs. time plot.

Figure 12 :

 12 Figure 12: dε dt n vs. axial strain plot.

Figure 13 :

 13 Figure 13: Experimental data and simulation.

  × 10 -1 t 90 (s) 441 E p (kP a) 6.29 × 10 3 E s (kP a) 7.88 × 10 2 c v ( m 2 s ) 1.75 × 10 -7 k(m/s) 2.72 × 10 -10 Viscous function σvisc = 349 • dε dt 0.106

Figure 14 :

 14 Figure 14: Estimated viscous function.

Figure 15 :

 15 Figure 15: Experimental data and simulation.

  × 10 -1 t 90 (s) 590 E p (kP a) 4.53 × 10 3 E s (kP a) 2.46 × 10 3 c v ( m 2 s ) 1.08 × 10 -7 k(m/s) 2.35 × 10 -10 Viscous function σvisc = 939.5 • dε dt 0.141

Figure 16 :

 16 Figure 16: Strain rate vs. time plot.

Figure 17 :

 17 Figure 17: dε dt n vs. axial strain plot.

Figure 18 :

 18 Figure 18: Experimental data and simulation.

  × 10 -2 t 90 (s) 266 E p (kP a) 13.5 × 10 3 E s (kP a) 6.26 × 10 3 c v ( m 2 s ) 1.97 × 10 -7 k(m/s) 1.43 × 10 -10 Viscous function σvisc = 1, 338 • dε dt 0.119

Figure 20 :

 20 Figure 20: dε dt n vs. axial strain plot.

Figure 21 :

 21 Figure 21: Experimental data and simulation.

Figure 22 :

 22 Figure 22: Strain rate vs. time plot.

Figure 23 :

 23 Figure 23: dε dt n vs. axial strain plot.

Figure 24 :

 24 Figure 24: Experimental data and simulation.

Figure 25 :

 25 Figure 25: Determination of c v for Loading Increment 8.

Table 10 :

 10 Summary of viscous functions.

Increments 1

 1 to 4 than for Loading Increments 5 to 8. This comparison can be seen in Figures 27 to 30 below.

Figure 27 :

 27 Figure 27: Loading Increments 1 and 5 (∆σ = 98.1 kPa).

Figure 28 :

 28 Figure 28: Loading Increments 2 and 6 (∆σ = 196.1 kPa).

Figure 29 :

 29 Figure 29: Loading Increments 3 and 7 (∆σ = 392.3 kPa).

Figure 30 :

 30 Figure 30: Loading Increments 4 and 8 (∆σ = 784.5 kPa).

  below for the Loading Increment 8.

Figure 31 :

 31 Figure 31: Loading Increments 4 and 8 (∆σ = 784.5 kPa).

Figure 32 :

 32 Figure 32: The end-of-secondary compression line as determined in accordance with the procedure described in Section 2.2.2.

Table 2 :

 2 Increment 1 Summary table

	Parametre	Estimated value
	∆σ(kP a)	98.1
	ε90	4.50 × 10 -3
	ε100	5.00 × 10 -3
	εf	5.00 × 10 -2
	t 90 (s)	30.0
	E p (kP a)	19.6 × 10 3
	E s (kP a)	2.18 × 10 3
	c v ( m 2 s ) k(m/s)	1.09 × 10 -5 5.47 × 10 -9
	dt Viscous function σvisc = 289.7 • dε	0.093

Table 3 :

 3 Summary table

Table 4 :

 4 Summary table

Table 5 :

 5 Summary table

Table 6 :

 6 Summary table

Table 7 :

 7 Summary table

Table 8 :

 8 Summary tableFigure19: Strain rate vs. time plot.

Table 9 :

 9 3.8 Loading Increment 8 Summary table

	Parametre	Estimated value
	∆σ(kP a)	784.5
	ε90	2.12 × 10 -2
	ε100	2.36 × 10 -2
	εf	7.32 × 10 -2
	t 90 (s)	182
	E p (kP a)	33.3 × 10 3
	E s (kP a)	15.8 × 10 3
	c v ( m 2 s ) k(m/s)	2.45 × 10 -7 7.22 × 10 -11
	dt Viscous function σvisc = 2, 339 • dε	0.104

Assessment of εf : From Figure 23 one gets α = 0.4946 and β = -6.755, which can be used to get εf = 7.32 × 10 -2 .

Determination of E s : With ∆σ = 784.5 kP a, ε100 = 2.36 × 10 -2 and εf = 7.32 × 10 -2 then E s = 15.8 × 10 3 kP a.

Determination of K: With E s = 15.8 × 10 3 kP a and β = -6.755 one can calculate K = 2.34 × 10 3 kP a • s n .

Discussions

Overall, from the visual comparison between the simulations and the results from [START_REF] Crawford | Interpretation of the consolidation test[END_REF] it seems that the new theory is valid for this sensitive soil from eastern Canada when tested in the laboratory. That said, some points deserve additional considerations.

The Coefficient of Consolidation, c v

The determination of the coefficient of consolidation, c v , was carried out without problems in all but one test. In Loading Increment 1, the initial part of the strain vs. √ t plot was not straight but curved, making the determination of parametres associated with primary consolidation more difficult and questionable for this loading increment.

Another important point related to the determination of c v in Loading

Increment 1 is the oedometric modulus for primary consolidation, E p . Considering Figure 3 from Crawford (1964) the pre-consolidation pressure for specimen 96-1-18 is about 181.4 kPa (1.85 kg/cm 2 ). Considering that, as determined, this pre-consolidation pressure is for loading increments that lasted one day, then one can say that the actual pre-consolidation pressure is significantly less than 181.4 kPa. This is confirmed by the pre-consolidation pressure as assessed for specimen 96-1-20, which had loading increments that lasted one week and is also presented in Figure 3 from [START_REF] Crawford | Interpretation of the consolidation test[END_REF]. For this specimen the pre-consolidation is about 130.4 kPa (1.33 kg/cm 2 ). Considering these two specimens it is clear that the true pre-consolidation pressure is less than 130 kPa. Since Loading Increment 1 goes from 100 to 200 kPa then the oedometric modulus for primary consolidation undergoes a very significant change during this increment. As this change in the oedometric modulus was not considered in simulation, then it seems clear that part of the problem may be associated with this change in compressibility.

Appendix

In this appendix a short explanation is provided about the determination of the parametres regarding the secondary compression of a clay obeying a power law viscous function in accordance to part of the work carried out by [START_REF] Alexandre | Contribuição ao Entendimento da Fluência Não-Drenada[END_REF]. [START_REF] Alexandre | Contribuição ao Entendimento da Fluência Não-Drenada[END_REF] studied the problem of the undrained creep under triaxial conditions having for comparison the tests carried out by Vaid and Campanella (1977) on the sensitive Haney clay from British Columbia, Canada. This work was carried out in accordance to the model developed by Martins Equation 16 represents a straight line with β = -E K and α = E K • ϵ f . Once α and β are determined then the final strain can be calculated as ϵ f = -α β . With the final strain, the oedometric modulus for secondary consolidation can be calculated as E s = ∆σ/(ϵ f -ϵ 100 ) and the constant K of the power law viscous function as K= Es β . More details can be found on Alexandre (2006) and Alexandre, Martins and Santa Maria (2013) [START_REF] Alexandre | Creep Prediction of an Undisturbed Sensitive Clay[END_REF]. Finally, it is also worth noting the similarity between Equations 6 and 12.