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Highlights: 

- Mechanistic mathematical modeling allows individualized prognosis for lung cancer 

patients at first brain metastatic relapse 

- Individual model-derived computational parameters identifies high-risk patients in terms 

of brain metastasis progression and survival 

- Prognostic features include quantification of the number and sizes of both clinically 

visible and invisible brain metastases 
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ABSTRACT 
 
 
Background:  

Intracranial progression after curative treatment of early-stage non-small cell lung cancer 

(NSCLC) occurs from 10 to 50% and is difficult to manage, given the heterogeneity of 

clinical presentations and the variability of treatments available. 

The objective of this study was to develop a mechanistic model of intracranial progression 

to predict survival following a first brain metastasis (BM) event. 

 

Methods:  

Data included early-stage NSCLC patients treated with a curative intent who had a BM 

as the first and single relapse site (N=31). 

We propose a mechanistic mathematical model to estimate the amount and sizes of 

(visible and invisible) BMs. The two key parameters of the model are 𝛼, the proliferation 

rate of a single tumor cell; and 𝜇, the per day, per cell, probability to metastasize. The 

predictive value of these individual computational biomarkers was evaluated. 

 

Findings:  

The model was able to correctly describe the number and size of metastases at the time 

of first BM relapse for 20 patients. Parameters 𝛼 and 𝜇 were significantly associated with 

overall survival (OS) (HR 1.65 (1.07-2.53) p=0.0029 and HR 1.95 (1.31-2.91) p=0.0109, 

respectively). Adding the computational markers to the clinical ones significantly improved 

the predictive value of OS (c-index increased from 0.585 (95% CI 0.569-0.602) to 0.713 

(95% CI 0.700-0.726), p<0.0001).  

 

Interpretation:  

We demonstrated that our model was applicable to brain oligoprogressive patients in 

NSCLC and that the resulting computational markers had predictive potential. This may 

help lung cancer physicians to guide and personalize the management of NSCLC patients 

with intracranial oligoprogression. 
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SIGNIFICANCE STATEMENT 
 
Non-small cell lung cancer is difficult to manage when brain metastases are present. This 

study presents a mathematical model that can be calibrated on individual patients’ data 

early in the treatment course to explain the growth dynamics of brain metastases and 

demonstrates that the mathematically derived parameters can serve as predictive tool in 

clinical routine care. 
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INTRODUCTION 
 
The 5 years survival rate in non-small cell lung cancer (NSCLC) is only 17%1,2. This poor 

prognosis is partly due to the frequent occurrence of brain metastases (BM), occurring in 

up to 50% of NSCLC patients3 and directly responsible for death in 50% cases4,5. Even 

in initially early-stage NSCLC treated with curative intent, intracranial relapse occurs in 

10% of the cases in stage I-II NSCLC and 30 to 50% cases in stage III NSCLC6. Not only 

is the brain one of the first sites of recurrence after surgery or curative radiotherapy, but 

it can also be the only site of relapse, then called intracranial oligoprogression7–9. 

Oligoprogression is defined as the progression of a limited number of metastases, ranging 

from 3 to 5, and possibly treated by local therapies10–12 . Existing data on intracranial 

oligoprogression are mostly related to palliative situations, and to patients receiving 

tyrosine kinase inhibitors13. There are no real guidelines for the management of single 

intracranial oligoprogression in patients with early-stage NSCLC at diagnosis, initially 

treated with curative intent. Furthermore, the difficulty in establishing guidelines relies on 

the heterogeneity of this situation. Some patients undergo a single intracranial 

recurrence, while others suffer from either multiple intracranial relapse or subsequent 

extra-cranial relapse14. 

Several options are available in the treatment of BM, including local and systemic 

therapies. Local treatments include neurosurgery, stereotaxic radiosurgery (SRS) and 

whole brain radiotherapy (WBRT)15–19. Local treatment indications have evolved over 

time and the place of SRS is becoming increasingly important16–20. Nevertheless, WBRT 

has the advantage of covering all macroscopic and microscopic BM which would not be 

detected with MRI and could have a prophylactic role on the development of BM21,22. 

However, WBRT is also responsible for neurocognitive decline, leading to a lower quality 

of life23,24. On the other hand, systemic treatments include chemotherapy, targeted 

therapies or immunotherapy10,25–28. The intracranial efficacy of systemic treatments is 

heterogeneous and partly depends on the blood-brain barrier (BBB) crossing of the 

drugs29. Moreover, the unique brain microenvironment likely plays a critical role in 

treatment response, especially with immunotherapy30–33. The combination of systemic 

treatments such as chemotherapy and immunotherapy seems to induce better 
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intracranial response than immunotherapy alone34,35. Combinations of local and systemic 

treatments also seem to have a synergistic effect and lead to better intracranial 

response36. Radiotherapy (either SRS or WBRT) could help damage the BBB, allowing 

the crossing of systemic treatments. 

The complexity of multimodal management of BM relies on the diversity of possible 

treatments (including local and systemic treatments), the difficulty of crossing the BBB for 

systemic treatments, the specificity of the brain microenvironment and the lack of 

predictability of the appearance of BM, as well as further extracranial progression, as 

evidenced by Levy's study of European practices37.  

To guide the management of patients with BM, prognostic scores have been established, 

such as the mol-Lung GPA38–40. However, these scores do not help predict the 

occurrence of metastases, even if some predictive factors were identified such as age ≤ 

62 years, stage T4 or N2-3, adenocarcinoma subtype, presence of leukoaraiosis, and 

molecular profile41,42. 

Predicting the course and the appearance of BM would improve the monitoring of patients 

and offer a more personalized treatment. For this purpose, the contribution of 

mathematical modeling can be crucial. 

The first mathematical models of metastatic occurrence based on experimental 

observations were established by Liotta in the 1970’s43. Further mathematical models 

were then established in animal models44–46. These models were based on two main 

phenomena: growth and spread of a tumor. The latter is often successfully described 

using the Gompertz model47–49. For metastatic spread, we have developed models based 

on pioneering work by Iwata et al45,46,50,51. Our team further developed these 

mathematical constructs to be applicable in the clinic, for example on breast52 or kidney53 

cancer. This model was then developed within the framework of NSCLC BMs54. This last 

work proposed a method to determine the age of the disease according to the pathology 

and size of the primary tumor, to test different dissemination and colonization scenarios 

and finally to predict the appearance and growth of BMs over time. However, this 

preliminary work only included two patients. 
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The objective of this study was to develop the mathematical model and apply it to a 

situation of intracranial oligoprogression in multiple patients with early-stage NSCLC, 

initially treated with a curative intent. The secondary objective was to assess the 

association of this model with overall survival and progression-free survival. 

 
MATERIALS & METHODS 

 

Data. We retrospectively investigated all early-stage NSCLC patients treated with a 

curative intent who had a brain relapse at Public Assistance from Marseille Hospitals 

(APHM) in the department of Multidisciplinary Oncology and Therapeutic Innovations. We 

enrolled all patients with BM as the first relapse site. Primary tumor progression or 

metastatic extracranial progression at the time of the brain oligo-progression were 

excluded. Patients with ongoing systemic treatment at the time of oligo-progression were 

also excluded. This study was approved by the institution Data Protection Officer (# 2021-

25). 

Patients’ characteristics (including sex, age, smoking history, performance status), 

NSCLC data (histology, stage at diagnosis, molecular profile), treatment data (treatment 

received for the primary tumor, history of BM treatment) and outcome data (size and 

number of BM at first relapse, longitudinal data of BM, progression-free survival (PFS) 

and overall survival (OS)) were investigated. OS is the time from diagnosis of the primary 

tumor to death from any cause (or date of last follow up). PFS was defined as the time 

between the time point of first metastatic relapse and second metastatic relapse. 

Since the model presented in this study is based on numbers of cells, the longitudinal 

diameter measurements of the data set were converted by assuming spherical shape 

calculating the volume as 𝑣𝑜𝑙(𝑥) =
4

3
𝜋 (

𝑥

2
)

3

 where 𝑥 is the individual diameter value. 

These volumetric data were then rescaled into cell numbers using the conversion rule 

1mm3 = 106 cells55.  
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Model definition. A primary tumor with size 𝑆𝑃(𝑡) at time 𝑡 ≥ 0 was assumed to follow 

Gompertzian growth56,57. Since patients underwent surgery, we adjusted the growth 

equation to account for full tumor removal at day of surgery 𝑇𝑠 > 0 such that 

𝑑𝑆𝑃(𝑡)

𝑑𝑡
= 𝑔𝑃(𝑆𝑃(𝑡)) = (𝛼𝑃 − 𝛽𝑃ln(𝑆𝑃))𝑆𝑃, if 0 < 𝑡 ≤ 𝑇𝑆 

but 𝑆𝑃(𝑡) = 0 if 𝑡 > 𝑇𝑆. The initial size of a tumor at time 𝑡 = 0 was assumed to be of 

exactly one cell, i.e., 𝑆𝑃(0) = 158. The parameter 𝛼𝑃 can be interpreted as the initial 

specific growth rate of a single tumor cell and the parameter 𝛽𝑃 is the exponential decay 

factor of this specific growth rate59. The analytical solution of the growth dynamics for the 

primary tumor and the analogous dynamics for the metastases are given in the 

supplementary material. 

Two additional parameters 𝜇 and 𝛾 were introduced for the dissemination process: 

parameter 𝜇 stands for the probability per day and per cell for a tumor cell to succeed 

going through all steps of the postulated metastatic cascade60. Parameter 𝛾 ∈ [0,1] 

describes how the geometrical structure of the tumor enables the tumor to seed new 

metastases. The dissemination rate (number of newly created metastases per day) was 

therefore assumed to be: 

𝑑 (𝑆𝑝(𝑡)) = 𝜇𝑆𝑝(𝑡)𝛾. 

The model equations for the number of metastases (visible and invisible) are described 

in the supplementary material and details to this approach are given in60. Since there is 

evidence that secondary and thus lately seeded metastases are of minor clinical 

relevance61, for the purpose of our predictive framework we focused on metastases 

seeded by the primary tumor only. 

 

Parameter assumptions. Following Bilous et al.60 we reduced further the number of free 

parameters to ensure practical identifiability. We assumed a maximum carrying capacity 

of 𝑒𝑥𝑝(𝛼/𝛽) = 1012 cells62 for both the primary tumor and metastases’ growth kinetics. 

Since longitudinal pre-diagnosis measurements of primary tumors were not available, we 

assumed a pathology-dependent doubling time estimated from a meta-analysis of the 

literature60. Specifically, doubling times were assumed to be 201, 104 and 91 days for 
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adenocarcinoma, squamous cell carcinoma and undifferentiated carcinoma, 

respectively60. The metastases observed clinically, i.e., the visible BMs, are assumed to 

be larger than the volume corresponding to a diameter measurement of three mm. The 

corresponding volumetric measure is denoted by the threshold size 𝑠𝑣. 

 

Parameter identification. The procedure to determine the size and number of BMs from 

the model equations and values of the parameters is described in the supplementary 

material. We solely used data up to the time of first metastatic relapse – denoted 𝑇𝐵𝑀 – 

and consequently identified the parameters using only one time point with BMs 

measurements. Preliminary explorations of fitting procedures showed that the parameter 

identification was very instable due to the unknown metastatic density distribution below 

the threshold size (𝑠𝑣). We therefore considered two possible scenarios for the density 

distribution below 𝑠𝑣: i) no additional BM, i.e., all existing BM above 𝑠𝑣 have been detected 

successfully (‘best case’) or ii) another BM of size 𝑠𝑣, i.e., one BM has been overseen 

(‘worst case’). Our final method was a compromise between i) and ii): we assumed one 

artificial BM with size 𝑠𝑣 with an associated number of one-half BM. From this artificial 

measurement, we were able to control the important variance of the metastatic density 

below 𝑠𝑣.  

The doubling time 𝜏𝑃(𝑠) of a primary tumor of size 𝑆𝑃(𝑇𝑑) at time of diagnosis 0 ≤ 𝑇𝑑 ≤ 𝑇𝑆 

was used to determine the two growth parameters 𝛼𝑃 and 𝛽𝑃 (see supplementary 

material). Preliminary exploration of the parameter space suggested that a value of 𝛾 =

0.1 was able to describe the data. To ensure practical identifiability of the model 

parameters we therefore fixed 𝛾 = 0.1 and only considered parameters 𝛼 and 𝜇 as 

variables during model fitting. The model was implemented in Matlab. A least squares 

calculation comparing model evaluations against the empirical data of the cumulative 

metastatic density distribution at the time of first metastatic relapse was performed using 

the GlobalSearch environment63,64, fitting for the two parameters 𝛼 and 𝜇 on biologically 

reasonable intervals (i.e. positive values), respectively. 
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Statistical analysis. These two computational parameters 𝛼 and 𝜇 were used as 

computational biomarkers with potential additional prognosis value than the mere clinical 

data. We analyzed association of these parameters with overall survival and progression-

free survival using a previously introduced method65. Log-rank statistical tests were 

performed on dichotomized groups (with threshold taken at the median value of the 

computational biomarker)66. In addition, multivariable proportional hazard Cox regression 

models were considered, either using only the clinical covariates or the clinical covariates 

augmented with 𝛼 and 𝜇. These were implemented using the lifelines python package67. 

The predictive ability of these Cox models was determined calculating the mean value of 

Harrell’s c-index68 of one hundred replications of a three-fold cross-validation procedure. 

In a closer examination, only covariates below a significance level p < 0.2 were selected 

for multivariable analysis. To determine the statistical significance of mean c-indices 

between Cox models, two-sample t-tests were conducted.  
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RESULTS 
 
Data presentation and description 

We identified 31 patients who had intracranial oligoprogression after initial treatment with 

a curative intent for early-stage NSCLC. Of these, 10 were women and 21 were men. 

There were 9 squamous cell carcinomas and 22 non-squamous carcinomas, including 20 

adenocarcinomas. At the time of diagnosis, 20 patients were stage I/II and 11 were stage 

III according to the 8th TNM classification. Number of BMs lied between one and three 

and the corresponding diameter sizes between 4 mm and 75 mm. Treatment received for 

the primary tumor, the number, and the treatment of brain metastasis at the first relapse 

are reported in Table 1. 17 patients had more than one intracranial recurrence. Median 

OS was 80.98 months (95% CI 37.56 – 98.27) and median PFS was 11.73 months (95% 

CI 4.93 – 27.20).  

The data included values of longitudinal diameter measurements determined via 

computed tomography (CT) and magnetic resonance imaging (MRI) images of primary 

tumors and BMs as well as the time of relapse and time of death. Representative patient 

plots of these time series data are reported in Figure 1. 

Out of the 31 patients, three patients had no primary tumor measurements at primary 

diagnosis. In the later analysis, these patients had to be excluded, since the primary 

tumor growth parameter calibration could not be performed (cf. Mathematical model).  

Table 1. Data description: Patient overview. PT = Primary tumor, BM = Brain 
metastases, SRS = stereotaxic radiosurgery, WBRT = whole brain radiotherapy 

Data population Population N 31 (%) 

Sex 

Female – Male  

 

10 (32.3%) – 21 (67.7%) 

Median Age at Diagnostic 61 (39-82) 

Smoking Status  

Smoker 

Former smoker 

No smoker 

 

11 (35.5%) 

13 (41.9%) 

1 (3.2%) 

Stage at diagnostic 

I/II 

III 

 

20 (65%) 

11 (35%) 

Primary tumor pathology subtype  
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Non squamous cell carcinoma  

Squamous cell carcinoma 

22 (71%) 

9 (29%) 

Molecular Status of PT 

EGFR 

KRAS 

PTEN 

TP53 

STK11 

CTNNB1 

No mutation 

Unknown 

 

3  

4 

1 

2 

1 

1 

8 

14 

Size of PT at diagnosis (diameter value) 

≤ 25 mm 

> 25, ≤ 50 mm 

> 50, ≤ 75 mm 

> 75 mm 

Unknown 

 

14 (45%) 

6 (19%) 

7 (23%) 

1 (3%) 

3 (10%) 

Surgery of the primary tumor 

Yes 

No 

 

22 (71%) 

9 (29%) 

Systemic treatment for the primary tumor 

Yes  

No 

 

19 (61.3%) 

12 (38.7%) 

Median time between the diagnosis and first 

relapse (months) 

13.63 (95% CI 9.03 – 18.00) 

Number of BM at first relapse  

1 

2 

3 

 

18 (58.1%) 

5 (16.1%) 

8 (25.8%) 

Sum of BM diameters at relapse  

≤ 20 mm 

> 20, ≤ 40 mm 

> 40 , ≤ 60 mm 

> 60 mm 

 

18 (58%) 

9 (29%) 

3 (10%) 

1 (3%) 

Individual BM diameters at relapse  

≤ 10 mm 

> 10, ≤ 20 mm 

> 20 , ≤ 30 mm 

> 30 mm 

 

25 (49%) 

12 (24%) 

6 (12%) 

8 (16%) 
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Type of local treatment at first cerebral 

relapse  

Surgery alone 

Surgery + WBRT 

Surgery + SRS 

SRS alone 

WBRT alone 

 

3 (9.7%) 

4 (12.9%) 

7 (22.6%) 

16 (51.6%) 

1 (3.2%) 

Systemic treatment at first cerebral relapse 

Yes  

No 

 

11 (35.5%) 

20 (64.5%) 

Number of cerebral relapse 

1 

2-3 

>3 

 

14 (45.2%) 

13 (42%) 

4 (12.8%) 

Median time between the first and second 

relapse (months) 

11.73 (95% CI 4.93 – 27.20) 

 

 

 

 

Figure 1. Data: Example patients. Time course of three example patients. Black 
bullets show the primary tumor size and colored bullets the brain metastases sizes. The 
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time course was shifted such that time zero corresponds to the day of primary 
diagnosis. Also shown are local and systemic treatments (triangle, cross, flash, circle, 
colored background), the presence of extra-cerebral metastases (black asterisk, not 
linked to diameter axis) and the time of the respective patient’s death (black cross with 
dashed line). 

  

Parameter values 

As explained above, the remaining parameters subject to identification through data fitting 

were 𝛼 (growth) and 𝜇 (dissemination). Parameter values are shown in Table 2. 

 

Table 2. Parameter description. Some measures for the fitted parameter values on 
the population level, std = standard deviation. 

parameter mean median std min max 

𝛼 4.93 ⋅ 10−2 4.03 ⋅ 10−2 3.18 ⋅ 10−2 1.22 ⋅ 10−2 1.34 ⋅ 10−1 

𝜇 3.57 ⋅ 10−4 2.33 ⋅ 10−4 2.77 ⋅ 10−4 8.22 ⋅ 10−5 1.22 ⋅ 10−3 

 

Simulations and outcome 

The model was used to simulate history of all BMs, including those not yet clinically 

detectable at 𝑇𝐵𝑀. To ensure parameter identifiability, a specific method was introduced 

(cf. Methods). The total number of predicted BMs at time 𝑇𝐵𝑀 (clinically visible + invisible) 

was compared to the number of BMs detected during the full clinical history of the 

individual patient (Figure 2).  

Individual simulation of BM history for a specific patient is presented in Figure 3. 

Analogous simulations for all patients are shown in the supplementary material. Figure 

3A shows the data of the clinical history. Panels 3B and 3C compare the model-predicted 

metastatic distributions at the two time points of primary diagnosis and 𝑇𝐵𝑀, respectively. 

The whole-time course of primary tumor and metastases sizes is presented in Figure 3D. 

The simulated visible metastases in comparison to the clinically detected metastases at 

time 𝑇𝐵𝑀 as well as the size distributions of BMs at 𝑇𝐵𝑀 are presented in Figure 3E. 

Compared to the data, the model calculations produced reasonable estimations of size 

and number of visible BMs at 𝑇𝐵𝑀 throughout the data set. For 20 patients the calculated 

theoretical number of BMs at time 𝑇𝐵𝑀 was greater or equal to the number of BMs 

observed during the full clinical treatment of the respective patient. We considered this 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2023.01.10.23284189doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.10.23284189
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

not only as a reasonable estimate but also a good indication that the model-predicted 

total number and size of BMs proves to be useful in estimating the invisible BMs early in 

the treatment course. 

 

Figure 2. Population results for the calculated number of BMs (visible + invisible) 
compared to the clinically observed number over the treatment course. 
Estimations that prognosed less BMs than clinically observed are indicated with red 
crosses. Estimations that prognosed the correct or a larger number of BMs than 
observed are indicated as blue diamonds. Several points correspond to multiple cases: 
(1,1) four times, (1,2) five times, (2,1) two times, (4,1) two times and (3,5) two times. 
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Figure 3. Simulation of example patient. A. Time series data of an example patient. 
Data time points used for estimation of the deterministic model parameters are the 
primary diagnosis (blue dashed line) and the time of first metastatic relapse 𝑇𝐵𝑀 (red 

dashed line). The size of the primary tumor at primary diagnosis determines the growth 
parameters for the primary tumor growth dynamics (cf. text). From the number and size 
of metastases at first metastatic relapse the two free model parameters were fitted. B. 
Model calculation allows to compute the metastatic distribution over time for the primary 
diagnosis. C. Further calculation shows the metastatic distribution at time 𝑇𝐵𝑀. Visible 
metastases are the ones to the right of the imaging detection limit (gray dotted line). D. 
Growth dynamics can be followed for the primary tumor (blue solid line) and the 
metastases (red solid line) respectively. E. Comparison of the computed BMs sizes at 
time 𝑇𝐵𝑀 (black) with the observed data (gray). 

 

We then compared two patients with the same number of metastases at time 𝑇𝐵𝑀 and 

relatively familiar time frames. Interestingly, the model yielded very different profiles for 

the invisible BMs and therefore might suggest different treatment approaches for the two 

patients (Figure 4). Even though the clinical data at 𝑇𝐵𝑀 was very similar for the two 

patients, the model predicted different outcomes. For instance, the number of visible and 

invisible BMs at 𝑇𝐵𝑀 were 5 and 8, respectively. These numbers again appeared 

reasonable when compared to the full clinical treatment course of each patient. 
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Figure 4. Comparison of two patients. The upper row shows the full clinical history of 
the two patients. The estimation of the metastatic distribution at time of first metastatic 
relapse and the spherical representations of the corresponding metastases’ sizes 
(black) are shown in the lower row for the respective patient, compared to the data of 
clinically detectable metastases (gray). 

 

Statistical evaluation and prediction models 

To assess the predictive power of the computational markers 𝛼 and 𝜇, dichotomized 

Kaplan-Meier were generated for OS and PFS (Figure 5). For 𝛼, significant differences 

were observed for OS (𝑝 = 0.0026) and PFS (𝑝 = 0.0108). For 𝜇, a significant difference 

was found at the 80% quantile for OS (𝑝 = 0.0356) and PFS (𝑝 = 0.0254), thus identifying 

a fraction of high-risk patients. We further assessed the association with outcome of 𝛼 

and 𝜇, as well as the clinical variables in univariate Cox models (Table 3).  Here, we found 

statistically significant hazard ratios for both the computationally determined markers 𝛼 

and 𝜇 for OS (𝑝 = 0.0229 and 𝑝 = 0.0011, respectively). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 11, 2023. ; https://doi.org/10.1101/2023.01.10.23284189doi: medRxiv preprint 

https://doi.org/10.1101/2023.01.10.23284189
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Figure 5. Kaplan-Meier curves for the computational parameters 𝜶 and 𝝁. The 

survival curves for the two computational parameter groups above and below the 
population’s median value (first row) and the 80% quantile value (second row) with 
respect to overall survival (first and third column) and progression-free survival (second 
and fourth column). The corresponding calculated p-value from the log-rank test for 
dichotomized groups is shown in the right lower corner. 

 

To determine the added value of the computational markers in comparison to the clinical 

data, we tested their significance in multivariable Cox models built on the clinical data 

alone or the clinical data and the computational markers (Figure 6 and Table 4). 
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Table 3: Results of the univariate Cox regression for OS and PFS. The table shows 
the characteristics of the results of the univariate Cox regression including clinical and 
computational covariates for overall survival and progression-free survival. HR = hazard 
ratio, CI = confidence interval, BM = brain metastases, PT = primary tumor. 

 Hazard 
Ratio 
(OS) 

p-value 
(OS) 

95% CI (OS) Hazard 
Ratio 
(PFS) 

p-value 
(PFS) 

95% CI (PFS) 

Covariate       

Sex 1.1 0.602 0.768 - 1.58 0.984 0.936 0.663 - 1.46 

Age at diagnosis 1.03 0.900 0.679 - 1.55 0.738 0.167 0.479 - 1.14 

Number of bm at relapse 1.72 0.00556 1.17 - 2.53 1.25 0.255 0.851 - 1.84 

Stage at diagnosis 0.866 0.435 0.604 - 1.24 1.1 0.674 0.716 - 1.67 

Histology of pt 0.792 0.223 0.545 - 1.15 0.715 0.117 0.47 - 1.09 

Parameter 𝛼 1.65 0.0229 1.07 - 2.53 1.25 0.237 0.862 - 1.83 

Parameter 𝜇 1.95 0.00109 1.31 - 2.91 1.54 0.0729 0.961 – 2.46 

Size of PT at diagnosis 1.05 0.781 0.755 - 1.45 0.9 0.648 0.574 - 1.41 

Size of BM at relapse 

Whole-brain radiotherapy 
after 𝑇𝐵𝑀 

Systemic treatment after 
𝑇𝐵𝑀 

0.992 

0.89 

 

1.16 

0.967 

0.539 

 

0.420 

0.677 - 1.45 

0.615 – 1.29 

 

0.807 – 1.67 

1.52 

0.649 

 

0.824 

0.0396 

0.0282 

 

0.359 

1.02 - 2.26 

0.442 – 0.955 

 

0.546 – 1.25 

 

 

 

Figure 6. Hazard ratios for the predictive models. The hazard ratios were 
determined performing a multivariable Cox regression. The ratios are corresponding to 
the predictive models for OS (left) and PFS (right) with clinical and computational 
covariates, i.e., the settings where the determined parameters have been added to the 
respective patient data. 
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Table 4. Results of the multivariate Cox regression for OS and PFS. The table 
shows the characteristics of the results of the multivariate Cox regression for the 
predictive model including clinical and computational covariates for overall survival and 
progression-free survival. HR = hazard ratio, CI = confidence interval, BM = brain 
metastases, PT = primary tumor. 

 Hazard 
Ratio 
(OS) 

p-value 
(OS) 

95% CI (OS) Hazard 
Ratio 
(PFS) 

p-value 
(PFS) 

95% CI (PFS) 

Covariate       

Sex 1.1 0.769 0.584 - 2.07 1.01 0.979 0.637 - 1.59 

Age at diagnosis 1.99 0.0951 0.887 - 4.47 0.61 0.174 0.3 - 1.24 

Number of bm at relapse 1.32 0.506 0.586 - 2.96 1.05 0.894 0.52 - 2.11 

Stage at diagnosis 1.48 0.266 0.74 - 2.97 1.17 0.585 0.667 - 2.05 

Histology of pt 1.06 0.879 0.475 - 2.39 1.56 0.258 0.721 - 3.39 

Parameter α 3.4 0.00387 1.48 - 7.81 1.52 0.219 0.78 - 2.96 

Parameter 𝜇 1.92 0.136 0.815 - 4.52 2.04 0.087 0.902 - 4.59 

Size of PT at diagnosis 0.857 0.647 0.443 - 1.66 0.748 0.463 0.344 - 1.63 

Size of BM at relapse 1.46 0.113 0.914 - 2.34 1.81 0.0143 1.13 - 2.91 

 

For OS, the c-index for those two cases were 0.585 (95% CI 0.569 to 0.602) and 0.713 

(95% CI 0.700 to 0.726), respectively (statistically significant increase, p<0.0001). This 

drastic increase of predictive value also held in reduced models containing only variables 

with p < 0.2 in the multivariate analysis (0.647 (95% CI 0.631 to 0.664) versus 0.789 (95% 

CI 0.779 to 0.800), statistically significant increase, p<0.0001). For PFS, the c-indices 

were 0.560 (95% CI 0.545 to 0.575) and 0.595 (95% CI 0.582 to 0.608), respectively 

(statistically significant increase, p<0.001). Considering again only variables with p < 0.2 

in the multivariate regression yielded c-indices of 0.708 (95% CI 0.697 to 0.718) versus 

0.703 (95% CI 0.693 to 0.713). 

Interestingly in both cases for OS and PFS, the prediction model with clinical variables 

identifies the number of visible brain metastases as variable with large hazard ratio, but 

the prediction model with the computational markers selects 𝜇 as having better predictive 

power. That is, the number of brain metastases at first metastatic relapse loses 

significance when the prediction model is augmented with 𝜇. For OS, the other selected 

covariates besides 𝜇 were 𝛼, the age at diagnosis and the summed volume of BMs at first 
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metastatic relapse. For the PFS, these were the age at diagnosis and the summed volume 

of BMs at first metastatic relapse for PFS.  
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DISCUSSION 
 
Because of their prevalence and high morbidity, the management of BMs is a major issue 

in NSCLC. Given the heterogeneity of clinical cases and variability of treatments 

available, therapeutic decisions following intracranial oligoprogression are complex 

Predicting the onset and evolution of BMs in NSCLC patients using mathematical 

modeling would offer decision support with a personalized follow-up and treatment. The 

objective of this study was to test a mathematical model previously developed and to 

apply this model to a situation of intracranial oligoprogression in patients with early-stage 

NSCLC initially treated with a curative intent. 

We first demonstrated that the mathematical model was suitable to describe clinical 

history of size and number of BMs in most patients. Simulations aligned with the data for 

20 patients, while in eight cases the model underestimated the total number of BMs. 

However, among these eight cases the simulations correctly identified the presence of 

multiple BMs. Among the 8 patients, there are 3 squamous cell carcinomas and 5 

adenocarcinomas, 3 of which had a mutation of interest: KRAS G12C, STK11, BRAF. 

These mutations may lead to a different growth of the primary tumor or a different 

metastatic dissemination. BRAF and STK11 have been described as genes involved in 

the metastatic process69,70. Moreover, one of the squamous cell carcinoma had a PTEN 

mutation, which has been shown to be associated with BM in breast cancer71. Epidermoid 

histology and molecular biology possibly misled the model. 

In addition, predictive models of OS including the computational markers 𝛼 and 𝜇 strongly 

outperformed models based on clinical variables only. For the metastatic growth rate 𝛼, 

significant differences were observed for OS and PFS. For the metastatic seeding 𝜇, a 

significant difference was found at the 80% quantile for OS and PFS, thus identifying a 

fraction of high-risk patients.  

Identification of a high-risk group for recurrence could assist the lung cancer physicians 

in therapeutic management. 

In univariate analysis, WBRT at first relapse had a significant effect on PFS (HR 0.649 

(95% CI 0.442 - 0.955), p=0.0282) and systemic treatment at first relapse had a minor 
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non-significant effect (HR 0.824 (95% CI 0.546 – 1.25), p=0.359). This could be due to 

undetected brain metastases at 𝑇𝐵𝑀, or dormant metastatic cells. Systemic treatment or 

WBRT may therefore be of value for patients at risk. Indeed, WBRT has the advantage 

of covering all macroscopic and microscopic BM to control cerebral progression. 

However, WBRT does not increase survival21,22 and leads to neurocognitive decline23,24. 

The effect of systemic treatments seems less obvious given their variable intracranial 

efficacy. Our model could lead to a computational tool that could assist lung cancer clinical 

oncologists in identifying patients with high-risk of multiple recurrences that could benefit 

from systemic treatments.   

 

Other tools exist to help the management of NSCLC patients. Some are based on 

molecular biology prognostic scores such as the Lung-Mol Score40, others rely on 

radiomics features72–75 . For example, Huang et al. demonstrated that radiomics features 

extracted from pre-treatment T1 MRI was an independent prognostic factor of local 

control for BM patients who underwent gamma knife radiosurgery74. The advantage of 

our mathematical model compared to these tools is, that it is of biologically grounded and 

mechanistic nature. In turn, this allows to perform simulations of the disease and clinical 

course combined with predictive power, unlike the prognostic tools mentioned above. 

The main limitation of our study is the number of patients included. It will be necessary to 

confirm our findings on a larger number of patients and to include molecular profiling data. 

In addition, we could conduct a prospective study to keep double-blinded design for 

predictions. 

On the other hand, the population chosen in this study (patients with early-stage NSCLC 

initially treated with a curative intent and presenting with intracranial oligoprogression) 

limits the application of our results. However, this made it possible to limit bias of systemic 

treatments and in this situation, lung cancer physicians are facing an unmet need with no 

existing guidelines. 
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The modeling approach remains a  simplified description of the complexity of the 

metastatic cascade that is  yet incompletely understood76. However, considering the 

limited data available, the model complexity had to be reduced to ensure practical 

identifiability of the parameters. This resulted in only two critical free parameters 

controlling growth (𝛼) and dissemination (𝜇). An assumption that leaves for improvement 

is that primary tumor growth parameters were determined from meta-analyses values 

using only the tumor pathology60. We need further investigation to understand the 

influence of molecular biology, especially EGFR mutations77,78 or ALK translocation 

because these patients have more multiple brain relapses but have better prognosis79. 

Moreover we need to understand the impact of treatments on the primary tumor, 

particularly with the advent of neoadjuvant and adjuvant treatments, which could reduce 

micrometastatic disease and thus risk of relapse80–82.Moreover, our model could be 

extended to account for more complex processes of the metastatic cascade, such as 

dormancy83 and the possibility that the primary tumor is not the only one that can spread 

new lesions84 . Regarding the relapse site, we must understand the influence of the blood-

brain barrier and the unique brain microenvironment85. 

However, simplifying the metastatic cascade increases the feasibility of the use of this 

model in clinical practice. Once the model is validated on a larger scale, applications will 

be developed for the clinicians to determine the risk of cerebral recurrence for each 

patient by selecting two or three clinical parameters available in routine. 

To our knowledge, this is the first mechanistic modeling approach to predict the 

occurrence and growth of BMs in NSCLC with data routinely acquired in the clinics. This 

work could allow to identify patients at high risk of recurrence and to propose a 

personalized management such as follow-up imaging schedule, addition of systemic or 

non-systemic therapy, and use of WBRT depending on the patient's risk of multiple 

recurrences. 
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SUPPLEMENTARY MATERIAL 
 
S1: Analytical solution of the primary tumor and metastases’ growth dynamics 

Variables and parameters are explained in the text. The analytical solution to the primary 

tumor dynamics can be determined to be 

𝑆𝑃(𝑡) = {
𝑒𝑥𝑝 (

𝛼𝑃

𝛽𝑃
(1 − 𝑒𝑥𝑝(−𝛽𝑃𝑡))) , if 0 ≤ 𝑡 ≤ 𝑇𝑆

0                                                   , if 𝑡 > 𝑇𝑆.

 

and the metastases’ Gompertz growth function is given analogously, without the possible 

surgery modelled, as 

𝑔𝑚(𝑠) = (𝛼 − 𝛽ln(𝑠))𝑠. 

The metastatic Gompertzian growth equation as analytical solution of the equation 

𝑑𝑠(𝑡)

𝑑𝑡
= 𝑔𝑚(𝑠) 

with initial condition 𝑠(0) = 1 that describes the metastatic size 𝑠 at time 𝑡 ≥ 0 reads 

𝑠(𝑡) = 𝑒𝑥𝑝 (
𝛼

𝛽
(1 − exp(−𝛽𝑡))). 
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S2: Model equation for the metastatic density 𝜌(𝑠, 𝑡) of size 𝑠 and time 𝑡 

The full equation corresponding to the approach of 60 modelling the metastatic density 

𝜌(𝑠, 𝑡) as function of size 𝑠 and time 𝑡 with boundary and initial conditions neglecting 

secondary metastasation – not considering the integral in the boundary condition – reads 

𝜕𝜌(𝑠, 𝑡)

𝜕𝑡
+

𝜕(𝑔𝑚(𝑠)𝜌(𝑠, 𝑡))

𝜕𝑠
= 0

𝑔(1)𝜌(1, 𝑡) = 𝜇𝑆𝑃
𝛾

𝜌(𝑥, 0) = 0

 

The used parameters are explained in the text. 
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S3: Parameter estimation: growth parameters 

The doubling time 𝜏𝑃(𝑠) of a primary tumor of size 𝑆𝑃(𝑇𝑑) at time of diagnosis 0 ≤ 𝑇𝑑 ≤

𝑇𝑆, i.e. the time a tumor of size 𝑠 needs to grow to a size of 2𝑠, is implicitly given by51 

𝜏𝑃(𝑠) = −
1

𝛽𝑃
ln (

𝛽𝑃ln(2𝑆𝑃) − 𝛼𝑃

𝛽𝑃ln(𝑆𝑃) − 𝛼𝑃
) 

and from 𝑒𝑥𝑝(𝛼𝑃/𝛽𝑃) = 1012 we determined the parameters 𝛼𝑃 and 𝛽𝑃 from the primary 

tumor histology and the primary tumor size at diagnosis. Since on the other hand 

𝑒𝑥𝑝(𝛼/𝛽) = 1012 for the metastases’ dynamics, the parameter 𝛽 was determined from 

the value of parameter 𝛼, which in turn was a fitted parameter (cf. Fitting procedure). 
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S4: Numerical implementation: calculate metastases 

Since we assumed that the primary tumor was the only source for metastases, we applied 

the procedure from 60 to calculate the absolute number of metastases 𝑁(𝑡) at a certain 

time 𝑡 from 

𝑁(𝑡) = ∫ 𝜇
𝑡

0

𝑆𝑃(𝜏)𝛾𝑑𝜏 

and to introduce the cumulative size distribution 𝑓(𝑡, 𝑠) as the number of metastases 

larger than a fixed size 𝑠 at a certain time 𝑡 as 

𝑓(𝑡, 𝑠) = ∫ 𝜌
exp(

𝛼
𝛽

)

𝑠

(𝑡, 𝜎)𝑑𝜎. 

With 𝑡(𝑠) as the time for a tumor to reach size 𝑠 under Gompertz growth60 we receive 

𝑓(𝑡, 𝑠) = 𝑁(𝑡 − 𝑡(𝑠)) 

with 

𝑡(𝑠) = −
1

𝛽𝑚
ln (1 −

𝛽

𝛼
ln(𝑠)). 

These numbers are the values that we observed clinically - the visible BMs in the data 

are assumed to correspond to the sizes of metastases larger than the volume 

corresponding to a diameter measurement of three mm. Thus, the number of metastases 

larger than this threshold size 𝑠𝑣 at time 𝑡 can be calculated as 𝑓(𝑡, 𝑠𝑣). 
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S5: Model simulations for every individual patient of the data set 

The explanation of every subpanel is given in the description of figure 3 of the main text. 
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