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Multi-Contact Motion Generation:

Continuous Constraints and Contact Forces

Sébastien LENGAGNE, Paul Mathieu, Abderrahmane KHEDDAR, Eiichi YOSHIDA

Abstract— This paper proposes a new computation method to plan multi-contact motions. The first
problem is to deal with continuous equality and inequality constraint which rely on the physical limits of the
robot and on the properties of the desired motion. The second problem in the modeling of a multi-contact
motion is the indetermination relative to the contact forces. We propose a method to compute them from
the contact stance and form the joint trajectories.
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Introduction
We define a multi-contact motion a motion without

any flying phase, i.e. the robot has at least one con-

tact with the environment. Thus, most of the motion,

(walking, climbing, sitting, ...) are multi-contact mo-

tions. For such motions, walking for instance, some

methods based on simple model give efficient results

[1], but if we want not to consider any assumption

about the model, or if we aim at planning more gen-

eral motions, we need a method that considers the

full-body model of the robot and takes into account

all its limits.

The multi-contact motion planning problem is to

find the best joint trajectories that minimize a cost

function and ensure a set of constraints. By con-

sidering a joint trajectory parametrization through

Bsplines, the motion planning problem turns into

finding the best parameters P that:

min C(P)
∀i,∀t ∈ [∆i] gi(P, t) ≤ 0
∀j, ∀t ∈ [∆j ] hj(P, t) = 0

(1)

With C(P) the cost function, gi, the set of contin-

uous inequality constraint ensure the physical limits

of the robot such as joint position velocity and torque

limits and hi the set of the continuous equality con-

straints that produces a geometrical constant position

of one body when it is in contact with the environ-

ment.

1. Dealing with constraints
In [2], we show that the joint position and velocity

all along the motion are ensured by only considering

constraint on the parameters. In fact, a Bsplines func-

tion is entirely contained in its control point convex

hull. Hence, by limiting the control point to the max-

imal joint value, the joint trajectory will not violate

the joints limits. Moreover, since the derivative of a

Bsplines functions is another one, we can use the same

way to constraint the joint velocity.

For more complex constraints, such as the joint

torques, we cannot use this method. We approximate

all the variables of the system by a n-order polynomial

(those values are computed through a C++-template

model function):

f(t) ≈ [a0, a1, . . . , an]× [1, t, . . . , tn]
T

(2)

We can easily compute a conservative value of the

extrema by using the convex hull property of the

Bsplines. We identify the equivalent Bsplines param-

eter:

f(t) = [p0, p1, . . . , pn]×B× [1, t, . . . , tn]
T

(3)

where B is a matrix that contains the polynomial pa-

rameters of the B-Splines basis functions bi(t). (Note

that the basis functions used to evaluate extrema are

different from the basis function used to define the tra-

jectories). We compute the corresponding B-Splines

parameters such that:

[p0, p1, . . . , pn] = [a0, a1, . . . , an]×B−1 (4)

The Matrix B relies on the order of the Taylor ap-

proximation and on the time interval [∆t], thus we

need to compute it only once at the beginning of the

optimization process. In addition, we are able to com-

pute a conservative value of the inferior and superior

bounds for any function thanks to:

∀t ∈ [∆t] min
i
(pi) ≤ f(t) ≤ max

i
(pi) (5)

Moreover, thanks to the polynomial approximation

we can easily compute the derivative of any variables

and also constraint them to a constant value Cst by

considering the following constraints:

∀i ∈ {1, · · · , Ne} ai = 0
a0 = Cst (6)

2. Modeling contact forces
We define the contact forces as a set of linear forces

attached to each contact body. The contact forces are

explicitly used in the inverse dynamic model:[
Γ
0

]
=

[
M1(q)
M2(q)

]
q̈ +

[
H1(q, q̇)
H2(q, q̇)

]
+

[
JT
1 (q)

JT
2 (q)

]
Fc

(7)



Fig.1 Flexing motion

To keep the balance of the robot the second line

of Eq. 7 must be satisfied and each linear contact

forces must ensure the unilaterality and no-sliding

constraints:

∀i,∀t ∈ [∆t]

{
Fn
i (t) > 0

|F t
i (t)|2 ≤ µiF

n
i (t)

2 (8)

We propose to find an analytical solution of the con-

tact forces that solve the following problem:

min 1
2

∑
i βi(αiF

t
i
2
+ Fn

i
2)

∑
i

([
P̂iAi

Ai

]
[Fi]

)
+ [D2] = 0

(9)

With P̂i is the screw operator of the contact posi-

tion, [D2] = [Mx,My,Mz, Fx, Fy, Fz]
T the effort due

to the free dynamics, βi a coefficient to equilibrate (or

not) the repartition of the forces and αi that is used

to weight the tangential effort regarding the normal

force, to get forces as close as possible to the normal

direction of the contact.

To get a solution of this problem, we start by writing

the Lagrangian equation:

L =
∑

i βiαi(F
t
i
2
) +

∑
i βiF

n
i
2

+

(∑
i

[
P̂iAi

Ai

]
[Fi] + [D2]

)
[λ]

(10)

Where [λ] is the vector of the Lagrangian multipli-

cator. The optimal solution respects the condition of

optimality :
∂L

∂(F◦,i, λj)
= 0 (11)

From the derivative with respect to the forces F◦ (◦ =

{x, y, z}) we get:

Fi = −γi
[
P̂iAi Ai

]
[λ] (12)

With γ is a three component vector for which γi =
1

βiαi
if F◦ is one of the tangential component and γi =

1
β i

if F◦ is the normal component of the contact force.

Then, we replace the contact forces expression in the

set of the equality constraint and we get:

∑
i

([
P̂iAi

Ai

]
γi

[
P̂iAi Ai

])
[λ] = − [D2] (13)

We can transform this equation to have

Ω [λ] = − [D2] (14)

Where Ω is a 6×6 matrix that we easily invert to find

the value of the Lagrangian multiplicators:

[λ] = −Ω−1 [D2] (15)

Then, we put the Lagrangian multiplicator value in

Eq. (12) to get the value of the contact forces. We

notice that if we define ∀i βi = 1 and αi = 1, we solve

the pseudo-inverse problem.

We notice that if we define ∀i βi = 1 and αi = 1,

we solve the pseudo-inverse problem.

3. Experiments
In [3], we present some results about the planning

of multi-contact motion in 2D. This paper presents

the first results about a 3D multi-contact motion with

HRP-2 Robot. The robot is standing in front of an

obstacle, he has to lean both arms on it and to go

back to the initial position as presented in Figure 1.

Conclusion
We can generate dynamic multi-contact motion,

since we can deal with continuous equality and in-

equality constraints and compute the contact forces,

based on a dynamic full-body model of the robot. The

next steps will be to implement for the collision avoid-

ance in the optimization and to take into account the

flexibilities of the actual robot.
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