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How can infants detect where words or morphemes start and end in the continuous stream of speech? Previous computational studies have investigated this question mainly for English, where morpheme and word boundaries are often isomorphic. Yet in many languages, words are often multimorphemic, such that word and morpheme boundaries do not align. Our study employed corpora of two languages that differ in the complexity of inflectional morphology, Chintang (Sino-Tibetan) and Japanese. It further employed corpora of artificial languages ranging in morphological complexity, as measured by the ratio and distribution of morphemes per word. We used two baselines and three conceptually diverse word segmentation algorithms, two of which rely purely on sublexical information using distributional cues, and one that builds a lexicon. The algorithms' performance was evaluated on both word-and morpheme-level representations of the corpora. Segmentation results were better for the morphologically simpler languages than for the morphologically more complex languages, in line with the hypothesis that languages with greater inflectional complexity could be more difficult to segment into words. We further show that the effect of morphological complexity is relatively small, compared to that of algorithm and evaluation level. We therefore recommend that infant researchers look for signatures of the different segmentation algorithms and strategies, before looking for differences in infant segmentation landmarks across languages varying in complexity.

Introduction

Typically-developing children acquire language effortlessly and implicitly in the first years of their life. They process linguistic material provided by their caregivers and others around them using robust learning mechanisms that do not require meta-linguistic awareness. Infants begin learning the building blocks of language, i.e., words or morphemes, from very early on, achieving a comprehension vocabulary of hundreds of words by two years of age [START_REF] Bates | Developmental and stylistic variation in the composition of early vocabulary[END_REF]. More precisely, during the first year of life, infants might build up a proto-lexicon storing candidate phonological forms (often called wordforms), forms that they have found in their spoken input, without necessarily learning what the forms' meaning or grammatical functions are [START_REF] Ngon | Non) words, (non) words, (non) words: Evidence for a protolexicon during the first year of life[END_REF]. Here, we report on a series of computational experiments that seek to shed light on the specific processes that young language learners could use when segmenting the incoming speech signal into word-like forms. Setting aside how infants learn the meaning and the grammatical function of these forms, we focus on how infants could find the phonological forms of those minimal meaningful recombinable units (be it words or morphemes), and how they can break up the sentences they hear -that is, how they insert "mental pauses" that separate a sentence into its component units.

From cues to algorithms

To break up the speech stream into its component units, infants can use a variety of algorithms, each of which requires specific cues -different cues contributing to segmentation.

We can liken an algorithm to a recipe to be followed: it states the steps that the learner or listener takes. In this metaphor, cues are the ingredients in the recipe -they are pieces of information that the learner looks for in the input if and only if those pieces of information are recruited by the algorithm. For instance, infants could start by breaking up the stream into sentences by using pauses, intonation, and preboundary lengthening [START_REF] Shukla | Prosody guides the rapid mapping of auditory word forms onto visual objects in 6-mo-old infants[END_REF] -although this would not take them very far as they still need to insert "mental pauses" between all the words (or morphemes) inside the sentence. To the latter end, they could use two language-general cues that are present in the phonetic signal: co-articulation [START_REF] Norris | The possible-word constraint in the segmentation of continuous speech[END_REF], and constraints on stranded material (E. K. [START_REF] Johnson | Word segmentation by 8-month-olds: When speech cues count more than statistics[END_REF]. The recipe based on co-articulation would require infants to have learned all the phonemes in their language, and to have learned that a given phoneme can be shifted slightly by neighboring phonemes, and further that this shift is greater within words than across word boundaries. Although this algorithm is complex, there exists a laboratory study showing that, in ideal conditions, infants do employ co-articulation when finding the edges of words [START_REF] Norris | The possible-word constraint in the segmentation of continuous speech[END_REF]. As for constraints on stranded material, another laboratory experiment showed that infants did not insert "mental pauses" in the sentences they heard if doing so would have left an ill-formed syllable (E. K. [START_REF] Johnson | Word segmentation by 8-month-olds: When speech cues count more than statistics[END_REF].

In addition, other algorithms can be identified when infants learn other statistical properties present in their input, and then use this information to cut up sentences into smaller parts. Previous laboratory work has shown that, even in the first year, infants use words [START_REF] Bortfeld | Mommy and me: Familiar names help launch babies into speech-stream segmentation[END_REF][START_REF] Mersad | When mommy comes to the rescue of statistics: Infants combine top-down and bottom-up cues to segment speech[END_REF], syllable sequences [START_REF] Black | Quantifying infants' statistical word segmentation: A meta-analysis[END_REF], and phone sequence patterns [START_REF] Mattys | Phonotactic cues for segmentation of fluent speech by infants[END_REF] as segmentation cues. Cutting up a sentence when the infant recognizes a word, or a low-probability sequence, are strategies that should work on all languages, since all languages have words and morphemes (which are repeating units that could be memorized by the child) and sequence patterns in the form of phonotactics. 1 In other words, the infant would add a mental boundary before and after a recognized word, separating the phrase in two word-like chunks. Similarly, the infant would add a mental boundary in the middle of a low-probability sequence, separating the two chunks.

1 Infants could also learn other regularities that can only help in some languages. For example, English learners use stress to segment, cutting just before a stressed syllable, at around 7.5 months [START_REF] Jusczyk | The beginnings of word segmentation in english-learning infants[END_REF]. However, they abandon this strategy by 10.5 months, which is fortunate because such a strategy causes mis-segmentation of all words that do not start with a strong syllable (like guitar; [START_REF] Jusczyk | The beginnings of word segmentation in english-learning infants[END_REF]. Infants learning Turkish, but not German learners, use vowel harmony cues when segmenting words [START_REF] Van Kampen | Metrical and statistical cues for word segmentation: The use of vowel harmony and word stress as cues to word boundaries by 6-and 9-month-old turkish learners[END_REF]. We do not discuss these strategies in this paper because they are language-specific: stress mostly helps in languages with fixed stress, vowel harmony in languages with vowel harmony. Since our paper is among the first to study potential differences across languages, it seems important to start with strategies that can be used in all human languages (such as the ones mentioned above, cutting up a sentence when recognizing a word, or a low-probability sequence.

Thus, a variety of algorithms (or recipes for inserting "mental pauses" within sentences) have been documented in controlled laboratory experiments. Although this work is crucial because it proves that certain algorithms are active in the young child, it does not tell us several things. First, it does not tell us whether these strategies, that are carefully isolated in the lab, are actually functional in the real world [START_REF] Keren-Portnoy | Do infants learn from isolated words? an ecological study[END_REF]. Second, it does not tell us, if they were functional, whether they would be successful in retrieving at least some word or morpheme units from infants' everyday input in various languages. Our work seeks to address the latter limitation; we return to the former limitation in the Discussion.

How can we know whether an algorithm could succeed when provided with realistic input? One approach is to use computational modeling. Computational models allow us to study learnability in vitro, controlling for factors that are impossible to control in an experiment with human infants. Like infants, these computational models learn in an unsupervised manner, meaning that they do not have access to any kind of feedback (i.e., external information on whether they are doing well or poorly) nor to other information the infant would not have access to (e.g., a syntactic parse or detailed meaning of the sentence).

Computational modeling aiming to break up sentences into its component units has explored three classes of algorithms: lexical, sublexical, and baseline. Algorithms in the lexical class aim to build a proto-lexicon of forms. They may try to find the most economical system of minimal units needed to reproduce the input corpus (e.g., [START_REF] Brent | Distributional regularity and phonotactic constraints are useful for segmentation[END_REF], or alternatively they memorize sound sequences, for instance those that are encountered in isolation (e.g., [START_REF] Monaghan | Words in puddles of sound: Modelling psycholinguistic effects in speech segmentation[END_REF]. We know that young infants have an algorithm like this one in their toolkit thanks to [START_REF] Bortfeld | Mommy and me: Familiar names help launch babies into speech-stream segmentation[END_REF]. In that study, infants heard phrases like 'The girl laughed at Mommy's feet.' At test, they demonstrated recognition of the word 'feet', showing that they had used the familiar word 'Mommy' to insert a "mental break" which left 'feet' on its own. (Infants didn't recognize the word 'feet' after familiarization to sentences like 'The girl laughed at Tommy's feet.') We will discuss below that previous modeling work has typically evaluated segmentation considering word breaks, and not morpheme breaks. This does not mean that lexical algorithms necessarily segment at the word level; in fact, particularly algorithms that try to find the most economical system of minimal units may actually find that the optimal solution is to store morphemes, and not full words.

Algorithms in the sublexical class aim instead to find local cues allowing the learner to insert "mental pauses" (e.g., [START_REF] Saksida | Co-occurrence statistics as a language-dependent cue for speech segmentation[END_REF]. These local cues could be unusual sound or syllable sequences. Experimental research has shown that this strategy is active in young infants by composing artificial languages in which only syllable sequences (Saffran, Aslin & Newport, 1996) or sound sequences [START_REF] Mattys | Phonotactic and prosodic effects on word segmentation in infants[END_REF] signal where the "mental pauses" might be. As with the lexical algorithms, we would like to stress that even though previous computational models building on sublexical approaches have evaluated segmentation at the word level e.g. [START_REF] Daland | Learning diphone-based segmentation[END_REF][START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF][START_REF] Saksida | Co-occurrence statistics as a language-dependent cue for speech segmentation[END_REF], it is entirely plausible that distributional statistics will result in morpheme breaks being discoverable.

Finally, previous literature has sometimes used word segmentation baselines to evaluate the performance of algorithms [START_REF] Çöltekin | Catching words in a stream of speech: Computational simulations of segmenting transcribed child-directed speech[END_REF][START_REF] Lignos | Infant word segmentation: An incremental, integrated model[END_REF][START_REF] Venkataraman | A statistical model for word discovery in transcribed speech[END_REF]. Baselines represent the simplest strategies possible; for example, treating each basic minimal unit (phoneme or syllable) as words, or treating whole utterances as words. Although we will treat these as baselines in this paper, some have actually proposed the latter as a real strategy infants employ. In particular, [START_REF] Keren-Portnoy | Do infants learn from isolated words? an ecological study[END_REF] propose that, in realistic conditions, 12-month-olds will only retain words presented in isolation, and not those presented in sentence frames, suggesting that only the former can integrate a long-term proto-lexicon (see also [START_REF] Brent | The role of exposure to isolated words in early vocabulary development[END_REF] for converging evidence). To our knowledge, the strategy of segmenting each syllable separately has not been proposed for infants (a point to which we return in the Discussion).

Cross-linguistic performance

It has been proposed that language acquisition may not be a homogeneous process, identical in children regardless of the language they are acquiring, but instead that the acquisition process may vary across typologically diverse languages as a function of their grammatical structures [START_REF] Slobin | The crosslinguistic study of language acquisition: Theoretical issues[END_REF]. However, the proportion of languages whose acquisition is represented in the literature is low (e.g. [START_REF] Stoll | Crosslinguistic approaches to language acquisition[END_REF][START_REF] Stoll | Studying language acquisition cross-linguistically[END_REF], and the majority of papers on first language development are on English [START_REF] Slobin | Before the beginning: The development of tools of the trade[END_REF]. This sampling bias is problematic because English is not an "average" language, particularly in terms of the properties that may influence segmentation. Most English words have few or no morphemes other than the stem [START_REF] Aikhenvald | Typological distinctions in word-formation[END_REF]: the maximum number of (inflectional) morphemes per word in English is 3 [START_REF] Stoll | The acquisition of polysynthetic verb forms in Chintang. Handbook of Polysynthesis[END_REF], which is on the lower end of the typological range [START_REF] Bickel | Inflectional morphology[END_REF], 2013b). In English, word, morpheme, and syllable boundaries usually coincide [START_REF] Dekeyser | What makes learning second-language grammar difficult? A review of issues[END_REF]; see also Discussion, regarding performance of the baseline algorithm that segments at every syllable edge).

Many other languages are characterized by rich inflectional morphology so that they often feature multi-morphemic words. For example, Turkish has a rich concatenative inflectional morphology (Bickel & Nichols, 2013a, 2013b;[START_REF] Ketrez | Early nominal morphology in Turkish: Emergence of case and number[END_REF]. Others are extremely complex such as the polysynthetic language Chintang (a Sino-Tibetan language spoken in the Himalayas of Eastern Nepal, [START_REF] Stoll | The acquisition of polysynthetic verb forms in Chintang. Handbook of Polysynthesis[END_REF] and Eskimo-Aleut languages such as Inuktitut [START_REF] Allen | Aspects of argument structure acquisition in inuktitut[END_REF]Bickel & Nichols, 2013b). There is no common agreement on how to measure morphological complexity cross-linguistically (cf. [START_REF] Bane | Quantifying and measuring morphological complexity[END_REF][START_REF] Bentz | A comparison between morphological complexity measures: Typological data vs. language corpora[END_REF][START_REF] Mcwhorter | The worlds simplest grammars are creole grammars[END_REF][START_REF] Miestamo | Grammatical complexity in a cross-linguistic perspective[END_REF][START_REF] Shosted | Correlating complexity: A typological approach[END_REF]. Nonetheless, the goal of this paper is not to look at all aspects of morphological complexity, but to focus on one that seems particularly relevant in the study of segmentation, namely inflectional complexity, which means that content words will have more or fewer affixes, and thus that the boundaries of words and morphemes will align more or less well. In this paper, we will speak exclusively of morphological complexity in terms of inflectional synthesis as defined by Bickel and Nichols (2013b): number of inflectional categories (agreement, tense/aspect/mood, evidentials/miratives, status, polarity, illocution, voice) expressed (the definition is drawn from Bickel & Nichols, 2013b for WALS classification).

Computational modeling work has started to investigate word segmentation in various languages [START_REF] Batchelder | Bootstrapping the lexicon: A computational model of infant speech segmentation[END_REF][START_REF] Blanchard | Modeling the contribution of phonotactic cues to the problem of word segmentation[END_REF][START_REF] Caines | The cross-linguistic performance of word segmentation models over time[END_REF][START_REF] Daland | Word segmentation, word recognition, and word learning: A computational model of first language acquisition[END_REF][START_REF] Fleck | Lexicalized phonotactic word segmentation[END_REF][START_REF] Fourtassi | WhyisEnglishsoeasytosegment[END_REF][START_REF] Kastner | Linguistic constraints on statistical word segmentation: The role of consonants in Arabic and English[END_REF]Pearl & Phillips, 2018;[START_REF] Saksida | Co-occurrence statistics as a language-dependent cue for speech segmentation[END_REF]. Providing a thorough overview of their findings is beyond the scope of the present study, but we would like to highlight that most previous work attempts to check how a given algorithm performs cross-linguistically to argue for the validity of the algorithm the authors of those studies proposed, rather than to understand whether language properties affect segmentation in a systematic way (e.g., [START_REF] Batchelder | Bootstrapping the lexicon: A computational model of infant speech segmentation[END_REF][START_REF] Boruta | Testing the robustness of online word segmentation: Effects of linguistic diversity and phonetic variation[END_REF][START_REF] Johnson | Unsupervised word segmentation for Sesotho using Adaptor Grammars[END_REF][START_REF] Pearl | Evaluating language acquisition models: A utility-based look at Bayesian segmentation[END_REF]Phillips and Pearl, 2014a). Exceptions include studies that try to explain away cross-linguistic differences on the basis of corpus characteristics (e.g., [START_REF] Caines | The cross-linguistic performance of word segmentation models over time[END_REF][START_REF] Fourtassi | WhyisEnglishsoeasytosegment[END_REF], and work assessing the effect of prosodic and syntactic structure such as head direction (saliently, [START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF][START_REF] Saksida | Co-occurrence statistics as a language-dependent cue for speech segmentation[END_REF], or the effects of input representation [START_REF] Kastner | Linguistic constraints on statistical word segmentation: The role of consonants in Arabic and English[END_REF]. However, these factors are orthogonal to the present study (i.e., they are not necessarily confounded with morphological complexity). Therefore, they will not be discussed any further.

Goal of segmentation

The current standard for modeling studies is to evaluate segmentation algorithms on the word level [START_REF] Daland | Word segmentation, word recognition, and word learning: A computational model of first language acquisition[END_REF]. Several reasons made us wonder whether evaluation on the word level alone is optimal.

To begin with, there are at least three notions of "word": orthographic word, grammatical word, and prosodic word. According to [START_REF] Haspelmath | The indeterminacy of word segmentation and the nature of morphology and syntax[END_REF], orthographic spaces are to some extent guided by language structure, even though spelling can be purely conventional in some cases. Grammatical words are units defined by morphosyntactic criteria, such as cohesiveness, fixed internal order, and conventional meaning. Finally, phonological words are units defined by phonological criteria, such as segmental and prosodic features like stress [START_REF] Dixon | Word: A cross-linguistic typology[END_REF].

Words are not the only meaningful, recombinable units that may be found in running speech. Morphemes can be defined as the minimal meaningful units. Moreover, morphemes and words are not homogeneous classes. For example, functional elements make up a class that cuts across words and morphemes, containing both function words (words expressing grammatical or structural relationship with other words in the sentence) and affixes. Although these definitions seem easy in the abstract, there is no single and standard definition across languages of any of these levels [START_REF] Bickel | Inflectional morphology[END_REF][START_REF] Bickel | The 'word' in polysynthetic languages: Phonological and syntactic challenges[END_REF].

Is there evidence of what units infants are finding when they segment sentences? Carefully reading experimental evidence, we found some of it suggests that infants can segment phonological words (E. K. [START_REF] Johnson | Word segmentation by 8-month-olds: When speech cues count more than statistics[END_REF] as well as morphemes [START_REF] Marquis | The beginning of morphological learning: Evidence from verb morpheme processing in preverbal infants[END_REF][START_REF] Mintz | The segmentation of sub-lexical morphemes in English-learning 15-month-olds[END_REF] out of running speech. Furthermore, they can segment functional elements early on [START_REF] Hallé | Do 11-month-old French infants process articles?[END_REF][START_REF] Höhle | German-learning infants' ability to detect unstressed closed-class elements in continuous speech[END_REF][START_REF] Marquis | The beginning of morphological learning: Evidence from verb morpheme processing in preverbal infants[END_REF][START_REF] Mintz | The segmentation of sub-lexical morphemes in English-learning 15-month-olds[END_REF][START_REF] Shi | Recognition of function words in 8-month-old French-learning infants[END_REF][START_REF] Shi | The effect of functional morphemes on word segmentation in preverbal infants[END_REF][START_REF] Shi | Segmentation and representation of function words in preverbal French-learning infants[END_REF], but this work has not discussed clearly whether these functional elements are best described as words or morphemes.

The majority of this research looks at what may be described as functional words (typically determiners, with the exception of [START_REF] Höhle | German-learning infants' ability to detect unstressed closed-class elements in continuous speech[END_REF], who looked at prepositions). Two papers looked at verbal affixes, namely [START_REF] Mintz | The segmentation of sub-lexical morphemes in English-learning 15-month-olds[END_REF], who demonstrated that English-learning 15 month-olds will strip -ing from verbs but not non-verbs; [START_REF] Marquis | The beginning of morphological learning: Evidence from verb morpheme processing in preverbal infants[END_REF], who reported that 14-month-old French learners familiarized with a novel verb with one affix will nonetheless recognize this verb at test when it is followed by a different affix. Although evidence is scant, we believe it is sufficient to entertain the possibility that infants break segments up not at the word level, but rather at the morpheme level.

On the modeling side, most previous work has evaluated segmentation on orthographic words. In fact, since child-centered corpora are rarely annotated at the level of morphemes, previous computational work looking at infant word segmentation has never quantitatively evaluated performance on the morpheme level (cf. M. [START_REF] Johnson | Unsupervised word segmentation for Sesotho using Adaptor Grammars[END_REF], but see work directly aiming at unsupervised or weakly supervised morphological segmentation e.g. [START_REF] Ruokolainen | A comparative study of minimally supervised morphological segmentation[END_REF]. When morphemes are discussed, this is typically in the context of a qualitative discussion.

In a nutshell, to model how learners break up sentences into smaller units, evaluating computational modeling results at the level of both words and morphemes is a more informative approach.

Key Questions and Predictions

The key questions motivating this study are:

1. Do languages which vary in morphological complexity differ in segmentability? 2. How large is this effect, compared to others -notably differences across algorithms and as a function of whether evaluation is done at the level of words or morphemes?

Given that the process of segmentation involves cutting up sentences into units, languages in which morphemes are isomorphic with words may be easier to segment than languages in which words tend to have multiple morphemes.2 To begin with, surface statistics (recruited by sublexical algorithms) could be less informative across morpheme boundaries within words than across word boundaries, given that morphemes that follow each other within a word may tend to co-occur more than words within a collocation.

Additionally, the lexicon of languages with higher inflectional complexity may also differ from that of simpler languages in ways that may affect the cues employed by lexical algorithms. Specifically, languages varying in morphological complexity differ in the frequency of lexical units (words and morphemes). Corpora of morphologically rich languages such as Chintang contain fewer repetitions of each word type, as well as a higher proportion of hapaxes -forms that occur only once -than languages with little morphology [START_REF] Stoll | The acquisition of polysynthetic verb forms in Chintang. Handbook of Polysynthesis[END_REF]. For example, there was a higher proportion of hapaxes in a Japanese than an English corpus, and a lower likelihood of correct identification by a lexicon-building algorithm for hapaxes than words with more repetitions [START_REF] Boruta | Testing the robustness of online word segmentation: Effects of linguistic diversity and phonetic variation[END_REF].

Both lexical and sublexical algorithms might detect word parts such as morphemes, separating a stem from its suffixes be it because local statistics are compatible with a break (in sublexical algorithms), or because it is economical to store the suffixes separately from their stems (in lexical algorithms). This behavior would be rewarded when the algorithm is evaluated on morpheme boundaries, but penalized when it is evaluated on word boundaries. Given all of these reasons, we predict that languages that are morphologically less complex will result in higher segmentation scores than languages that are more complex. We also wanted to establish how large this effect was, in order to be able to provide informed predictions to be tested through infant experiments. We compared the segmentability difference as a function of language complexity against two other factors, which we call level and algorithm. Level refers to whether segmentation is evaluated at the level of words or morphemes. Algorithm refers to the specific strategy employed during segmentation.

Experiment 1

In this experiment, we study whether languages varying in morphological complexity differ in segmentability by assessing segmentability of two morphologically diverse languages, Japanese (Japonic) and Chintang (Sino-Tibetan) (see details in section 2.1.1). Chintang exhibits an extreme degree of morphological complexity. Thus, lower performance is predicted for Chintang compared to Japanese, the morphologically less complex language.

Additionally, this study examines how considerable this effect is. To put the effect of language differences into context, we considered differences in performance across algorithms (six unsupervised word segmentation models and two baselines, see details in section 2.1.4), as well as differences in performance across evaluation levels.

Since this is the first study looking at the question of performance differences across evaluation levels, exploratory analyses assess whether included algorithms tend to segment morphemes or words by looking at how performance varies as a function of the level of linguistic representation on which segmentation is evaluated. If algorithms tend to segment morphemes, then performance will be better when evaluating on this level, but if they tend to segment words, performance will be better for orthographic words than for morphemes. We further report percentage of under-and oversegmentation on each level.

Methods

In this section, we detail several stages of analysis: language choice, corpus choice, corpus preparation, phonologization, description, segmentation, and evaluation. Corpus preparation and phonologization were carried out using custom scripts written mainly in bash. Corpus statistics, unsupervised word segmentation, and evaluation employed the WordSeg package [START_REF] Bernard | Wordseg: Standardizing unsupervised word form segmentation from text[END_REF] 3 . The WordSeg package provides a collection of tools for text-based word segmentation. Finally, statistical analyses were performed in R ( [START_REF] Core | R: A language and environment for statistical computing[END_REF]. More details can be found at https://osf.io/e8d2r/?view_only=f9d7b6a307734268bd8a515c55255b69. This OSF page contains scripts, results including segmentation performance and statistics, and other supplementary material.

Languages.

In this Experiment, corpora from two morphologically diverse languages are studied, Japanese and Chintang. Both languages were chosen on the basis of their typological characteristics and are part of the ACQDIV database, which contains longitudinal corpora of language acquisition for 10 maximally diverse languages (Moran, Schikowski, Pajović, Hysi & Stoll, 2016; Stoll & Bickel, 2013). 4 Chintang and Japanese are in two different clusters. The main feature of interest in the present paper is their difference in the degree of synthesis, which allowed us to study the effect of morphological complexity. The degree of morphological synthesis was measured by looking for the maximally inflected verb and noun forms, and determining the number of grammatical and lexical categories (morphosyntactic features) encoded in that word form.

Chintang, a Sino-Tibetan language of the Kiranti branch (approx. 6000 speakers, Eastern Nepal), has higher verb and noun synthesis than Japanese (as just mentioned, measured in number of such categories expressed in the most complex word form; compare Bickel et al., 2007 for Chintang, and[START_REF] Kuno | The structure of the Japanese language[END_REF][START_REF] Tsujimura | An introduction to Japanese linguistics[END_REF] for Japanese), with up to 10 morphemes per word, versus up to 5 for Japanese 5 . A good argument for the rich morphological system of the Chintang language is provided by [START_REF] Stoll | The acquisition of polysynthetic verb forms in Chintang. Handbook of Polysynthesis[END_REF], who point out there are 148 unique grammatical elements that can occur together with a verb stem in the corpus6 . Although some forms of verbs are 4 To create this database, a new approach of sampling languages was introduced, called the Maximum-Diversity approach. More than 10 major typological variables that characterize inflectional marking (grammatical case, exponence, possessor agreement, inflectional compactness, syncretism, verb position, verb agreement, split ergativity of agreement markers, split ergativity of case, verbal synthesis, nominal synthesis) were considered [START_REF] Stoll | Capturing diversity in language acquisition research[END_REF]. Languages were sampled from the two largest typological databases, WALS (Word Atlas of Language Structures) (Dryer & Haspelmath, 2013) and AUTOTYP (Bickel et al., 2017;[START_REF] Nichols | The AUTOTYP genealogy and geography database: 2013 release[END_REF], resulting in 5 clusters of maximally diverse languages.

5 Phonological complexity (phonemic inventory and syllabic structure) is similar across the two languages (Bickel et al., 2007;[START_REF] Shibatani | The world's major languages[END_REF][START_REF] Tsujimura | An introduction to Japanese linguistics[END_REF]. The verb is accompanied by four distinct functional morphemes 7 . Japanese has moderate verb synthesis, expressing categories such as tense, voice, mood and polarity. A maximally inflected Japanese verb form would include 4-5 categories (Bickel & Nichols, 2013b;Hinds, 1986;[START_REF] Shibatani | The world's major languages[END_REF]. Overall, Japanese has fewer forms both in its noun and verb paradigms and a smaller number of morphosyntactic features expressed, especially in the verb. Here are two sample adult utterances from the Japanese corpus (MYJCu44.1390521 and MYJCu832.1419814 respectively).

( 2 The Japanese data consist of 2 corpora, MiiPro (Miyata & Nisisawa, 2009, 2010;Nisisawa & Miyata, 2009, 2010) and Miyata (Miyata, 2004a[START_REF] Miyata | Japanese: Ryo corpus[END_REF][START_REF] Miyata | Japanese: Tai corpus[END_REF]. Recordings took place indoors, mostly at home and there was often just one caregiver conversing with the child. They contain data for 7 Japanese children aged 1;4-5;1 years old. For the MiiPro corpus, the recordings took place every week from 1;2 to 3;0 and later every 1 or 2 months, and lasted 70 minutes per session. For the Miyata corpus, recordings took place every week and lasted 40-60 minutes.

After data collection, both corpora were first transcribed orthographically, and then annotated morphologically. More information on the annotation process for Chintang can be found in [START_REF] Stoll | Child corpora[END_REF] and [START_REF] Gaenszle | Research report: the Chintang and Puma Documentation Project (CPDP)[END_REF]; see Miyata and Naka (2006) for information on annotation of the Japanese corpora. In the Chintang corpus, the transcription was done by native speakers and was susceptible to their impression of what an utterance was. This mainly corresponds to clauses marked by intonation. As for the Japanese corpus, there is no information on how utterance boundaries were defined. Documentation suggests the data were transcribed based on the Wakachi format [START_REF] Miyata | Wakachigaki Guideline for Japanese: WAKACHI98 v.1.1[END_REF]. As for the morphological annotation, for Chintang, most of the corpus was hand-segmented and manually annotated for morphology and parts-of-speech by trained linguistic students. The training took several weeks and was supervised by an expert in this language. A small part of the morphological annotation was generated automatically based on a morphological tagger [START_REF] Ruzsics | Neural sequence-to-sequence learning of internal word structure[END_REF][START_REF] Samardzic | Automatic interlinear glossing as two-level sequence classification[END_REF]. Japanese morphological tagging was done with the morphological tagger in CHILDES (JMOR, [START_REF] Miyata | JMOR06.2: The Japanese morphological analysis program based on CLAN[END_REF]. For information on the data, see also the ACQDIV manual [START_REF] Schikowski | Manual for the ACQDIV corpus[END_REF].

Corpus preparation.

Word segmentation algorithms usually take as input phonological, symbolic text-like representations such as phonemes or syllables, with few exceptions (e.g., [START_REF] Ludusan | Motif discovery in infant-and adult-directed speech[END_REF][START_REF] Ludusan | Motif discovery in infant-and adult-directed speech[END_REF][START_REF] Roy | Learning words from sights and sounds: A computational model[END_REF][START_REF] Roy | Learning words from sights and sounds: A computational model[END_REF], who applied segmentation algorithms on raw speech data). There is evidence that even newborns have access to syllables (or vowels) as perceptual units [START_REF] Jusczyk | Young infants' retention of information about bisyllabic utterances[END_REF], and that representation of phoneme sequences is available as early as by four months [START_REF] Seidl | Allophonic and phonemic contrasts in infants' learning of sound patterns[END_REF]. It is challenging to represent certain cues in text-like representations, such as coarticulation, which will therefore not be studied here. Here, we use phonemized representations as input [START_REF] Moran | The unicode cookbook for linguists: Managing writing systems using orthography profiles[END_REF], without prosodic or coarticulation cues.

Neither of the two languages exists in open source phonologization or

text-to-speech programs, so we applied grapheme-to-phoneme rules to derive the phonological representation8 [START_REF] Moran | The unicode cookbook for linguists: Managing writing systems using orthography profiles[END_REF]. We also cleaned the text from any punctuation and annotations. All utterances containing "???" (which indicates incomprehensible speech or impossible morpheme annotation) were removed from both word-and morpheme-level analyses. We also removed utterances where one of the morphemes had been transcribed into an abstract, unpronounceable code (such as FS_N or kV), from both analyses.

Following [START_REF] Phillips | Bayesian inference as a viable cross-linguistic word segmentation strategy: It's all about what's useful[END_REF], we syllabified the corpora using the Maximal Onset Principle. According to this principle, the beginning of a syllable (onset) should be as large as legally possible [START_REF] Bartlett | On the syllabification of phonemes[END_REF][START_REF] Kahn | Syllable-based generalizations in english phonology[END_REF]. We syllabified as follows, for each language separately. First, we made a list of vowels present in the corpus. Second, we made a list of all valid word-initial onsets, defined as all consonants up to the first vowel of the word or morpheme. Third, each utterance was processed from right to left until a vowel was found, at which point consonants to its left would be clustered to the maximally largest onset appearing in the list just mentioned (Phillips & Pearl, 2018). Notice that this procedure does not syllabify over morpheme or word boundaries (so boundaries cannot be re-syllabified or obscured). Both corpora are larger than those frequently used for modeling studies (e.g., Saksida et al., 2017, 10,000 words;Phillips and Pearl, 2014b, 30,000 utterances). This allowed us to further divide each corpus into ten equal subsets, based on their length measured in number of utterances, in order to better estimate the variation in the properties of the segmentation algorithms. After pre-processing, the entire Japanese corpus was 84,518 utterances long and had 155,805 word tokens. The Chintang corpus was 152,571 utterances long and had 426,288 word tokens. Table 1 gives properties of the subsets after pre-processing. Right before segmentation, within-utterance word boundaries were removed from the corpora, and only utterance boundaries remained.

Regarding the use of orthographic words, it was preferable over other definitions of wordhood for three reasons. First, it allows comparison with previous computational work. Second, it was already available in the corpora we were using. Third, it is unclear that it is much worse or much better than alternative definitions. Phonological and morphosyntactic criteria for word segmentation are also problematic and cannot decide controversial cases: Phonological words may not be consistent within and across languages [START_REF] Schiering | The prosodic word is not universal, but emergent[END_REF] and they often fail to coincide with morphosyntactic words [START_REF] Dixon | Word: A cross-linguistic typology[END_REF]. For this, and as previous segmentation studies did, we used the existing orthographic word boundaries for our word level. Corpus features: Means (and standard deviation) across the ten Chintang and Japanese subsets (see main text for explanation). # stands for number, "utt" stands for utterance.

"wtokens", "wtypes", "whapaxes" stand for word tokens, word types and word hapaxes. "m", "syll" and "phon" stand for morphemes, syllables and phonemes.

Algorithms.

A brief, cognitively-focused introduction to the five algorithms follows. For technical details, please refer to the WordSeg documentation (wordseg.readthedocs.io; [START_REF] Bernard | Wordseg: Standardizing unsupervised word form segmentation from text[END_REF] and the work cited often each algorithm.

We chose to implement open-source models which have been frequently used in previous studies, and are considered as cognitively plausible in the field of language acquisition.

The models should also be part of the WordSeg package. 9

The first algorithm, a member of the Adaptor Grammar family, adopts a lexical approach [START_REF] Goldwater | A Bayesian framework for word segmentation: Exploring the effects of context[END_REF][START_REF] Johnson | Unsupervised phonemic Chinese word segmentation using Adaptor Grammars[END_REF] M. [START_REF] Johnson | Adaptor Grammars: A framework for specifying compositional nonparametric Bayesian models[END_REF]. The Adaptor Grammar (AG) is a generalized version of probabilistic context-free grammars (PCFG, M. [START_REF] Johnson | Adaptor Grammars: A framework for specifying compositional nonparametric Bayesian models[END_REF]. We use a very simple hierarchical grammar with only a few rules: Sentences are composed of one or more reusable words (or morphemes), and words/morphemes are composed of one or more phonemes. Each utterance is parsed as a sequence of words/morphemes, each word/morpheme is composed by phonemes, and a given word/morpheme of this sequence would be generated either by choosing an existing form from a lexicon based on previous occurrences, or by considering it as a novel item and inserting its phonemic form in the lexicon. The PCFG regenerates the corpus by repeatedly applying this grammar, which is a set of rewrite rules with assigned probabilities. The rules fit the corpus based on how elements have already been written in the past, according to the Pitman-Yor stochastic process, which favors the reuse of frequently occurring rules (M. [START_REF] Johnson | Adaptor Grammars: A framework for specifying compositional nonparametric Bayesian models[END_REF]. This process is conceptually related to Zipf's Law, a feature of natural languages, which states that in a large corpus, the frequency of any word is inversely proportional to its rank in the frequency table [START_REF] Zipf | The psycho-biology of language: An introduction to dynamic philology[END_REF]. AG would thus tend to create a lexicon of moderate size comprised mostly of short words [START_REF] Perfors | What Bayesian modelling can tell us about statistical learning: What it requires and why it works[END_REF].

9 According to the authors of the package, it was impossible to incorporate all previously proposed algorithms [START_REF] Bernard | Wordseg: Standardizing unsupervised word form segmentation from text[END_REF], because of their large number. The authors chose to represent a few key dimensions of variation across algorithms, while being constrained by the availability of code and quality of the documentation.

DiBS [START_REF] Daland | Word segmentation, word recognition, and word learning: A computational model of first language acquisition[END_REF] 

p(# w |xy) ≈ f(x# u y) f(xy) (1) 
When p(# w |xy) is higher than a threshold parameter, the system breaks the sequence by positing a word boundary. This threshold is estimated with Formula 2:

Nw -Nu Np -Nu (2)
where the total number of words is N w, the number of phones is N p and the number of utterances is N u.

The TP family assumes that unit-internal pairs of syllables tend to co-occur more frequently than the same pairs across unit boundaries (whereby unit could be word or morpheme, extrapolating from the definition on page 610 of Saffran, Newport and Aslin, 1996), thus the transitional probability between adjacent syllables is higher word-internally than at word boundaries (cf. Gervain and Erra, 2012 for evidence that this may not be the case). The basic minimal units are syllables and not phonemes, unlike in the other two algorithms. Forward transitional probabilities (FTP) are defined as:

FTP(AB) = f(AB) f(A) (3) 
where f (AB) is the frequency of a syllabic sequence AB and f (A) is the frequency of the syllable A. Backward TP (BTP) is similar, except that the denominator is the frequency of the second syllable instead.

BTP(AB) = f(AB) f(B) (4) 
Also, algorithms in the TP family require another parameter, namely the threshold used to decide whether to add a word (or morpheme) boundary or not. One possibility is to use TP with a Relative threshold, i.e. BTPr and FTPr, which leads to placing a word/morpheme boundary wherever the TP value of a syllable pair is lower than the TP of the neighboring syllable pairs, as follows. Given a syllable sequence (W ABY ) where W , A, B, Y stand for syllables, a break will be posited between A and B if T P (W A) > T P (AB) and T P (BY ) > T P (AB). Another possibility is to use TP with an Absolute threshold (BTPa and FTPa), which would posit boundaries using a threshold, that is the sum TP value of all syllable pairs over the number of different syllable pairs. For example, given a corpus consisting of a syllable sequence (W ABY )

where W , A, B, Y stand for syllables, the absolute threshold is T P a = T P (W A)+T P (AB)+T P (BY )

3

. A break will be then posited between A and B if T P (AB) < T P a.

Note that there can be enormous differences in performance within the same algorithm depending on the parameters used (e.g., [START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF][START_REF] Saksida | Co-occurrence statistics as a language-dependent cue for speech segmentation[END_REF]. For example, [START_REF] Saksida | Co-occurrence statistics as a language-dependent cue for speech segmentation[END_REF] documented that different measures such as forward transitional probabilities, backward transitional probabilities and mutual information and especially the threshold parameter (absolute, relative) affect the results of word segmentation.

Finally, we applied two segmentation baselines. The baselines capture simple segmentation strategies. The baseline called Syll=Unit uses p = 1 (the probability of adding a boundary after a syllable, meaning that every single syllable is followed by a boundary) to cut at all syllable boundaries, thus treating every syllable as a word (or morpheme). The baseline Utt=Unit labels only utterance boundaries as word (or morpheme) boundaries (p = 0, meaning that no syllable is followed by a boundary).

Evaluation.

The output of each algorithm is evaluated using word (or morpheme) token F-scores, derived from Precision (Formula 5) and Recall (Formula 6), as standard for segmentation algorithm evaluation [START_REF] Phillips | The utility of cognitive plausibility in language acquisition modeling: Evidence from word segmentation[END_REF]. Precision The token F-score balances how accurate and complete the set of identified word/morpheme tokens is [START_REF] Phillips | The utility of cognitive plausibility in language acquisition modeling: Evidence from word segmentation[END_REF]. It is the harmonic mean of precision and recall, as shown in Formula 7.

F-score = 2 * precision * recall precision + recall (7)

Finally, a linear regression predicting F-scores from language, level, algorithm, with a random effect of different subsets assessed the effect and significance for each one of the three factors and their interactions. 10 Given our predictions in Section 1.4, we expected the language coefficient slope to be positive and significant for Japanese. We compared the size of this language effect to the coefficients of algorithm and level in the model. We further tested the effects through an analysis of variance (ANOVA type III)

for all factors and interactions on a linear regression with token F-scores as the dependent variable.

10 The function was: lm(token fscores ∼ language * level * algorithm + (1/subset), data).

Results

Even though all analyses are based on segmentation F-scores, we start by presenting an illustration of token precision and recall for each subset of the corpora ( Fig. 1). The point of this figure is to demonstrate that precision and recall are correlated to a considerable extent. The correlation between precision and recall emerges because there is no trade off between false negative and false positive results;

when segmenting text, a given parse results in neither or both kinds of errors. This is because if a boundary is posited, then if this boundary is correct, it will increase both precision and recall. If the boundary is incorrect, it will reduce both precision and recall.
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Utt=Unit

Since precision and recall are highly correlated, we focus on the more commonly reported token F-scores. Fig. 2 shows for each language, word token F-scores within each of the 10 subsets, as well as results for the entire corpus, which are nearly always contained in the range of variation of the subsets. The F-scores are presented numerically in the online supplementary material. Similarly to what we found, [START_REF] Bernard | Wordseg: Standardizing unsupervised word form segmentation from text[END_REF] documented that variation in corpus size beyond the first 5k utterances seems to play a negligible role in performance of these segmentation systems, as replicated here. Fig. 2 suggests that there were strong interactions between the three factors of interest (language, algorithm, and evaluation level), which are tested statistically in the next section.

Before moving on, it is important to discuss what may constitute good performance, given that the goal here is to inform our understanding of infant language acquisition. We are looking at segmentation using purely distributional cues, and thus it is not reasonable to expect that segmentation would be perfect. We know that adults can use other sources of information, including meaning, grammatical structures, and context [START_REF] Davis | Leading up the lexical garden path: Segmentation and ambiguity in spoken word recognition[END_REF][START_REF] Gow | Lexical and prelexical influences on word segmentation: Evidence from priming[END_REF]. Additionally, we are testing the algorithms exhaustively, on every word in every sentence, in a way that is completely unforgiving, whereas all work on humans (both infants and adults) relies on partially sampling from that experience during test. Finally, even in adulthood, we know that segmentation errors can occur, as in the recurrent mis-segmentation of Bob Dylan's song "the ants are my friends" (instead of "the answer, my friends").

Regression on token F-Scores.

A regression predicting F-scores from language, level, algorithm, and their interactions accounted for most variance in the data, R 2 = .93 (F (31, 288) = 134.95, p < .001).11 Even though the presence of significant interactions precluded a direct interpretation of the main effects, the regression confirmed an advantage for Japanese, with a positive coefficient estimating the language effect (0.11). This bears on our first research question, on whether there are language effects. In response to our second research goal, language effects appear to be relatively small, since the F-value for language is about half that of level and algorithm. Thus, the answer to our second research question is that language differences related to morphological complexity are small, when compared against effects due to which algorithm is used for segmentation and whether morphemes or words are evaluated. More results are provided in the online supplementary material.

Over-, under-and missegmentation.

Given that this is the first study to look at potential language differences due to morphological complexity, we sought to inform future work through exploratory descriptive analyses. We sought to describe potential differences in the pattern of over-, under-, and mis-segmentation as a function of language, level, and algorithm type. In the current study, we operationalize oversegmentation as the splitting up of a unit in one or more sub-parts (regardless of whether these are reasonable smaller units at a different level of analysis). We consider undersegmentation the clustering together of two or more units. All other differences from the gold segmentation were labeled missegmentation. The following example illustrates how they were implemented: If the input sentence "the dog ate the other dog" is returned as "thedog at ethe other d og", then the word-level score will be 1/6 correct segmentation, 1/6 over-segmentation ("d og"), 2/6 under-segmentation (one for each input word, "the" -the first token-and "dog"), and 2/6 mis-segmentation ("at ethe"). Over-, under-and mis-segmentation are measured on their corresponding evaluation unit. For example, on the morpheme level, if the Japanese sentence 'kore nani da', containing three morphemes, was segmented as 'ko re nani da', 1 out of 3 morphemes would be considered oversegmented. The prevalence of over-, under-and missegmentation as a function of language, level, and algorithm are reported in Syll=Unit 68 0 0 32 21 0 0 79 53 0 0 47 49 0 0 51 Utt=Unit 0 90 0 10 0 96 0 4 0 68 0 32 0 71 0 29

Table 2 Percentage of oversegmented, undersegmented, missegmented and correctly segmented word and morpheme tokens for each algorithm, level, and language. "algo" stands for algorithm, "morph." stands for morphemes, "Chin." for Chintang and "Jap." for Japanese. Also, "ov" stands for oversegmentation, "un" for undersegmentation, "mis" for missegmentation and "cor" for correctly segmented.

Comparison across levels (e.g., Chintang words versus Chintang morphemes, Japanese words versus Japanese morphemes) reveals that oversegmentation rates were higher for both languages when evaluating on words than when evaluating on morphemes. This is consistent with an interpretation whereby algorithms may seem to oversegment when evaluated at the word level because they break off affixes.

Additionally, the differences between morpheme-level and word-level evaluation is stronger for Chintang than Japanese, again consistent with that interpretation, as the risk of breaking off affixes will be higher in the former (more complex) language.

Notice, however, that while oversegmentation was substantially reduced when evaluating on morphemes, it did not disappear. This may mean that algorithms are finding breaks and/or subsections even within affixes that linguists coded as being holistic units. This may be simply segmentation errors, or it could reveal patterns that expert linguists (and/or infants) could interpret (as in series like "glitter, glimmer, glisten" -linguists typically do not treat "gl" as an affix, but can interpret it as a common feature of these words).

Additionally, we observed that lexical algorithms were more likely to break apart morphological subparts than sublexical algorithms. AG showed higher oversegmentation than the sublexical DiBS and TP, particularly when evaluating on words; in fact, AG

showed almost no undersegmentation (an interpretation of the model's performance can be found in the Appendix).

Discussion

In Experiment 1, a set of segmentation algorithms was applied to corpora of two morphologically diverse languages, and the output was assessed against gold standard segmentation at the word and morpheme level. Given the details of Chintang morphology, it was hypothesized that such a rich morphology must pose significant problems for the uninformed learner who is trying to segment the input, but these problems would be mitigated if we consider morphemes instead of words as a segmentation goal.

Regarding our first research goal, results summarized thus far support the prediction that languages varying in morphological complexity might vary in segmentability, although other aspects of these results suggest that the answer is not simple: The strength of the language effect varied across algorithms, and was even reversed in some conditions. In fact, turning to our second research goal, the language effect was smaller than the effects found for the other two factors we studied, namely level and algorithm type. In other words, differences within-language across algorithms or segmentation levels seem to be more important than those between languages. We also found interactions between language, level, and algorithm, to which we turn by considering the results within each algorithm next.

The results of the lexical algorithm, AG, matched our predictions well. In AG, we observed higher performance for Japanese than Chintang with words as the gold standard, but this difference was reversed with morphemes. This observation is consistent with the proposal that AG, and probably lexical algorithms in general, are ideal to recover recombinable units -i.e., morphemes. Thus, it seems that lexical algorithms might work well for languages like Chintang, improving performance on the morpheme level. Turning to the sublexical algorithms, even though DiBS is a phonotactic-based algorithm, it seems to have been affected by language differences.

The algorithm was relatively robust across evaluation levels. The most complex patterns of results were found for the other sublexical algorithm, TP. All four versions of the algorithm (BTPa, FTPa, BTPr, FTPr) yielded divergent patterns. This is in accordance with previous findings, where notable differences in performance were found depending on the parameters used (e.g., [START_REF] Saksida | Co-occurrence statistics as a language-dependent cue for speech segmentation[END_REF].

In exploratory analyses, we attempted to quantitatively evaluate segmentation across levels when considering the languages (Chintang and Japanese) and models of our study. Our results converged with previous qualitative reports that had only been evaluated quantitatively at the word level. Previous authors had argued that lower segmentation performance for some morphologically complex languages would arise from oversegmentation when evaluating on words because segmentation algorithms may break off affixes [START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF][START_REF] Johnson | Unsupervised word segmentation for Sesotho using Adaptor Grammars[END_REF]. For instance, [START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF] inspected their results applying algorithms from the TP family on a Hungarian corpus, and reported that some of the segmented material formed real morphemes, which is interesting given that TP-based algorithms are not informed about lexical and morphological composition. Similarly, [START_REF] Fourtassi | WhyisEnglishsoeasytosegment[END_REF] segmented an English and a Japanese corpus using a probabilistic lexicon-building algorithm.

Qualitative inspection showed that the algorithms broke off morphological affixes, with more oversegmentation cases for Japanese than English. We can now more precisely pinpoint these effects quantitatively: We confirm that the percentage of items that are over-segmented is lower when evaluating on morphemes than words, consistent with the idea that some of the apparent over-segmentation of words is due to decomposing words into morphological units, and can add that this effect is a great deal more marked in the lexically-driven AG algorithm than in algorithms from the sublexical TP family.

There are some limitations of our work that we would like to acknowledge. First, the research was conducted using transcriptions of speech spoken around (and not only to) children varying in age, from a few months to five years old, with the Japanese children being in general older than the Chintang children13 . Further research with more homogeneous addressees may provide more stable results. Second, two different datasets compose the ACQDIV Japanese corpus, as mentioned in Section 2.1.2. This might be the cause for the ostensibly more variable results of the Japanese subsets.

Moreover, since Chintang is spoken in a multilingual setting, annotators transcribed all speech including non-Chintang words, either because they are recent loanwords or because of code-switching into Nepali. Most Chintang speakers are bilingual in the morphologically simpler Nepali and children encounter Nepali from early on [START_REF] Stoll | Syntactic mixing across generations in an environment of community-wide bilingualism[END_REF]. In fact, 36% of the Chintang utterances had non-Chintang single-or multi-word insertions. For our analyses, we chose to report on the results for the whole corpus, because children born into this community do not come with information about which words are loanwords or code-switched. However, we also segmented a version of the corpus consisting of only all-Chintang utterances, where utterances with non-Chintang insertions had been removed. The performance usually increased by .01-.06 in token F-scores for the all-Chintang corpus, and did not alter our conclusions above. Detailed results can be found on the online supplementary material.

All of these limitations are conceptually related: We compared two languages, represented by two naturalistic corpora, so we cannot be certain that the differences we observe are due to the specific factor that led us to choose these two languages or to any extraneous factor in the corpora and/or to other uncontrolled characteristics of the languages. We considered extending this approach to other natural child-centered corpora, for instance by looking at 10-20 corpora of languages varying in morphological complexity. This turned out not to be feasible, since morphological segmentation is typically not available in child-centered corpora. Moreover, there would always have been the possibility that uncontrolled differences caused, or obscured, any result that we were to find.

To study the effects of morphological complexity on segmentability in a more controlled fashion, we created artificial languages in two follow-up experiments.

Experiment 2: Artificial languages varying in the number of affixes

In Experiment 1, we looked at Chintang and Japanese through naturalistic corpora that may differ across several factors. For example, Chintang parents could by chance produce shorter utterances, and this would affect our results. Since it is impossible to control for this in naturalistic corpora, we have performed additional experiments with artificial languages. Artificial languages allow us to study specific properties of languages and their effect under tightly controlled conditions.

In Experiment 2, we study whether languages varying in morphological complexity differ in segmentability by assessing segmentability of five morphologically diverse artificial languages, which exhibit a gradual range of morphological complexity.

We make sure that the number of words per sentence are matched across corpora, and the languages only differ on this specific aspect of morphological complexity.

We focus on the factor of morphological synthesis, keeping all other variables stable. In order to study the effects of morphological synthesis on segmentability, we track changes in segmentation while modifying the ratio of morphemes per word. In Experiment 1, the mean number of grammatical affixes accompanying the stem was about 1.69 for Chintang and 1.07 for Japanese. In Experiment 2, we increase the variability of this feature, ranging from 0 to 4.

The same questions asked above are revisited in this controlled experiment. First, do languages varying in morphological complexity differ in segmentability? Based on the key predictions above, languages with a smaller number of morphemes within words should be easier to segment than languages where words have multiple morphemes.

Also, based on the key predictions above, both lexical and sublexical algorithms should yield lower word segmentation scores for more complex languages, as they are more likely to break up the stream at morpheme boundaries.

Second, how large is this effect, compared to differences across algorithms and evaluation level? We inquire whether performance varies as a function of algorithm (the specific algorithm employed during segmentation) and the level of linguistic representation on which segmentation is evaluated (words or morphemes). We concluded in Experiment 1 that morphology-related differences across languages were relatively small, but this conclusion could be curtailed by the fact that the range of variation covered with these two natural languages may be small. Experiment 2 allows us to better measure these effects by studying them in isolation, and increasing the range of linguistic variation covered.

Methods

3.

1.1 Languages. Languages were created using a script in R. First, a set of consonant-vowel syllables were composed through every combination of the consonants "z", "r", "t", "y", "p", "q", "s", "d", "f", "g", and "h" and the vowels "a","e","i","o",and "u".

We then composed a lexicon of 1,000 words. Function words constituted 1% of this lexicon, and they were always one syllable in length. The rest of the lexicon were content word stems, which varied in length between 1 and 4 syllables. Content words were randomly split into two classes, A and B (which may be thought of as nouns and verbs), and which selected affixes from two different paradigms. All of these aspects were fixed across languages.

Languages varying in complexity thus differed only on the next step. The base language (0) had no affixes; the next language (1) had one affix per content word (with different affixes for class A and B stems); and so on, for up to 4 affixes (4). All affixes were one syllable long. Table 3 Corpus features: Means (and standard deviation) across the ten subsets of artificial languages 0, 1, 2, 3, and 4 (see main text for explanation). # stands for number, "utt" stands for utterance. "wtokens", "wtypes", "whapaxes" stand for word tokens, word types and word hapaxes. "phtokens" stands for phoneme tokens and "mortokens" stands for morpheme tokens.

The final step was also in common across languages, and consisted in creating a corpus of 5000 sentences that were between 1 and 4 words in length. Previous methodological work suggests algorithms' performance is stable by about 5000 sentences [START_REF] Bernard | Wordseg: Standardizing unsupervised word form segmentation from text[END_REF]. Sentence lengths of 1-4 seem reasonable for child-directed speech, according to previous descriptive studies [START_REF] Loukatou | Is it easier to segment words from infant-than adult-directed speech? Modeling evidence from an ecological French corpus[END_REF]. Sentences one word in length had only a stem (and, for more complex languages, its affixes); sentences with two words had a function word and a stem (and affixes); three-word sentences had a function word and two stems (and their affixes); and four-word sentences had a function word, a stem (and its affixes), a function word, and a stem (and its affixes). For clarity in the code, each sentence sampled from the lexicon for each language separately.

To make this more concrete, here is the first sentence in the five languages' corpora in one run, containing always three words (a function word followed by two stems with their eventual affixes, depending on the language); words are separated by spaces, morphemes by dashes:

• 0: "pi rotu rodezira"

• 1: "yu so-se qofeharu-se"

• 2: "tu yosoreda-ga-yi foyo-gi-su"

• 3: "pi ruza-to-re-pu gori-di-re-ra"

• 4: "fe zi-pa-yo-ye-gi ho-fa-ge-ye-te"

And the following are sample sentences containing the stem "rodezira", which was one of the stems in the lexicon in that run, appearing in sentences of the same word length across the five languages:

• 0: "pi rotu rodezira" (3 words, 3 morphemes)

• 1: "di rodezira-ge reyoha-qi" (3 words, 5 morphemes)

• 2: "yi tohegipu-ga-ga rodezira-sa-yu" (3 words, 7 morphemes)

• 3: "tu rodezira-de-ro-pa gitopide-pe-re-qu" (3 words, 9 morphemes)

• 4: "gu rodezira-fa-ho-fu-qo deguqaso-ge-ri-re-hu" (3 words, 11 morphemes)

This whole process was repeated 10 times, to create 10 corpora, each 5,000 sentences in length, for each of the five different languages. Table 3 shows some basic statistics of these languages.

Segmentation.

The same procedures were used as in Experiment 1.

Results and discussion
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Results for Experiment 2 are shown in Fig. 3. Our first goal was to answer whether languages varying in morphological complexity, as defined by the number of morphemes per word, differ in segmentability. A regression predicting F-scores from language, level, algorithm, and their interactions accounted for most variance in the data, R 2 = .99 (F (63, 568) = 720, p < .001). 14 Even though the presence of significant interactions precluded a direct interpretation of the main effects, the regression confirmed a disadvantage for the most morphologically complex languages, with negative coefficients estimating the language effect (-0.05 for language 4, -0.04 for 3, -0.02 for 2). Thus, the answer to our first research question is that there are significant effects on segmentability of varying complexity across languages.

In response to our second research goal, how large the language effect is compared to differences across algorithms and evaluation level, we observed that language effects appeared to be relatively small, since the F-value for language is several times smaller than that of level and of algorithm. More detailed outcomes are provided in the online supplementary material, but two aspects of the results apparent in Fig. 3 are worth pointing out. Morpheme level scores for languages where words contain two, three, four and five morphemes, were in general higher than word level results for the same language, meaning that morphemes were heavily segmented out in morphologically complex languages. This observation underlies the effect of the evaluation level in our results and suggests an interaction between language and evaluation level. Further interactions are suggested by the fact that AG and DiBS morpheme-level results increased with language complexity, reaching and even surpassing the results for the language with no affixes.

In sum, similarly to what was found in Experiment 1, we observed the expected differences in performance as a function of language, level, and algorithm type. The results of Experiment 2 support our conclusions from Experiment 1: Languages varying in morphological complexity vary in segmentability. Overall word segmentation performance for the simplest language where words and morphemes coincide was better than performance for the other languages, which contain 1-4 affixes per stem. However, the strength of the language effect varied across algorithms, and was even reversed in some conditions, exactly as we observed in Experiment 1. The language effect was again smaller than the effects found for the other two factors, namely level and algorithm type, even though the range of variance here was huge, much larger than that found in Experiment 1's natural language corpora.

Experiment 3: Artificial languages varying in the distribution of affix number

We implemented one more set of artificial languages in order to observe the effect of morphological complexity in controlled environments. One limitation of Experiment 2 is that languages were more internally homogeneous in terms of complexity than human languages typically are: There is no human language in which each and every content word in the language must always have exactly three affixes. We relaxed this assumption while maintaining differences in complexity in our Experiment 3. Specifically, the languages in this experiment were created to differ in the distribution of affix numbers, with all artificial languages having words that contain between zero and four affixes but varying in how frequent different affix numbers were. In our baseline language, the probability distribution was flat, with 20% probability for each option (zero to four affixes). In a simpler language, more mass was allocated to lower number of affixes. Finally, a more complex language was created with more mass allocated to higher number of affixes.

The same questions and predictions given in Experiments 1 and 2 are revisited in this experiment: We ask whether languages varying in morphological complexity differ in segmentability, and how large this effect is when compared to differences across algorithms and evaluation level. We further predict that the cross-linguistic differences would be smoother in this Experiment compared to the previous one. Corpus features: Means (and standard deviation) across the ten subsets of artificial languages S (simpler), B (base) and C (more complex). # stands for number.

Methods

Languages.

As in Experiment 2, we created languages with a lexicon of 1,000 items, of which 1% were one-syllable long function words, and the remaining were stems one-to four-syllables in length, randomly split into two types that selected different affix paradigms. The syllable inventory, distribution of sentence length (1-4 words), length of corpora (5,000 sentences), were also kept constant, and 10 subsets were generated for each language.

Unlike in Experiment 2, however, all languages had some affixes, meaning that stems could take between 0 and 4 affixes. The three languages we created varied in terms of the distribution of the number of affixes a stem took. In the base language (B), it was equally likely for stems to have 0 to 4 affixes (i.e., 20% of chances for each). In the simpler language (S), the distribution was tilted towards fewer affixes: 35% likelihood of having 0 affixes, 25% of having 1, 20% of having 2, 10% of having 3, and 10% of having 4 affixes. The more complex language (C) had the opposite trend: 10% likelihood of having 0 affixes, 10% of having 1, 20% of having 2, 25% of having 3, and 35% of having 4 affixes. Table 4 shows some basic statistics of the languages.

Segmentation.

The same procedures were used as in Experiment 1.

Results and discussion
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Bearing on our first research question, a regression predicting F-scores from language (S, B and C), level, algorithm, and their interactions accounted for most variance in the data, R 2 = .99 (F (47, 945) = 432, p < .001). 15 The regression gave a small disadvantage for the more morphologically complex languages overall, with negative coefficients estimating the language effect (-0.06 for C and -0.03 for B). All models, when evaluated on words, performed better for the simplest languages, and TP did so also when evaluated on morphemes. However the significant interactions with the algorithm type precluded a direct interpretation of this main effect. For most models, morphologically complex languages are easier to segment on the morpheme level.

Regarding our second research goal, we observed that language effects are relatively small, since the F-value for language is half the size of level and a quarter of that for algorithm . More detailed outcomes are provided in the online supplementary material, but two further aspects of the results are worth pointing out. As in Experiment 2, scores for all three languages improved when evaluating on the morpheme level across algorithms. Also, similarly to Experiment 2, AG and DiBS morpheme scores increased with language complexity.

Overall discussion

These studies are the first to openly state that there could be a difference in segmentability due to morphological complexity, and to carefully study them. Our work follows an innovative scientific trend to go beyond merely showing an effect (e.g. [START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF][START_REF] Phillips | Bayesian inference as a viable cross-linguistic word segmentation strategy: It's all about what's useful[END_REF], but instead attempt to accurately measure effect sizes, and to put factors next to each other to assess which are more important. So we now highlight that this segmentability difference as a function of morphological complexity is actually quite small (compared to differences when evaluating on morphemes or words, and differences across algorithms), and this is observed after comparing several different methods on the same languages.

These conclusions are informed from segmenting natural (Experiment 1) and artificial languages (Experiments 2 and 3). When comparing two natural languages, we could not be certain that any segmentability differences were due to the specific factor we had identified, and we were further uncertain whether its relatively small size may not be due to constrained variation found in the comparison of only two languages.

Once everything else was controlled for via artificial languages, the effect of morphological complexity was clear and could not be attributed to any confounds.

However, particularly in the context of Experiment 2, where languages differ maximally in morphological complexity (more than what any human natural languages could differ), the effect of morphological complexity remained small, and certainly smaller than that of level and algorithm. The artificial language results were also informative on the general performance of the algorithms; the performance range of the algorithms was similar across all three experiments, highlighting the relevance of our artificial language results for broader generalization to natural languages. Additionally, this suggested that differences across algorithms are massive -even when corpora are perfectly controlled.

Our three experiments also revealed that there are crucial interactions: Our results suggest that one algorithm may perform better for a given language and level, whereas another algorithm may be optimal for a different language and level combination. This allows us to make an important set of predictions for infant language acquisition. One possibility is that infants are endowed with a single algorithm for segmentation. If that is the case, then we should find that infants learning certain languages (notably those with complex inflectional systems) should be delayed in their word segmentation compared to infants learning simpler languages. This prediction cannot be tested by creating artificial languages, because it is a prediction about how infants extract words and morphemes from their native language. Instead, it should be tested by assessing infants' recognition of words and morphemes in their language, particularly those that do not frequently occur in isolation (for example on Hungarian, [START_REF] Ladányi | How 15-month-old infants process morphologically complex forms in an agglutinative language?[END_REF]). WordBank [START_REF] Frank | Wordbank: An open repository for developmental vocabulary data[END_REF]) is an open repository for developmental vocabulary data that could be used for these analyses. Should such an experiment not show systematic differences across language backgrounds, then a second hypothesis needs to be envisaged.

According to this second hypothesis, infants are not endowed with a single algorithm, but have in their toolkit algorithms covering the same range of approaches studied here, or an even greater one. In this case, however, the learning problem becomes even more complex, because infants need to have a "meta-algorithm", which allows them to choose among alternative algorithms. There has been a proposal of how this could be done: [START_REF] Fourtassi | A rudimentary lexicon and semantics help bootstrap phoneme acquisition[END_REF] argue that infants could assess an algorithms' performance by splitting their input into subsets, and learning words (or, presumably, morphemes) from each half separately: Better algorithms should lead to a more consistent lexicon. If this proposal is on the right track, then we should observe that younger infants have access to a wider array of segmentation algorithms than older infants, a prediction that should be tested using artificial languages learned in the laboratory. What one expects to observe, then, is that younger infants can break up an artificial stream using a wide array of strategies (including lexical and sublexical ones); whereas older infants fail when presented with artificial languages that can only be segmented when using one specific strategy, which is not used in the infant's native language.

While doing this work, we realized that the experimental literature in infancy has not yet attempted to provide proof-of-principle evidence for the presence of all the algorithms we use here. In particular, we think it would be important to check whether infants optimize the lexicon in the input they hear, as predicted if they have a strategy like our Adaptor Grammar. Another promising direction would involve checking whether infants may at some stage treat each syllable as a separate segmentation unit, as in one of our baselines. In fact, other work shows that segmenting at every syllable boundary leads to the highest F-scores in English, even outperforming Adaptor Grammar (but not in Spanish or Catalan, where Adaptor Grammar outperforms the syllable-based segmentation in terms of precision; Anonymized, 2020). Incidentally, these two strategies seem to perform quite well, and may thus be viable strategies for natural language acquisition [START_REF] Loukatou | Is word segmentation child's play in all languages[END_REF].

Before closing, we would like to bring up a number of limitations of this paper.

First, working from text-like phonologization simplifies the learning problem to a certain extent, assuming that infants represent perfectly the sequences of phonemes in the speech they hear. Even though there is some literature looking at word segmentation from speech [START_REF] Ludusan | Motif discovery in infant-and adult-directed speech[END_REF], this task remains challenging for computational modeling.

Additionally, we would like to mention that the algorithms were evaluated on words, as defined by their conventional orthographic representations. However, wordhood and morphemehood are debated issues in linguistics and psycholinguistics, without cross-linguistically valid definitions (see also [START_REF] Hay | Shifting paradigms: Gradient structure in morphology[END_REF] for differences in salience across morphemes).

We also conducted two artificial language experiments, were we created languages differing in morphological complexity while keeping their lexicon size constant. We acknowledge that this is a simplification; the lexicon size of natural languages varies, and it may even interact with their level of morphology, according to observations (e.g a language with less morphology may compensate with a larger number of function words).

Finally, we studied languages that differ in morphological synthesis, admittedly considering only one dimension of morphological complexity. We would suggest that the level of allomorphy, meaning how many different realizations exist for a single morpheme, or the fusion of the affixes with each other, could also affect segmentation.

Further research is needed to show the effects of these morphological aspects, although this would ideally involve recovery of morphological paradigms, and not just segmentation as done here.

In sum, our work constitutes an important, but limited step, towards documenting segmentation differences and similarities across languages, and considering possible evaluation targets for language acquisition segmentation models. We hope future research retains our strategy of employing a range of plausible algorithms and evaluating on different linguistic levels.

Corpora of morphologically rich languages such as Chintang contain fewer repetitions of each word type, as well as a higher proportion of forms that occur rarely than languages with little morphology stollacquisition (see also boruta2011testing).

Lexical algorithms might detect frequently occurring word parts such as morphemes, instead of words e.g. they could detect a root separately from its suffixes. Lexical approaches tend to recycle existing units, favoring repetition. AG finds the most likely segmentation using a lexicon, whose types have been assigned probabilities based on their frequency distributions. Thus, it could break words up into their component morphemes. This behavior would be rewarded when evaluated on morpheme boundaries, but penalized when evaluated on word boundaries. Since AG needs access to the lexicon, it should thus be affected by cross-linguistic differences, and would segment out morphemes in complex languages, as they are the basic building blocks of the language, instead of entire words, whose form varies. This would lead the model to heavily oversegment.

Previous work using sublexical algorithms shows that there are some differences in cross-linguistic performance, and they may be explained by complexity differences. [START_REF] Saksida | Co-occurrence statistics as a language-dependent cue for speech segmentation[END_REF] used a set of segmentation algorithms, all of them based on TPs, on a range of cross-linguistic corpora. Higher scores were found for English and Dutch than for Japanese, Polish and Hungarian. gervain2012statistical received better results for the less complex Italian than the more complex Hungarian in some cases, although this language performance was reversed when backward transitional probabilities were used.

TP uses local statistics and is not informed about lexical and morphological composition. However, local statistics may be informative on morpheme boundaries, and, in line with results such as [START_REF] Gervain | The statistical signature of morphosyntax: A study of Hungarian and Italian infant-directed speech[END_REF], who commented that there may be more oversegmentation in Hungarian, as some of the segmented material formed real morphemes, we predict that results may change based on whether they are evaluated on words or morphemes. There is not a lot of previous cross-linguistic work on DiBS, but since DiBS is a model based on phonotactics, there should not be large cross-linguistic differences for our languages, which vary mainly in morphology. Segmentation baselines have also rarely been used to compare performance across languages.

Interpretations across Models

We now turn to the results and their interpretation. Focusing first on AG, it showed distinctive oversegmentation patterns compared to DiBS and TP, as predicted.

AG might thus work well for languages like Chintang, improving performance on the morpheme level. As for comparisons with previous work, we found that our AG-word scores were much lower than the .77 documented for English fourtassi2013whyisenglishsoeasytosegment. Zooming out for a moment from our key question, we also notice that AG achieved higher scores than DiBS and TP only in the morpheme level of complex languages.

Turning now to TP, we did not observe much difference between forward and backward alternatives (cf. gervain2012statistical for arguments that this parameter should matter for languages varying in head direction, and saksida2017co for other data showing that it may not), or between absolute thresholds and relative thresholds with locally minimal values (although TPr-morpheme scores were lower than TPr-word scores in Exp.1, which is reasonable given that in this implementation a boundary can only be posited in relatively long strings of syllables (see also gambell2006word)). With respect to comparisons with previous work, the best performance for TP in this paper was .63, well below the .85 recorded for English by saksida2017co. Surprisingly, DiBS performance was also affected by cross-linguistic differences.

Finally, both baselines did a better job segmenting Japanese than Chintang on the word level. However, results were different on the morpheme level. Chintang morphemes are on average shorter than Japanese ones (see Table 1), whereas the opposite is true for words. As a result, on morphemes, performance is very high when boundaries are systematically posited after every syllable (Syll=Unit), and very low when no boundary is posited at all (Utt=Unit). This might explain why, on morphemes, Chintang outperformed Japanese with Syll=Unit, but had a lower score than Japanese with Utt=Unit.

In sum, our models had lower performance for both natural and artificial languages than what is previously documented for English. This might mean that the implementation of these strategies works well for English, but should be adapted for other linguistic systems (see (M. [START_REF] Johnson | Adaptor Grammars: A framework for specifying compositional nonparametric Bayesian models[END_REF] for an adaptation of AG to Sesotho). It might also mean either that English is a particularly easy language to segment, or that such cues are simply less informative in other languages. Specifically, models making use of surface cues, such as transitional probabilities, seem to also be affected by morphological complexity, transitional probabilities working best in finding word boundaries for languages with monosyllabic words. Both TP are sensitive to morpheme boundaries, especially in cases like our artificial languages, where an affix is a syllable. Since morphemes are combined with different stems, their transitional probabilities are low and they may often be segmented.

It is also striking that there is no one "good for all" strategy. No model yields high scores for all languages. Instead, each model follows a distinct pattern in segmenting language, some strategies working better for simpler languages, and other for more complex languages. Last, for morphologically complex languages, it is evident that segmenting morphemes, instead of words, would give the most reliable results across all algorithms.

  rarely used, they constitute a part of the adult grammar and are eventually acquired by children. Here are two sample adult utterances from the Chintang corpus (CLDLCh1R01S02.0044 and CLDLCh1R01S02.0057 respectively). father.in.law-ERG.A thok-u-Ns-e-kha dig-3P-PRF-IND.PST-NMLZ 'The father-in-law has dug it' ekchin-a-kha little.while-NTVZ-NMLZ 'He used to sit sometimes'
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  All abbreviations are based on the Leipzig Glossing rules. Specifically, for 1.a: DEM=demonstrative; ERG.A dig-3P-PRF-IND.PST-NMLZ=third person, perfect indicative past nominalized, ergative agent-like argument of canonical transitive verb. For 1.b: DEM.PROX=demonstrative proximal, pst=past, ipfv=imperfective, emph=emphatic, ntvz=nativizer, add=additive, fam=familiar.

  . The Chintang recordings took place in a predefined week every month with several separated recordings amounting to approximately 4 hours per month involving 6 target children from 0;6-4;4[START_REF] Stoll | The acquisition of polysynthetic verb forms in Chintang. Handbook of Polysynthesis[END_REF]. During the recordings, which were audiovisual, the children were mainly playing outside of their houses. Relatives, other children, and neighbors are part of their daily lives and this was captured in the recordings.

  checks how many words/morphemes in the set of those segmented by the algorithm are correct. Recall checks how many words/morphemes in the set of those existing in the original gold corpus were correctly segmented by the algorithm. True positives are the words/morphemes segmented by the algorithm which are indeed found in the input corpus. False positives are the words/morphemes segmented by the algorithm which are actually not in the input corpus. False negatives are words/morphemes in the input corpus that were not in fact segmented by the algorithm. Please note that the two formulas only differ on the second term of the denominator.

Figure 1 .

 1 Figure 1 . Precision and recall across languages and algorithms for each evaluation level. Algorithms are marked by color. Languages are marked by shape. BTPr, FTPr, BTPa or FTPa indicate the segmentation result for one of the different versions of TP. AG are the results of the unigram Adaptor Grammar. Syll=Unit and Utt=Unit are the results of the baselines. Each dot indicates the results for one of the ten subsets of a given corpus.

Figure 2 .

 2 Figure 2 . Token F-scores (y axis) across language (Chintang, Japanese) and level (words, morphemes). Evaluation levels are marked by shape (open circle for morphemes, cross for words). Each circle or cross shows the result for one of the ten subsets, thus represents variability within the corpus. Color reflects algorithms (which are also used to group the data into boxes, see main title of each box). BTPr, FTPr, BTPa and FTPa indicate the segmentation result for the different versions of Transitional Probabilities. AG are the results of the unigram Adaptor Grammar. Syll=Unit and Utt=Unit are the results of the baselines.

Figure 4 .

 4 Figure 4 . The y axis contains token F-scores across languages. The languages in the x axis are S(imple), B(ase) and C(omplex). Evaluation levels are marked by shape (open circle for morphemes, cross for words). Color reflects algorithms (which are also used to group the data into boxes, see main title of each box).

Table 1

 1 

  performs segmentation using phone bigram probabilities.As a consequence, this algorithm requires that the input be coded as a sequence of phonemes. The intuition behind this algorithm is that certain sound sequences almost

	never occur within words (or morphemes), so if observed they probably indicate a word
	boundary. For instance, when [pd] occurs in English, the probability that there is a
	word boundary is very high: P r(#|pd) ≈ 1.
	The unsupervised version (phrasal DiBS) treats utterance edges as a proxy for
	word edges, assuming that phone sequences frequently spanning utterance boundaries
	likely also span word boundaries. The algorithm estimates the necessary parameters

from data using the Formula 1, where f (x# u y) is the number of [xy] sequences with an uttterance boundary in the middle and f (xy) is the number of [xy] sequences in any position, and where x is one phone, y is another phone, (# u ) is an utterance boundary and (# w ) is a word boundary:

Table 2

 2 

	and discussed next. 12			
	algo	Chin. words	Chin. morph.	Jap. words	Jap. morph.
		ov un mis cor ov un mis cor ov un mis cor ov un mis cor
	AG	54 0 7 38 14 10 15 61 39 3 3 55 30 3 7 59
	BTPa 28 9 11 53 4 47 2 47 23 13 2 61 19 16 3 62
	FTPa 27 11 13 49 5 53 4 38 24 13 3 60 19 17 5 58
	BTPr	7 20 29 45 2 70 5 23 9 25 11 55 6 31 11 52
	FTPr	7 20 31 42 1 70 7 22 9 21 15 55 6 27 13 53
	DiBS	6 47 17 30 7 47 18 27 2 49 6 43 2 51 7 41

Table 4

 4 

There could also be phonological factors confounded with morphological complexity, such as word length and segmentation ambiguity. In analyses presented in the online supplementary material, we show that this is not the case, because these factors do not explain away the language effects we do document.

Available from https://github.com/bootphon/wordseg/.

These elements include 120 grammatical markers and 28 secondary verb stems, called V2, that expand the lexical or grammatical meaning of the main verb.

Japanese had been transcribed in Latin script. The Chintang orthography is a relatively new orthography that represents language perfectly.

The function was: lm(token fscores ∼ language * level * algorithm + (1/subset), data). Token F-scores are the F-scores to be predicted by language, level, and algorithm as fixed effects, and subset as random factor. The data frame contains 320 observations (2 languages x 2 levels x 10 subsets x 8 algorithms).

Additionally, a breakdown of segmentation performance as a function of part-of-speech and algorithm is provided in online supplementary materials, but these results will not be discussed here.

Recordings for Chintang children started at 0;5, whereas recordings for Japanese children started at

The function was: lm(token fscores ∼ language * level * algorithm + (1/subset), data). Token F-scores are the F-scores to be predicted by language, level, and algorithm as fixed effects, and subset as random factor. The data frame contains 640 observations (4 languages x 2 levels x 10 subsets x 8 algorithms).

The function was: lm(token fscores ∼ language * level * algorithm + (1/subset), data). Token F-scores are the F-scores to be predicted by language, level, and algorithm as fixed effects, and subset as random factor. The data frame contains 480 observations (3 languages x 2 levels x 10 subsets x 8 algorithms).

6 Supplementary Material

Predictions across Models

Comparison of performance across models is not part of the key questions of this study, but it may be of interest to some readers. We provide here a literature review for each model. In sum, our reading of the literature suggests that lower segmentation performance is found for corpora of more morphologically complex languages than simpler ones across all three families of algorithms (lexical, sublexical, and baseline).

However, the goal of these previous studies was not to look at segmentability of morphologically distinct languages. Here, we provide hypotheses with specific predictions for each model.

With respect to studies using a lexical approach, batchelder2002bootstrapping compared the accuracy of a lexical segmentation algorithm (BootLex) on English, Japanese and Spanish corpora, and found that the algorithm performed best on English. Most other lexical work has employed versions of Adaptor Grammars (AG) goldwater2009bayesian, johnson2008unsupervised. It finds patterns of frequent phone sequences in the input corpus, creates a lexicon based on these patterns at specified levels, and then uses the lexicon to segment the input. Using versions of this system, boruta2011testing documented better results for English than French, and better results for French than for Japanese, which roughly corresponds to the order of morphological complexity. johnson2008unsupervised found better results for English than Sesotho, which is morphologically much more complex than English. In general, most work using lexical algorithms finds cross-linguistic differences in word segmentation performance that could be explained on the basis of complexity differences. Similarly, [START_REF] Fourtassi | WhyisEnglishsoeasytosegment[END_REF] segmented an English and a Japanese corpus using a probabilistic lexicon-building algorithm. Qualitative inspection showed that the algorithm broke off morphological affixes, with more oversegmentation cases for Japanese than English.

These observed oversegmentation errors suggest that it might have segmented out morphemes, or at least functional elements, including affixes, in addition to or instead of some notion of words (see also [START_REF] Johnson | Unsupervised word segmentation for Sesotho using Adaptor Grammars[END_REF]).