
HAL Id: hal-03935831
https://hal.science/hal-03935831v1

Submitted on 12 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Enumeration of the Optimal Solutions to the
Correlation Clustering problem

Nejat Arinik, Vincent Labatut, Rosa Figueiredo

To cite this version:
Nejat Arinik, Vincent Labatut, Rosa Figueiredo. Efficient Enumeration of the Optimal Solutions
to the Correlation Clustering problem. Journal of Global Optimization, 2023, 86, pp.355-391.
�10.1007/s10898-023-01270-3�. �hal-03935831�

https://hal.science/hal-03935831v1
https://hal.archives-ouvertes.fr

Efficient Enumeration of the Optimal Solutions to the Correlation
Clustering problem

Nejat Arınık, Rosa Figueiredo & Vincent Labatut

January 12, 2023

Abstract

According to the structural balance theory, a signed graph is considered structurally balanced when
it can be partitioned into a number of modules such that positive and negative edges are respectively
located inside and between the modules. In practice, real-world networks are rarely structurally balanced,
though. In this case, one may want to measure the magnitude of their imbalance, and to identify the set
of edges causing this imbalance. The correlation clustering (CC) problem precisely consists in looking
for the signed graph partition having the least imbalance. Recently, it has been shown that the space of
the optimal solutions of the CC problem can be constituted of numerous and diverse optimal solutions.
Yet, this space is difficult to explore, as the CC problem is NP-hard, and exact approaches do not scale
well even when looking for a single optimal solution. To alleviate this issue, in this work we propose
an efficient enumeration method allowing to retrieve the complete space of optimal solutions of the
CC problem. It combines an exhaustive enumeration strategy with neighborhoods of varying sizes, to
achieve computational effectiveness. Results obtained for middle-sized networks confirm the usefulness
of our method.

Keywords: Correlation Clustering, Enumeration Strategy, Local Search, Optimal Solution Space,
Signed Graph, Structural Balance.

Cite as: N. Arınık, R. Figueiredo & V. Labatut. Efficient Enumeration of the Optimal Solutions to
the Correlation Clustering problem. Journal of Global Optimization, 2023 (forthcoming)

1 Introduction
Many real-world social systems involve antagonistic relations, a feature that can be directly modeled
through signed networks, which contain both positive and negative edges. Alternatively, in some cases,
signed edges can be extracted from originally unsigned relations [29]. The exact semantic of these edges
depends on the considered system: friendship/foe [35] and trust/distrust [38] in social networks, inhi-
bition/activation in biological networks [16, 45], agreement/disagreement in political vote networks [5,
7, 19] and so on.

Determining the structural balance of a signed network is a key aspect in the investigation of the
structure of polarized relations. According to the structural balance theory, a signed graph is considered
to be balanced if it can be partitioned into two [12] or more [17] modules (i.e. clusters), such that all
positive edges are located inside these modules, whereas negative ones lie between them.

However, it is very rare for a real-world network to be perfectly balanced, in which case one wants
to assess the magnitude and the causes of the imbalance. For a given partition, this imbalance is
traditionally measured by counting the number of frustrated edges [12, 46], i.e. positive edges located
in-between modules and negative ones located inside them. Computing the graph imbalance amounts
to identifying the partition corresponding to the lowest imbalance measure over the space of all possible
partitions. The optimal solution found exhibits the source of the imbalance, i.e., the frustrated edges.
This minimization problem is known as the correlation clustering (CC) problem, proven to be NP-
hard [8].

When solving an instance of the CC problem, the standard approach in the literature is to find a
single solution and focus the rest of the analysis on it, as if it were the only optimal solution [23, 44].
Yet, as shown empirically, it is possible that several, and even many, alternative optimal solutions exist
for the considered instance [6, 10, 11]. All these alternate solutions are equally relevant in terms of the
objective function of the CC problem. Yet, they can be very different, in terms of how they partition
the graph. One can then wonder how many solutions shape the space of optimal solutions, and if many,

1

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

how different/diverse they are. From an application point of view, these are important questions to
answer in order to identify how many of these solutions are more suitable to the situation at hand.

In order to answer these questions, we recently conducted an empirical study in our previous work [6].
Therein, we first enumerated the optimal solutions of a collection of instances of the CC problem through
Integer Linear Programming (ILP) modeling [18]. We applied the best state-of-the-art optimal solution
enumeration method, as proposed by Danna et al. [15] and incorporated in the commercial solver
CPLEX [30]. Then, we studied the obtained spaces of optimal solutions through complex network
analysis. In that work, we found out that slightly imbalanced networks tend to have fewer and structurally
more similar optimal solutions forming a single solution class, whereas a higher imbalance leads to many
diverse solutions possibly forming multiple classes of solutions. Consequently, we concluded that it is
of great importance that the decision-maker generates the full set, or as many optimal solutions as
possible, for a given instance.

In such an analysis, guaranteeing the completeness of the space of optimal solutions requires em-
ploying exact approaches. However, it is well known that, due to their NP-hard nature, generic exact
approaches able to solve most clustering problems (including the CC problem) are very costly in terms
of execution time and do not scale well, even when looking for a single optimal solution [27]. In that
respect, the enumeration method by Danna et al. is the best state-of-the-art enumeration method able
to handle the CC problem so far. However, as it is a generic method designed to handle any combinato-
rial problem formulated in ILP, it cannot take full advantage of the problem knowledge. Consequently,
the maximum number of vertices (i.e. graph order) that we could handle with their method in our
previous work was only 36. Moreover, the execution time of the enumeration process for such small
graphs was very long (typically more than one day). This highlights the need for an efficient optimal
space enumeration method for the CC problem.

In this work, we aim to obtain this efficiency by putting the problem knowledge into the enumeration
process. Based on the high similarity observed empirically between optimal solutions belonging to the
same class of solutions, it integrates into an exact approach a local search mechanism, which relies on
the use of neighborhoods of different sizes. In order to accelerate the proposed enumeration method,
we develop pruning strategies based on optimal conditions satisfied by partial solutions. Our main
contribution is the combination of local search and pruning strategies, which gives rise to an efficient
enumeration method. We present extensive computational experiments established for the proposed
method, relying on sparse and dense signed networks.

The rest of the article is organized as follows. In Section 2, we review the literature related to
the exact enumeration of all optimal solutions for the CC problem. In Section 3, we give the formal
definition of the CC problem. Next, we introduce our enumeration method in Section 4, and detail
our complete neighborhood search and pruning strategies in Section 5 and 6, respectively. We put
the proposed method into practice on a selection of partially and fully connected signed networks in
Section 7 and discuss our results in Section 8. Finally, we review our main findings in Section 9, and
identify some perspectives for our work.

2 Related Work
There are several methods proposed in the literature to solve the CC problem exactly [18, 23, 32],
however very few were designed to enumerate the whole space of its optimal solutions. In fact, very
few methods were proposed to enumerate all the optimal solutions of any combinatorial problem (e.g.,
[4] for maximal covering problem). In this section, we review the existing optimal solution enumeration
methods for the CC problem and for related problems.

The literature provides two main approaches to enumerate all optimal solutions of a combinatorial
problem: Branch-and-Bound and Fixed-Parameter Enumeration. In the case of the CC problem, most
works focus on the former.

Branch-and-Bound Approach The enumeration of all optimal solutions of the CC problem (like
for any combinatorial problem) through a branch-and-bound method can be performed through two
algorithmic methods: Integer Linear Programming (ILP) vs. ad hoc branch-and-bound programming.
Their main difference is that the former can tackle any problem translated in the language of mathe-
matical programming through any industrial optimization solver, whereas in the latter the construction
of the branch-and-bound tree relies on problem-specific idiosyncrasies.

Based on how the branch-and-bound tree is used, the ILP approach can be implemented in two
different ways. The first one relies on a simple sequential process: a slightly modified version of the
original problem is solved as many times as there are solutions in the optimal solution space (like in [4]
for the maximal covering problem). At each iteration, already-found optimal solutions are sequentially

2 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

added as constraints into the mathematical model, in order to exclude them during future iterations.
However, the drawback of this approach is that a branch-and-bound tree needs to be built from scratch
for each new optimal solution found. The second type of ILP implementation is called OneTree, and
was proposed by Danna et al. [15]. Instead of the previous simple sequential approach, it relies on a
more efficient two-step method that allows reducing the computational effort. As its name suggests, it
constructs a single branch-and-bound tree. It first builds and explores the search tree in order to find
efficiently the first optimal solution, and then enumerate all the alternative optimal solutions based on
the same tree. This method is available in the industrial optimization solver CPLEX [30], and we explain
in Section 4.3 how we use it for the CC problem. In our previous work [6], we used this approach for
generating the optimal solution space of complete random graphs up to 36 vertices.

An ad hoc B&B programming method constructs the branch-and-bound tree differently from what
we described before. For a given clustering problem, these methods systematically construct partial
solutions by assigning the vertices to one of the existing modules. This produces a search tree, whose
branches correspond to assignments of vertices to modules, and whose nodes correspond to partial
assignments. Similar to Danna et al. [15], Brusco and Steinly [10] propose a two-step method for
generating all optimal CC solutions. They first identify the optimal objective function value by finding
an optimal solution, then use the optimal value as input when building another branch-and-bound tree
from scratch. As shown by Figueiredo & Moura [23], this method does not deal well with finding a
single optimal solution for graphs with more than 20 vertices.

Fixed-Parameter Enumeration Approach This is also an ad hoc method which requires to
transform a part of the considered problem into a new input parameter. This in turn guarantees
to bound the overall running time as a function of an input parameter. Assuming that this input
parameter is small, the parameterized enumeration is efficient in practice. Damaschke [14] proposes
an FPT (Fixed-Parameter Tractable) algorithm to enumerate all optimal solutions in a given graph for
the Cluster Editing problem, which is equivalent to the CC problem when the input graph is complete
and unweighted. Concretely, this FPT algorithm makes the number of frustrated edges in structural
balance parameterized to solve the problem. However, as shown in our previous work [6], a drawback
of this approach is that the amount of imbalance, the input parameter, can be very large. Furthermore,
Damaschke does not provide any computational results in his theoretical work.

The computational results presented in the works mentioned in this section identify the ILP branch-
and-bound as the more efficient method for exactly solving the CC problem. This is explained by a
tightened initial linear relaxation of the ILP formulation and the quality of the cuts used. In this work,
we apply an ILP branch-and-bound method for the complete enumeration of the optimal CC solutions,
and propose a compromise strategy between the sequential approach and the OneTree method from
Danna et al. [15].

3 Correlation Clustering Problem
Let us now introduce the notations necessary for defining the correlation clustering problem. Let G =
(V,E) be an undirected graph, where V and E are the sets of vertices and edges, respectively. We note
n = |V | and m = |E| the numbers of vertices (i.e. graph order) and edges, respectively. We assume
that the graph contains no loops, i.e. edges connecting a vertex to itself. Moreover, G[S] denotes the
subgraph induced by vertex subset S ⊂ V .

Consider a function s : E → {+,−} that assigns a sign to each edge in E. An undirected graph G
together with a function s is called a signed graph, denoted by G = (V,E, s). An edge (u, v) is called
negative if s(u, v) = − and positive if s(u, v) = +. We note E− and E+ the sets of negative and
positive edges in the signed graph, respectively. Let also define the positive graph G+ of a given signed
graph G as the subgraph (V,E+, {+}) (i.e. same vertices, but only the positive edges). The entries
auv of the signed adjacency matrix A associated with a signed graph G are defined in Equation 1.

auv =

1, if (u, v) ∈ E+,
−1, if (u, v) ∈ E−,
0, otherwise.

(1)

Let P = {M1, ...,M`} (1 ≤ ` ≤ n) be an `-partition of V , i.e. a division of V into ` non-overlapping
and non-empty subsets Mi (1 ≤ i ≤ `) called modules. The partition P is called a solution of the CC
problem for the given graph G. Given a solution P , an edge (u, v) is called internal if it is located inside a
module, i.e., u and v belong to the same module. Likewise, an edge (u, v) is called external if it is located

3 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

between any two modules, i.e., u and v belong to two different modules. Given σ ∈ {+,−}, we define the
set of positive/negative (depending on σ) edges connecting two modulesMi,Mj ∈ P as Eσ(Mi,Mj) =
{(u, v) | (u, v) ∈ Eσ, u ∈Mi and v ∈Mj}. We also define E(Mi,Mj) = E−(Mi,Mj)∪E+(Mi,Mj)
as the set of all edges connecting these modules. Similarly, we note Ωσ(Mi,Mj) =

∑
(u,v)∈Eσ(Mi,Mj)

auv

the signed number of positive/negative edges connecting these modules: note that this value can be
negative if σ = −. We also define Ω(Mi,Mj) = Ω−(Mi,Mj) + Ω+(Mi,Mj) as the signed sum of the
edges connecting the same modules. It can also be negative, if there are more negative than positive
edges between Mi and Mj .

The Imbalance I(P) of a partition P is defined as the total number of frustrated edges, i.e. the
numbers of positive edges located between modules and of negative edges located inside them:

I(P) =
∑

1≤i<j≤`
Ω+(Mi,Mj)−

∑
1≤i≤`

Ω−(Mi,Mi). (2)

The objective of the CC problem is to minimize the number of frustrated edges. This problem can
be formally described as follows.
Problem 1 (CC problem). Given a signed graph G = (V,E, s), the correlation clustering problem
consists in finding a partition P of V such that the imbalance I(P) is minimized.

To the best of our knowledge, this NP -hard minimization problem appears under this name for the
first time in Bansal’s paper [8], although it is addressed before in the literature (e.g. [20]).

4 Enumeration of Optimal CC Solutions
Any method that enumerates optimal solutions needs to find an initial optimal solution by optimally
solving the problem at hand. This is why we first describe an efficient method for finding an optimal
solution for the CC problem (Section 4.1), before presenting the methods for identifying an alternative
optimal solution (Section 4.2) and enumerating all optimal solutions (Section 4.3).

4.1 Finding an Initial Optimal Solution
As largely illustrated in the literature (e.g. [18], [23]), the CC problem can be modeled by means of an
ILP proposed for the Uncapacitated Graph Clustering problem [39]. Note that the model can handle
weighted graphs, but we use it on unweighted ones in the context of this article.

For each pair of vertices u, v ∈ V : u < v, a binary variable is first defined to describe the relative
module membership of pairs of vertices, i.e.,

xuv =
{

1, if u and v are in a same module,
0, otherwise.

(3)

Then, the ILP formulation of the CC problem for unweighted signed graphs is written as follows:

Min
∑

u,v∈V :uv∈E−
xuv +

∑
u,v∈V :uv∈E+

(1− xuv) (4)

s.t. xuv + xvr − xur ≤ 1, ∀u < v < r ∈ V (5)
xuv − xvr + xur ≤ 1, ∀u < v < r ∈ V (6)
− xuv + xvr + xur ≤ 1, ∀u < v < r ∈ V (7)
xuv ∈ {0, 1}, ∀u, v ∈ V. (8)

The objective function in (4) looks for a feasible solution minimizing the imbalance defined by
Equation (2). A feasible solution, i.e., decision variables corresponding to a partition, must satisfy the
triangle inequalities (5), (6) and (7). Finally, (8) describes the domain constraints for the variables in
the formulation.

This ILP model is sufficient to find an optimal solution through an optimization solver, but it
can be very time-consuming. One way to deal with this issue is to strengthen it through a cutting
plane approach [40]. We use the 2-partition and the 2-chorded cycle valid inequalities as described by
Grötschel and Wakabayashi in [28] (see Appendix A for more details). In the cutting plane approach,
we add these two tight valid inequalities (only) during the root relaxation phase as described by Ales et
al. [2], before proceeding to the construction of the branch-and-bound search tree. As reported in [2]

4 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

for a similar clustering problem, we also verified that adopting this cut strategy improves the overall
processing time. There are other inequalities in the literature that can further tighten the LP relaxation
for the CC problem. These are the 2-chorded even wheel [28] inequality and those defined in [42].
Nevertheless, in practice, together the 2-partition and the 2-chorded cycle inequalities describe a tight
linear relaxation [28].

Throughout this work, we denote ILP (G) as the formulation defined by Equations (4)–(8) and
B&C(ILP(G)) as the branch-and-cut procedure described above. Also, we denote ILP+(G) as the
strengthened ILP obtained after executing B&C(ILP (G)), i.e., the formulation obtained by adding to
ILP (G) all the cuts generated by B&C(ILP (G)). Finally, let B&B(ILP+(G)) be the branch-and-
bound procedure based on ILP+(G). In the following, for the sake of simplicity, the term solution
refers to a graph partition, as well as a feasible solution to the formulation ILP+(G).

4.2 Finding an Alternative Optimal Solution
An enumeration method needs to constantly find an optimal solution that would be different from those
identified before, and stored in a set S. For this purpose, we need to define an extended model of
ILP+(G), that we denote ILP+jump(G,S).

Consider a partition P . Let Xp ∈ {0, 1}n×n be the representative matrix of P defined as: xpij = 1
if i and j belong to the same module in P ; and xpij = 0 otherwise. ILP+jump(G,S) includes the set
of constraints defined in Equation (9) on top of ILP+(G):∑

u,v∈V :u<v
|xpuv − xuv| > 0,∀P ∈ S. (9)

We refer the reader to [24] for the implementation details of these constraints.
We see that this extended formulation allows us to find an alternative optimal solution other than

the ones in S. Furthermore, given an optimal solution P ∈ S, to ensure that this alternative solution
has the same objective value as I(P), we add the objective function in (4) as a constraint, as shown in
Equation (10). ∑

u,v∈V :uv∈E−
xuv +

∑
u,v∈V :uv∈E+

(1− xuv) ≤ I(P). (10)

Equation (9) along with Equation (10) ensures that each feasible solution to ILP+jump(S) is
an optimal solution to the original problem. Finally, we denote the corresponding branch-and-bound
procedure based on formulation ILP+jump(G,S) by B&B(ILP+jump(G,S)).

4.3 Enumerating All Optimal Solutions
As we have mentioned before, the CC problem can have multiple optimal solutions. In this section, we
are interested in methods enumerating all optimal solutions of the CC problem for a given signed graph
G. In the following, we first present OneTreeCC [15], which is the best general method to enumerate
solutions available in the literature. It is incorporated in CPLEX [30], and we apply it to the formulation
ILP+(G). Then, we introduce our ad hoc method EnumCC, in the aim of obtaining a faster method
able to handle relatively larger graphs.

We start with OneTreeCC(G), which takes as input a signed graph G. The sketch of this two-step
method is shown in Algorithm 1. In the first step (line 2), it finds an initial optimal solution based on
ILP+(G). We note TB&B the branch-and-bound search tree constructed during this step. The search
tree as well as the nodes considered at this first step are stored for further examination during the second
step. Moreover, Danna et al. completely turn off dual tightening in the branch-and-bound procedure
in order to guarantee exhaustive enumeration. According to the authors, this fact can have a negative
impact on performance, in terms of computational time. In the second step (line 3), OneTreeCC(G)
enumerates the set S of all alternative optimal solutions by expanding the search tree TB&B until
obtaining the complete set of all optimal solutions.

To compete with OneTreeCC(G), we propose a new method for the CC problem in order to com-
pletely enumerate the optimal partitions of a given signed graph. We call it EnumCC(G, rmax), and
it takes as input a signed graph G and a maximum distance parameter rmax. As shown in Algorithm 2,
it can be viewed as an improved version of the sequential approach proposed by Arthur et al. [4] for
the Maximal Covering problem (described in Section 2). In the first step (line 2), EnumCC(G, rmax)
obtains an initial optimal solution thanks to B&B(ILP+(G)). In the second step, instead of di-
rectly "jumping" onto undiscovered optimal solutions one by one through ILP+jump(G,S) (like in
the sequential approach), we slightly change this process. Our method first discovers the recurrent

5 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

Algorithm 1: OneTreeCC(G)
Result: The set of all optimal solutions S

1 S = ∅
/* 1st step */

2 Solve B&B(ILP+(G)) to obtain an optimal solution P , and let TB&B be the constructed
branch-and-bound search tree

/* 2nd step */
3 Expand fathomed nodes in TB&B until enumerating the set S of all alternative optimal solutions.

neighborhood RN≤rmax(P) of the current optimal solution P (line 4), with the hope of discovering new
optimal solutions. The recurrent neighborhood RN≤rmax(P) of an optimal solution P , is the set of
optimal solutions reached directly or indirectly from P , depending on the maximum distance parameter
rmax. The complete description of the Recurrent Neighborhood Search (RNS) is given in Section 5.
Whether a new solution is found or not through RNS(G,P, rmax), the method then moves on to the
next step, consisting in jumping onto a new solution P (line 6). These RNS and jumping phases are
repeated, until all optimal solutions are discovered.

Clearly, EnumCC(G, rmax) can only improve the sequential approach as used in [4], provided
that RNS discovers at least one new solution and that its execution time is shorter than that of
B&B(ILP+jump(G,S)). Furthermore, the choice of rmax is sensitive: it does not contribute much
to the method when it is small, whereas the method becomes slower than the sequential approach when
rmax is large.

Algorithm 2: EnumCC(G, rmax)
Result: The set of all optimal solutions S

1 S = ∅
/* 1st step */

2 Solve B&B(ILP+(G)) to obtain an optimal solution P
/* 2nd step */

3 while P 6= null do
/* step 2.1 */

4 Apply RNS(G,P, rmax) to generate the recurrent neighborhood RN≤rmax(P) of P
5 S = S

⋃
RN≤rmax(P)

/* step 2.2 */
6 Jump onto an undiscovered optimal solution P , with P /∈ S, through

B&B(ILP+jump(G,S)) // if not possible, then P = null

7 end

The jumping phase in step 2.2 of EnumCC(G, rmax) can be time-consuming for two reasons. First,
even finding an alternative solution can be costly. Second, the number of jumps, denoted by the notation
njump(.) (here, njump(EnumCC(G, rmax))), can be very large, despite the use of the neighborhood
RN≤rmax(P). Nonetheless, we expect to save time and compensate the time spent in the jumping
phase thanks to RN≤rmax(P).

In the rest of this work, we leave out the common parameter G from the notations of the men-
tioned methods and ILP models, for the sake of convenience: OneTreeCC(), EnumCC(rmax) and
ILP+jump(S).

In the next section, we detail the recurrent neighborhood search RNS used in Algorithm 2.

5 Recurrent Neighborhood Search (RNS)
Recurrent Neighborhood Search (RNS) is the common and undoubtedly the most important part of
our method EnumCC. As mentioned in the previous section, if we want this method to compete with
OneTreeCC(G), RNS needs to be efficient and fast.

Before defining the neighborhood of a solution, i.e. of a partition, we need to select a distance
function between partitions. In the following, we first present the edit distance (Section 5.1), then

6 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

introduce the algorithmic details of the Complete Neighborhood Search (CoNS) used in our Recurrent
Neighborhood Search (Section 5.2). Finally, we explain the main procedure for Recurrent Neighborhood
Search (Section 5.3).

Let us first introduce some definitions used in the rest of the article. A partition P with ` modules
can be associated with one or more membership vectors. Such a vector of size n, denoted by π, defines
a function over V → {1, 2, ..., `}. For a given vertex u, π(u) denotes the label of the module of P
that contains u, while Mπ(u) denotes the module itself. Finally, given a partition P , we define an
r-neighborhood structure, denoted by Nr(P), as the family of partitions obtained by moving r vertices
into different modules of P . We also define Nr(π) as the family of corresponding membership vectors
obtained by moving r vertices.

5.1 Edit Distance
In Natural Language Processing, and more generally in Computer Science, the edit distance [31] is
defined as the minimum number of edit operations required to transform one string into another (or
more precisely, their total cost). In the context of graph partitioning, with fixed vertices and edges,
edit operations are used as neighborhood search operators in local search heuristics developed for graph
problems [1, 9, 37]. Such an operation consists in moving one or more vertices (called moving vertices)
from their current modules (called source modules) to other ones (called target modules). From the
perspective of the membership vectors corresponding to the concerned partitions, this transforms a
source vector into a target one. The number of moving vertices constitutes the cost of the edit
operation. In this work, we are interested in edit operations whose cost is minimal.
Definition 2 (Min-edit operation). Consider an edit operation transforming a source membership vector
into a target membership one. If the set of moving vertices is the minimum set required for this
transformation, then it is a min-edit operation. Otherwise, we call it non-min-edit operation.

Notice that the cost of an edit operation is not always minimal. This is because two membership
vectors, i.e. the module labels of two partitions, can be very different, but essentially suggest very similar
module assignments for the vertices. The distinction between min-edit and non-min-edit operations is
illustrated in Figure 1.

Importantly, the edit distance between two membership vectors is the cost of the min-edit operation
allowing to turn one vector into the other. The calculation of such distance between two membership
vectors can be done in polynomial time by solving an assignment problem (see Appendix B for more
details).

Let us now introduce our notations related to the edit distance. Let πs and πt represent the
source and target membership vectors for an edit operation, respectively. They are associated with the
source and target partitions P s = {Ms

1 ,M
s
2 , ...,M

s
`s} and P t = {M t

1,M
t
2, ...,M

t
`t}, containing `s and

`t modules, respectively. Since the edit distance is symmetric, without loss of generality, let `s ≤ `t.
Moreover, we note πs → πt an edit operation applied onto P s to obtain P t, whose set of moving vertices
is defined as s #»t

V = {u | πs(u) 6= πt(u)}. This means that the remaining vertices, called non-moving
vertices, do not change modules, hence their module labels are the same in πs and πt. The cost of this
edit operation is simply the number of vertices whose module has changed. We denote this cost with
cost(πs → πt) and compute it by taking the cardinality of s #»t

V . In the rest of the text, we use r for
short whenever we are interested only in the value of cost(πs → πt). Also, a r-edit operation (resp.
min-r-edit operation) is any edit operation (resp. min-edit operation) whose cost equals r. Consider
an edit operation πs → πt whose moving vertices are in set s #»t

V . The distinct labels of the source and
target modules of a subset V ′ ⊂ V of vertices are denoted, respectively, by πs(V ′) =

⋃
u∈V ′ π

s(u) and
πt(V ′) =

⋃
u∈V ′ π

t(u). Finally, we sometimes need to refer to several modules in an edit operation
πs → πt. For this reason, we also define Ms

L =
⋃
l∈LM

s
l for any L ⊆ {1, .., `s} in the source partition

P s and M t
L =

⋃
l∈LM

t
l for any L ⊆ {1, .., `t} in the target partition P t.

To illustrate the aforementioned concepts, let us consider the example of Figure 1. As shown in
Figure 1a, πs = (1, 1, 2, 2, 2), where Ms

1 = {v1, v2} and Ms
2 = {v3, v4, v5}. Let us consider an edit

operation πs → πt with the moving vertices s #»t
V = {v2, v4} (Figure 1b). The edit operation consists

in moving v2 into Ms
2 and v4 into Ms

1 , which produces πt. Hence, we have M t
1 =

(
Ms

1 \ {v2}
)
∪ {v4}

and M t
2 =

(
Ms

2 \ {v4}
)
∪ {v2}. The labels of the source and target distinct modules of s #»t

V are

πs(s #»t
V) = {1, 2} and πt(s #»t

V) = {1, 2}, respectively. Also, we have Ms

πs(s #»t
V)

= Ms
1 ∪ Ms

2 and

M t

πt(s #»t
V)

= M t
1 ∪M t

2 for this example. The sets Ms

πs(s #»t
V)

and M t

πt(s #»t
V)

could be different, if some of

7 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

the moving vertices move into a module Ms
i other than Ms

πs(s #»t
V)

.

Ms
1

Ms
2

v1v2

v3

v4

v5

(a) Source member-
ship vector πs =
(1, 1, 2, 2, 2), where
Ms

1 = {v1, v2} and
Ms

2 = {v3, v4, v5}.

M t
1

M t
2

v1v4

v3

v2

v5

(b) Target membership vector πt =
(1, 2, 2, 1, 2), where M t

1 = {v1, v4}
and M t

2 = {v2, v3, v5}. The mov-
ing vertices are shown with a purple
border. The operation πs → πt is
min-2-edit, where s #»t

V = {v2, v4}.

M t′
1 = M t

2

M t′
2 = M t

1

v2

v3

v5

v4

v1

(c) Target membership vector πt
′ =

(2, 1, 1, 2, 1), where M t′

1 = {v2, v3, v5}
and M t′

2 = {v1, v4}. The moving vertices
are shown with a purple border. Since
M t′

1 = M t
2 and M t′

2 = M t
1, πs → πt

′ is
not a min-3-edit operation, where s #»t′

V =
{v1, v3, v5}.

Figure 1: Illustrative example for two edit operations applied to the same source membership vector πs,
whose associated partition is shown in Fig. 1a. The first operation, s #»t

V , is shown in Fig. 1b, and the second,
s #»t′
V , in Fig. 1.c. The underlying partition in P t and P t′ is the same, but the corresponding membership
vectors πt and πt′ are different. Consequently, s #»t

V is a min-edit operation, whereas s #»t′
V is not.

5.2 Complete Neighborhood Search (CoNS)
Our neighborhood search method CoNS(G, πs, r) takes as input a signed graph G, a membership
vector πs associated with an optimal partition P s of ` modules and an edit distance r. It returns the set
Nr(πs) of membership vectors associated with all optimal partitions, obtained by applying min-r-edit
operations to a given membership vector πs. To ensure the completeness of setNr(πs), CoNS(G, πs, r)
analyses all combinations of moving vertices and their target modules. We use two pruning strategies in
order to eliminate some combinations that do not lead to an optimal partition when an edit operation is
applied. Both of them are described in this section, whereas the properties upon which they are based
are detailed in Section 6. In simple terms, they are based on the relations between a set of moving
vertices and their target modules. In the following, we present CoNS(G, πs, r) as a pipeline procedure
consisting of four parts, as shown in Algorithm 3.

In the first part, CoNS(G, πs, r) starts by selecting a candidate set of r moving vertices s #»t
V

among all vertices in V (line 2). The set of all possible r moving vertices is obtained by generating all
combinations

(
V
r

)
. We know that probably not every s #»t

V leads to a min-r-edit operation and an optimal
partition P t. To detect such cases, we apply the first pruning procedure (line 3), called internalPruning
and depicted in Algorithm 4. This procedure checks, without the knowledge of target modules, if s #»t

V
satisfies some connectivity conditions related to the atomicity property (defined in Section 6.2) and the
MVMO property up to three moving vertices (defined in Section 6.3). As we will see in Section 6,
whenever one of these two conditions is not satisfied, the candidate set s #»t

V can be pruned.
At this point, the set of moving vertices s #»t

V is fixed. Next, the algorithm defines step by step the
target membership vector πt by setting the target module of each vertex in s #»t

V . We handle the process
of generating the target membership vector πt in three steps, which constitutes the second, third and
fourth parts of Algorithm 3, in order to take advantage of our pruning strategy. The pruning strategy
used in these parts is slightly different from that of the first part: it is based on external connections
from s #»t

V to s #»t
V . The concerned procedure is called externalPruning and depicted in Algorithm 5. It

verifies, based on external relations among s #»t
V , if s #»t

V satisfies the min-edit (Section 6.1), atomicity

8 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

Algorithm 3: CoNS(G, πs, r).
Input : signed graph G(V,E, s), source membership vector πs with ` module labels, edit distance r
Output: Nr(πs)

1 T = {1, 2, .., `} // module labels in πs

/* 1st part */

2 for each
s #»t
V ∈

(
V
r

)
do

3 if internalPruning(G, πs,
s #»t
V) then

4 go to line 2
5 end

/* 2nd part */

6 T0 = π(
s #»t
V)

⋃
{Unknown} // initial target module labels

7 Trem = T \ T0 // remaining module labels

8 for each T ′
0 ∈ P(

(
T0
r

)
), s.t. πs(u) /∈ T ′

0,∀u ∈
s #»t
V do // P(.): permutations

9 Let πt be the partition after assigning T ′
0 to

s #»t
V

10 if externalPruning(G, πs, πt,
s #»t
V) then

11 go to line 8
12 end

/* 3rd part */
13 Let B be the the number of Unknown labels in πt

14 if B 6= 0 then
15 Let

s #»t
V rem be the moving vertices, whose πt(

s #»t
V rem) = Unknown

16 for b ∈ {1, .., B} do
17 Let I be the set of all vectors of size B with elements belonging to {1, .., b}, s.t. each element for

each vector appears once
18 for each I ∈ I do
19 Update πt with the assignment of I to πt(

s #»t
V rem)

20 if externalPruning(G, πs, πt,
s #»t
V) then

21 go to line 18
22 end

/* 4th part */
23 T+

rem = Trem ∪ {`+ 1, .., `+ b} // expand for empty modules
24 for each T ′

r ∈ P(
(

T +
r
b

)
) do

25 Replace the assignment of I to
s #»t
V rem by Trem in πt

26 if I(πs) = I(πt) and ¬externalPruning(G, πs, πt,
s #»t
V) then

27 Nr(πs) = Nr(πs)
⋃
πt

28 end
29 end
30 end
31 end
32 else
33 if I(πs) = I(πt) then
34 Nr(πs) = Nr(πs)

⋃
πt

35 end
36 end
37 end
38 end

9 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

Algorithm 4: internalPruning(G, πs, s #»t
V)

Input : signed graph G(V,E, s), source membership vector πs, moving vertices s #»t
V

Output: Boolean variable
/* 1st part */

1 if ¬intAtomic(G, πs, s #»t
V) then // Properties 6 and 7a

2 return true
3 end

/* 2nd part */

4 if 2 ≤ |s #»t
V | ≤ 3 and ¬intMVMO(G, πs, s #»t

V) then // Lemma 11.1 and Lemma 12
5 return true;
6 end
7 return false;

(Section 6.2) and MVMO (Section 6.3) properties. As discussed in Section 6, whenever one of these
three conditions is not satisfied, the possibility of target modules for candidate set s #»t

V is pruned. These
pruning strategies can be applied even when some target modules are not already decided. Therefore,
they are invoked, whenever the target modules of s #»t

V are updated (lines 10, 20 and 26).
In the second part, a moving vertex is allowed to move into a module, whose label is in T0. The set

T0, defined at line 6, contains the labels of all unique source modules of s #»t
V , as well as a label Unknown.

We use this label Unknown to indicate that the target module of a vertex is not already assigned. We
also define Trem as the remaining modules. Notice that, from this point, a target membership vector πt
can contain multiple vertices with target modules labeled as Unknown. In the third part, this Unknown
label allows us to handle the other modules in Trem as target possibilities. At line 8, we consider all
possible permutations in P(

(
T0
r

)
) such that, for each vertex in s #»t

V , the target and source modules are
different.

At this point, the externalPruning procedure can be applied for vertices whose target modules are
already assigned. If the pruning conditions are not satisfied, the algorithm proceeds with the third part.
Line 14 checks if no target module in πt is unknown (B = 0). If so, then a new optimal partition
has been found, and the algorithm goes on with the final test (line 32). However, if it is not the case,
the algorithm enters the fourth part: all the combinations in Trem (more precisely, T+

r) are considered
as a possible assignment of unknown target modules. One can expect this task to be computationally
expensive. Thus, instead of directly determining the target modules of each vertex in s #»t

V rem, we first
generate all the coupling scenarios of moving vertices going into the same Unknown target module.
To handle this, let b be the number of distinct Unknown target modules (line 16), for each value
in the range of {1, .., B}. We build all possible coupling scenarios I for the value b (line 17). We
couple a pair of remaining moving vertices, if they move into the same Unknown target module. For
instance, {Unknown1, Unknown1, Unknown2} indicates that the last moving vertex moves into a
different Unknown target module than the first two. Once the target membership vector πt is enriched
with a coupling scenario I, the external pruning is repeated in line 20. If the pruning conditions are
not satisfied, the algorithm finally determines the target modules of s #»t

V rem, by respecting the actual
coupling scenario I (line 25). In the end, we add the current πs → πt into Nr(πs), if the optimality
condition is met (line 26).

Without the problem-specific pruning strategies (internal and the external verification of properties
from Section 6.3), Algorithm 3 amounts to a brute force method. Although CoNS(G, πs, r) can be
very costly (even for small values of r), the properties described in Section 6 allow us to develop a
method whose cost is relatively lower than the brute force method. Indeed, given a membership vector
of size n with ` module labels, the number of non-repetitive permutations of all the combinations of
r moving vertices is nr × r! and the number of non-repetitive permutations of all the combinations
of target modules is `r × r!. In the end, the brute force method is Θ(nr × r! × `r × r!), where we
assume that ` > r. Computational results in Section 8.1 show that the pruning strategies reduce the
computational cost of this procedure.

10 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

Algorithm 5: externalPruning(G, πs, πt, s #»t
V)

Input : signed graph G(V,E, s), source membership vector πs, target membership vector πt,
moving vertices s #»t

V

Output: Boolean variable
/* 1st part */

1 if ¬minEdit(πs, πt, s #»t
V) or ¬extAtomic(G, πs, πt, s #»t

V) then // Properties 3, 5, 7b and 8
2 return true
3 end

/* 2nd part */

4 if 2 ≤ |s #»t
V | and ¬extMVMO(G, πs, πt, s #»t

V) then // Lemmas 11.2, 12 and 13
5 return true
6 end
7 return false;

... ...

......

P0

P1

1-edit kmax-edit2-edit

1-edit 2-edit

P6 P7 P8 P9 P10 P11 P12

P2 P3 P4 P5

kmax-edit

(a) RNS Tree.

P1

P2

P3

P4
V

1
2
={v

1,v2
}

V3
4
={

v1,
v2}

V
2

4

={v3}

V
1 3

={v3}

(b) Example of duplication in RNS.
Both P 2 and P 3 generate P 4.

Figure 2: Illustrations for the Recurrent Neighborhood Search (RNS). In both figures, circles represent
membership vectors associated with optimal partitions.

5.3 Main Procedure
The main procedure for Recurrent Neighborhood Search (RNS) consists in applying CoNS from Sec-
tion 5.2 in a recursive manner, in order to build a search tree called the RNS tree. This recursive
procedure is depicted in Figure 2a. The root node of RNS tree corresponds to the initial partition P .
All other nodes of the RNS tree constitute the set of optimal solutions reached directly or indirectly
from P . A solution associated with a node at some level h of the RNS tree is obtained after h − 1
applications of the CoNS procedure. The height of the RNS tree is unknown but necessarily finite, as
we will see next.

Method RNS(G,P, rmax), which takes as input a signed graph G, an optimal partition P and a
maximum edit distance rmax, is detailed in Algorithm 6. It starts from the initial partition P (line 1),
and enumerates a set of its neighbor optimal partitions up to edit distance rmax (line 4), denoted
by RN≤rmax(P). Each partition P t associated with πt ∈ Nr(πs) is considered as a potential initial
partition for seeking new neighbor partitions (line 8). Despite the pruning techniques which avoid some
repetitions, it is possible that P t has been already discovered and belongs to RN≤rmax(P) (see such an
example in Figure 2b). Line 9 checks this case, and discards P t, if required. This process is repeated in
a recursive manner, until there is no new partition obtained.

In the rest of this work, for the sake of convenience, we leave out the common parameter G and P s
(or P) when referring to the mentioned methods: CoNS(r) and RNS(rmax).

6 Pruning Strategies
In this section, we present the pruning strategies incorporated in the method CoNS(G, πs, r), described
in Section 5. But before this, we need to introduce some additional definitions. Consider an edit
operation πs → πt with moving vertices in set s #»t

V , where membership vector πs (resp. πt) is associated

11 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

Algorithm 6: RNS(G,P, rmax)
Input : signed graph G(V,E, s), partition P , maximum edit distance rmax

Output: RN≤rmax(P)
1 U = {P} // a set of unprocessed partitions
2 RN≤rmax(P) = ∅ // a set of discovered partitions
3 while U 6= ∅ do
4 for each r ∈ {1, .., rmax} do
5 Let P s be an element of U , where πs is an associated membership vector of P s

6 RN≤rmax(P) = RN≤rmax(P)
⋃
P s

7 Nr(πs) = CoNS(G, πs, r) // Complete Neighborhood Search
8 for πt ∈ Nr(πs) do // P t is the associated partition of πt

/* memory-based duplication removal */
9 if P t /∈ RN≤rmax(P) then
10 U = U

⋃
P t

11 end
12 end
13 end
14 end

with source partition P s (resp. target partition P t). Let us define #»

V sπs(u) = s #»t
V ∩ Ms

πs(u) (resp.
#»

V tπs(u) = s #»t
V ∩ M t

πs(u)) as the set of moving vertices being in the source module of vertex u in
P s (resp. in P t). Also, let #»

V sπt(u) = s #»t
V ∩ Ms

πt(u) (resp. #»

V tπt(u) = s #»t
V ∩ M t

πt(u)) be the set
of moving vertices being in the target module of u in P s (resp. in P t). Finally, we define s #»t

V u =(
#»

V sπs(u) ∪
#»

V tπs(u) ∪
#»

V tπt(u) ∪
#»

V sπt(u)

)
\ {u} as the set of moving vertices connected to vertex u in

G̃[s #»t
V]. To illustrate the aforementioned notations related to s #»t

V , we consider again the same example
from Figure 1. For v1 ∈

s #»t
V , we have πs(v1) = 1 and πt(v1) = 3. Then, #»

V sπs(v1) = {v1, v2} is the
set of vertices in Ms

1 and #»

V tπt(v1) = {v1} since v1 is the only moving vertex belonging to M t
3. Also,

#»

V sπt(v1) = #»

V s{3} = ∅ since there is no moving vertex inMs
3 , and

#»

V tπs(v1) = {v3} since v3 ∈M t
1. Finally,

we get s #»t
V v1 = {v2, v3}.

6.1 Non-Minimum Edit Operation Pruning
When generating the set Nr(πs) in RNS, only considering min-edit operations is sufficient. Next, we
define a property allowing to detect, in some cases, that an edit operation is not minimal. The idea
behind it is to define two sufficient conditions on the set of moving vertices implying that there exist
an operation of smaller cost leading to the same partition. In the following, let πs → πt be an edit
operation with moving vertices in s #»t

V .

Property 3 (Non-min-edit operation). Let # »

Va ⊆
s #»t
V be a subset of s #»t

V . Assume that the vertices in
»

Va constitute the majority part of module Ms
a (i.e. | # »

Va| > |Ms
a \

»

Va|) and that they are in the same
target module M t

b in P t (i.e. |πt(# »

Va)| = 1). Moreover, suppose there exists a subset of moving vertices
#»

Vb ⊆
s #»t
V , such that ∅ ⊆ #»

Vb ⊆Ms
b . Let us define V a (resp. V b) as Ms

a \
s #»t
V (resp. Ms

b \
s #»t
V) in P s.

Each condition in the following is a sufficient condition for πs → πt to be a non-min-edit operation:
(a) If #»

Vb does not move into Ms
a and | # »

Va| > |V a|+ |V b|, then πs → πt is not a min-edit operation.
(b) If #»

Vb moves into Ms
a and | # »

Va|+ |
#»

Vb| > |V a|+ |V b|, then πs → πt is not a min-edit operation.

Proof. Let us first handle the condition (3a), which is illustrated in Figure 3. When this condition
is satisfied, keeping # »

Va in Ms
a and rather moving V a (resp. V b) into Ms

b (resp. Ms
a) results in an

r′-edit operation with r′ < r. In the case where condition (3b) is satisfied, keeping #»

Vb in Ms
b while

moving V a and V b results in an r′-edit operation with r′ < r. Let us take the following example to
illustrate Property 3.b. Two modules exchange all of their vertices with each other, such that # »

Va = Ms
a ,

12 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

Ms
a Ms

b

»

Va
V a

#»

Vb
V b

(a) Source partition P s.

M t
a M t

b

»

Va
V a V b

(b) Target partition P t.

Figure 3: Illustrative example for Property 3a, where vertices in # »

Va (resp. #»

Vb) move from their source
module M s

a (resp. M s
b) (Fig. 3a) into target module M s

b (resp. M s
c , which is purposely not shown)

(Fig. 3b). V a and V b represent the non-moving vertices.

M1 M2 M3 M4

v1

v2

v3

v4

v1v2

v3

v4

(a) An illustration of an r-edit operation πs → πt with s #»t
V = {v1, v2, v3, v4}. The mem-

bership vector πs associated with partition P s is defined by πs = (1, 1, 3, 4), whereas
πt = (2, 2, 2, 3). Positive (resp. negative) edges between moving vertices are drawn in
green (resp. red).

v1 v2 v3 v4

(b) The corresponding interaction graph G̃[s #»t
V] of the r-

edit operation illustrated in Fig. 4a

Figure 4: Illustrative example regarding the definition of an interaction subgraph, here G̃[s #»t
V].

V a = ∅, #»

Vb = Ms
b and V b = ∅. In the end, we obtain the same two modules. Since the inequality

|
»

Va|+ |
#»

Vb| > |V a|+ |V b| holds in this particular scenario, this is not a min-edit operation.

6.2 Decomposable Edit Operation
The next set of properties is related to the decomposability of an r-edit operation πs → πt. We assume
that I(P s) = I(P t), which is in line with our objective of enumerating all optimal solutions of a given
graph G.
Definition 4 (Decomposable edit operation). We consider an r-edit operation πs → πt as decomposable
if there is an intermediate membership vector πt′ , associated with a partition P t′ , between πs and πt
such that:

1. I(P s) = I(P t) = I(P t′);
2. s #»t′

V ⊂
s #»t
V ; and

3. πt′(u) = πt(u) for each u ∈ s #»t′
V .

Property 5 (Atomic edit operation). We consider that an r-edit operation πs → πt is atomic if the
condition I(P s) < I(P t′) is satisfied for any r′-edit operation P s → P t

′ with r′ < r satisfying (2) and
(3) in Definition 4.

Proof. We assume that there is an r′-edit operation such that I(P s) = I(P t′). Then, we can construct
an r′′-edit operation πt′ → πt satisfying (1) in Definition 4 and πt′(u) = πt(u) for each u ∈ s #»t

V \
s #»t′
V .

Atomicity requires three types of connectivity conditions. We state the first one in the following
property.

13 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

Property 6 (Edge connectivity). In an atomic edit operation πs → πt, G[s #»t
V] is a single connected

component.

Proof. Let s #»t′
V and t′

#»t
V be any two proper subsets of s #»t

V , such that s #»t′
V ∩

t′
#»t
V = ∅ and E(s #»t′

V ,
t′

#»t
V) =

∅. Then, we can construct with s #»t′
V an r′-edit operation satisfying Definition 4.

Nevertheless, G[s #»t
V] being connected is not a sufficient condition. The next property states that

the signs of edges between moving vertices play a key role with respect to atomicity. In the following,
we assume that G[s #»t

V] is connected.
Property 7 (Spurious edge connectivity). Each condition in the following is a sufficient condition for
πs → πt to be a decomposable edit operation:
(a) Let S ⊆ s #»t

V be a subset such that |πs(S)| = 1 and E(S, #»

V sπs(S)) 6= ∅. Let G′ = (s #»t
V ,E′, w),

where E′ = E \ E(S, #»

V sπs(S)) and w(e) = 1 for each e ∈ E′. If Ω(S, #»

V sπs(S)) = 0 and G′ is not
connected, then πs → πt is decomposable.

(b) Let S ⊆ s #»t
V be a subset such that |πt(S)| = 1 and E(S, #»

V tπt(S)) 6= ∅. Let G′ = (s #»t
V ,E′, w),

where E′ = E \ E(S, #»

V tπt(S)) and w(e) = 1 for each e ∈ E′. If Ω(S, #»

V tπt(S)) = 0 and G′ is not
connected, then πs → πt is decomposable.

Proof. Straightforwardly, we can imagine S as a contracted vertex v in both cases, such that the
vertices in S and the edges between them are replaced by a single vertex v. Since Ω(S, #»

V sπs(S)) = 0
(Ω(S, #»

V tπt(S)) = 0), the edges between v and #»

V sπs(v) (resp. #»

V tπt(v)) do not play a role (i.e., as if they
did not exist). Therefore, the proof is the same as for Property 6, with subsets S and s #»t

V \ S.

The last connectivity condition allows to verify if a moving vertex depends on the simultaneous
movement of a subset of other vertices in s #»t

V . It can be checked through the concept of interaction
subgraph G̃[s #»t

V]. We define the interaction subgraph defined for the edit operation πs → πt as
G̃[s #»t

V] = (s #»t
V , Ẽ), where Ẽ = {(u, v) | u, v ∈ s #»t

V and (u, v) ∈ E and (πs(u) = πs(v) ∨ πt(u) =
πs(v) ∨ πs(u) = πt(v) ∨ πt(u) = πt(v))}. Its extraction from its original graph G is illustrated in
Figure 4.
Property 8 (Interaction connectivity). Consider an atomic edit operation πs → πt. The interaction
subgraph G̃[s #»t

V] is a single connected component.

Proof. Assume that G̃[s #»t
V] is not connected (e.g. Figure 4). This implies that there is a subset

s #»t′
V ⊆

s #»t
V , such that Ẽ(s #»t′

V ,
s #»t
V \

s #»t′
V) = ∅. Let πs → πt

′ be an edit operation with moving vertex
set s #»t′

V , which satisfies (2)-(3) in Definition 4. When moving a vertex u ∈ s #»t′
V fromMs

πs(u) toMs
πt′ (u)

the contribution of vertex u to the imbalance is

Ω({u}, #»

V sπs(u))− Ω({u}, #»

V s
πt′ (u)) + Ω({u}, #»

V t
′

πt′ (u))− Ω({u}, #»

V t
′

πs(u))
2 . (11)

From the definition of Ẽ and from Ẽ(s #»t′
V ,

s #»t
V \

s #»t′
V) = ∅, there is no vertex v ∈ s #»t

V \
s #»t′
V which

contributes to the contribution of vertex u, as shown in Equation (11). Therefore, Equation (1) in
Definition 4 is also satisfied for πs → πt

′ .

For the sake of simplicity, in Algorithm 4, we define the function intAtomic(G, πs, s #»t
V) which is

used to indicate whether πs → πt satisfies Properties 6 and 7a. Notice that we do so when the target
modules of s #»t

V are not known. Likewise, in Algorithm 5, we define the function extAtomic(G, πs, πt,
s #»t
V), which indicates whether πs → πt satisfies Properties 3, 5, 7b and 8. Notice that we do so when
the target modules of s #»t

V are partially or completely known, i.e., in lines 10, 20 and 26 of Algorithm 3.

6.3 Multiple Vertex Moves between Optima (MVMO) Property
In this section, we introduce our last family of properties, which rely on the assumption that both
partitions associated to an edit operation are optimal.

14 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

Property 9 (MVMO on weighted signed networks). Consider an atomic edit operation πs → πt with
r > 1, where P s and P t are optimal. The following property holds for each u ∈ s #»t

V :

γleftu > γrightu , (12)

where

γleftu = Ω({u}, #»

V sπs(u))− Ω({u}, #»

V sπt(u)), (13)

γrightu = −Ω({u}, #»

V tπt(u)) + Ω({u}, #»

V tπs(u)). (14)
(15)

Proof. Let πs → πt be an atomic min-r-edit operation applied on Ps to obtain Pt. First, we recall a
simple condition satisfied by any optimal partition for the CC problem [13] when moving a single vertex,
i.e. when r = 1. Given an optimal partition Ps, the placement of any vertex u in its module Ms

πs(u)
is also optimal with respect to any other modules. This means that any vertex u maximizes (resp.
minimizes) its number of positive (resp. negative) edges in module Ms

πs(u) of Ps, so that moving u to
any other module does not improve the objective function value. We can write this condition as

Ω({u},Ms
πs(u)) ≥ Ω({u},Ms

πt(u)). (16)

Now, when we move more than one vertex in πs → πt, i.e. if r > 1, this condition becomes

Ω({u},Ms
πs(u)) > Ω({u},Ms

πt(u)), (17)

for each u ∈ s #»t
V , due to the atomicity assumption. Next, in order to take into account the existence of

other moving vertices in the source and target modules of vertex u, Equation (17) can be rewritten as
γleftu >

s #»t
∆u, where

s #»t
∆u = Ω({u},Ms

πt(u) \
#»

V sπt(u))− Ω({u},Ms
πs(u) \

#»

V sπs(u)). Similarly, considering
the atomic min-r-edit operation P t → P s, we have also −t #»s

∆u > γrightu , where t #»s
∆u = Ω({u},M t

πs(u)\
#»

V tπs(u))−Ω({u},M t
πt(u) \

#»

V tπt(u)). Since both s #»t
∆u and t #»s

∆u are defined on relations of vertex u with
non-moving vertices in P s and P t, we have s #»t

∆u = −
t #»s
∆u. Finally, by rewriting the previous equations

we obtain γleftu >
s #»t
∆u = −

t #»s
∆u > γrightu .

Corollary 10 (MVMO on unweighted signed networks). The inequality γleftu − γrightu ≥ 2 holds for
each vertex u, on top of Property 9.

Proof. The proof is straightforward from the proof of Property 9.

Figure 5 can be used to illustrate Property 9 and Corollary 10. For instance, for vertex v1, the
equation in Property 9 becomes

a12 − a13 > a15 − a12 − a14. (18)

Similarly, for vertex v3, the equation in Property 9 becomes

−a34 − a35 > a13 + a23 + a34. (19)

6.4 Tractable Cases of the MVMO Property
Notice that the MVMO property requires πs and πt to be known, which makes this property not very
useful for computational purposes (in Algorithm 3). In this section, we analyze the MVMO property
when only partial information of πt is known (lines 10 and 20 in Algorithm 3).

We start by analysing some special relational patterns for 2-edit and 3-edit operations. Lemma 11
focuses on 2-edit operations. Recall that Ẽ = {(u, v) ∈ E | u, v ∈ s #»t

V ∧ (πs(u) = πs(v) ∨ πt(u) =
πs(v) ∨ πs(u) = πt(v) ∨ πt(u) = πt(v))}.

Lemma 11 (MVMO 2-edit). Consider an atomic 2-edit operation πs → πt, where s #»t
V = {u, v}. Since

it is an atomic edit operation, we have (u, v) ∈ Ẽ. Then
1. If (πs(u) = πs(v)) ∨ (πt(u) = πt(v)), then auv > 0.

15 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

M1 M2

M3

v1 v2 v3

v4v5

v1

v2

v4

v3

v5

a12

a15 a34

Figure 5: Illustrative example, where five vertices v1, v2, v3, v4 and v5 move from their source modules
to their target ones. Dashed circles indicate the moving vertices, when they are in their target modules
after the edit operation. Note that we do not show non-moving vertices for the sake of simplicity. Positive
(resp. negative) edges between moving vertices are drawn in green (resp. red).

a) d) e)b) c)

u

v

u

v

u

v

u

u

v
v

Figure 6: All 2-edit operation scenarios, where (u, v) ∈ Ẽ. Note that only scenarios (6a) and (6b) are
atomic 2-edit operations, with auv > 0 and auv < 0, respectively.

2. If (πs(u) = πt(v)) ∨ (πt(u) = πs(v)), then auv < 0.

Proof. From Property 6, we have (u, v) ∈ E. In this proof, we use an exhausting strategy: moving
vertices u and v, with (u, v) ∈ Ẽ, can be in one of the five scenarios presented in Figure 6. Since
Corollary 10 holds for each vertex u ∈ s #»t

V , only scenarios (6a) and (6b) are atomic. Therefore, auv > 0
for scenario (a) whereas auv < 0 for scenario (b):a) We have (γleftu = auv) > (γrightu = −auv) and (γleftv = auv) > (γrightv = −auv). We see that

auv must be positive. Since Corollary 10 is satisfied with auv > 0, it is atomic.
b) We have (γleftu = −auv) > (γrightu = auv) and (γleftv = −auv) > (γrightv = auv). We see that

auv must be negative. Since Corollary 10 is satisfied with auv < 0, it is atomic.
c) We have (γleftu = 0) > (γrightu = −auv) and (γleftv = 0) > (γrightv = −auv). We see that auv

must be positive and this satisfies Property 9. However, Corollary 10 is not satisfied, which makes
this edit operation decomposable.

d) We have (γleftu = auv) > (γrightu = 0) and (γleftv = auv) > (γrightv = 0). We see that auv must
be positive and this satisfies Property 9. However, Corollary 10 is not satisfied, which makes this
edit operation decomposable.

e) We have (γleftu = −auv) > (γrightu = 0) and (γleftv = 0) > (γrightv = −auv). We see that auv
must be negative and this satisfies Property 9. However, Corollary 10 is not satisfied, which makes
this edit operation decomposable.

Next, we focus on 3-edit operations. We verify some cases in which Lemma 11 is also valid.

Lemma 12 (MVMO 3-edit). Consider an atomic r-edit operation πs → πt with r = 3, where s #»t
V =

{u, v, z}. Since it is an atomic edit operation, we have (u, v), (u, z), (v, z) ∈ Ẽ. Lemma 11 holds true
for each pair (u, v) of vertices, with two exceptions:

16 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

b) c)a) d) e)
u

u
u

v v
v

z

z

z

u

v

z

u

v

z

Figure 7: Five of the possible 3-edit operation scenarios. The full list can be found in the Appendix
(Figure 12). In this figure, all edit operations are atomic.

1. all vertices in s #»t
V are in the same source module and are moved into the same target module

(Figure 7a),
2. only two of s #»t

V are in the same source module and are moved into the source module of the third
moving vertex. Reciprocally, the third moving vertex moves into the source module of the others’
source module (Figure 7b).

Proof. Without these two exceptions, G[s #»t
V] forms a triangle. Nevertheless, in these two exceptions,

G[s #»t
V] can form a path, and, as will see next, this path ensures that moving vertices from the same

source module are positively connected. Similar to Lemma 11, the proof is based on all possible 17
scenarios of three moving vertices with (u, v), (u, z), (v, z) ∈ Ẽ. Some of those scenarios are shown in
Figure 7, and we provide the full list in the Appendix (Figure 12). The proof is straightforward when
one adapts Corollary 10 to those scenarios. We verify below only those in Figure 7. The full list of
verifications is found in Appendix C.1.
a) We have (γleftu = auv + auz) > (γrightu = −auv − auz), (γleftv = auv + avz) > (γrightv =
−auv − avz) and (γleftz = auz + avz) > (γrightz = −auz − avz). We see that auv, auz and avz
cannot be negative. Since Corollary 10 is satisfied with a positive path formed in G[s #»t

V] for each
vertex u ∈ s #»t

V , it is atomic.
b) We have (γleftu = auv − auz) > (γrightu = −auv + auz), (γleftv = auv − avz) > (γrightv =
−auv + avz) and (γleftz = −auz − avz) > (γrightz = auz + avz). We see that auv (resp. auz
and avz) cannot be negative (resp. positive). Since Corollary 10 is satisfied with a path formed
in G[s #»t

V], it is atomic.
c) We have (γleftu = 0) > (γrightu = −auv − auz), (γleftv = 0) > (γrightv = −auv − avz) and

(γleftz = 0) > (γrightz = −auz − avz). We see that auv, auz and avz must be positive. Since
Corollary 10 is satisfied with a positive triangle formed in G[s #»t

V], it is atomic.
d) We have (γleftu = auv) > (γrightu = −auv − auz), (γleftv = auv) > (γrightv = −auv − avz) and

(γleftz = 0) > (γrightz = −auz − avz). We see that auv, auz and avz must be positive. Since
Corollary 10 is satisfied with a positive triangle formed in G[s #»t

V], it is atomic.
e) We have (γleftu = auv−auz) > (γrightu = 0), (γleftv = auv) > (γrightv = −avz) and (γleftz = 0) >

(γrightz = auz − avz). We see that auv and avz (resp. auz) must be positive (resp. negative).
Since Corollary 10 is satisfied with a triangle formed in G[s #»t

V], it is atomic.

Unlike Lemma 12, we cannot completely generalize Lemma 11 for more than three moving vertices.
Nevertheless, there are some circumstances, where Lemma 11 is still valid for a subset of s #»t

V , and this
is formalized in Lemma 13.
Lemma 13 (MVMO r-edit). Consider an atomic r-edit operation πs → πt with r ≥ 4 and a vertex
u ∈

s #»t
V . If 2 ≤ |u ∪ s #»t

V u| ≤ 3, Lemma 11 holds true for each pair (u, v) with v ∈ s #»t
V u.

Proof. The condition of 2 ≤ |u∪s #»t
V u| ≤ 3 ensures that subset u∪s #»t

V u represents one of the scenarios in
2- or 3-edit operation. We note that two exceptional scenarios mentioned in Lemma 12 are not of interest
here, because they necessarily satisfy the definition of atomic edit operation, hence |u ∪ s #»t

V u| > 3.

For the sake of simplicity, in Algorithm 4, we define the function intMVMO(G, πs, s #»t
V) which

indicates whether πs → πt satisfies Lemmas 11.1 and 12, when the target modules of s #»t
V are not

known. Likewise, in Algorithm 5 we define the function extMVMO(G, πs, πt, s #»t
V), which indicates

17 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

whether πs → πt satisfies Lemmas 11.2, 12 and 13, when the target modules of s #»t
V are partially or

completely known (10, 20 and 26 of Algorithm 3).

7 Dataset
This section is dedicated to the description of the dataset used in our experiments. As mentioned in the
introduction, in this article we focus on unweighted graphs as we have done in [6]. Application-wise,
unweighted signed networks fit certain modeling situations and methodological choices. Indeed, in some
works, binary values better represent the studied relations (e.g. alliance/conflict between countries in
international relationships [21]), or the authors prefer to use such values for practical reasons (e.g.
limited or unreliable information [22]).

We conduct our experiments on two datasets of random signed networks. All these data as well as
the corresponding optimal solutions are publicly available online1.

Dataset1: We generate these networks through the random signed network generator proposed in
our previous work [6], which is publicly available online2. For complete unweighted signed networks, this
model relies on only three parameters: n (number of vertices), `0 (initial number of modules) and qm
(proportion of misplaced edges, i.e. edges meant to be frustrated by construction). Moreover, we make
the assumption that the proportion of misplaced edges is the same inside and between the modules.
When it comes to incomplete unweighted signed networks, we introduce two more parameters, which
are the density d of the graph and the proportion qneg of the negative edges. The last parameter qneg
is defined as |E−|/|E| and allows controlling the ratio of positive to negative edges. For complete
unweighted signed networks with d = 1, we generate 20 replications for parameter values `0 = 3,
n ∈ {32, 36, 40, 45, 50} and qm = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. In these networks, the value of qneg
with the considered parameters is approximately 0.7. For incomplete unweighted signed networks with
d = {0.25, 0.50}, we generate 20 replications for parameter values `0 = 3, n ∈ {32, 36, 40}, qm =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and qneg = {0.3, 0.5, 0.7}. In total, we produce 600 and 1,080 instances for
complete and incomplete networks, respectively, which makes a total of 1,680 instances. We use this
dataset in Section 8.2.

Dataset2: This dataset is different than Dataset1 in that the optimal solution for a generated
network is known by construction. This allows to consider relatively large graph orders n without being
limited by long running time of an exact partitioning method. For given n, d and `0, we first create
a perfectly structurally balanced (i.e., internally positive and externally negative) signed network with
a built-in module structure. Clearly, the underlying module structure constitutes the optimal partition.
Then, in order to take into account different positive to negative ratio values for internal and external
edges we generate several signed networks by perturbing the initial signed network without affecting
its underlying optimal partition, thanks to its definition of stability range [41]. We generate signed
networks with parameter values n ∈ {30, 40, 50, 60, 70, 90}, d ∈ {0.25, 1.00} and `0 = {2, 4, 6} through
our random signed network generator, which is publicly available online3. In total, we produce 214 and
184 instances for complete and incomplete networks, respectively, which makes a total of 398 instances.
In each generated network, the associated optimal solution corresponds to the planted partition defined
for the corresponding network without perturbation. We use this dataset only for Section 8.1.

Dataset3: In addition to artificial graphs, we also considered 8 sparse real-world networks from
two sources: four networks from Correlated of War (CoW) [43] and four biological networks retrieved
from Samin Aref’s Figshare repository4, see [3] for more details. For each real-world signed network
G, we apply a preprocessing step by retrieving the largest connected component defined in G+, for
computational purposes.

8 Results
We now assess the performance of our enumeration method EnumCC(rmax) when generating the space
of optimal solutions to the CC problem. We first investigate the efficiency of the pruning conditions used
in Algorithms 4 and 5 based on the MVMO property (Section 8.1). Then, we proceed with the evaluation
of EnumCC(rmax), which includes all the pruning strategies used in the recurrent neighborhood search.
We compare our method with OneTreeCC(), the best enumeration method available in the literature
(Section 8.2).

1DOI: 10.6084/m9.figshare.15043911
2https://github.com/CompNet/SignedBenchmark.
3https://github.com/CompNet/SignedStabilityBenchmark.
4DOI: 10.6084/m9.figshare.5700832.v5

18 / 30

https://doi.org/10.6084/m9.figshare.15043911
https://github.com/CompNet/SignedBenchmark
https://github.com/CompNet/SignedStabilityBenchmark
https://doi.org/10.6084/m9.figshare.5700832.v5

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

8.1 Evaluation of the MVMO-based Pruning Strategies
The MVMO property has an important role in EnumCC, due to its ability to prune unfeasible edit
operations in several parts of CoNS(r). To be able to consider relatively large graph orders n without
being limited by the long running time of an exact partitioning method, we evaluate its performance
based on Dataset2. The complete results1 as well as our source code3 are publicly available online.

We apply CoNS(r) with and without the MVMO property onto all generated networks with r ∈
{3, 4}. The version with MVMO property refers to the method described in Section 4, whereas the
version without it is obtained by removing this property from Algorithms 4 and 5. Due to space
considerations, Figure 8 illustrates only the results related to 4-edit distance. The results obtained for
d = 0.25 and d = 1.00 are shown in separated subfigures. In each subfigure, the x-axis represents the
graph order n, and execution times (in seconds) are shown on the log-scaled y-axis. The solid (resp.
dashed) plot lines correspond to CoNS(r) with (resp. without) the MVMO property. Each plot line
corresponds to a specific value of `0 and is represented with a specific color. Each shaded region depicts
a range of execution times around the plot line of the same color, based on the corresponding initial
signed network and its perturbed versions.

The first thing to notice is how graph density affects the execution times with increasing values of n.
Indeed, the computational costs with and without the MVMO property are much larger with d = 1.00
than those with d = 0.25. Second, substantially increasing n affects the execution times without the
MVMO property, whereas including the MVMO property allows to better handle this effect. Indeed,
considering d = 0.25 and the 4-edit distance, we observe that average execution times without the
MVMO property are approximately `0 times larger than with the MVMO property. Finally, including
the MVMO property also allows to better handle increasing values of `0. Indeed, when n = 70 and
d = 0.25, the difference of average execution times between `0 = 2 and `0 = 6 without (resp. with)
the MVMO property is 3.8s (resp. 0.6s) with the 3-edit distance, and 595s (resp. 63s) with the 4-edit
distance.

To conclude this part, the MVMO property makes a substantial improvement on CoNS(r). This
improvement is apparent even with small values of n. Note that, even a small improvement (1s or 2s)
can make a clear difference in terms of execution time for a solution space with 100 or more solutions,
since CoNS(r) is repeated for each solution. Nevertheless, our results suggest that CoNS(4) should not
be used for computational purposes, even with the MVMO property. In the following, we investigate if
the improvements brought by the MVMO property and other pruning strategies allow EnumCC(rmax)
to compete with OneTreeCC().

8.2 Evaluation of EnumCC
We now compare the results of EnumCC(rmax) against OneTreeCC() based on the synthetic signed
networks from Dataset1 and the real-world signed networks from Dataset3. As shown in Section 8.1,
since CoNS(4) takes a substantial time, we rather apply EnumCC(3). We run both methods with a
time limit of 12h and a limit of 50, 000 on the number of optimal solutions found. We first evaluate
the results from Dataset1 for several values of density d with a fixed value of n (Section 8.2.1) and
several values of n with a fixed value of d (Section 8.2.2), then pass to the evaluation of the results
from Dataset3 (Section 8.2.3).

Regarding the synthetic graphs, we present a selection of the most relevant results in Figures 9a–10c,
for d ∈ {0.25, 1.00}. The complete results1 as well as our source code5,6 are available online, though.
We first describe these plots generically here, before interpreting them. In these figures, there are 3
subfigures. Each subfigure corresponds to a specific value of qm (hence, a specific parameter set),
and displays the difference of execution times between EnumCC(3) and OneTreeCC() (i.e., EnumCC(3)
minus OneTreeCC()), represented on the log-scaled y-axis of the plots. When such difference takes a
negative value, this means that our proposed method runs faster than OneTreeCC(). The set of 20
graphs generated for each parameter set are indexed and shown on the x-axis. Finally, to guide our
discussion, we show for each graph the maximal number of solutions found by the method(s) within a
time limit and the number of jumps related to EnumCC(3), i.e. njump(EnumCC(3)), where the latter
is shown in parentheses.

8.2.1 Evaluation of EnumCC by Density
In this section, the results are for n = 36 and d ∈ {0.25, 0.5, 1.0}. They are representative enough of
the results obtained with other values of n. We first consider the d = 0.25 results, shown in Figure 9.

5https://github.com/CompNet/Sosocc
6https://github.com/CompNet/EnumCC

19 / 30

https://github.com/CompNet/Sosocc
https://github.com/CompNet/EnumCC

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

0
1

10

100

1000

5000

30 40 50 60 70

ℓ0
2
4
6

without
MVMO

with
MVMO

E
xe

cu
tio

n
tim

e
(s

)

Graph order (n)

(a) Instances with d = 0.25.

0
1

10

100

1000

5000

30 40 50 60 70

Graph order (n)

E
xe

cu
tio

n
tim

e
(s

)

ℓ0
2
4
6

without
MVMO

with
MVMO

(b) Instances with d = 1.00.

Figure 8: Benchmark results for CoNS(r = 4) with vs. without MVMO-based pruning for d = 0.25 (8a)
and d = 1.00 (8b). The x-axis represents graph order n, and execution times (in seconds) are shown in
the log-scaled y-axis.

20 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

The first thing that we notice is how the performance is affected by qneg, independently of qm. Indeed,
we first see for qneg = 0.3 that EnumCC(3) runs faster than OneTreeCC() in the overwhelming majority
of instances. Then, for qneg = 0.5, OneTreeCC() increases the number of instances, where it runs
faster, but the dominance of EnumCC(3) is still preserved to a lesser extent. Finally, for qneg = 0.7,
OneTreeCC() dominates EnumCC(3) on almost all instances.

We observe that increasing qneg essentially results in the emergence of three features, which ad-
vantages OneTreeCC() over EnumCC(3). The first one is large values of njump(EnumCC(3)). Since
a branch-and-bound tree needs to be built from scratch, each additional jump has an extra cost for
EnumCC(3) in terms of execution time. We observe that the values of njump(EnumCC(3)) are rel-
atively larger for mainly qneg = 0.5 and qm = {0.4, 0.6}. This shows that increasing qm is likely to
increase the dissimilarity between solutions, a fact that we have already pointed out in [6], for complete
signed networks.

The second feature is a very large size of the solution space. The results show that OneTreeCC() does
a much better job in this case. Indeed, when qneg = 0.7, OneTreeCC() can solve instances associated
with a very large number of solutions (e.g. 50, 000) within 5 minutes, whereas the same process often
takes several hours for EnumCC(3). Nevertheless, such an extreme case happens only with some specific
graph topology, as in qneg = 0.7. Indeed, in the random network generation, increasing qneg with a
low graph density is more likely to produce instances having a large number of vertices with only few
positive edges. Then, these vertices are often placed at the periphery of modules in the solutions, i.e.
they can easily change their module from one solution to another. OneTreeCC() seems to handle well
these vertices in the enumeration process, thanks to the mathematical modeling.

Finally, the third feature, complementary to the previous one, is that instances having vertices with
only few positive edges are often easier to solve, so that an initial optimal solution is often found at
root relaxation, before passing to branch-and-bound. This usually results in a branch-and-bound tree
with fewer branches for enumerating alternative optimal solutions in OneTreeCC(). It seems that this
substantially advantages OneTreeCC() over EnumCC(3), when there are many optimal solutions to
enumerate.

For space considerations, we do not present the results for d ∈ {0.5, 1.0}. Note that for these values,
we do not observe any extreme case with a very large number of solutions (as happens with d = 0.25 and
qneg = 0.7). Indeed, the maximum number of solutions for those instances is 2, 455. This is probably
because it is not as easy to break the underlying partition structure when graph density is large. This
fact seems to advantage EnumCC(3) over OneTreeCC(). Indeed, the dominance of EnumCC(3) persists
for qneg ∈ {0.3, 0.5} and even better than those for d = 0.25 (see Table 2). This holds for qneg = 0.7,
too. OneTreeCC() outperforms EnumCC(3) only for qm = 0.1, whereas this was true for all values of qm
for d = 0.25. These results confirm our previous observation: OneTreeCC() outperforms EnumCC(3)
on instances with specific graph topology, where low density and large proportion of negative edges
produce a very large number of solutions. In the other cases, EnumCC(3) performs much better. In the
following, we study whether increasing graph order n affects these observations.

8.2.2 Evaluation of EnumCC by Graph Order
In this section, we analyze the effect of increasing the graph order, for n ∈ {40, 45, 50}. To do so,
we focus only on instances with d = 1.0 in order to reduce the total number of instances, hence the
processing time of our analysis. Note that qneg approximately equals 0.7 in these instances. The
corresponding results are shown in Figure 10. Overall, we see that the observations we made for n = 36
and d ∈ {0.5, 1.0} in Section 8.2.1 are still valid when increasing n: EnumCC(3) performs much better.
Furthermore, unlike the results obtained with d = 0.25, EnumCC(3) handles instances with a large value
of njump(EnumCC(3)) much better (when we exclude some exceptional instances with more than 10
jumps), and runs faster than OneTreeCC() in most of the instances. This point is even more valid when
increasing n further.

Table 1: Number of optimal solutions found by the considered methods within the time limit of 12h for
unsolved instances with n = 50.

methods
instance no qm = 0.4 qm = 0.5 qm = 0.6

1 5 6 11 16 19 2 11 12 13 15 18 20 2 6 10 12 13 17 19 20
OneTreeCC() 4 4 1 1 13 2 7 21 3 1 10 2 2 3 1 3 4 5 3 1 3
EnumCC(3) 10 13 6 5 255 16 217 44 8 1 115 46 13 45 10 32 6 60 7 4 65

Another interesting point is the hardness of instances, when increasing n. We say that an instance
is hard to solve when the resolution process takes too long, which amounts to exceeding a time limit.

21 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

2

(1)

1

(1)

1

(1) 1

(1)

243

(2)

2

(1)

1

(1)
1

(1)

2

(1)

2

(1)
1

(1)

2

(1)
1

(1)

5

(2)

3

(1)
1

(1)
1

(1)
2

(1)

2

(1)

2

(2)

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

78

(1)

2

(1)

31

(1)

2

(1)

32

(1)

30

(1)

2036

(1)

1

(1)

2

(1)

5

(1)

167

(1)

6

(1)

1

(1)

1

(1)

12

(2)

2

(1)
4

(1)

7

(1)

88

(1)

3

(1)

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

7

(1)

3

(1)

3

(1)

3

(1)

10

(1)

16

(1)

7

(1)

3

(1)
8

(1)

3

(1)

20

(1)

79

(3)

25

(3)

8

(2)

1

(1)

1

(1)

37

(2) 20

(1)

20

(1)

90

(2)

qm=0.2 qm=0.4 qm=0.6

5 10 15 20 5 10 15 20 5 10 15 20

−100

−10

−1
0
1

10

100

1000

Instance number

E
nu

m
C

C
(3

)
-

O
ne

T
re

eC
C

()

(a) Instances with d = 0.25 and qneg = 0.3.

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

116

(2)

2

(1)
11

(1)

32

(1)

95

(1)

4

(1)

10

(2)

61

(2)

45

(2)

307

(1)

7

(1)

27

(1)

5

(1)

1304

(1)

21

(1)

6

(2)
4

(2)

54

(1)

14

(1)

3

(1)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

66

(1)

2

(1)

2070

(3)

30

(1)
14

(1)

96

(2)

112

(3)

142

(2)

183

(4)

12

(2)

653

(4)

35

(1)

62

(1)

57

(1)

203

(6)

580

(8)

41

(2)

1058

(1)

8

(1)

11

(1)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

169

(3)

12

(1)

18

(1)

129

(1)

228

(4)

231

(3)

4

(1)

72

(1)

13

(1)

9

(1)

55

(3)

15

(2)

56

(1)

37

(1)

84

(1)

308

(2)

8

(1)

13

(1)

8

(3)

45

(3)

qm=0.2 qm=0.4 qm=0.6

5 10 15 20 5 10 15 20 5 10 15 20

−100

−10

−1
0
1

10

100

1000

Instance number

E
nu

m
C

C
(3

)
-

O
ne

T
re

eC
C

()

(b) Instances with d = 0.25 and qneg = 0.5.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

7418

(1)
10934

(1)

465

(1)

94

(1)

9

(1)

11888

(1)

535

(2)

13

(1)

179

(2)

3918

(1)

4929

(1)

734

(1)

450

(1)

484

(1)

44506

(1)

50000

(1)

50000

(1) 50000

(1)

54

(1)

5008

(1)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

238

(1)

50000

(1) 50000

(1)

32468

(1)

408

(1)

574

(1)

887

(1)

108

(1)

50000

(1)

9

(1)

5420

(3)

50000

(1)

40

(1)

26683

(1)

4

(1)

7564

(1)

1488

(1)

317

(1)

1042

(1)

4058

(4)

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

50000

(1)

100

(1)

50000

(1)

467

(1)

50000

(1) 50000

(1)

79

(1)

50000

(1) 6999

(2)

3701

(2)

50000

(1)
50000

(3)
1916

(1)

50000

(1)

1596

(1)
654

(1)

50000

(1)

50000

(1)

30772

(1)

1280

(1)

qm=0.2 qm=0.4 qm=0.6

5 10 15 20 5 10 15 20 5 10 15 20

−100

−10

−1
0
1

10

100

1000

5000

Instance number

E
nu

m
C

C
(3

)
-

O
ne

T
re

eC
C

()

(c) Instances with d = 0.25 and qneg = 0.7.

Figure 9: Results for n = 36, d = 0.25 and qneg ∈ {0.3, 0.5, 0.7}. The log-scaled y-axis indicates the dif-
ference of execution times between EnumCC(3) and OneTreeCC() (i.e., EnumCC(3) minus OneTreeCC()),
in seconds. We show for each graph the maximal number of solutions found by EnumCC(3) within a 12h
time limit, as well as the corresponding number of jumps, i.e. njump(EnumCC(3)), between parentheses.

22 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

It is very important to analyze such cases in terms of the number of optimal solutions found by both
methods. Moreover, the existence of such instances also indicates the maximum graph order, for
which the enumeration methods can produce full enumeration of all alternate optimal solutions. In our
experiments, a total of 21 such instances with n = 50 and qm > 0.3 are not solved within the time
limit of 12h by both methods. These instances can be identified as the ones with y = 0 in Figure 10c,
and they are summarized in Table 1. Each row corresponds to one of these methods, and each column
represents an instance, identified by its id and its associated qm value. We see from Table 1 that
EnumCC(3) handles these time-consuming instances better than OneTreeCC() does. Indeed, among
the 21 instances not solved by any method, EnumCC(3) finds more solutions than OneTreeCC() for 20
instances. Moreover, EnumCC(3) could solve 7 instances that OneTreeCC() could not, within the limit
of 12h.

To summarize the evaluation of EnumCC(3) with synthetic signed networks, there is not a single
method which always gives the best results. On the one hand, OneTreeCC() handles very well the
instances with a very large solution space. This extreme case is associated with a specific graph
topology, based on low graph density and large qneg. On the other hand, EnumCC(3) performs better
in the rest of the instances, which constitutes the overwhelming majority. This point is illustrated by
Table 2, which summarizes our results by showing the proportion of cases where EnumCC(3) runs faster.

Table 2: Summary regarding the proportion of the cases where EnumCC(3) is faster than OneTreeCC.
We obtain these results by aggregating the instances by graph order n (excluding the instances, when the
difference of execution times between EnumCC(3) and OneTreeCC() is in the margin of 5 seconds). N/A
indicates that there is no available entry due to the exclusion of the instances, when the time difference is
in the margin of 5 seconds.

qm = 0.1 qm = 0.2 qm = 0.3 qm = 0.4 qm = 0.5 qm = 0.6

d = 0.25

qneg = 0.3 1.00 0.92 1.00 0.87 0.96 0.92
qneg = 0.5 0.00 0.52 0.77 0.61 0.61 0.86
qneg = 0.7 0.00 0.08 0.08 0.05 0.08 0.03

d = 0.50

qneg = 0.3 N/A 1.00 1.00 1.00 1.00 1.00
qneg = 0.5 N/A 1.00 1.00 0.92 0.84 0.75
qneg = 0.7 0.11 0.80 0.95 0.90 0.89 0.87

d = 1.00 qneg ≈ 0.7 1.00 0.98 0.98 0.94 0.95 0.98

8.2.3 Evaluation Based on Real-World Instances
Finally, we compare the results of EnumCC(3) against OneTreeCC() obtained on the real-world networks
of Dataset3. We run both methods with a time limit of 12h and a limit of 50, 000 on the number of
optimal solutions found. The results are summarized in Table 3. Each column corresponds to a real-
world network, and they are sorted by increasing graph order n. We consider the first five networks as
medium-sized and the last three as large-sized. The rows of Table 3 are organized in two parts. In the
first part, we detail the characteristics of the considered networks, as well as the graph imbalance, for
the sake of completeness. The second part corresponds to the evaluation results of OneTreeCC() and
EnumCC(3). Therein, we indicate the execution time of the enumeration process, in seconds, and the
number of optimal solutions found by these two methods within a time limit of 12h.

We can summarize these results in three points. First, we notice that although the medium-sized net-
works are larger than the synthetic graphs from Dataset2, in practice both OneTreeCC() and EnumCC(3)
can handle real-world medium-sized networks in a very reasonable time. Second, we observe for medium-
sized networks that EnumCC(3) is faster than OneTreeCC() for the first one, whereas OneTreeCC()
dominates EnumCC(3) for the last four ones. EnumCC(3) takes longer because, in average, it spends
86% of its execution time to prove that there is no alternate optimal solution in the end. Finally, as
expected, both methods could not solve all three large-sized networks within the time limit of 12h. The
particularity of these networks is that they are very sparse (d ≈ 1%) and their respective solution spaces
contain at least 50, 000 optimal solutions. For all these networks, EnumCC(3) always finds more optimal
solutions than OneTreeCC() does within the time limit, and it quickly explores a set of 50, 000 optimal
solutions thanks to its RNS component. Since OneTreeCC() struggles to find more alternate solutions

23 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

● ● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

1

(1)
2

(1)
14

(2)

78

(1)

1

(1)

4

(1)3

(1)
3

(1)

1

(1)

2

(1)12

(1)

20

(1)

2

(1)6

(1)

3

(1)

12

(2)37

(1)

2

(2)

9

(1)

4

(2)

●
● ●

●

●

●

●

●

● ● ● ●

●

●
●

●

●
●

●
●

3

(1)
1

(1)

10

(1)

12

(4)

21

(5)

329

(3)

163

(5)

14

(4)2

(1)

1

(1)

1

(1)

4

(2)

3

(1)5

(2)
4

(1)

117

(3)

3

(1)

1

(1)33

(1)
22

(3)

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

78

(13)

9

(2)
30

(1)

13

(2)

1

(1)
14

(3)

45

(8)

6

(2)
7

(2) 28

(3)

9

(1)
13

(2)

26

(3)
74

(5)

367

(9)

51

(6)

1

(1)150

(9)

9

(5)

200

(2)

qm=0.2 qm=0.4 qm=0.6

5 10 15 20 5 10 15 20 5 10 15 20

−5000

−1000

−100

−10

−1
0
1

10

100

1000

5000

Instance number

E
nu

m
C

C
(3

)
-

O
ne

T
re

eC
C

()

(a) Instances with n = 40 and d = 1.00.

●

●
●

●
● ● ●

● ●
●

●

●
●

●
●

●

●

●

●

●

37

(4)

4

(1)
2

(1)
4

(1)

10

(1)

6

(2)
8

(1)

2

(1)

4

(1)
6

(1)

2

(1)9

(2)
9

(1)

3

(1)
6

(1)1

(1)
16

(1)

1

(1)
27

(2)

14

(2)

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●94

(3)
113

(1)

9

(4)

1

(1)
52

(5)

1

(1)

23

(10)

6

(1)

18

(2)8

(2)16

(2)

194

(7)

7

(4)

13

(2)
21

(4)11

(2)

3

(1)

23

(5)
10

(2)

1

(1)
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

8

(2)

10

(6)

17

(1)

6

(3)

42

(6)

6

(3)

4

(1)

8

(1)

16

(2)69

(10)

4

(2)

5

(2)5

(1)
1

(1)

3

(2)

13

(6)

3

(1)

4

(1)

24

(4)

7

(1)

qm=0.2 qm=0.4 qm=0.6

5 10 15 20 5 10 15 20 5 10 15 20

−5000

−1000

−100

−10

−1
0
1

10

100

1000

Instance number

E
nu

m
C

C
(3

)
-

O
ne

T
re

eC
C

()

(b) Instances with n = 45 and d = 1.00.

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

3

(2)
36

(1)

2

(1)36

(2)

14

(1)6

(1)

2

(1)1

(1)

6

(1)
8

(1)

1

(1)

1

(1)
2

(1)
24

(1)

2

(1)

5

(1)6

(1)
6

(2)

1

(1)

8

(1)

●

●

● ●

● ●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

10

(4)

2

(2)
89

(1)

21

(2)

13

(2)

6

(1)

9

(2)

2

(1)

6

(3)

3

(1)

5

(1)

14

(1)

15

(3)
3

(2)

1

(1)

255

(5)

40

(2)
102

(7)

16

(4)

6

(1) ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

1

(1)

45

(2)

4

(1)8

(1)

5

(2)

10

(4)

1

(1)

1

(1)

35

(3)

32

(3)

1

(1)

6

(4)

60

(8)

9

(2)

8

(3)

3

(1)

7

(3)

24

(2)

4

(1)

65

(3)

qm=0.2 qm=0.4 qm=0.6

5 10 15 20 5 10 15 20 5 10 15 20

−5000

−1000

−100

−10

−1
0
1

10

100

1000

Instance number

E
nu

m
C

C
(3

)
-

O
ne

T
re

eC
C

()

(c) Instances with n = 50 and d = 1.00.

Figure 10: Results for n ∈ {40, 45, 50} and d = 1.00. The log-scaled y-axis indicates the difference of
execution times between EnumCC(3) and OneTreeCC() (i.e., EnumCC(3) minus OneTreeCC()), in seconds.
We show for each graph the maximal number of solutions found by EnumCC(3) within a time limit, as well
as the corresponding number of jumps, i.e. njump(EnumCC(3)), between parentheses.

24 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

Table 3: Evaluation results for sparse real-world signed networks from Dataset3. Each column corresponds
to a real-world network and they are sorted by graph order n. The rows are organized in two parts. The
first six rows detail the characteristics of the considered networks, as well as the graph imbalance. The last
four rows indicate the execution time of the enumeration process in seconds and the number of optimal
solutions found by OneTreeCC() and EnumCC(3) within a time limit of 12h.

Medium-sized networks Large-sized networks
CoW
51-54

CoW
54-57

CoW
55-58

CoW
61-64

Senate
108th

EGFR Yeast Macro-
phage

C
ha
ra
ct
er
ist
ic
s graph order n = |V | 61 67 72 75 99 313 575 660

graph size m = |E| 413 461 508 544 2,413 755 910 1,397
density d 0.23 0.21 0.20 0.19 0.50 0.015 0.005 0.006

prop. of neg. edges qneg 0.08 0.09 0.08 0.08 0.41 0.34 0.09 0.33
frustrated edges I(P) 15 27 29 34 1157 181 35 309

prop. of frustrated edges I(P)/|E| 0.04 0.06 0.06 0.06 0.48 0.24 0.04 0.22

R
es
ul
ts

opt. solutions for OneTreeCC() 46 34 41 201 22 112 50,000 251
opt. solutions for EnumCC(3) 46 34 41 201 22 50,000 50,000 50,000

exec. time for OneTreeCC() 87.70s 14.67s 15.62s 17.75s 858s 43,200s 24,600s 43,200s
exec. time for EnumCC(3) 66.05s 67.38s 134.87s 755.81s 2,424s 3,751s 1,871s 2,280s

within the time limit in two networks (i.e. EGFR and Macrophage), RNS appears to be useful in these
cases.

To conclude this part, all these results also support our conclusion from Section 8.2.2, in that
there is not a single method which always gives the best results and both methods are complementary.
Moreover, these results allow us to make our conclusions from Section 8.2.2 more precise, in two ways.
First, it is more appropriate to use EnumCC(3), rather than OneTreeCC(), to explore a large number
of optimal solutions within a time limit, for large signed networks. Nevertheless, it is more suitable to
favor OneTreeCC() over EnumCC(3) for sparse signed networks with 65 < n < 100.

9 Conclusion
For most clustering problems, due to their NP-hard nature, exact approaches do not scale well even
when looking for a single optimal solution. In this work, we proposed an efficient enumeration method
to identify all optimal solutions of the CC problem for a given signed graph. It combines an exhaustive
enumeration strategy with neighborhoods of different sizes, designed for our problem. In our experiments
based on synthetic and real-world signed networks, we first confirmed the findings of our previous work [6]
about the existence of multiple optimal solutions for incomplete signed networks. We showed that such
networks can have a very large number of optimal solutions for the CC problem, e.g., 50,000 and more
for graphs containing only tens of vertices. Further investigation indicates that this extreme case of a
very large number of optimal solutions is associated with two specific graph topologies, corresponding to
1) low graph density and large proportion of negative edges for small- and medium-sized networks (i.e.
n ≤ 100), and 2) very low graph density for large-sized networks (i.e. n > 100). Otherwise, multiple
solutions can still exist, mostly for the graphs with considerably more imbalance. Finally, we also
showed that our method EnumCC(3) performs better than CPLEX’s OneTreeCC() in the overwhelming
majority of the considered networks. Nevertheless, there is not a single method which always gives the
best results. Indeed, OneTreeCC() handles very well sparse medium-sized signed networks in general.
We conclude that it is more appropriate to use OneTreeCC() in this case, whereas EnumCC(3) is more
suitable for all the remaining cases.

We believe that this work opens new directions for future research. First, the most straightforward
perspective is to consider weighted signed graphs. This would require dealing with the generation
of the edge weights in our random graph model, and to extend the pruning strategies proposed in
this work to weighted signed graphs. Second, as we see in our experiments, the process of complete
enumeration can be very costly, particularly because of the process of finding an undiscovered solution.
To accelerate this process, it could be very beneficial to use a heuristic. Existing heuristics from the

25 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

literature are designed to find a single high-quality solution though, so a better approach would be to
redesign them by considering some tabu search-based operations allowing to escape from the discovered
optimal solutions. Third, one could study how robust the solution spaces are, by slightly introducing
some perturbations into the considered networks. This would also allow identifying critical vertices
when the underlying space of optimal solutions is changed, akin to the concept of vitality [33]. This
could be done through either repeating the process from scratch for each perturbed signed graph, or
based on the definition of stability range [41]. Fourth, exploring the space of optimal solutions for other
clustering problems with unsigned networks would be another interesting research line. Indeed, the work
of Good et al. [26] showed the need of identifying multiple quasi-optimal solutions for the Modularity
Maximization problem, which consists in detecting a community structure in an unsigned graph. From
this perspective, an efficient enumeration method similar to ours could be implemented to see whether
their empirical findings apply to optimal solutions too.

Acknowledgments. This research benefited from the support of Agorantic research federation (FR
3621), as well as the FMJH (Jacques Hadamard Mathematics Foundation) through PGMO (Gaspard
Monge Program for Optimisation and operational research), and from the support to this program from
EDF, Thales, Orange and Criteo.

A 2-partition and 2-chorded cycle inequalities
For the sake of completeness, we detail below the 2-partition and 2-chorded cycle inequalities:

• Let S, T ⊆ V be two nonempty disjoint subsets of V . Then, the 2-partition inequality, illustrated
in Figure 11a, is defined as∑

u∈S

∑
v∈T

xuv −
∑

(u,v)∈S
u6=v

xuv −
∑

(u,v)∈T
u6=v

xuv ≤ min{|S|, |T |}. (20)

• Let C ⊆ E be a cycle of length at least 5, and C = {vivi+2|i = 1, .., |C|−2}∪{v1v|C|−1, v2v|C|}
be a 2-chorded cycle of C. Then, the 2-chorded cycle inequality, illustrated in Figure 11b, is
defined as ∑

(u,v)∈C

xuv −
∑

(u,v)∈C

xuv ≤ b
|C|
2 c. (21)

v1 v2

v3v4

v5

v1

S

v2

v3v4

T

v5

(a) 2-partition inequality.

v1

v2 v3

v4

v5

v6

v7

(b) 2-chorded cycle inequality.

Figure 11: Illustrations of the 2-partition (left) and 2-chorded cycle (right) inequalities.

B Edit Distance Between Two Membership Vectors
Before calculating the edit distance between two membership vectors, we need to select one of them as
the reference vector, in order to adapt the module assignments of the other vector based accordingly.
Hence, the edit distance is calculated between the reference vector and this newly changed one, that
we call relative vector.

The task of adapting the relative vector w.r.t the reference one can be expressed as an assignment
problem, also known as maximum weighted bipartite matching problem, as already done in the litera-
ture [36]. Let πs and πt be two membership vectors of length n, associated with the partitions P s and

26 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

a) b) c) d) f)

g) h) i) j) k)

l) m) n) o) p) r)

e)

z

u
u

u

u

u

u

u
u u

u

u

u u

u
u

u
u

v v
v

v

v

v

v v
v

v

v v
v

v
v

v

z
z z

z

z

z

z
z

z

z
z

z z
z

z
v

z

Figure 12: All atomic 3-edit operations.

P t, which contain `s and `t modules, respectively. Also, since the edit distance is symmetric, without
loss of generality, let `s ≤ `t. Moreover, let CM be the `s × `t confusion matrix of πs and πt. The
term CMij , with 1 ≤ i ≤ `s and 1 ≤ j ≤ `t, represents the number of vertices in the intersection of
modules Ms

i and M t
j , i.e. |Ms

i ∩M t
j |. Then, we look for a bijection f : {1, 2, ..., `s} → {1, 2, ..., `t}

that maximizes the number of vertices common to pairs of modules from both membership vectors, i.e.

max
`s∑
i=1

CMi,f(i). (22)

Since this problem can be modelled as an assignment or a maximum weighted bipartite matching
problem, it can be solved in various ways. One of them is through the well-known Hungarian algorithm,
whose complexity is O(n3) [34]. Nevertheless, the best polynomial time algorithm is currently based on
the network simplex method, and it runs in O(|V ||E|+ |V |2log(|V |)) time using a Fibonacci heap data
structure [25]. One final remark is about the case of `s < `t, in which there are |`t − `s| unassigned
module labels in πt. In this case, one can arbitrarily renumber these labels, starting from `s + 1.

Finally, the edit distance between two membership vectors is calculated by simply counting the
number of cases where the module labels of the vertices in the reference and relative vectors are
different.

C Proofs
C.1 All Proofs Related to the MVMO Property for 3-edit Operations on Com-
plete Unweighted Signed Graphs
We complete the proof of Lemma 12 by verifying below the conditions of all atomic 3-edit oper-
ations for unweighted complete signed networks (illustrated in Figure 12), where s #»t

V = {u, v, z}
and (u, v), (u, z), (v, z) ∈ Ẽ. Recall that Ẽ = {(u, v) | (u, v) ∈ E and u, v ∈

s #»t
V and (πs(u) =

πs(v) ∨ πt(u) = πs(v) ∨ πs(u) = πt(v) ∨ πt(u) = πt(v))}.
a) We have (γleftu = auv + auz) > (γrightu = −auv − auz), (γleftv = auv + avz) > (γrightv =
−auv − avz) and (γleftz = auz + avz) > (γrightz = −auz − avz). We see that auv, auz and avz
cannot be negative.

b) We have (γleftu = auv + auz) > (γrightu = 0), (γleftv = auv + avz) > (γrightv = −avz) and
(γleftz = auz + avz) > (γrightz = −avz). We see that auv, auz and avz cannot be negative.

c) We have (γleftu = auv + auz) > (γrightu = 0), (γleftv = auv + avz) > (γrightv = 0) and (γleftz =
auz + avz) > (γrightz = 0). We see that auv, auz and avz cannot be negative.

27 / 30

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

d) We have (γleftu = auv) > (γrightu = −auv − auz), (γleftv = auv) > (γrightv = −auv − avz) and
(γleftz = 0) > (γrightz = −auz − avz). We see that auv, auz and avz must be positive.

e) We have (γleftu = auv − auz) > (γrightu = −auv + auz), (γleftv = auv − avz) > (γrightv =
−auv + avz) and (γleftz = −auz − avz) > (γrightz = auz + avz). We see that auv (resp. auz and
avz) cannot be negative (resp. positive).

f) We have (γleftu = auv − auz) > (γrightu = −auv), (γleftv = auv − avz) > (γrightv = −auv) and
(γleftz = 0) > (γrightz = auz + avz). We see that auv, auz and avz cannot be negative.

g) We have (γleftu = auv) > (γrightu = auz − auv), (γleftv = auv) > (γrightv = avz − auv) and
(γleftz = −auz − avz) > (γrightz = 0). We see that auv, auz and avz cannot be negative.

h) We have (γleftu = auv) > (γrightu = −auv), (γleftv = auv) > (γrightv = −auv) and (γleftz =
−auz − avz) > (γrightz = 0). We see that auv, auz and avz cannot be negative.

i) We have (γleftu = auv) > (γrightu = auz), (γleftv = auv − avz) > (γrightv = avz) and (γleftz =
−auz − avz) > (γrightz = +avz). We see that auv (resp. auz and avz) cannot be negative (resp.
positive).

j) We have (γleftu = auv) > (γrightu = −auz), (γleftv = auv) > (γrightv = −avz) and (γleftz = 0) >
(γrightz = −auz + avz). We see that auv and avz (resp. auz) must be positive (resp. negative).

k) We have (γleftu = auv) > (γrightu = 0), (γleftv = auv − avz) > (γrightv = 0) and (γleftz = 0) >
(γrightz = avz). We see that auv and avz (resp. auz) must be positive (resp. negative).

l) We have (γleftu = −auv) > (γrightu = auz), (γleftv = −avz) > (γrightv = auv) and (γleftz =
−auz) > (γrightz = avz). We see that auv and avz (resp. auz) must be positive (resp. negative).

m) We have (γleftu = −auv) > (γrightu = 0), (γleftv = −avz) > (γrightv = auv) and (γleftz = 0) >
(γrightz = avz). We see that auv and avz (resp. auz) must be positive (resp. negative).

n) We have (γleftu = −auv) > (γrightu = auv − auz), (γleftv = −auv) > (γrightv = auv + avz) and
(γleftz = −avz) > (γrightz = −auz). We see that auv (resp. auz and avz) cannot be negative
(resp. positive).

o) We have (γleftu = −auv) > (γrightu = 0), (γleftv = 0) > (γrightv = auv − avz) and (γleftz = 0) >
(γrightz = −avz). We see that auv (resp. auz and avz) cannot be negative (resp. positive).

p) We have (γleftu = −auv) > (γrightu = −auz), (γleftv = 0) > (γrightv = auv + avz) and (γleftz =
−avz) > (γrightz = −auz). We see that auv (resp. auz and avz) cannot be negative (resp.
positive).

r) We have (γleftu = 0) > (γrightu = −auv − auz), (γleftv = 0) > (γrightv = −auv − avz) and
(γleftz = 0) > (γrightz = −auz − avz). We see that auv, auz and avz must be positive.

References
[1] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. “A survey of very large-scale neighborhood

search techniques”. In: Discrete Applied Mathematics 123.1-3 (2002), pp. 75–102. doi: 10.1016/s0166-
218x(01)00338-9.

[2] Z. Ales, A. Knippel, and A. Pauchet. “Polyhedral Combinatorics of the K-partitioning Problem with
Representative Variables”. In: Discrete Applied Mathematics 211 (2016), pp. 1–14. doi: 10.1016/j.
dam.2016.04.002.

[3] S. Aref and M. C. Wilson. “Balance and frustration in signed networks”. In: Journal of Complex Networks
7.2 (2018), pp. 163–189. doi: 10.1093/comnet/cny015.

[4] J. L. Arthur, M. Hachey, Sahr K., M. Huso, and A. R. Kiester. “Finding all optimal solutions to the
reserve site selection problem”. In: Environmental and Ecological Statistics 4.2 (1997), pp. 153–165. doi:
10.1023/a:1018570311399.

[5] N. Arınık, R. Figueiredo, and V. Labatut. “Multiple partitioning of multiplex signed networks: Application
to European parliament votes”. In: Social Networks 60 (2020), pp. 83 –102. doi: https://doi.org/10.
1016/j.socnet.2019.02.001.

[6] N. Arınık, R. Figueiredo, and V. Labatut. “Multiplicity and Diversity: Analyzing the Optimal Solution Space
of the Correlation Clustering Problem on Complete Signed Graphs”. In: Journal of Complex Networks
(2020). doi: 10.1093/comnet/cnaa025.

[7] N. Arınık, R. Figueiredo, and V. Labatut. “Signed Graph Analysis for the Interpretation of Voting Behav-
ior”. In: International Conference on Knowledge Technologies and Data-driven Business - International
Workshop on Social Network Analysis and Digital Humanities. 2017.

[8] N. Bansal, A. Blum, and S. Chawla. “Correlation Clustering”. In: 43rd Annual IEEE Symposium on
Foundations of Computer Science. 2002, pp. 238–247. doi: 10.1109/SFCS.2002.1181947.

[9] C. Blum and A. Roli. “Metaheuristics in combinatorial optimization”. In: ACM Computing Surveys 35.3
(2003), pp. 268–308. doi: 10.1145/937503.937505.

28 / 30

https://doi.org/10.1016/s0166-218x(01)00338-9
https://doi.org/10.1016/s0166-218x(01)00338-9
https://doi.org/10.1016/j.dam.2016.04.002
https://doi.org/10.1016/j.dam.2016.04.002
https://doi.org/10.1093/comnet/cny015
https://doi.org/10.1023/a:1018570311399
https://doi.org/https://doi.org/10.1016/j.socnet.2019.02.001
https://doi.org/https://doi.org/10.1016/j.socnet.2019.02.001
https://doi.org/10.1093/comnet/cnaa025
https://doi.org/10.1109/SFCS.2002.1181947
https://doi.org/10.1145/937503.937505

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

[10] Michael Brusco and Douglas Steinley. “K-balance partitioning: An exact method with applications to
generalized structural balance and other psychological contexts”. In: Psychological Methods 15.2 (2010),
pp. 145–157. doi: 10.1037/a0017738.

[11] J. D. Camm, S. Polasky, A. Solow, and B. Csuti. “A note on optimal algorithms for reserve site selection”.
In: Biological Conservation 78.3 (1996), pp. 353–355. doi: 10.1016/0006-3207(95)00132-8.

[12] D. Cartwright and F. Harary. “Structural balance: A generalization of Heider’s theory”. In: Psychological
Review 63 (1956), pp. 277–293. doi: 10.1037/h0046049.

[13] Moses Charikar, Neha Gupta, and Roy Schwartz. “Local Guarantees in Graph Cuts and Clustering”. In:
Integer Programming and Combinatorial Optimization. Springer International Publishing, 2017, pp. 136–
147. doi: 10.1007/978-3-319-59250-3_12.

[14] P. Damaschke. “Fixed-Parameter Enumerability of Cluster Editing and Related Problems”. In: Theory of
Computing Systems 46.2 (2010), pp. 261–283. doi: 10.1007/s00224-008-9130-1.

[15] E. Danna, M. Fenelon, Z. Gu, and R. Wunderling. “Generating Multiple Solutions for Mixed Integer
Programming Problems”. In: International Conference on Integer Programming and Combinatorial Opti-
mization. Springer, 2007, pp. 280–294. doi: 10.1007/978-3-540-72792-7_22.

[16] B. DasGupta, G. A. Enciso, E. Sontag, and Y. Zhang. “Algorithmic and complexity results for decompo-
sitions of biological networks into monotone subsystems”. In: Biosystems 9.1 (2007), pp. 161–178. doi:
10.1016/j.biosystems.2006.08.001.

[17] J. A. Davis. “Clustering and structural balance in graphs”. In: Human Relations 20.2 (1967), pp. 181–187.
doi: 10.1177/001872676702000207.

[18] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. “Correlation clustering in general
weighted graphs”. In: Theoretical Computer Science 361.2-3 (2006), pp. 172–187. doi: 10.1016/j.tcs.
2006.05.008.

[19] P. Doreian, P. Lloyd, and A. Mrvar. “Partitioning large signed two-mode networks: Problems and
prospects”. In: Social Networks 35.2 (2013), pp. 178–203. doi: 10.1016/j.socnet.2012.01.002.

[20] P. Doreian and A. Mrvar. “A partitioning approach to structural balance”. In: Social Networks 18.2 (1996),
pp. 149–168. doi: 10.1016/0378-8733(95)00259-6.

[21] P. Doreian and A. Mrvar. “Structural balance and signed international relations”. In: Journal of Social
Structure 16 (2015), p. 1. doi: 10.21307/joss-2019-012.

[22] J. Esteban, L. Mayoral, and D. Ray. “Ethnicity and Conflict: An Empirical Study”. In: American Economic
Review 102.4 (2012), pp. 1310–1342. doi: 10.1257/aer.102.4.1310.

[23] R. Figueiredo and G. Moura. “Mixed Integer Programming Formulations for Clustering Problems Related
to Structural Balance”. In: Social Networks 35.4 (2013), pp. 639–651. doi: 10.1016/j.socnet.2013.
09.002.

[24] Matteo Fischetti, Fred Glover, and Andrea Lodi. “The feasibility pump”. In: Mathematical Programming
104.1 (2005), pp. 91–104. doi: 10.1007/s10107-004-0570-3.

[25] Michael L. Fredman and Robert Endre Tarjan. “Fibonacci heaps and their uses in improved network
optimization algorithms”. In: Journal of the ACM (JACM) 34.3 (1987), pp. 596–615. doi: 10.1145/
28869.28874.

[26] B. H. Good, Y.-A. de Montjoye, and A. Clauset. “Performance of modularity maximization in practical
contexts”. In: Physical Review E 81.4 (2010). doi: 10.1103/physreve.81.046106.

[27] M. Grötschel and Y. Wakabayashi. “A cutting plane algorithm for a clustering problem”. In: Mathematical
Programming 45.1-3 (1989), pp. 59–96. doi: 10.1007/bf01589097.

[28] M. Grötschel and Y. Wakabayashi. “Facets of the clique partitioning polytope”. In: Mathematical Pro-
gramming 47.1-3 (1990), pp. 367–387. doi: 10.1007/bf01580870.

[29] F. Gürsoy and B. Badur. “Extracting the signed backbone of intrinsically dense weighted networks”. In:
arXiv e-prints, arXiv:2012.05216 (2020), arXiv:2012.05216. arXiv: 2012.05216.

[30] IBM. IBM ILOG CPLEX 12.8 User Manual IBM Corporation. 2018.
[31] D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to Natural Language

Processing,Computational Linguistics, and Speech Recognition. 2nd edition. Prentice-Hall, Inc., 2000.
[32] M. Keuper, J. Lukasik, M. Singh, and J. Yarkony. “A Benders Decomposition Approach to Correlation

Clustering”. In: The International Conference for High Performance Computing, Networking, Storage, and
Analysis. 2020.

[33] D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, and O. Zlotowski. “Central-
ity Indices”. In: Network Analysis: Methodological Foundations. Vol. 3418. Lecture Notes in Computer
Science. 2005, pp. 16–61. doi: 10.1007/978-3-540-31955-9_3.

29 / 30

https://doi.org/10.1037/a0017738
https://doi.org/10.1016/0006-3207(95)00132-8
https://doi.org/10.1037/h0046049
https://doi.org/10.1007/978-3-319-59250-3_12
https://doi.org/10.1007/s00224-008-9130-1
https://doi.org/10.1007/978-3-540-72792-7_22
https://doi.org/10.1016/j.biosystems.2006.08.001
https://doi.org/10.1177/001872676702000207
https://doi.org/10.1016/j.tcs.2006.05.008
https://doi.org/10.1016/j.tcs.2006.05.008
https://doi.org/10.1016/j.socnet.2012.01.002
https://doi.org/10.1016/0378-8733(95)00259-6
https://doi.org/10.21307/joss-2019-012
https://doi.org/10.1257/aer.102.4.1310
https://doi.org/10.1016/j.socnet.2013.09.002
https://doi.org/10.1016/j.socnet.2013.09.002
https://doi.org/10.1007/s10107-004-0570-3
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
https://doi.org/10.1103/physreve.81.046106
https://doi.org/10.1007/bf01589097
https://doi.org/10.1007/bf01580870
https://arxiv.org/abs/2012.05216
https://doi.org/10.1007/978-3-540-31955-9_3

Arınık et al. – Efficient Enumeration of the Optimal Solutions to the Correlation Clustering problem

[34] H. W. Kuhn. “The Hungarian method for the assignment problem”. In: Naval Research Logistics Quarterly
2.1-2 (1955), pp. 83–97. doi: 10.1002/nav.3800020109.

[35] J. Kunegis, A. Lommatzsch, and C. Bauckhage. “The slashdot zoo”. In: Proceedings of the 18th interna-
tional conference on World wide web. ACM Press, 2009, pp. 741–750. doi: 10.1145/1526709.1526809.

[36] Xin Liu, Hui-Min Cheng, and Zhong-Yuan Zhang. “Evaluation of Community Detection Methods”. In:
IEEE Transactions on Knowledge and Data Engineering (2019), pp. 1–1. doi: 10.1109/tkde.2019.
2911943.

[37] F. Ma and J.-K. Hao. “A multiple search operator heuristic for the max-k-cut problem”. In: Annals of
Operations Research 248.1 (2016), pp. 365–403. doi: 10.1007/s10479-016-2234-0.

[38] P. Massa and P. Avesani. “Controversial users demand local trust metrics: an experimental study on
Epinions.com community”. In: Proceedings of the 20th national conference on Artificial intelligence.
Vol. 1. 2005, pp. 121–126.

[39] A. Mehrotra and M. A. Trick. “Cliques and clustering: A combinatorial approach”. In: Operations Research
Letters 22.1 (1998), pp. 1–12. doi: 10.1016/s0167-6377(98)00006-6.

[40] George Nemhauser and Laurence Wolsey. Integer and Combinatorial Optimization. Wiley, 1999.
[41] S. Nowozin and S. Jegelka. “Solution stability in linear programming relaxations”. In: Proceedings of the

26th Annual International Conference on Machine Learning - ICML. ACM Press, 2009. doi: 10.1145/
1553374.1553473.

[42] M. Oosten, J. H. G. C. Rutten, and F. C. R. Spieksma. “The clique partitioning problem: Facets and
patching facets”. In: Networks 38.4 (2001), pp. 209–226. doi: 10.1002/net.10004.

[43] J. Pevehouse, T. Nordstrom, and K. Warnke. “The Correlates of War 2 International Governmental
Organizations Data Version 2.0”. In: Conflict Management and Peace Science 21.2 (2004), pp. 101–119.
doi: 10.1080/07388940490463933.

[44] E. Queiroga, A. Subramanian, R. Figueiredo, and Y. Frota. “Integer programming formulations and ef-
ficient local search for relaxed correlation clustering”. In: Journal of Global Optimization (2021). doi:
10.1007/s10898-020-00989-7.

[45] S. Tan and J. Lü. “An evolutionary game approach for determination of the structural conflicts in signed
networks”. In: Scientific Reports 6.1 (2016), p. 22022. doi: 10.1038/srep22022.

[46] T. Zasĺavsky. “Balanced decompositions of a signed graph”. In: Journal of Combinatorial Theory, Series
B 43.1 (1987), pp. 1–13. doi: 10.1016/0095-8956(87)90026-8.

30 / 30

https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1145/1526709.1526809
https://doi.org/10.1109/tkde.2019.2911943
https://doi.org/10.1109/tkde.2019.2911943
https://doi.org/10.1007/s10479-016-2234-0
https://doi.org/10.1016/s0167-6377(98)00006-6
https://doi.org/10.1145/1553374.1553473
https://doi.org/10.1145/1553374.1553473
https://doi.org/10.1002/net.10004
https://doi.org/10.1080/07388940490463933
https://doi.org/10.1007/s10898-020-00989-7
https://doi.org/10.1038/srep22022
https://doi.org/10.1016/0095-8956(87)90026-8

	1 Introduction
	2 Related Work
	3 Correlation Clustering Problem
	4 Enumeration of Optimal CC Solutions
	4.1 Finding an Initial Optimal Solution
	4.2 Finding an Alternative Optimal Solution
	4.3 Enumerating All Optimal Solutions

	5 Recurrent Neighborhood Search (RNS)
	5.1 Edit Distance
	5.2 Complete Neighborhood Search (CoNS)
	5.3 Main Procedure

	6 Pruning Strategies
	6.1 Non-Minimum Edit Operation Pruning
	6.2 Decomposable Edit Operation
	6.3 Multiple Vertex Moves between Optima (MVMO) Property
	6.4 Tractable Cases of the MVMO Property

	7 Dataset
	8 Results
	8.1 Evaluation of the MVMO-based Pruning Strategies
	8.2 Evaluation of EnumCC
	8.2.1 Evaluation of EnumCC by Density
	8.2.2 Evaluation of EnumCC by Graph Order
	8.2.3 Evaluation Based on Real-World Instances

	9 Conclusion
	A 2-partition and 2-chorded cycle inequalities
	B Edit Distance Between Two Membership Vectors
	C Proofs
	C.1 All Proofs Related to the MVMO Property for 3-edit Operations on Complete Unweighted Signed Graphs

	References

