Ondes stationnaires combinées à l'émission X ou à la photoémission X pour l'étude de films minces

Philippe JONNARD

Laboratoire de Chimie Physique – Matière et Rayonnement Sorbonne Université, CNRS UMR 7614, Paris

Séminaire de l'Institut des Matériaux Jean Rouxel, Nantes, 4 avril 2019

Applications of multilayers

- Solar images from spatial telescopes
- Photolithography @ 13.5 nm
- Optical components for synchrotron beamlines
- Optical components for new x-ray sources (x-ray laser, high harmonic generation, ...)
- Optics for diffraction apparatus

X-ray emission spectroscopy

Imaging at a given wavelength

Photolithography @ 13.5 nm, 6.x nm

Motivation and challenges

Interface is the largest challenge for EUV multilayer!

 $exp(-2[\pi \sigma/d]^2)$

Co_2.6nm/Mg_13.6nm

~0.5-0.8nm

~125nm

~10 nm

d

σ

X-ray reflectivity

$$\begin{split} \mathsf{R}(\theta) &= \mathsf{I}_{\mathsf{r}}(\lambda) / \, \mathsf{I}_{\mathsf{0}}(\lambda) \\ \mathsf{R}(\lambda) &= \mathsf{I}_{\mathsf{r}}(\theta) / \, \mathsf{I}_{\mathsf{0}}(\theta) \end{split}$$

Determination of parameters of the stack

- thickness
- roughness
 - density / optical index of the various layers

- Les ondes stationnaires (XSW)
- XSW XRF: Co/Mg/Zr
- XSW HAXPES: Pd/Y/B4C
- Kossel XRF: Pd/Y/B4C

- Les ondes stationnaires (XSW)
- XSW XRF: Co/Mg/Zr
- XSW HAXPES: Pd/Y/B4C
- Kossel XRF: Pd/Y/B4C

X-ray standing waves

multilayer mirror Berkeley Lab.

Generally used

- In hard x-ray range
- In glancing incidence
- With crystal or
- With multilayer (set of bilayers)
 To probe
- thin layer on top of the multilayer
- Interfaces of the multilayer itself By using
- Fluorescence or photoelectrons

In (or close to) **Bragg conditions**

- a strong standing wave develops inside and outside the multilayer
- having the period of the multilayer

X-ray standing waves

Depth distribution of the electric field

Observation of the energy distribution of the emitted radiation Information about the chemical state of the emitting element

Incoming beam

- Electrons
- Particles
- X-rays

Detection / dispersion

- WDS : crystal spectrometer
- EDS : Si(Li), SDD, bolometer energy dispersive CCD camera

Two XSW modes

Glancing incidence mode "Standard" or GI

Glancing exit mode "Kossel" or GE

Two XSW modes

Glancing incidence mode "Standard" or GI Incident beam = x-ray beam Requires synchrotron x-ray tube Geometry to be fulfilled Generally very grazing

Detected beam

No special geometry requirement Large solid angle of detection possible

Two XSW modes

Incident beam = any ionizing beam

X-rays Electrons Ions No geometry requirement

Detected beam = characteristic x-rays

Geometry requirement Generally very grazing Small solid angle of detection

"Kossel" or GE

A bit of history

M. von Laue

M. Von Laue Nobel prize 1914 for his discovery of the x-ray diffraction by crystals

First x-ray diffraction pattern

Hydrated copper sulfate P1 triclinic 1912: von Laue, Friedrich, Knipping

W. Kossel 1935 Diffraction of the f

Diffraction of the fluorescence produced within the crystal by the crystal itself

Fluorescence of Mg/Co multilayer

Si substrate / [Mg (5.1nm) / Co (2.6nm)]x30 / B4C (3.5nm)

- Les ondes stationnaires (XSW)
- XSW XRF: Co/Mg/Zr
- XSW HAXPES: Pd/Y/B4C
- Kossel XRF: Pd/Y/B4C

Introduction of Zr into Mg/Co stack

- Makes the stack stable upon annealing
- Improves the reflectivity (optimization on the optical path within the stack)

Reflectivity measurement at the application wavelength 26 nm (50 eV)

Si substrate / [**Mg (5.45nm) / Co (2.55nm) / Zr (1.5nm)**]x30 / B4C (3.5nm) Si substrate / [**Mg (5.45nm)) / Zr (1.5nm) / Co (2.55nm)**]x30 / B4C (3.5nm)

Two different orders of the layers

X-ray emission spectrosocpy

- Mg atoms as in pure Mg
- No interaction between Mg and Co layers

NMR spectroscopy

Probe of the nearest neighbour local structure around the Co atoms

Mg/Co and Mg/Co/Zr well-defined layers and interfaces

NMR spectroscopy (3)

Probe of the nearest neighbour local structure around the Co atoms

GE measurements – Mg-Co-Zr

Different contrasts of the features for Co L emission depending on the sample

Same behavior in **GI mode**

Simulations – Mg-Co-Zr

Mg/Zr/Co – Co L emission

- Mg/Zr/Co trilayer described as Mg/Co₄Zr bilayer
 - Mg/Co/Zr trilayer with nominal parameters

Mg-Co-Zr interfaces

From XRR, NMR, XES, XSW-XRF

- Sharp Zr-on-Co interfaces in Mg/Co/Zr
- Mixing at Co-on-Zr interfaces in Mg/Zr/Co

Surface free energy

- Co 2.0 J.m⁻²
- Zr 1.6 J.m⁻²

Asymmetric behavior of Zr-on-Co and Co-on-Zr interfaces

- Les ondes stationnaires (XSW)
- XSW XRF: Co/Mg/Zr
- XSW HAXPES: Pd/Y/B4C
- Kossel XRF: Pd/Y/B4C

Pd/Y based periodic multilayers

Problem: the original design has bad

• X-ray reflectometry @ 8048 eV - Cu K radiation

Severe interdiffusion between Pd and Y layers.

•Solution: **Derivative systems** Interface engineering

Methodology: HAXPES

 An extension of conventional X-ray Photoelectron Spectroscopy (XPS) technique.

 $hv = E_b + \phi_{spectrometer} + E_k$

- Higher incident photon energy.
- Longer inelastic mean free path. Probed depth increases.
- 10 keV => 22 nm (about 5-6 periods, bulk sensitive)
- 3 keV => 9 nm (about 2 periods, surface sensitive)

• GALAXIES beamline in SOLEIL Synchrotron.

- High brilliance monochromatic x-ray source.
- Small cross section due to high energy.

Methodology: combine HAXPES with XSW

From HAXPES spectra to XSW curves

Result: XSW curves measured with

- Bulk sensitive.
- XSW curves, extracted from photoemission spectra, of the Pd/Y multilayers prepared with 2, 4, 6 and 8% of N₂ respectively measured with a 10 keV incident photon energy.
- Elemental information in the stacks. Chemical selectivity.

Pd & O Y & N

Decomposition of Y 2p3/2 spectra

Distribution of chemical states.

Pd YN

Y $2p_{3/2}$ photoemission spectrum of the sample with 6% nitrogen in the sputtering gas (left), and the XSW curves corresponding to the sub-peaks (right).

Decomposition of Pd 2p3/2 spectra

- Distribution of different chemical states.
- XSW curves are normalized with the ratio compared to the main sub-peak.
- Multiple components have the same XSW curve.
- Homogeneous distribution of Pd and its oxides? No.
- Shake up satellite peaks
- => oxide peak too close to metal peak.

Pd $2p_{3/2}$ photoemission spectrum of the sample with 6% nitrogen in the sputtering gas (left), and the XSW curves corresponding to the sub-peaks (right).

Result: XSW curves measured with 3 keV incident photons

- Surface sensitive.
- XSW curves, extracted from photoemission spectra, of the Pd/Y multilayers prepared with 2, 4 and 6% of N₂ respectively measured with a 3 keV incident photon energy.
- 2% data unreliable due to instrumental problem.
- Elemental information in the stacks. Chemical selectivity.
 Pd & O Y & N

Decomposition of B 1s spectra

- B 1s total photoemission intensity decreases.
- B₄C component decreases.
- Cap material loss.

Decomposition of C 1s spectra

- B₄C component almost entirely disappears.
- Contamination becomes dominant.
- Cap material loss confirmed.
- Due to change of deposition rate.

Wang *et al.* "Nitridated Pd/B4C multilayer mirrors for soft X-ray region: internal structure and aging effects," Opt. Express. 25, 7749 (2017).

Decomposition of Y 2p3/2 spectra

 Unexpected variation of YN concentration which only happens on the surface.

SPIE Optics + Optoelectronics, Prague, Czech Republic

- The effect of X-ray standing wave enhancement is clearly observed.
- The information of elemental distribution is obtained indicating a chemical selectivity among the elements:
 Y \sum N
 Pd \sum O
- Only Y metal and YN are presented in the Y layers. The formation of YN improves the optic performance of the multilayers.
- There is B₄C cap material loss when we add nitrogen in the sputtering gas due to the change of deposition rate.

- Les ondes stationnaires (XSW)
- XSW XRF: Co/Mg/Zr
- XSW HAXPES: Pd/Y/B4C
- Kossel XRF: Pd/Y/B4C

Particle Induced X-ray Emission

- Particle Induced X-ray Emission (PIXE)
- Ionization: particle generated core hole
- X-ray emission (fluorescence)
- SAFIR platform in SU
- Système d'Analyse par Faisceaux d'Ions Rapides
 - (Analysis System using fast ions)
- Van de Graaff accelerator of positive ions
- 2 MeV proton beam, ionization of Pd L shell

Advantages of protons

- Low scattering
- Low Bremsstrahlung
- Low energy loss (0.5% after penetrating the multilayer)
- Uniform ionization cross section

Van de Graaff accelerator in SAFIR

Combine PIXE with Kossel diffraction

Energy dispersive CCD

Andor Ikon-M CCD

~150 eV resolution @5.9 keV

Advantage: spatially resolved

- Measurement of X-ray emission intensity in a squared area of about 13 x 13 mm
- Native: 1024 x 1024 sensor array with 13 x 13 µm pixels
- Our selection: 256 x 256 pixels of 52 x 52 µm
 >> compromise of angular/energy resolution

• No need to scan the angle

- We place a 200 µm beryllium film in front of the camera to filter the scattered protons. Protection of the camera
- Acquisition time significantly reduced compared to SDD

Days to 2 hours >>>potential of *in situ* measurements (annealing test, oxidation test)

X-ray emission spectrum

- B₄C(2.5 nm)/[Pd(2 nm)/B₄C(2nm)/Y(2nm)]_{x40}/Si
- Energy resolution is about 150 eV at 5.9 keV (Mn Kα).
- Pd Lα Lβ, Y Lα Kα, Si Kα can be observed
- Pile up effect due to multiple photons detection
- Energy calibration of the spectrum is carried out with

Pd Lα (2.838 keV) and Y Kα (14.958 keV)

- > Y Kα has too low intensity.
- Y Lα, Si Kα are in the low efficiency part of the X-ray camera.
- Pd Lβ does not bring additional infomation
- We measure Pd Lα emission

X-ray spectrum of Pd (2nm) / B_4C (2nm) / Y (2nm) periodic tri-tilayer:

- a) overview (log scale)
- b) zoomed range of interest (linear scale).

Kossel curves

- The original image obtained by X-ray color camera contains the intensity of emitted photons of all energies.
- Kossel curve: the angular distribution of the characteristic X-ray emission.
- Too get the Kossel curve of Pd Lα emission, we need 3 steps:
- 1. Select region of interest (ROI) on the spectrum.
- 2. "Filter" the original image by applying ROI.
- 3. Integrate the "filtered" image along the vertical pixels.

Distribution of X-ray emission

Calibration of detection angle

- Pixel of the detector grazing exit angle
- 4-layer sample:

B₄C(2.5 nm)/[B₄C(1 nm)/Pd(2 nm)/B₄C(1 nm)/Y(2 nm)]_{x40}/Si

- 1st and 2nd order of Kossel ocillation
- a) experimental curve in channel (pixel)
- b) simulated curve in angle (degree)
- Precise values obtained from the derivatives of the curves

Non-destructive test

- B₄C(2.5 nm)/[Pd(2 nm)/B₄C(2 nm)/Y(2 nm)]_{x40}/Si
- Exposure under proton beam for 7.5 hours
- Kossel curve maintains its shape

First observations of multilayer structures

It is known that Pd and Y intermix easily during magnetron sputtering, and thus need stabilising

Interface engineering:

- > Introduce N_2 into the plasma during growth 0%, 2%, 6%
- \blacktriangleright Use 1 nm B₄C buffer layers

Kossel curves of Pd La emission

- 2-hour acquisition time. Curve statistics can be further improved by increasing the acquisition time.
- Angles are adjusted to the Bragg angle, which is in most cases located in the center of the Kossel oscillation.
- The periodicity of the originally designed Pd/Y multilayer is totally compromised.
- Nitrogen reduces the interdiffusion.
- Kossel features can be distinguished for samples with different B₄C barrier layers.
 Structural sensitivity.

Kossel curves of the series of samples:

a) Deposited with nitrogen in the sputtering gas.

Kossel curves of the series of samples:

b) With B₄C barrier layers. The notation gives multilayer structure and layer thickness respectively.

Simulation

- Code for XRF-Kossel curve
- Approach
- Uniform ionization
- Still not perfect due to background
- Improvement needed

B4C/Pd/B4C/Y Pd L alpha emission

CONCLUSION

LCPMR – SU Karine LE GUEN Jean-Michel ANDRE Meiyi WU Jiaping ZHANG Vita ILAKOVAC

INSP – SU Ian Vickridge Didier Schmaus Emrick Briand

LAMS – SU Philippe Walter

LPCMS Strasbourg C. Mény

Synchrotrons A. Giglia (Elettra, IOM) J.-P. Rueff (SOLEIL, LCPMR)

Institut d'Optique - Palaiseau Franck Delmotte Sébastien de Rossi Françoise Bridou

Institut d'Optique – Tongji Zhanshan Wang Qiushui Huang

