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Abstract
Obtaining accurate high-resolution representations of model outputs is essential to describe the system dynamics. In general,
however, only spatially- and temporally-coarse observations of the system states are available. These observations can also
be corrupted by noise. Downscaling is a process/scheme in which one uses coarse scale observations to reconstruct the high-
resolution solution of the system states. Continuous Data Assimilation (CDA) is a recently introduced downscaling algorithm
that constructs an increasingly accurate representation of the system states by continuously nudging the large scales using
the coarse observations. We introduce a Discrete Data Assimilation (DDA) algorithm as a downscaling algorithm based on
CDA with discrete-in-time nudging. We then investigate the performance of the CDA and DDA algorithms for downscaling
noisy observations of the Rayleigh-Bénard convection system in the chaotic regime. In this computational study, a set of
noisy observations was generated by perturbing a reference solution with Gaussian noise before downscaling them. The
downscaled fields are then assessed using various error- and ensemble-based skill scores. The CDA solution was shown to
converge towards the reference solution faster than that of DDA but at the cost of a higher asymptotic error. The numerical
results also suggest a quadratic relationship between the �2 error and the noise level for both CDA and DDA. Cubic and
quadratic dependences of the DDA and CDA expected errors on the spatial resolution of the observations were obtained,
respectively.

Keywords Downscaling · Continuous data assimilation · Noisy observations · Rayleigh-Bénard convection

1 Introduction

High-resolution representations of the states of dynamical
systems are essential in various fields [1]. Downscaling
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techniques were introduced to synchronize the fine-
scale features of a dynamical system to a reference
solution represented by coarse-scale observations [2].
These techniques were applied in various applications,
such as oceanic [3, 4] and atmospheric modeling [5,
6]. Downscaling techniques can be categorized into two
main approaches: statistical downscaling and dynamical
downscaling.

Statistical downscaling establishes a statistical relation-
ship between the observed variables at the coarse-scales and
the variables of interest at the fine-scales, based on which,
the fine-scales can be estimated [7–10]. Dynamical down-
caling methods, on the other hand, constrain the fine-scale
model solution to the coarse-scale observations. Nudging
techniques are commonly used for dynamical downscal-
ing, where the fine-scale solution is forced towards the
coarse-scale data, point-by-point as in grid nudging and
low-frequency to low-frequency as in spectral nudging [11].
Several studies compared the performances of statistical
and dynamical downscaling methods and reported that both
techniques generally perform comparably [6, 12–14].
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Continuous Data Assimilation (CDA) is a dynamical
downscaling algorithm that constrains the large-scale
solution of a system state to coarse-scale observations
[15]. The CDA algorithm introduces a nudging term, as
a source term in the equations of motion, to compare
the coarse scales of the system state to those of the
observations. The theoretical grounds of CDA state that
the downscaled solution has an exponentially increasing
accuracy with time, regardless of the initial conditions [15].
The downscaled solution was also proven to asymptote
to the true solution, provided sufficient observations in
time. The CDA algorithm was successfully applied to the
2D Rayleigh-Bénard equations [13, 16, 17], 3D Rayleigh-
Bénard equations [18], quasi-geostrophic equations [19],
2D Navier Stokes equations [20], 3D Primitive equations
[21] and Global Circulation Models (GCMs) [6]. The
theoretical framework of CDA with noisy stochastic
measurements was more recently established by [22], who
showed that the algorithm asymptotes to the true solution
with a tolerance limit proportional to the trace of the
covariance of the noisy observations.

This work introduces Discrete Data Assimilation (DDA),
a downscaling algorithm that is a discrete-in-time coun-
terpart of CDA, arising in spirit of the works of Hayden
et al. [23] and Celik et al. [24], where downscaling is per-
formed based on an “implusive” update of the state field,
using Fourier-based spectral projections specified in terms
of the coarse-scale observations. In contrast, in the present
work DDA introduces a source term into the governing
equations that is concentrated at the observation times.
Thus, whereas CDA continuously nudges the governing
equations with the coarse-scale observations of the system
state, DDA only nudges the system at the discrete times
when observational data are available. To numerically ana-
lyze the performances of both downscaling algorithms for
the case of noisy coarse-scale observations, we rely on syn-
thetic observational data generated by perturbing a reference
solution of the Rayleigh-Bénard convection system in the
turbulent regime. These noisy coarse-scale observations of
the velocity and temperature are downscaled realization-by-
realization using CDA and DDA, which results in a set of
downscaled solutions.

The performances of both CDA and DDA were then
assessed by analyzing various skill scores. Numerical
experiments were also conducted to examine the sensitivity
of DDA and CDA to the noise level and temporal and
spatial resolutions of the observations. The statistics of
the downscaled ensemble of solutions were then examined
and the precision of the skill scores estimators were
analyzed using a bootstrap analysis. Finally, because
velocity observations alone are sufficient to fully describe
the downscaled Rayleigh-Bénard solution fields [16], the
critical noise level at which noisy temperature observations

should be discarded in favor of employing noisy velocity
observations alone was also investigated. The numerical
results suggest that the �2-errors resulting from CDA and
DDA are proportional to the observational noise variance
and have a cubic relation to the spatial resolution. The
CDA downscaled fields are also shown to converge to the
asymptotic behavior faster than DDA, although it converges
to a lower asymptotic error level in comparison to CDA.

The following section provides an overview of the
Rayleigh-Bénard convection system, the CDA and DDA
algorithms, and the skill scores to assess their performances.
Section 3 describes the experimental setting, including
the generation of noisy observational data, and the model
and downscaling parameters. The results of the numerical
experiments are then presented in Section 4. The main
conclusions of the study are outlined in Section 5.

2 Preliminaries

2.1 Rayleigh-Bénard convection system

The Rayleigh-Bénard convection is a thermo-fluidic insta-
bility driven by the temperature difference between a hotter
bottom boundary and a cooler top boundary. At high Ra,
chaos dominates the flow with no particular structures to be
observed [25, 26]. The system under study consists of a 2D
rectangular periodic channel of vertical height Ly and hor-
izontal period Lx . The 2D Boussinesq equations are then
recast into their non-dimensional form, using the same scal-
ing used in [27, 28], such that the equations are solved in a
fundamental spatial domain � = [

0, Lx/Ly

] × [0, 1]. The
solution of the governing equations are the dimensionless
velocity vector u = (u, v), pressure p and temperature �.
These equations are expressed as:

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇) u + ∇p = Pr√
Ra

∇2u + Pr�ey, (2)

∂�

∂t
+ (u · ∇)� = 1√

Ra
∇2� + u · ey, (3)

where Ra :=
(
gα�T L3

y

)
(νκ)−1 is the Rayleigh number, g

is the gravitational acceleration, α is the thermal expansion
coefficient of the fluid, �T is the dimensional temperature
difference between the top and bottom boundaries, ν is the
kinematic viscosity, κ is the thermal diffusivity coefficient,
Pr = νκ−1 is the Prandtl number, t is time and ey is the
unit basis vector in vertical direction.

This system of equations can be solved once the initial
and boundary conditions are specified. The temperature
and velocities are initialized with independent, spatially
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uncorrelated random noise sampled point-by-point from
uniform distributions U (−0.2, 0.2) and U (−0.1, 0.1),
respectively, where U (a, b) refers to a uniform distribution
on the interval (a, b). Periodic boundary conditions were
specified in x, whereas at the horizontal boundaries, no-slip
and no-penetration along with isothermal conditions were
enforced. Specifically, the boundary temperatures are set as
�(t; x, 0) = �(t; x, 1) = 0.

The system of equations were solved numerically using
finite differences on a staggered grid using the conservative
form of the governing equations. A uniformly spaced
staggered grid with nx × ny cells and spacing δx = δy = h

was adopted. The size of the computational cell is δx =
Lx/(Ly × nx) horizontally and δy = 1/ny vertically,
where nx and ny are the number of horizontal and vertical
grid points, respectively. A third-order Adam-Bashforth
scheme was employed using a fixed time step δt . A second-
order central differencing scheme was selected for the
advection, diffusion and source terms. Pressure-projection
based on the fractional step method was utilized to satisfy
the incompressibility condition, which is manifested in
the conservation of mass equation. Fast Fourier Transform
(FFT) based algorithms were implemented to efficiently
solve the parabolic and elliptic systems.

2.2 Continuous and discrete data assimilation

CDA is a nudging-based downscaling algorithm that
employs coarse-scale observational data to constrain the
large-scale features of the model solution in order to dynam-
ically recover the fine-scale features. This is achieved by
introducing a source term, proportional to the discrepancy
between the coarse scales of the model solution and those
of the observational data, in the equations of motion and
energy [15]. CDA is applied here to the 2D Rayleigh-Bénard
convection for downscaling coarse observational data by
solving the following system of equations:

∇ · w = 0, (4)

∂w
∂t

+ (w·∇)w+∇p= Pr√
Ra

∇2w+Pr�ey+μu
(
Iho

(
uo

) −Iho (w)
)
,

(5)

∂�

∂t
+ (w·∇) �= 1√

Ra
∇2�+w · ey+μ�

(
Iho

(
�o

) −Iho (�)
)
, (6)

where w = (ũ, ṽ) is the downscaled velocity vector, �

is the downscaled temperature, μ = (μu, μ�) are non-
negative constants called the nudging parameter, and uo

and �o are the coarse-scale observations of the velocity
and temperature, respectively. Note that the downscaling
system is solved using the same boundary conditions
as the reference system. Finally, Iho is an interpolation

operator of an interpolant function φ for uniformly spaced
measurements at a distance ho in �, which is expressed as
follows:

Iho (φ (x)) =
Nho∑

k=1

φ (xk) χQk (x) , (7)

where x = (x, y), Qk are disjoint subsets such that
diam(Qk) ≤ ho for k = 1, ..., Nho , Nho is the number of
observational points,

⋃Nho

j=1 Qj = �, xk ∈ Qk and χE is the
characteristic function of the set E.

It was proven that regardless of the initial conditions used
for � and w, the CDA solution converges exponentially
to the true solution under the conditions [15] outlined.
Specifically, the system converges if sufficiently enough
coarse observational data that is spaced at a sufficiently
small ho are provided and the μ’s are appropriately
selected. CDA, thus, ensures that, for dissipative systems,
the downscaled solution is synchronized with the reference
solution for all times beyond the last observation time.

Inspired by the works of [15, 23] and [24], we propose
the DDA algorithm in which nudging is performed only at
discrete instances when observations are available, while
solving the original system at all other steps. Specifically,
DDA simulates (5) and (6) when observations are available,
and integrates the original (2) and (3) at all other times. The
discrete forms of the energy equations for CDA and DDA
are presented in order to provide additional insight on the
implementation of the proposed downscaling algorithms as:

�n+1 − �n

�t
+ (w · ∇�)n

= 1√
Ra

∇2�n+(w·ey)
n+μ�

[
Iho(�o(toi ))−Iho(�n)

]
(8)

for CDA and

�n+1−�n

�t
+(w · ∇�)n = 1√

Ra
∇2�n+(w · ey)n

+
nto∑

i=1

δ
(
t−toi

)
μ�

[
Iho (�o(toi ))−Iho (�n)

]

(9)

for DDA, where δ is the dirac delta function. In (8) and (9)
the algorithm advances from time step n to n + 1 and toi is
the instance of the ith observation. CDA, therefore, applies
the nudging term that employs the ith observation between
toi and toi+1. On the other hand, DDA includes the nudging
term only at the time step when the observation was made
and solves the original system of equations otherwise.

The assimilation of perfect observations was analyzed
both theoretically and numerically for CDA. The effect of
noisy observations on the convergence rate and the asymp-
totic error level have only been examined theoretically by
[22]. Bessaih et al. [22] showed that the expected �2-norm
of the error, �, between the downscaled (Zd ) and true (Zt )
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solution fields is proportional to the trace of the covariance
of the observational noise, which is expressed as follows:

� := E

[∫
(Zd − Zt)

2 d�

]
∝ C · T r [Cov] (10)

where Z is an arbitrary variable, d� represents a differential
area in the domain, C is a functional that depends on
the numerical and downscaling parameters, and Cov is
the covariance of the noise. One objective of this work is
to numerically investigate the asymptotic error level and
the convergence rate. Another objective is to estimate the
functional dependence of � on the covariance of the noise,
and spatial and temporal resolutions of the observations,
based on which the CDA and DDA algorithms were
compared.

2.3 Generation of random observations

The solution of (1)-(3) with the initial and boundary
conditions described in Section 2.1 is considered as the
reference solution. Coarse observations of the system states
were generated by subsampling points every ho spatially
and δto temporally from the reference solution. (Note
that as further discussed below, the reference solution is
obtained on a sufficiently fine computational grid that
it can be practically treated as the exact solution.) The
spatial and temporal resolutions of the observational grid
are characterized using the non-dimensional ratios, called
spatial and temporal downscaling factors, defined as R ≡
ho/h and S ≡ δto/δt , respectively.

The coarse-scale observations of the reference solution
are then perturbed by adding randomly sampled indepen-
dent and identically distributed (iid) white noise sampled
from a Gaussian distribution with zero mean and standard
deviation σ . In this work, σ = (σT , σu) is also referred
to as the noise level, where the noise of the two variables
are independent to mimic different measurement sources,
a practical scenario encountered with observational data.
Each noisy observed realization is then downscaled sep-
arately to generate an ensemble of downscaled solutions,
each representing a possible solution trajectory of the sys-
tem. The performance of the downscaling algorithms was
then evaluated quantitatively based on the asymptotic error
level between the downscaled and reference solutions, and
the rate at which they reach the asymptotic behavior, i.e. the
convergence rate.

3 Experimental setup

The experiments were conducted using the Rayleigh-
Bénard convection with a high Rayleigh number of Ra =
2 × 108 and Pr = 0.7, which corresponds to a highly

chaotic system that mimics environmental flows [29, 30].
Numerically, the system of equations are solved on a
uniformly spaced staggered grid composed of 1200 × 400
grid points (for scalar fields) discretizing a domain of
length Lx = 3 and height Ly = 1. The time step
δt was set to 5 × 10−4, leading to a maximum Courant
number of about 0.15 and a maximum grid Reynold
number of O(10). This ensures that fine scale dynamics
are suitably captured. In other words, the computed
solution is essentially insensitive to further refinement of
the spatial or temporal resolution of the computational
grid.

The sensitivity of the convergence rate and the asymp-
totic error level, of both CDA and DDA, to the downscaling
parameters and the observation noise level were investigated
to determine the corresponding functional dependencies.
Specifically, the impact of the observation noise level was
numerically studied by analyzing the sensitivity of the
downscaled solution statistics to different values of σ . The
solution variables were initialized with a random field and
the computations were carried out over a sufficiently long
interval to observe convergence. This generally occurred
within t = 25 with DDA, and for a much shorter window
(t = 3) with CDA. Moreover, the asymptotic error level
was analyzed for the final steps, which, in this study, corre-
spond to tDDA

f = 49.9 for the DDA and tCDA
f = 15 for the

CDA.
A 0th order interpolant operator was selected because

it is computationally cheapest with no noticeable impact
on the convergence rate, as was also suggested by [13].
The nudging factor for both the energy and momentum
equations were chosen the same with μ� = μu = μ

to limit the number of hyper-parameters. In the present
work, a grid search was performed to find the best μ,
where the downscaled fields were ensured to converge
to the reference solution. Note that the theory in [15]
predicts the existence of a suitable range of parameters,
and computational experience [13] suggests that CDA
predictions always converge so long as μ is selected
within this range. The performance of the downscaling
algorithms also depends on the spatial and temporal
resolutions of the available observations. The sensitivity of
both CDA and DDA to these parameters were, therefore,
also investigated.

The quality of the downscaled solutions were assessed
by computing various skill scores to quantify the errors
relative to the reference solution and variability relative
to the mean solution. The skill scores were computed for
each of the solution variables and included the root-mean-
squared-error, which is expressed as:

RMSE(t) =
√

1

nxny

�
nxny

i=1 [Zd(xi; t) − Zt(xi; t)]2, (11)
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where xi = (xi, yi) is the position of the grid point and t is
time; the relative root-mean-squared error:

RRMSE(t) =
√

�
nxny

i=1 [Zd(xi; t) − Zt(xi; t)]2

√
�

nxny

i=1 [Ztrue(xi; t)]2
. (12)

and the absolute error:

AE(t) = 1

nxny

�
nxny

i=1 |Zd(xi; t) − Zt(xi; t)|. (13)

The variability of the downscaled solutions was evaluated
as the average ensemble spread as follows:

AES(t) =
√

1

Ne − 1
�

Ne

k=1�
nxny

i=1

(
Zk

d(xi; t) − Zd(xi; t)
)2

,

(14)

where Ne is the number realizations forming the ensemble
of downscaled solutions and Zd(xi; t) is the average of the
samples at xi and time t . Finally, the measure introduced by
[22] on the expected �2-error of the downscaled members,
denoted by �, was also computed based on the definition
in (10) for the last time step of the simulation. This
enables us to numerically assess the theoretical results
and to further investigate the functional dependence on
downscaling parameters.

Remark It is instructive to contrast the resolution of the
coarse observation grids to those of the integral time scales
of the flow. Based on the definitions above, the spatial and
temporal resolutions of the observations grid are given by
h0 = Rh and δt0 = Sδt . In the downscaling experiments
conducted below, the downscaling ratios are selected such
that 5 ≤ R ≤ 25 whereas 1 ≤ S ≤ 50. With
these choices, h0 and δt0 remain substantially smaller than
the flow integral space scale and time scale, respectively.
In particular, the dimensionless large-scale turnover time,
τ ≡ 2Ly/umax , estimated based on the reference solution,
is approximately 3, which indicates that δt0/τ remains
much smaller than 1 for the entire range of the S values
considered.

4 Results

This section presents and discusses the results of the
numerical experiments illustrating the implementation of
the DDA and CDA algorithms to downscale coarse scale
noisy observations of the Rayleigh-Bénard flows. The DDA
results are mostly presented in the main text and when not
included the CDA results are mirrored in the supplementary
material, but are analyzed in the text for direct comparison.

4.1 Sensitivity to noise levels

The sensitivity of each of the CDA and DDA algorithms
to observation noise levels were examined by first selecting
a nominal case, defined by a nominal noise level equal to
10% of the range of the solution variable at the final time
step. The noise levels for the nominal case were set to
(σT , σu) = (0.1, 0.05). Higher and lower noise levels are
then considered by scaling both noise levels simultaneously.
Consequently, the results presented indicate σT only.

Noisy realizations of the coarse-scale observations of
the system are sampled as described in Section 2.3 and
are then downscaled using CDA and DDA, respectively.
The DDA and CDA nudging parameters are set to 7.0 and
3.0, respectively, for an observational grid resolution of
S = 10 and R = 5. The nudging factor was tuned by
solving the downscaling equations for multiple values of
μ, and the solution with lowest RRMSE at the final time
step is used throughout. Downscaling the noisy realizations
was conducted starting from a random field to verify that,
given sufficient observations and appropriate nudging, both
algorithms converge regardless of the initial conditions.

Figure 1 presents the time evolution of the AE, RMSE,
RRMSE of the DDA downscaled temperature solutions.
The figure also illustrates the AES for ensembles composed
of 10, 20, 25, 30, 40 and 50 downscaled solutions. The
evolution of the RRMSE from the CDA simulation is
also shown for comparison. The results of the velocity
components are similar to those of the temperature; they
are briefly discussed in this section with the corresponding
results provided in the Supplementary.

The time evolution of both the AE and RMSE of the DDA
downscaled solutions for all 50 members of the ensemble
are illustrated in Fig. 1a and b, respectively. The skill scores
decrease in time until reaching a plateau at approximately
t = 30. Figure 1c shows a rapid decay of the AES, for
all considered ensemble sizes, following similar patterns
to those of AE and RMSE. The plots also indicate that
the smallest AES values are at the plateau. Similar to the
downscaled temperature fields, the errors of the downscaled
velocity fields also decay to an asymptotic error level, and
achieve AES values that are comparable to those of the
downscaled temperature fields.

Figure 1d and e illustrate the decay of the RRMSE
for both DDA and CDA downscaled fields. These plots
show that with CDA the RRMSE decays smoothly and
exponentially in time, whereas with DDA the RRMSE
decays non-monotonically and at a slower rate. As time
evolves, the skill scores of both algorithms asymptote to a
plateau, with the asymptotic error skill scores corresponding
to DDA being lower than that of CDA. Specifically, the
asymptotic RRMSE of the DDA downscaled fields were
approximately three times smaller than that corresponding
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Fig. 1 Evolution of different skill scores corresponding to the DDA
downscaled temperature fields, each member is driven by observations
of the nominal noise level of (σT , σu) = (0.1, 0.05). Each plot
contains curves corresponding to 50 downscaled samples, the AES is
presented for different number of realizations as indicated

to CDA, and is approximately one third of the observations’
noise level. The RRMSE of the downscaled velocity
components experience a similar evolution to that of
the downscaled temperature fields, where the RRMSE
decays smoothly and exponentially with CDA and non-
monotonically with DDA. This error behavior can be
attributed to the nature of the nudging involved with
each algorithm. Specifically, CDA continuously nudges the
system of equations, which introduces observational noise
at every integration time step. On the other hand, DDA
nudges the system of equations at discrete times, allowing
the unforced system of equations to relax this sudden
change imposed by the nudging at discrete time steps.
Hereafter, we only discuss the evolution of the RRMSE
of the downscaled temperature solution because the skill
scores evolve similarly in time.

The reference temperature solution along with its differ-
ence with the DDA downscaled solutions are presented at
different time instants in Fig. 2. The snapshots first show
the initial condition of the reference system and the random
initialization of the DDA systems, which is expressed by
the noisy error field. The solution at the intermediate time
shows a decrease in the errors across the domain, mostly
concentrated near the plumes, and are of the order of the
observation noise level. At a later time, the errors practi-
cally vanish across the domain, with the highest error values
being an order of magnitude smaller than the noise level.
The highest errors occur near detachment and mixing zones
due to the more complex fine-scale dynamics, as expected.

To provide insight into the effect of the noise level on
the downscaled fields, the reference temperature field and
the difference of the DDA downscaled temperature fields
with this reference are presented for different snapshots in
Fig. 3. In all cases, the results indicate that the difference
between the downscaled and reference temperature fields is
largest around plumes and their corresponding boundaries.
At an intermediate time (t = 15), the discrepancy fields
reveal structures whose shapes and amplitudes depend on
the observation noise level, especially when the latter is
large. This is not surprising because in this situation the
downscaled solution is still far from the reference solution.
As further observations are assimilated in time (t = 45),
the impact of increasing the noise level essentially manifests
itself as an amplitude scaling of the discrepancy field. Thus,
when the error plateau is reached, the discrepancy fields
exhibit similar structure, with amplitude differences that
scale with the observation noise level.

The distributions of the asymptotic skill scores corre-
sponding to the DDA downscaled temperature field at the
final time step are shown in Fig. 4. The box plots in Fig. 4a
and b depict an increase in the asymptotic AE and RMSE
quadratically with the noise level. Figure 4c shows the
decrease in the AES for increasing ensemble size at a rate of
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Fig. 2 Instantaneous snapshots of the temperature distribution for
the noise-free Rayleigh-Bénard simulation along with the difference
between the downscaled sample solutions and the truth. Snapshots are

shown for the initial time step (top), an intermediate time step (middle)
and a time step when the algorithm had converged (bottom)
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Fig. 3 Instantaneous snapshots
of the temperature distribution
for the noise-free Rayleigh-
Bénard simulation along with
the difference between the
downscaled solutions and the
truth. Snapshots are shown for
an intermediate time step (top)
and a time step when the
algorithm had converged
(bottom). At both instants, plots
are generated for different noise
levels, as indicated

approximately 1/
√

Nens , as expected for random sampling
of the observation noise. The figure also illustrates a linear
decrease of the AES with decreasing noise level and a fixed
ensemble size. Finally, the curves in Fig. 4d present the
increase of � with σ on a log plot for both CDA and DDA.
The results suggest that � is proportional to the variance of
the noise for both the CDA and the DDA downscaled fields,
consistent with the theory of [22].

4.2 Sensitivity to the observation’s temporal
sampling rate

This section analyzes the impact of the temporal observation
sampling rate on the DDA and CDA solutions. Numerical
experiments were performed with different observation
frequencies by systematically varying S within the broad
range 1 ≤ S ≤ 50. In doing so, the noise level was held
fixed with σ = (0.1, 0.05) and R = 5.

Figure 5 shows the time evolution of the temperature
RRMSE resulting from DDA for S = 1, 10 and 24. For
S = 1, the RRMSEs decay monotonically to a plateau.
For S = 10 and 24, however, the behavior becomes
non-monotonic. In both cases, the RRMSE initially drops

rapidly, then increases before decreasing again to eventually
reach a plateau. As S increases, the downscaled fields
exhibit a wider spread. Specifically, for S = 1, the RRMSE
curves are almost indistinguishable, whereas for larger S,
the variability in the downscaled fields becomes substantial,
though a smaller mean error is achieved for S = 10. CDA
also seems to be less sensitive to S compared to DDA,
where the time evolution of the temperature RRMSE of
different members is almost identical and the plateau is
reached almost immediately.

Figure 6 shows the distribution of the asymptotic values
of AE, RRMSE and AES for the DDA downscaled
temperature fields with varying S at the final time step. The
behavior of � in response to varying S is presented for
both CDA and DDA for comparison. Specifically, Fig. 6a
and b show the box plots describing the AE and RRMSE
of the temperature corresponding to each of the considered
observation frequencies. For S ≤ 15, the distributions of
the AE and RRMSE are tight with little variability. The
variability of these skill scores increases as S increases. The
box plots also show that both the AE and RRMSE initially
decrease with increasing S until reaching their minimum
at S = 10, after which, the errors increase nonlinearly
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Fig. 4 Distribution of the skill scores (indicated) based on the 50
sample solutions for the ensemble of temperature solutions of the
(a)-(d) DDA solution, and (d) CDA solution at their respective final
time steps. Sample solutions were generated by varying the noise
levels (indicated by the horizontal axis), while keeping the remaining
parameters fixed

Fig. 5 Evolution of the RRMSE of 50 individually downscaled
temperature solutions for: (a) S = 1, (b) S = 10 and (c) S = 24.
Note that with S = 24 the simulations were carried out till t = 120,
as reflected in the inset

with increasing S. In particular, for S ≥ 25, both AE
and RRMSE show large values indicating a substantial
deviation of the downscaled solution from the reference
solution. Figure 6c plots the variation of AES for different
S and number of downscaled fields. As expected, the results
suggest that for a fixed S, the AES decreases as 1/

√
Nens .

For a fixed given number of downscaled fields, the AES
decreases to a minimum as S increases from 1 up to 10,
beyond which the AES continues to increase following a
similar behavior to that of the AE and RRMSE. Finally,
Fig. 6d illustrates the variation of � with S for both the
CDA and DDA downscaled temperature fields. � varies
linearly with S for CDA and exhibits larger values than
those obtained with DDA, except for extreme values of S.
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Fig. 6 Frames (a) and (b) show the box plots of the temperature skill
scores, AE and RRMSE respectively, for 50 downscaled solutions
using DDA, at the final time step. Frame (c) depicts the AES for
different number of realizations of the DDA downscaled fields. Frame
(d) illustrates the dependence of � on R for DDA and CDA as
indicated by the legend

On the other hand, � evolves non-monotonically with S for
the DDA downscaled fields, and decreases to a minimum as
S increases from 1 up to 10 before nonlinearly increasing
with increasing S.

The behavior of DDA errors is attributed to the discrete
nature of the nudging, which allows the solution to evolve
based on the exact system of equations between the nudging
time steps. At very small values of S, however, nudging
is frequently applied, and thus, the solution becomes
increasingly affected by the observation noise leading to an
additional error.

4.3 Sensitivity to the observation’s spatial resolution

The CDA was theoretically proven to converge if the
observations are not too far apart [15]. Specifically, the
resolution of the observational grid must fall within the
range of the dissipation spectrum. In this experiment, the
response of CDA and DDA to different spatial resolutions
of the observational grid is examined. Downscaling runs
were then performed for R of 5, 15 and 25, all with
S = 10. The joint effect of coarse observations in
space and time is also examined with S = 25 and
R = 5 and 15. The nudging factors of DDA and CDA
were set to 7.0 and 3.0, respectively. The observational
noise levels are set to their nominal levels, (σT , σu) =
(0.1, 0.05).

Figure 7 shows the time evolution of the temperature
RRMSE for the different combinations of S and R values.
In all cases, the RRMSE exhibits an initial rapid drop
followed by an increase before slowly settling down to a
plateau. For S = 10, the height of the plateau noticeably
increases as R increases. Specifically, for R = 15, all
the RRMSEs of the downscaled realizations experience an
initial rapid drop followed by a small increase ending with
a plateau. As R increases, however, the RRMSE curves
clearly exhibited a larger spread and reached a higher value
at the plateau, which took a longer period to reach. On the
other hand, for S = 25 and for both R values examined,
the RRMSE curves exhibit a smaller rise in the plateau
with increasing R in comparison to the case of S = 10.
The monotonic decrease in the CDA’s RRMSE is lost with
increasing R, as seen in the corresponding results in the
Supplementary material. In particular, for R = 15 and
25, the RRMSE rapidly decreases, then increases for a
short period before decreasing to a final plateau. The DDA
seems to be more sensitive to R for the smaller value of
S indicated by the increase in the value of the plateau.
These results suggest that the coarser the spatial resolution
of the observational grid is, the less accurate the downscaled
solution becomes. A thorough assessment of the behavior
of the skill scores at the final time step is presented in the
following.
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Fig. 7 Evolution of the RRMSE
of 50 downscaled temperature
fields corresponding to DDA.
Plots are generated for different
R and S as indicated

Figure 8 presents the box plots of AE, RRMSE and
AES for S = 10 and the different tested R values for the
DDA downscaled temperature fields at the last time step.
The figure also displays the behavior of � for both CDA
and DDA downscaled temperature fields at the last time
step. The plots suggest a cubic increase of the means of
both the AE and RRMSE and an increase in the solutions’
spread with increasing R. The AES increases linearly with
increasing R and decreases with the square-root of the
number of downscaled realizations. Finally, Fig. 8d shows
the variation of � as a function of R for both the CDA
and DDA downscaled fields. Specifically, � increases with
increasing R for both algorithms. � increases quadratically
with R with CDA, whereas with DDA, � is a cubic function
of R. For comparison, Fig. 9 shows the box plots of the AE
and RRMSE at the final time step for the case with S = 25
and the considered values of R. Both AE and RRMSE
increase when S is larger and increase for increasing R.
In comparison to the results of Fig. 8, the mean of the
asymptotic errors almost triple, for a fixed R, when S is
larger. In addition, the variance of the downscaled fields
becomes larger with larger S.

4.4 Distribution of the downscaled fields

Here, we analyze the distribution of the downscaled fields
by applying a statistical test. In this experiment, the noise
level was set to the nominal value, the DDA and CDA
nudging parameters were fixed to 7.0 and 3.0, respectively,
with S and R equal to 11 and 5, respectively. 200 solution
samples were then generated and their profiles in the planes
y = 0.25, 0.50 and 0.75 were selected. The Kolmogorov-
Smirnov test was then applied to the solution points in these
planes at discrete times to assess their distribution. The goal
is to test for Gaussianity of the downscaled solutions in
space at different instances in time.

Figure 10 plots snapshots of the p-value and hypothesis
test for t = 30 and t = 49.9, representing an intermediate
and the final time steps. The plots for t = 30 show several
locations where the hypothesis tests positive, hypothesis is
equal to 1 or equivalently p-value less than 0.05, meaning
that the samples fail the Gaussianity test. However, the plots
at t = 49.9 indicate that only two out of the total 3600
tested locations fail the Gaussianity test, suggesting that, for
iid Gaussian noise, the downscaled solutions are normally
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Fig. 8 Frames (a) and (b) show the box plots of the temperature skill
scores, AE and RRMSE respectively, for 50 downscaled solutions
using DDA with S = 10 and the indicated R, at the last time step.
Frame (c) depicts the AES for different number of realizations. Frame
(d) illustrates the dependence of � on R for both DDA and CDA

Fig. 9 Box plots of the temperature skill scores: (a) AE and (b)
RRMSE for 50 downscaled solutions using DDA with S = 25 and the
indicated R

distributed once the plateau is reached. Similar results were
obtained for the CDA downscaled samples, but those passed
the Gaussianity test for all locations at an earlier time due to
its faster convergence rate.

4.5 Precision of the skill scores and a lower error
solution

In these experiments, we first assess the precision of
the estimate of the RRMSE by means of a bootstrap
methodology. Second, we explore the potential of using the
average of the downscaled solutions as the best solution. To
assess the precision of the skill score estimates, bootstrap
sampling is applied to subsets of various sizes of the
ensemble of 200 downscaled solutions of the previous
section. A total of 500 bootstrap subsets were generated for
each skill score.

The average of each bootstrapped skill score subset is
considered as a bootstrap estimate of the skill score. These
samples were then input to a Kernel Density Estimator
(KDE) to generate the probability density function (PDF) of
the skill scores.

Figure 11 presents the resulting distributions for subsets
of different sizes. Specifically, Fig. 11a illustrates the
distribution of the average RRMSE estimate for the
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Fig. 10 Plots of the spatial distribution of the hypothesis value and
p-value for the Kolmogorov-Smirnov test. In each plot, distributions
are generated based on horizontal profiles at y = 0.25, y = 0.5 and
y = 0.75 as indicated. Plots are generated at t = 30 and t = 49.9
using a 200 realizations of the downscaled temperature solutions

different subsets and suggests that the variance in the
estimated average RRMSE decreases with subset size. The
box plots describing the distribution of the boostrapped

RRMSE are illustrated in Fig. 11b. The figure shows a
shrinking variability of the estimated average RRMSE with
increasing subset size. In particular, by bootstrapping a
subset with as few as 20 realizations, the standard deviation
of the distribution of the skill scores estimate can be
approximately halved in comparison to the subset of 10
realizations. Moreover, beyond 30 solution samples, the
standard deviation of the average RRMSE asymptotes to a
steady value.

Because the observational noise is unbiased, one may
anticipate the mean solution to provide a better estimate
of the reference solution than the individual realizations.
The skill scores associated with the ensemble mean were
computed for different subset sizes and compared to the
distribution of the skill scores obtained from the 200
nominal case solutions. Figure 12 illustrates the box plots
of the asymptotic temperature RRMSE for both CDA
and DDA downscaled fields, along with the curve of the
RRMSE of the average solution for different numbers
of realizations. The results show that, for both the CDA
and DDA and any number of realizations, the RRMSE
of the average solution is lower than the RRMSE of any
downscaled realization. The RRMSE of the average solution
is also seen to decrease with larger number of realizations.
Specifically, the RRMSE of the DDA downscaled solution
dropped from approximately 3.5% to below 1% for more
than 20 realizations. Moreover, comparing the distributions
from CDA to those from DDA, the results suggest that
the DDA yields errors three times smaller than those of
the CDA downscaled solutions. The CDA, however, shows
a tighter distribution with a smaller spread between the
dowscaled fields.

4.6 Observing a noisy solution

In a practical setting, only a single noisy observation of
the state is usually available. Here, we generate samples
of noisy observations starting by downscaling the given
noisy coarse-scale observations to obtain a high-resolution
downscaled reference. Samples of noisy observations were
then generated by adding iid noise sampled from a
Gaussian distribution to this downscaled reference solution.
The resulting noisy observations are then considered as
perturbed noisy observations. The sampled noise, at the
nominal level, is added to the downscaled reference
solution, as in Section 4.1. By doing so, we investigate
how CDA and DDA behave with the sampled noisy
observations compared to the case when realizations of
noisy observations of the truth are readily available. Both
CDA and DDA algorithms were then used to downscale
these perturbed noisy observations for S = 10 and R = 15.
The downscaled fields are compared to the reference fields
to assess the performance of the downscaling algorithms.
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Fig. 11 Distribution of the RRMSE of the bootstrapped temperature
solutions for different number of realizations, as indicated, at the last
time step. Plot (a) shows the PDF of the bootstrapped RRMSE of the
temperature, generated using KDE, for different number of realizations
as indicated, and (b) the box plots representing the the distribution of
the 500 boostrap RRMSE samples for different number of realizations
as indicated

Figure 13 presents the box plots describing the distribu-
tion of the RRMSE of the DDA downscaled temperature
fields relative to the reference temperature field at the final
step. The box plots illustrate that the RRMSE increases by
20% when the perturbed noisy observations were assimi-
lated. Likewise, the variance of the downscaled solutions
also increases and the RRMSE of the average solution is
amplified by approximately 3.5 times when downscaling
was performed on the perturbed noisy observation. Never-
theless, the asymptotic RRMSE of the average solution was
smaller than any of the asymptotic RRMSEs of the down-
scaled solutions, suggesting that it is always worth down-
scaling the perturbed noisy observations if computational
resources are available.

4.7 Relevance of temperature observations

The CDA was shown to converge to noise-free observational
data using coarse-scale velocity observations alone [16].
The convergence of the algorithm, however, is faster when
both temperature and velocity observations are assimilated
[13]. Here, we assess the threshold for the temperature

Fig. 12 (a) Boxplots describing the distribution of the RRMSE of the
downscaled temperature solutions for the DDA solution at the last time
step (blue) and CDA solution at t = 15 (orange) for different sample
sizes. (b) RRMSE curves of the average solution, at the final time, of
the DDA (blue) and the CDA (orange) downscaled fields for different
numbers of downscaled samples

noise level beyond which temperature observations become
disruptive to the convergence of CDA and DDA, and thus
should be discarded.

In this experiment, observations of the velocity and
temperature were provided for S = 15 and R = 11
with a fixed velocity noise level of σu = 0.05 and three
temperature noise levels: σT = 0.05, 0.1 and 0.15. An
experiment was also conducted by downscaling using the

Fig. 13 Box plots comparing the distributions of the RRMSE of the
temperature sample solutions for the cases where observational data
is provided based on the (left) truth and (right) noisy downscaled
fields. The blue crosses represent the RRMSE of the average of all the
downscaled samples
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Fig. 14 Boxplot of the RRMSE of the DDA downscaled temperature
solutions for temperature observations with low, medium, high
temperature noise level, and no temperature observation. Each box plot
is generated from a 50 downscaled solutions at the last time step

coarse velocity observations only, which is equivalent to
setting μ� = 0.

The time evolution of the RRMSE of the downscaled
temperature fields illustrates that, in all tested cases,
the RRMSE decreases until it reaches a plateau at
approximately t = 40. All RRMSE curves suggest
similar characteristics before reaching the plateau, however,
the spread is larger in the case when temperature
was not assimilated. Figure 14 presents the box plots
describing the distribution of the asymptotic RRMSE of
the DDA downscaled temperature. The downscaled solution
without assimilating temperature observations achieves
lower RRMSE than the case of high temperature noise
level, comparable RRMSE with the case of medium
temperature noise, and a larger RRMSE than that of the
small temperature noise level. The case with no temperature
observations shows the largest variance compared to all
tested cases. This suggests that, in the case of medium
to high noise, it might be better to discard temperature
observations and opt for solely assimilating medium-
noise velocity observations. On the other hand, if reliable
temperature observations are available, it would be useful to
jointly downscale with those of the velocity to obtain a more
accurate solution.

5 Conclusion

This study assessed the performance of CDA, and a
discrete variant called DDA, at downscaling the 2D
Rayleigh-Bénard convection at various spatial and temporal
resolutions of observations. The analysis was conducted
in an uncertain setting, where noisy observations of
a reference solution are downscaled and statistically
analyzed. The CDA and DDA downscaled fields were
contrasted qualitatively and quantitatively. In particular,
the performances of these algorithms were quantified by
systematically analyzing the impact of observation noise
level and the temporal and spatial resolutions of the

observational grid, namely by quantifying the skill scores
of the downscaled temperature and velocity fields and
characterizing their statistics.

The skill scores of the downscaled fields from both CDA
and DDA algorithms decay to a plateau, which reflects
the convergence of the downscaled solution towards the
reference field. Specifically, the CDA skill scores generally
decay rapidly and monotonically, as opposed to the DDA
skill scores, which exhibit a non-monotonic behavior before
reaching a plateau. The plateaus of the DDA skill scores
were at lower values compared to the CDA skill scores,
meaning that errors of the DDA downscaled fields become
smaller than those of CDA fields after the algorithm
converges.

A thorough analysis of the functional dependence
of the expected �2-error of the downscaled fields (�)
was performed on the noise level, temporal and spatial
resolutions of the observation grid. � was observed to vary
quadratically with the variance of the observational noise
for both CDA and DDA, in agreement with the theoretical
results of [22]. Moreover, the CDA results suggest that �

is proportional to the observation’s temporal resolution, as
opposed to a nonlinear dependence in the case of DDA.
Specifically, for small and large temporal resolutions, �

is smaller when downscaling with CDA, however, for
intermediate temporal resolutions, DDA downscaled fields
result in a smaller �. Finally, our results illustrate that
� varies quadratically with the temporal resolution of
the observational data in the case of CDA as opposed
to the more sensitive DDA error where � was observed
to vary cubically with the temporal resolution of the
observations. The distribution of the downscaled fields were
also examined by applying a statistical hypothesis test.
Specifically, after reaching the plateau, the downscaled
fields pass the Kolmogorov-Smirnov test at almost all tested
locations in the domain, suggesting that they are normally
distributed.

The precision of the estimated skill scores was also
assessed following standard bootstrapping. The results
suggest that bootstrapping as few as 30 realizations
yields a distribution of the average RRMSE with a
standard deviation comparable to that obtained from a
200 realizations. Moreover, the mean downscaled solution
achieves a lower error (roughly three times) than any
of the downscaled solutions for both CDA and DDA.
When the temperature noise level is large, temperature
observations degrade the quality of the downscaled fields
and discarding them yields a smaller RRMSE. On the other
hand, assimilating more accurate temperature observations
helps reach the plateau faster and results in more truthful
downscaled fields with smaller RRMSE.

Future work will extend the methodology to three-
dimensional flows, address the combined effects of model
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and observation errors, and assess the performance of both
CDA and DDA in comparison to other ensemble-based
data assimilation techniques, such as the Ensemble Kalman
Filter. We further plan to perform a fundamental analysis
of the behavior of the DDA algorithm, namely, to try
to establish rigorous error estimates in settings involving
observation and model noise.
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bėnard convection. The European Physical Journal E 35(7).
https://doi.org/10.1140/epje/i2012-12058-1 (2012)

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.physd.2011.04.021
https://doi.org/10.1016/j.physd.2011.04.021
https://doi.org/10.1137/18M1218480
https://doi.org/10.1017/S0022112084001968
https://doi.org/10.1017/S0022112084001968
https://doi.org/10.1103/PhysRevE.75.045203
https://doi.org/10.1016/0045-7930(91)90025-D
https://doi.org/10.1006/jcph.2002.7104
https://doi.org/10.1006/jcph.2002.7104
https://doi.org/10.1088/1367-2630/12/10/105002
https://doi.org/10.1088/1367-2630/12/10/105002
https://doi.org/10.1140/epje/i2012-12058-1

	Continuous and discrete data assimilation with noisy observations for the Rayleigh-Bénard convection: a computational study
	Abstract
	Introduction
	Preliminaries
	Rayleigh-Bénard convection system
	Continuous and discrete data assimilation
	Generation of random observations

	Experimental setup
	Results
	Sensitivity to noise levels
	Sensitivity to the observation's temporal sampling rate
	Sensitivity to the observation's spatial resolution
	Distribution of the downscaled fields
	Precision of the skill scores and a lower error solution
	Observing a noisy solution
	Relevance of temperature observations

	Conclusion
	Declarations
	References


