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OBJECTIVES

Let consider (X,Y ) ∈ IR2 and a regression model
to predict the value of Y from that of X ,

Y = m(X) + σ(X)ε,

where m(·) is the regression function, σ2(·) the
variance function et ε the random error term.

In addition to assumptions about the functional
form of the regression function and the variance
function, this model requires that the random er-
ror term is additive, independent ofX and is often
assumed to follow the normal distributionN(0, 1).
Many tests have been proposed to assess these as-
sumptions. Most of them are “directional” in that

they detect departures from mainly this given as-
sumption of the model. When a number of direc-
tional tests are applied to the same model, each re-
quiring the correctness of other assumptions, the
assessment of the overall validity of the model
may become a difficult matter to untangle.

We focus on the task of choosing the structural
part σ2(·). Dette et al. [1] and Pardo-Fernández et
al. [2] proposed directional tests to valid the form
of the variance function while Ducharme et al. [3]
proposed a global test.

We propose to compare these previous tests
through simulations.

MODEL
The simulated model was taken to be

Y = 1 + sin(X) + σ(X)ε (1)

where σ(X) = 0.5∗ exp(cX) and the term c, given
by 0, 0.5, 1, represents the deviation from the null
hypothesis. The null hypothesis consists in the
homoscedastic model σ(X) = 0.5 (c = 0). We also
suppose thatX ∼ U([0; 1]), ε ∼ N(0, 1), and ε and
X are independent. We use Wild bootstrap [4]
procedures to calculate the critical test value for
finite samples. The null hypothesis is rejected if
the test statistic is bigger than the (1−α)-quantile
(α = 0.05) of the wild bootstrap distribution of
the test statistic.

RESULTS AND CONCLUSIONS
For each combination of factors, the experiment
is replicated 50 times. The wild bootstrap resam-
pling has been performed 50 times for each sam-
ple. We use the Epanechnikov kernel and opti-
mal bandwidths to calculate nonparametric esti-
mators of the different functions used in the three
tests. We compare the results for two sample sizes
: n = 100 and n = 200.

n = 100 Test1 Test2 Test3
c = 0 0.02 0.09 0.06
c = 0.5 0.74 0.92 0.24
c = 1 0.96 1 0.66

n = 200 Test1 Test2 Test3
c = 0 0.04 0.06 0.03
c = 0.5 0.92 0.96 0.5
c = 1 1 1 0.72

i) Under the null hypothesis, the proportions of
rejection are similar to the theoretical level, espe-
cially for the two directional tests and n = 200.
ii) Under the alternatives, the different results are
globally better as n increases but the global test is
not as efficient as the directional tests.

More complete results will be given in a forth-
coming article and a tool will be offered to users
of this type of model to test their validity in dif-
ferent ways.
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DETTE et al. (TEST1)
Test hypothesis:

H0 : σ2(x) = σ2
0(x) vs H1 : σ2(x) 6= σ2

0(x)

where σ2
0(x) is the variance function associated to

the model (1). The test statistic (under H0) is:

Tn = n

∫ (
F̂ε(x)− F̂ε0(x)

)2
dF̂ε(x)

where ε = {Y − m(X)}/σ(X) are the standard-
ized residuals and F̂ε(x) is the Nadaraya-Watson
nonparametric estimate of the distribution func-
tion Fε.

Wild bootstrap procedure and test statistic:

(X,Y )

m̂n(X)

ε̂ = Y − m̂n(X)

ε̂b = U × ε̂

Yb = m̂n(X) + ε̂bYb = m̂n(X) + ε̂b

T bn = n

∫ (
F̂ε(y)− F̂ bε (y)

)2
dF̂ bε (y)

whereU is Normal, Mammen or Rademacher dis-
tribution and F̂ bε (y) is calculated from (X,Yb).

PARDO-FERNÁNDEZ et al. (TEST2)
Test hypothesis:

H0 : σ2(x) = σ2
0(x) vs H1 : σ2(x) 6= σ2

0(x)

where σ2
0(x) is the variance function associated to

the model (1). The test statistic (under H0) is:

Tn = n

∫ (
φ̂(y)− φ0(y)

)2
w(y)dy

where φ̂(y) is the Nadaraya-Watson nonparamet-
ric estimator of the characteristic function and
w(·) the pdf of a normal distribution.

Wild bootstrap procedure and test statistic:

(X,Y )

m̂n(X)

ε̂ = Y − m̂n(X)

ε̂b = U × ε̂

Yb = m̂n(X) + ε̂bYb = m̂n(X) + ε̂b

T bn = n

∫ (
φ̂(y)− φ̂b(y)

)2
w(y)dy

whereU is Normal, Mammen or Rademacher dis-
tribution and φ̂b(y) is calculated from (X,Yb).

DUCHARME et al. (TEST3)
Test hypothesis:

H0 : F (y|x) = F0(y|x) vs H1 : F (y|x) 6= F0(y|x)

where F0(y|x) is the conditionnal distribution as-
sociated to the model (1). The test statistic (under
H0) is:

Tn = n
√
h

∫ ∫ (
F̂n(y|x)− F0(y|x)

)2
F0(dy|x)dx

where F̂n(y|x) is the local linear estimator of the
conditional distribution function and h a band-
width.

Wild bootstrap procedure and test statistic:

(X,Y )

F̂n(Y |X)

m̂n(X) ε̂ = Y − m̂n(X)

ε̂b = U × ε̂

Yb = m̂n(X) + ε̂bYb = m̂n(X) + ε̂b

T bn = n
√
h

∫ ∫ (
F̂n(y|x)− F̂ bn(y|x)

)2
F̂ bn(dy|x)dx

whereU is Normal, Mammen or Rademacher dis-
tribution and F̂ bn(y|x) is calculated from (X,Yb).


