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Abstract

This work introduces a numerical approach and implementation for the direct

coupling of arbitrary complex ordinary differential equation- (ODE-)governed

zero-dimensional (0D) boundary conditions to three-dimensional (3D) lattice

Boltzmann-based fluid–structure systems for hemodynamics studies. In particular,

a most complex configuration is treated by considering a dynamic left ventricle-

(LV-)elastance heart model which is governed by (and applied as) a nonlinear,

non-stationary hybrid ODE-Dirichlet system. Other ODE-based boundary condi-

tions, such as lumped parameter Windkessel models for truncated vasculature,

are also considered. Performance studies of the complete 0D-3D solver, including

its treatment of the lattice Boltzmann fluid equations and elastodynamics equa-

tions as well as their interactions, is conducted through a variety of benchmark

and convergence studies that demonstrate the ability of the coupled 0D-3D meth-

odology in generating physiological pressure and flow waveforms—ultimately

enabling the exploration of various physical and physiological parameters for

hemodynamics studies of the coupled LV-arterial system. The methods proposed

in this paper can be easily applied to other ODE-based boundary conditions as

well as to other fluid problems that are modeled by 3D lattice Boltzmann equa-

tions and that require direct coupling of dynamic 0D boundary conditions.

KEYWORD S

0D-3D coupling, 3D blood flow, fluid–structure interactions, lattice Boltzmann equations,
LV-arterial hemodynamics, mathematical physiology

1 | INTRODUCTION

Cardiovascular modeling is a challenging fluid–structure interaction problem that involves treatment of complex geom-
etries and boundary conditions in order to effectively capture physiological dynamics.1 Computational fluid dynamics
(CFD) is a widely-used approach for simulating blood flow in the circulatory system,2–11 which includes applications to
1D,10–12 2D13 or 3D5–9,14,15 formulations. The lattice Boltzmann (LB) method,16–19 originating from classical statistical
physics, is a powerful alternative to conventional continuum-based CFD methods that use Navier–Stokes equations.
The LB method uses simplified kinetic equations combined with a modified molecular-dynamics approach to model
both Newtonian and non-Newtonian fluid flow in any complex geometry (the fluid is modeled as particles that stream
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and collide over a discrete lattice mesh). Indeed, a particular advantage of LB-based hemodynamics solvers is their abil-
ity to easily model non-Newtonian effects via its right-hand-side; capturing such effects may be important for small ves-
sels or vessels where the shear rate is low.20,21 The accuracy and usefulness of the LB method have been demonstrated
in a variety of fluid dynamics problems including turbulence22 and multiphase flow.18 As highlighted in previous
studies,18,19,22–24 LB methods have been shown to be particularly suitable for hemodynamics simulations since many
flow features of clinical interest may require efficient numerical treatment of fully 3D computational domains (and the
local nature of LBM collision calculations enables highly-parallelizable implementations).

In order to extend the clinical applicability of fluid–structure blood flow solvers based on LB equations applied to
large vessels, this work introduces a direct 0D-3D coupling for the treatment of physiological boundary conditions that
are governed by ordinary differential equations (ODEs) such as lumped parameter Windkessel models25,26 or more
complex hybrid ODE-Dirichlet systems such as time-varying elastance organ models10 (both known as 0D models due
to the absence of spatial dependence). Previous contributions on the 0D-3D coupling for finite element methods27,28

have been implicit and iterative, and for lattice Boltzmann29,30 blood flow models usually only a Dirichlet or Neumann
pressure or flow is prescribed during the entirety of a cardiac cycle (precluding the use of more sophisticated and non-
stationary, i.e., switching, boundary conditions10).

Additionally, recent work30 on LB-based hemodynamics solvers have assumed only rigid walls, and have applied
0D lumped parameter models externally through an iterative procedure where the heart model is evolved and
precomputed entirely independently30 (such that the resultant pressure profile is applied on a 3D LB domain simply as
a Dirichlet condition, i.e., not a true mathematical coupling).

This work, on the other hand, presents a first direct 0D-3D coupling for fully fluid–structure 3D pulsatile blood flow
solvers based on LB and elastodynamics equations. In particular, the 0D equations considered in this work govern a
highly-complex and non-stationary dynamic left ventricle (LV-)elastance heart model10 (that switches between an ODE
and a Dirichlet boundary condition in a “non-stationary” fashion10) in order to generate physiologically-accurate hemody-
namic conditions (instead of simply assigning a given inlet flow or pressure, as is commonly done30–32). Such a coupled
model represents the most complicated boundary configuration found in the circulatory system10: a hybrid ODE-Dirichlet
boundary condition representing the left ventricle, where the time at which the ODE-governed condition transitions to a
Dirichlet condition is itself determined by the corresponding solution of the governing fluid–structure LB system. Hence
the methodology introduced in this work can be trivially extended to the application of non-switching ODE-based bound-
ary conditions such as lumped parameter models based on Windkessels10,25,26 (also treated in this contribution).

This work presents a numerical approach for directly coupling these 0D LV-elastance and Windkessel boundary con-
ditions (or any simpler ODE-based boundary condition) to a 3D LB-based fluid–structure interaction solver for hemody-
namics (where the solid is governed by elastic equations). The methodology introduces, for both ODE-based as well as
non-stationary boundaries, a discrete explicit-in-time modification to an LB non-equilibrium extrapolation method16,33,34

that has been previously proposed for fluid-only problems (i.e., no solid interaction) and only for given (often analytical)
Dirichlet-based pressure or velocity boundary conditions (a particular novelty here is in the non-stationary switching
between pressure and velocity). The ultimate aim is to enable accurate physiological LV-aortic coupling conditions for car-
diovascular studies of, for example, the effects of left ventricle contractility on pulsatile hemodynamics in the aorta.
Section 2.1 presents the governing equations for the fluid, the solid and the LV-elastance models. Section 2.2 details the
direct 0D-3D LV-coupling strategy that is introduced in this work, including a discussion of the loss of mathematical regu-
larity of such a model from a discontinuity in the velocity upon valve closure (and the proposition of a smoothing operator
in order to ensure a continuous transition). Section 2.3 provides algorithmic details of the complete solver, including the
numerical methods employed for the solid as well as the fluid–structure interactions (both of which can be provided by
any number of suitable schemes). Section 3.1 presents a variety of performance studies attesting to the valid implementa-
tion and the accuracy of the fluid and solid solvers presented in this paper. Finally, Section 3.2 considers a sample physio-
logical study of oscillatory wall shear stress in a 3D aorta with carotid and renal branches.

2 | MATERIALS AND METHODS

2.1 | Governing formulations

This section presents the governing equations employed in the numerical solver described in Section 2.3: those for the
fluid domain of a vessel (governed by lattice Boltzmann equations, Section 2.1.1); those for the LV-elastance model for
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the fluid inlet (governed by hybrid ODE-Dirichlet equations, Section 2.1.2); and those for the solid vessel walls
(governed by elastodynamics equations, Section 2.1.3). An illustration of the complete coupled fluid–structure computa-
tional domain Ω¼Ω[ ∂Ω1[ ∂Ω2 �ℝ3 is presented in Figure 1 for the (interior) fluid domain Ω, the solid wall ∂Ω1 and
the 0D-3D coupled domain ∂Ω2.

2.1.1 | 3D lattice Boltzmann equations

For the fluid domain Ω, the lattice Boltzmann (LB) equations are employed, where the synchronous motions of fluid
particles on a regular lattice are enforced through a particle distribution function.16 This distribution function enforces
mass and momentum conservation as well as ensuring that the fluid is Galilean invariant and isotropic.35 In the present
work, a single-relaxation-time (SRT) incompressible LB method is used to solve the incompressible flow.36 The evolu-
tion of the distribution functions on the lattice is governed by the discrete Boltzmann equation with the Bhatnagar-
Gross-Krook (BGK) collision model, given by

f i xþeiΔt, tþΔtð Þ� f i x, tð Þ¼�1
τ
f i x, tð Þ� f eqi x, tð Þ½ �þΔtFi x, tð Þ, i¼ 0,…,N0�1, ð1Þ

where f i x, tð Þ are distribution functions of the particles in phase space; ei are discrete velocities at position x and time t;
τ is a non-dimensional relaxation time; f eqi x, tð Þ are equilibrium distribution functions; and Fi are forcing terms. Here,
N0 ¼ 19 since a D3Q19 (19 discrete velocity vectors) stencil is applied (and a D2Q9 stencil is employed for the 3D-
axisymmetric cases, i.e., N0 ¼ 9.). The non-dimensional relaxation time τ is related to fluid viscosity μ by the expression

μ¼ ρν¼ ρc2s τ�1
2

� �
Δt, ð2Þ

where ν is the kinematic viscosity, ρ is the incompressible fluid density (e.g., blood density), and cs ¼Δx= Δt
ffiffiffi
3

p� �
is the

lattice sound speed. Uniform discretizations are employed throughout this work for both time (Δt) and lattice space
(Δx), chosen such that Δx=Δt¼ 1 (corresponding to cs ¼ 1=

ffiffiffi
3

p
).

The equilibrium distribution functions f eqi x, tð Þ for an incompressible Lattice Boltzmann model36 and the forcing
terms Fi x, tð Þ37 are resepctively defined as

f eqi x, tð Þ¼ωiP x, tð Þ
c2s

þωiρ
ei �v x, tð Þ

c2s
þ ei �v x, tð Þð Þ2

2c4s
�v x, tð Þ2

2c2s

" #
and ð3Þ

FIGURE 1 A representative illustration of the complete 3D computational domain defined by Ω¼Ω[ ∂Ω1[ ∂Ω2, where Ω denotes the

fluid interior (governed by lattice Boltzmann equations), ∂Ω1 denotes the compliant solid boundary (governed by elastodynamics PDEs and

incorporated by any appropriate fluid–structure interaction algorithm), and ∂Ω2 denotes the coupled 0D-3D boundary (governed by time-

dependent ODEs)
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Fi x, tð Þ¼ 1� 1
2τ

� �
�ωi� ei�v x, tð Þ

c2s
þei �v x, tð Þ

c4s
ei

� �
�b x, tð Þ

� �
, ð4Þ

where v x, tð Þ is the fluid velocity; P x, tð Þ is the macroscopic pressure; ωi are weighting factors (whose values are adopted
from previous study36); and b x, tð Þ is the force density in Eulerian coordinates. Pressure P x, tð Þ and velocity v x, tð Þ can
be calculated from the distribution functions f i x, tð Þ via the expressions

P x, tð Þ¼ c2s
X
i

f i x, tð Þ, ð5Þ

v x, tð Þ¼ 1
ρ

X
i

eif i x, tð Þþ 1
2ρ

b x, tð ÞΔt: ð6Þ

The numerical implementations and algorithmic pseudocode are provided in Section 2.3.

2.1.2 | 0D fluid boundary equations: LV-elastance and lumped parameter models

For the fluid inlet boundary condition on the coupled 0D-3D interface ∂Ωinlet � ∂Ω2, when the heart valve is open, the
corresponding time-dependent boundary condition for x �Ωinlet that governs the dynamics of the left ventricle is given
by the ODE10,38

∂Pv

∂t
¼� 1

Cv tð Þ
∂Cv tð Þ
∂t

Pv tð ÞþQ x, tð Þ
� �

, ð7Þ

for pressure inside the ventricle Pv tð Þ and time-varying compliance Cv tð Þ (the inverse of which is the corresponding
time-varying elastance whose maximum is a measure of LV contractility10,38). Hence once the pressure Pv tð Þ in the ven-
tricle is greater than that of the inlet fluid domain boundary P x � ∂Ωinlet, tð Þ, the valve opens and P x, tð Þ¼ Pv tð Þ with
the corresponding flow condition Q tð Þ given naturally by the fluid solver via the area integral given by

Q tð Þ¼
ð ð

∂Ω2

P
eif i x, tð ÞP
f i x, tð Þ dA: ð8Þ

Once the inflow reaches zero (or, numerically, the time at which Q tð Þ<0), the valve closes and the 0D boundary condi-
tion remains Q tð Þ¼ 0 (a Dirichlet-type flow condition). Generally, Cv tð Þ is given by clinical parameters either through a
look-up table or through a closed-form approximation (adopted throughout this paper from the compliance curve pres-
ented in Amlani and Pahlevan10). An analysis of this nonlinear, non-stationary LV boundary condition and details on
the algorithmic implementation of such a switching configuration are provided in Section 2.2.

At the outlet boundary ∂Ωoutlet � ∂Ω2 of the 3D physiological aorta considered in Section 3.2, a conventional 0D
lumped parameter model, a so-called circuit-like Windkessel model, is employed to represent the effects of truncated
vasculature10 (i.e., eliminated periphery). The outlet of the fluid domain is coupled to such a model through a matching
characteristic impedance Zw that is related to the fluid inductance and overall outgoing aortic compliance. Together
with an effective chamber compliance Cw and a total peripheral resistance Rw, the pressure Pw in the terminal compli-
ance chamber is related to the aortic pressure P x, tð Þ at the outlet boundary x � ∂Ωoutlet through an ODE given by

∂Pw

∂t
tð Þ¼ 1

CwZw
P x, tð Þ� RwþZw

CwRwZw
Pw tð Þ: ð9Þ

The form of Equation (9) can be derived from an electrical analogy; it effectively governs an impedance-matching
(at the outgoing vessel) circuit in order to affect steady flow (i.e., pressure corresponds to voltage and flow to current).

The corresponding 0D outflow Q x, tð Þ at the outlet x � ∂Ωoutlet is given by
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Q x, tð Þ¼ 1
Zw

P x, tð Þ�Pw tð Þð Þ: ð10Þ

Further details on the parameters, usage and implementation of both this outgoing Windkessel model, as well as the
LV-elastance heart model above, can be found elsewhere.10

2.1.3 | 3D elastic wall equations

In order to account for fluid–structure interactions in a vessel, the solid boundary ∂Ω1 is assumed to be a thin wall that
can be described by deformation of a compliant (elastic) wall in a Lagrangian coordinate system,39 that is,

ρsh
∂2X
∂t2

¼
X2
i, j¼1

∂

∂si
Ehφij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂X
∂si

� ∂X
∂sj

s
�δij

 !
∂X
∂sj

� ∂

∂sj
EIγij

∂2X
∂si∂sj

� �" #
þB s, tð Þ, ð11Þ

where ρs is the density of the solid wall; h is a constant wall thickness; δij is the Kronecker delta; X s, tð Þ�ℝ3 is the posi-
tion of the solid wall; s¼ s1,s2ð Þ�ℝ2 are the Lagrangian coordinates along the solid wall; B s, tð Þ is the Lagrangian force
exerted on the solid wall by the fluid; and Eh, EI are stretching and bending stiffnesses (respectively). The matrices φð Þij
and γð Þij represent in- and out-of-plane effects and, for a Poisson's ratio bν, are respectively given by

φð Þij ¼
1

1
2 1þbνð Þ

1
2 1þbνð Þ 1

0BB@
1CCA and γð Þij ¼

1 1

1 1

� �
: ð12Þ

The boundary condition of the solid wall (as a shell) at a simply-supported fixed end is given by

X ¼X0,
∂2X
∂s2i

¼ 0,0,0ð ÞT , i¼ 1,2, ð13Þ

where X0 denotes the displacement coordinates of the fixed boundaries.

2.1.4 | Non-dimensionalization

All the above formulations for both the fluid and the solid can be non-dimensionalized via the reference quantities ρ,
U∞ ¼Q=A (A is the inlet area of ∂Ω2) and effective length L (which is equal to a diameter D if the inlet is cylindrical).
The corresponding non-dimensional parameters considered in our simulations are given by Reynolds number
Re ¼ ρU∞L=μ, Womersley number Wo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρωL2=4μ

p
, bending coefficient K ¼EI=ρU2

∞L
3, tension coefficient

S¼Eh=ρU2
∞L, and mass ratio of the solid wall to the fluid given by M¼ ρsh=ρL.

2.2 | A direct 0D-3D coupling for ODE-based boundary equations and lattice Boltzmann
solvers

This section proposes a discrete, direct methodology for the coupling of 3D lattice Boltzmann equations with dynamic
(ODE-based) 0D models which, as described before, are often found in inflow and outflow conditions for cardiovascular
configurations. The hybrid ODE-Dirichlet system governed by Equation (7) represents a most complex form of the myr-
iad such formulations found in cardiovascular modeling, and its particular treatment is discussed in Section 2.2.1
(although the method proposed in what follows is straightforwardly applicable to other ODE-based 0D boundary equa-
tions such as Windkessel models). The general strategy for such multidimensional coupling of the solver presented in
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this work is based on the non-equilibrium extrapolation method,16,33 which has been introduced as an alternative to typ-
ical “bounce-back” methods40 used to implement (given) pressure and velocity boundary conditions for LB methods in
order to preserve a consistent order-of-accuracy between the boundaries and the order-of-accuracy inherent to LB for-
mulations.33 In particular, such a method is ideally suited for curved fluid boundaries34,41 (such as those provided by
fluid–structure interfaces of interest in this work), where the physical boundary need not coincide with the regular fluid
lattice.

In this contribution, we present a discrete explicit-in-time LB modification of the non-equilibrium extrapolation
method for the use of ODE-based boundary conditions (previous usages of non-equilibrium extrapolation have been
mostly confined to given Dirichlet-based pressure or velocity boundary conditions of the fluid system16,33,34). In order
to update the distribution functions from a timestep tn to a timestep tnþ1 ¼ tnþΔt of a fluid point xf �Ω that is
streamed from the corresponding 0D-3D interface (boundary) node x � ∂Ω2 of the lattice (i.e., xf ¼ xþeiΔt), such a for-
mulation can be derived by separating collision and streaming operations of Equation (1) into

f �i xð Þ¼ f i x, tnð Þ�1
τ
f i x, tnð Þ� f eqi x, tnð Þ½ �þΔtFi x, tnð Þ, x � ∂Ω2, ð14Þ

and

f i xf , tnþ1
� �¼ f i xþeiΔt, tþΔtð Þ¼ f �i xð Þ, x � ∂Ω2, xf �Ω, ð15Þ

respectively. The distribution function for x � ∂Ω2 in Equation (14) can be decomposed into an equilibrium and non-
equilibrium part, i.e.,

f i x, tnð Þ¼ f eqi x, tnð Þþ f neqi x, tnð Þ, ð16Þ

which, upon substitution into Equation (14) and re-ordering terms, gives the expression for the collision as

f �i xð Þ¼ f eqi x, tnð Þþ 1�1
τ

� �
f neqi x, tnð ÞþΔtFi x, tnð Þ: ð17Þ

The non-equilibrium component on the boundary can be approximated via a Chapman-Enskog asymptotic expansion33

at a distance 0< ϵ� 1 from the neighboring fluid node xf as

f neqi x, tnð Þ¼ f i xf , tn
� �� f eqi xf , tn

� �þO ϵ2
� �

, ð18Þ

whose second-order accuracy in ϵ is consistent with the order of the LB method. In such an asymptotic analysis, ϵ is a
“smallness parameter” that label's each term's order in the dimensionless Knudsen number Kn,42 that is, ϵm ¼Knm:

Inserting the above expression into Equation (16) gives a second-order approximation of the distribution function on
the boundary node x as

f i x, tnð Þ¼ f eqi x, tnð Þþ f i xf , tn
� �� f eqi xf , tn

� �
: ð19Þ

From the definition of the equilibrium distribution function given in Equation (3), the above expression yields a “post-
stream” state given by

f i x, tnð Þ¼ f eqi P� xð Þ,v� xð Þð Þþ f i xf , tn
� �� f eqi P xf , tn

� �
,v xf , tn
� �� �

, ð20Þ
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where P� xð Þ,v� xð Þ are the (unknown) effective pressure or velocity at the boundary point (given by the boundary condi-
tion, as described shortly). Substitution into the collision governed by Equation (14) yields the complete post-collision
stream update of the boundary values as

f �i xð Þ¼ f eqi P� xð Þ,v� xð Þð Þþ 1�1
τ

� �
f i xf , tn
� �� �� f eqi P xf , tn

� �
,v xf , tn
� �� �þΔtFi xf , tn

� �
, ð21Þ

and hence, from Equation (15), gives a complete update of the fluid point xf from the neighboring boundary value x as

f i xf , tnþ1
� �¼ f eqi P� xð Þ,v� xð Þð Þþ 1�1

τ

� �
f i xf , tn
� �� �� f eqi P xf , tn

� �
,v xf , tn
� �� �þΔtFi xf , tn

� �
: ð22Þ

Other non-equilibrium extrapolation implementations have mostly considered purely fluid domains, and hence do not
consider a forcing Fi term in the derivation. However, for the complete solver of this work, such forces (although small
in an elastic regime) can be nonzero close to a fluid–structure interface.

A 0D model (correspondingly evolved in time, if an ODE) can then be directly and explicitly coupled with this for-
mulation at each timestep through P� and v�. That is, if the 0D model generates a pressure P0D tð Þ from the flow solution
(e.g., the LV-elastance model of this work), the coupling can be instituted in Equation (22) as

P� xð Þ,v� xð Þð Þ¼ P0D tnþ1ð Þ,v xf , tn
� �� �

, ð23Þ

where P� comes from the evolved 0D boundary condition (e.g., an ODE), and v� is approximated by the corresponding
value of the streamed fluid node xf at the current timestep. Similarly, if the 0D model generates a velocity v0D tð Þ at the
boundary, then

P� xð Þ,v� xð Þð Þ¼ P xf , tn
� �

,v0D tnþ1ð Þ� �
: ð24Þ

Such a direct 0D-3D coupling enables the use of any sort of mathematical or numerical model for the 0D boundary. For
example, an ODE-based boundary condition can be resolved and marched forward-in-time by any suitable integration
technique (e.g., forward Euler or higher-order10). As an example 0D model that inputs a flow from the 3D fluid solver
(in terms of the corresponding equilibrium function solutions) and generates a corresponding pressure (via, e.g., an
ODE), an illustrative schematic diagram for such coupling as detailed above is presented in Figure 2. For the LV-
elastance model of Section 2.1.2, the flow (i.e., velocity integrated over the inlet area) is input into the 0D model, which
returns a singular (internal) pressure before valve closure or a fully-zero flow velocity after valve closure (hence the 0D
output is prescribed everywhere at the inlet of the fluid domain with no additional treatment).

2.2.1 | On the particularities of the specific hybrid ODE-Dirichlet LV model

The non-stationary switching condition of the specific 0D LV-elastance equations presented in Section 2.1.2 leads to a
loss in regularity of the solution near boundaries governed by the hybrid-ODE Dirichlet system. Indeed, the
corresponding velocity at the time t¼Td of valve closure (also known as a dicrotic notch on the corresponding pressure
waveform) is generally non-zero, and hence the switch to a Dirichlet condition for diastole leads to a discontinuity in
the velocity solution close to the 0D-3D boundary ∂Ω2. That is, for a point xf �Ω neighboring a boundary node x � ∂Ω2

with a velocity solution during the systolic phase (t� 0,Td½ �) defined as v0 tð Þ¼ v xf , t
� �

, the velocity over a complete car-
diac cycle of length T can be expressed as

v tð Þ¼ v0 tð Þ, t � 0,Td½ � valve openð Þ,
0, t � Td,Tð � valve closedð Þ,

�
ð25Þ

WEI ET AL. 7 of 25

 20407947, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.3683, W
iley O

nline L
ibrary on [24/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



which, again, can be discontinuous. Such a loss in the smoothness of the velocity derived from the switching solutions
to the LV-elastance boundary equations may lead to spurious reflections (including in the form of artificial backflow) at
the point of closure of the valve, that is, at t¼Td. In order to ensure there is no spurious backflow or artificial oscilla-
tions resulting from immediately setting a zero velocity, we introduce a smooth transition function to the velocity pro-
file upon valve closure. Such a function can be defined as a continuously differentiable C∞ smoothing-to-zero function
S tð Þ and can be derived from an exponential or erf-based partition-of-unity as

S tð Þ¼ S t, t0,LSð Þ¼
1, t< t0,

exp
2e�1=u tð Þ

u tð Þ�1

� �
,u tð Þ¼ t� t0

LS
, t0 ≤ t≤ t0þLS,

0, t> t0þLS,

0BB@ ð26Þ

where t0 ¼Td is the location of the start of the smoothing-to-zero (i.e., the time of valve closure) and LS is the interval
over which to smoothly transition to zero (indeed, there is a non-instantaneous valve closure in physical reality). For
example, the velocity v0 tð Þ in Equation (25) can be smoothly brought to zero over a discrete interval of NS timesteps of
size Δt (corresponding to an inteval LS¼NSΔt) by multiplying the velocity by the smoothing function as

vnew tð Þ¼ v0 tð Þ, t � 0,Td½ �,
v0 Tdð ÞS t,Td,NSΔtð Þ, t � Td,Tð �:

�
ð27Þ

An illustrative example of the smoothing function S for closure time t0 ¼Td ¼ 0:5 s, Δt¼ 0:005 s, and NS ¼ 15 is shown
in Figure 3. One can easily verify that the limit from the left can be found as

lim
t!T�

d

vnew tð Þ¼ v0 Tdð Þ, ð28Þ

and, from the right, as

FIGURE 2 An illustrative example diagram of the direct (explicit) coupling between a 0D model (e.g., the ODEs corresponding to the

LV-heart model and the Windkessel model) and the 3D lattice Boltzmann (LB) model. The flow in ∂Ω2 is computed in terms of the LB

distribution functions at a timestep n which is fed into ODEs governing the 0D model. The corresponding pressure produced by the 0D

model is then re-translated into distribution functions on the boundary via the non-equilibrium extrapolation described by Equation (20)
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lim
t!Tþ

d

vnew tð Þ¼ lim
t!Tþ

d

v0 Tdð ÞS tð Þ

¼ v0 Tdð Þ lim
t!Tþ

d

S tð Þ ð29Þ

¼ v0 Tdð Þ,

where we have taken the notational license S tð Þ¼ S t,Td,NSΔtð Þ: Hence vnew tð Þ is continuous everywhere including at
t¼Td, that is, vnew tð Þ�ℝ!ℝ3 is of class C0 0,T½ �ð Þ. A flowchart summarizing the complete implementation and
smooth switching of the 0D LV-elastance model with the C∞ smoothing employed in this work is presented in
Figure 4.

2.3 | Algorithmic details

The following details the numerical algorithms/methods employed for the LB fluid solver and the solid (elastic) solver
(which utilizes finite differences for 3D-axisymmetric and finite elements for 3D). Their interactions, described in
Section 2.3.2, can be facilitated by any appropriate fluid–structure algorithm: in this work, an immersed boundary
method is used.

2.3.1 | Lattice Boltzmann method

The core algorithm for solving the 3D LB equations consists of a cyclic sequence of sub-steps (where each cycle corre-
sponds to one overall timestep) that is prescribed as:

1. Compute the macroscopic moments P x, tð Þ and v x, tð Þ from f i x, tð Þ via Equations (5) and (6).
2. Obtain the equilibrium distribution f eqi x, tð Þ from Equation (3).
3. Perform collision (relaxation) and streaming (propagation) to update f i x, tð Þ via Equation (1).
Further details about the implementation of the 3D LB method can be found elsewhere.16,23,24,36

FIGURE 3 An illustration of the exponential-based C∞-function S t, td,Wð Þ given by (26) which is employed to smoothly reduce lattice

Boltzmann velocity amplitudes as the valve closes in the 0D LV-elastance model (i.e., the ODE-Dirichlet switch)
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For some of the performance studies discussed in Section 3.1, a 3D-axisymmetric LB model is implemented, where
an incompressible D2Q9 BGK model is used to derive an axisymmetric configuration. In such a formulation, for the
pseudo-Cartesian coordinates x¼ x,rð Þ that describe 3D axisymmetric flow, Equation (1) can be transformed into

f i xþeiΔt, tþΔtð Þ� f i x, tð Þ¼�1
τ
f i x, tð Þ� f eqi x, tð Þ½ �þΔtFi x, tð ÞþHi x, tð Þ, ð30Þ

where the a source term Hi x, tð Þ¼Δth 1ð Þ
i x, tð ÞþΔt2h 2ð Þ

i x, tð Þ is incorporated for microscopic evaluation as43

h 1ð Þ
i ¼�ωiρur

r
and h 2ð Þ

i ¼�ωi
3ν
r

∂yPþρ∂xuxur þρ∂rurur þρ ∂rux � ∂xurð Þeix
	 


: ð31Þ

With the inflow conditions given by the complex hybrid ODE-Dirichlet system of the LV-elastance model
(Section 2.1.2), the corresponding outflow conditions can be physiologically modeled by any suitable boundary condi-
tion that accounts for downstream physiological effects including the effective compliance, resistance and wave reflec-
tion of the truncated vasculature (to approximate the effect of the eliminated peripheral vessels). This is reasonably
captured in this work using the extension outflow boundary tube model consisting of an elastic tube terminated in a
rigid contraction.44 Such a model has been successfully utilized for hemodynamics studies.45–48 Other models can be
used, including lumped parameter Windkessel ODEs10,25,26 (which can be easily implemented using the same direct
0D-3D coupling introduced earlier).

2.3.2 | Fluid–structure interactions

For all 3D simulations of this work (including the physiological example study of Section 3.2), the solid deformation
given by Equation (11) is numerically simulated by the nonlinear finite element method (FEM) solver of previous

FIGURE 4 A flowchart describing the implementation of the particular hybrid ODE-Dirichlet 0D LV-elastance model that is of interest
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study,49 where the large-displacement and small-strain deformation problems are handled by co-rotational schemes.
The numerical strategy has been successfully implemented in previous works for resolving a wide range of fluid–
structure interaction (FSI) problems incorporating elastic structures.39,50–52 Briefly, such a method uses three-node tri-
angular elements to describe the deformation using six degrees of freedom (three displacement components and three
angles of rotation).53 An iterative strategy is then used for the time integration of the subsequent nonlinear systems of
algebraic equations in order to ensure second-order accuracy. A further detailed description of the particular finite ele-
ment method employed in this work can be found elsewhere.49

For the 3D-axisymmetric performance studies included in Section 3.1, a self-implemented staggered grid finite dif-
ference (SGFD) methodology54 is employed in the Lagrangian coordinate system (where s¼ s�ℝ is the arc length),
where only the tension force given by

T¼Eh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂X
∂s

� ∂X
∂s

r
�1

 !
ð32Þ

is defined on the interface (the displacement variable X s, tð Þ, for example, is defined on all the nodes). The solid defor-
mation governed by Equation (11) is subsequently solved by such a finite difference methodology in a strong form.54–56

That is, for an arbitrary variable, the central, downwind and upwind difference approximations to the first-order deriva-
tives, are given by

D0
sX ¼ X sþΔs=2ð Þ�X s�Δs=2ð Þð Þ=Δs,

Dþ
s X ¼ X sþΔsð Þ�X sð Þð Þ=Δs,

D�
s X ¼ X sð Þ�X s�Δsð Þð Þ=Δs,

0B@ ð33Þ

such that the corresponding second-order central difference approximation can be defined as

Dþ
s D

�
s X ¼ X sþΔsð Þ�2X sð ÞþX s�Δsð Þð Þ=Δs2, ð34Þ

where the same difference approximation is applied for the time derivative. The tension force term of Equation (11)
(given by Equation 32) is hence approximated as

Ds TDsXð Þ¼D0
s TD0

sX
� �¼TD0

sX sþΔs=2�TD0
sX s�Δs=2

Δs
: ð35Þ

Similarly. the bending force term in Equation (11) can be approximated as

�Dss EIDssXð Þ¼�Dþ
s D

�
s EIDþ

s D
�
s X

� �¼�EI
Dþ

s D
�
s X sþΔs�2Dþ

s D
�
s X sþDþ

s D
�
s X s�Δs

Δs2
: ð36Þ

For coupling the fluid and solid systems, any suitable FSI coupling strategy can be employed. For this particular work,
the immersed boundary (IB) method57 is used to couple the LB method of the fluid with the 3D FEM (or 3D-
axisymmetric FDM) of the solid.39,54 This method has been extensively used to simulate FSI problems in cardiovascular
biomechanics.45,58–60 The body force term b x, tð Þ in Equation (4) is used as an interaction force between the fluid and
the boundary in order to enforce the no-slip velocity boundary condition at the FSI interface. The Lagrangian force
between the fluid and structure, B s, tð Þ, is then calculated by a penalty scheme57 using the expression given by

B s, tð Þ¼ α

Z t

0
V f s, t

0
� �

�V s s, t
0

� �� �
dt

0
� �

þβ V f s, tð Þ�V s s, tð Þ� �
, ð37Þ

where α�ℝ and β�ℝ are negative penalty parameters (adopted in this work from previous studies39,51,52,61,62);
V s s, tð Þ¼ ∂X=∂t is the velocity of Lagrangian material point of the solid wall; and V f s, tð Þ is the fluid velocity at the
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position X . The latter can be obtained through transforming the Eulerian fluid velocity v x, tð Þ into Lagrangian coordi-
nates via the integral

V f s, tð Þ¼
Z

v x, tð Þδ x�X s, tð Þð Þdx, ð38Þ

where δ x�X s, tð Þð Þ is a Dirac delta function. The body force b x, tð Þ in Eulerian coordinates can be calculated from the
corresponding Lagrangian body force via the expression

b x, tð Þ¼�
Z

B s, tð Þδ x�X s, tð Þð Þds: ð39Þ

The Lagrangian interaction force B can be explicitly obtained by the penalty IB strategy described above. Such a formu-
lation of the IB numerical strategy has been successfully applied to a wide range of FSI problems,39,51,61,62 including
those governed by the dynamics of fluid flow over a circular flexible plate39 and an inverted flexible plate.51 The overall
numerical algorithm for solving the complete FSI system is summarized in the block-diagram of Figure 5, and its
corresponding pseudocode implementation is provided in Algorithm 1. At the start of each numerical simulation, the
0D and 3D domains can be initialized with U0 ¼ 0, Q0 ¼ 0 and an arbitrary P0 ≠ 0, respectively.

3 | RESULTS AND DISCUSSION

3.1 | Performance evaluation

This section presents a series of performance studies, based on benchmark cases and manufactured solutions that vali-
date the implementation and convergence of the solid, fluid and interaction components of the complete solver (includ-
ing the LV-elastance model). Firstly, the fluid solver is validated by non-oscillatory and oscillatory cases of a flow
around a cylinder. The solid solver is then validated through a classic case of a hanging elastic filament as well as the
method of manufactured solutions (MMS).

3.1.1 | Fluid solver: steady and oscillating cylinders

In order to validate the present LBM solver and its coupling with the IB method for solid wall boundaries, two cases are
considered: a uniform flow passing a non-oscillating cylinder and uniform flow passing a transversely oscillating cylin-
der. In those cases the motion of the solid wall is prescribed (rigidly), and hence the problem becomes a one-way fluid–
structure coupling such that the solid position of the center of the cylinder is given by

X c ¼ �10D,Am cos ωetð Þð ÞT , ð40Þ

where D is the cylinder diameter; and Am �ℝ, ωe �ℝ are the constant oscillation amplitude and frequency, respec-
tively. In the cases considered in this section, the Reynolds number is defined as Re ¼ vD=ν¼ 185 for velocity v (m/s),
fluid viscosity ν and D¼ 1 m. Defining ω0 ¼ 0:4π radians as the natural shedding frequency for a stationary cylinder,
the computation is performed with the parameters Am ¼ 0:2 m, and two oscillating cases ωe=ω0 ¼ 0:9 and ωe=ω0 ¼ 1:1
(note that ωe=ω0 ¼ 0:0 for a non-oscillating cylinder). These test cases and their corresponding parameters are adopted
from the benchmark cases proposed by previous study.63 Figures 6 (left) illustrates the computational domain for both
steady and moving cases.

Figure 6 (right) presents the corresponding time evolution of the drag and lift coefficients Cd, Cl of the steady
case as simulated by our solver up to a final time of t¼ 400 s. The numerical discretization corresponds to Δx¼
1=32D,Δt¼ 1=100s (where D¼ 1 m). Using the same discretization and computational domain, Figure 7 additionally
presents the time evolution of the drag and lift coefficients of the moving (oscillating) cylinder case for ωe=ω0 ¼ 0:9 (left)
and ωe=ω0 ¼ 1:1 (right). As a further validation, particularly at a higher Reynolds number that better corresponds to the
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range for realistic blood flow configurations, Figure 8 additionally presents the drag and lift coefficients for a steady case
at Re ¼ 1000. The numerical discretization in this case corresponds to Δx¼ 1=64D,Δt¼ 1=200s.

Table 1 presents a comparison of various drag and lift-based coefficients between the simulations described above
and those reported in literature. All cases (the steady and moving at Re¼ 185 and the steady at Re¼ 1000) demonstrate
excellent agreement with previous studies.54,63–71

3.1.2 | Solid solver: filament under gravity and manufactured solutions

In order to validate the elastic (solid) component, two case are considered: an elastic filament under gravity and a man-
ufactured solution (i.e., a given right-hand-side).

The first case considers a hanging filament of length L¼ 1 m without an ambient fluid (in order to independently
test the solid solver alone), as proposed by Huang et al.54 Adopting the same arbitrary units, the filament is initially
held stationary at an angle k¼ 0:1π radians from the vertical, where the physical parameters correspond to a Froude
number Fr¼ v=

ffiffiffiffiffi
gL

p ¼ 10:0 (g is the gravitation constant) and a bending rigidity EI¼ 0:01 Pa m3. Snapshots of the simu-
lated positions of the filament over a time period of 0.8 s are illustrated in Figure 9, where a spatial discretization of
N ¼ 100 elements is utilized together with a timestep of Δt¼ 0:0001 s. Again, the solutions produced by the solver of
this work are in excellent agreement with those results presented by Huang et al.54 In particular, the maximum differ-
ence in the free ends (leftmost and rightmost snapshots of Figure 9) is found to be 0:67 versus 0:68.54

In order to further validate the implementation of the solid solver (in particular, it's numerical accuracy), the
method of manufactured solutions (MMS) is additionally employed. Such a verification procedure has been extensively

FIGURE 5 A fluid–structure interaction (FSI) procedure facilitated by the immersed boundary (IB) method
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used for validating other hemodynamics solvers.10,72,73 In MMS, one proposes a closed-form smooth solution
(i.e., arbitrary movement) and subsequently derives (algebraically) the corresponding right-hand forcing terms and
boundary conditions in order to render the postulated function to be an exact solution of the solid equations. Here, we
postulate a given displacement function X s, tð Þ as

Algorithm 1 Summary of a complete 3D IB-LBM solver with 0D coupling

Input fluid material parameters Re,Wo,μ
Input solid material parameters Eh,EI
Input characteristic domain parameters D,Lxi

Input LV-elastance parameters Cv tð Þ, ∂Cv=∂t tð Þ
Input numerical discretizations Δxi,Δsi,Δt
Input total number of cardiac cycles to simulate () total time Tmax )

1: Initialize the pressure P and velocity v for the fluid // initial time t¼ 0
2: Initialize X for the solid structure position // initial time t¼ 0
3: while t<Tmax do
4: Obtain macroscopic fields P and v from distribution functions f i // via Equations (5) and (6)
5: Compute Lagrangian interaction force B s, tþΔtð Þ on ∂Ω1 via IB // via Equation (37)
6: Compute the corresponding body force b x, tþΔtð Þ in Ω via IB // via Equation (39)
7: Evolve ODE (i.e., 0D-model) to tþΔt.
8: Couple ODE with LBM to evolve f i, f eq to tþΔt on ∂Ω2 // via Figure 2
9: Perform collision & streaming (LBM) to evolve f i, f eq to tþΔt in Ω // via Equation (1)
10: Evolve solid wall position X to tþΔt on ∂Ω1 via FDM/FEM // via Equation (11)
11: Update the macroscopic variables P,v to tþΔt in Ω
12: t! tþΔt
13: end while

Output the numerical solutions for v x, tð Þ,P x, tð Þ,X s, tð Þ on Ω� 0,Tmax½ �

FIGURE 6 Numerical validation of the steady flow (non-moving cylinder) test case. (Left) Diagram of the 2D computational domain.

(Right) The corresponding temporal evolution of drag (solid blue) and lift (dotted red) coefficients at Re ¼ 185, demonstrating excellent

agreement with previous studies63,64
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X s, tð Þ¼ s,A sin πsð Þcos πtð Þð ÞT , ð41Þ

where A¼ 0:01 m is the maximum amplitude of displacement in the vertical component. The solid structure considered
is again an elastic filament of length L¼ 1 m with elastic material parameters corresponding to a Young's modulus of
E¼ 0:5 MPa and a thickness of h¼ 1 mm. Employing the same numerical discretization as in the gravity case,
Figure 10 (left) presents snapshots in time of the simulated filament positions for both numerical (solid lines) and ana-
lytical values (dashed lines).

Using successive discretization sizes that are integer multiples of the coarsest one used (N ¼ 25 elements), the simu-
lation is advanced for 100,000 timesteps in all cases at a fine time-step size of Δt¼ 1 �10�5 s (in order to ensure that
errors are dominated by the spatial discretization). The maximum absolute errors between simulated displacements
and the exact manufactured solution of Equation (41), overall space and for all timesteps, are presented in Figure 10

FIGURE 7 Numerical validation of the unsteady flow (oscillating cylinder) test case. (Left) The temporal evolution of drag (solid blue)

and lift (dotted red) coefficients at Re ¼ 185,Am=D¼ 0:2 and f e=f 0 ¼ 0:9. (Right) The temporal evolution of drag and lift coefficients at

Re ¼ 185,Am=D¼ 0:2, f e=f 0 ¼ 1:1. Both simulated cases are in excellent agreement with results provided by previous studies54,63,64

FIGURE 8 Numerical validation at a higher Reynolds number (Re¼ 1000) for the steady flow (non-moving cylinder) test case,

demonstrating excellent agreement with results provided in previous studies65–69
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(right). The overlaid slopes in the plots illustrate the expected second-order of accuracy for the elastic (solid) solver
employed in this paper (hence verifying its implementation).

TABLE 1 Quantitative comparison between the presented fluid solver and those of literature54,63–71 for all the fluid solver validation

cases of Section 3.1.1. Results demonstrate good agreement of the proposed LBM implementation for reported mean drag coefficient Cd,

root-mean-square averaged lift coefficient Cℓ,rms, and maximum lift coefficient Cℓ,max

Re ¼ 185 Cd Cℓ,rms

Non-oscillatory Present 1.40 0.464

Sun, et al.70 1.37 (not reported)

Lu and Dalton71 1.31 0.422

Guilmineau and Queutey63 1.29 0.443

f e/f o = 0.9 Present 1.42 0.17

Huang, et al.54 1.35 0.15

Guilmineau and Queutey63 1.33 0.19

Kim and Choi64 1.37 0.17

f e/f o = 1.1 Present 1.44 0.92

Huang, et al.54 1.41 0.90

Guilmineau and Queutey63 1.36 0.87

Kim and Choi64 1.40 0.87

Re ¼ 1000 Cd Cℓ,max

Non-oscillatory Present 1.58 1.40

Cai, Shang-Gui, et al.65 1.55 1.46

Mittal and Kumar66 1.48 1.65

Apte, et al.67 1.50 (not reported)

Mittal, et al.68 1.48 (not reported)

Mimeau, et al.69 1.51 1.54

FIGURE 9 Numerical validation of the solid solver using an elastic filament. Superposition of simulated filament positions (from left to

right) at successive times, demonstrating excellent agreement with positions provided by Huang et al54
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3.1.3 | Fluid–solid solver: Flapping flag

In order to validate coupling the fluid and solid solvers together, one can consider the classical 3D benchmark problem
of a (square) flapping flag subjected to a 3D uniform flow.56 Figure 11 (left) illustrates the problem configuration. For a
simulation employing a Reynolds number of 100, a stretching coefficient Ks ¼ 1000, and a bending coefficient
Kb ¼ 0:0001, the right plots of Figure 11 present the transverse displacements at the lowest corner of the trailing edge
(demarcated point A) and the mid-point of the trailing edge (demarcated point B). As can be observed, results are in
very good agreement with those of Huang and Sung56 (which are overlaid in red dots). For further validations on other
configurations of the complete immersed boundary FSI solver employed in this work, the reader is referred
elsewhere.45,52,74

3.1.4 | The complete FSI solver coupled to the 0D LV-elastance heart model

In order to verify the complete FSI solver coupled to a 0D hybrid ODE-Dirichlet heart model, one can consider the axi-
symmetric straight aorta configuration (of length 25D) presented in Figure 12. Adopting parameters of the LV-elastance
hybrid ODE-dirichlet model from previous work10 corresponding to an end-systolic LV elastance Ees ¼ 2:2 mmHg/ml
and a CO¼ 4:3 L/min, Figure 13 (left) presents the expected physiologically-accurate pressure profiles at the 0D-3D
interface as simulated by the complete solver for discretizations corresponding to Δx¼ 1=20,1=32,1=64,1=100 and
1=128, where physical parameters of Wo ¼ 16, a non-dimensionalized D¼ 1 (corresponding to 24mm), μ¼ 3:5cP and
ρ¼ 1000kg=m3 are employed. The timestep is fixed again and is taken small enough so that errors are dominated by
the spatial discretization. Figure 13 (right) presents the corresponding L∞ errors (relative to the finest solution), where
a convergence between first and second order can be observed (and is expected from the second-order nature of the lat-
tice Boltzmann solver and the first-order discretizations of the LV-elastance ODEs). Figure 14 (left) and Figure 15 (left)
additionally present the simulated physiological flow profiles at the inlet and the pressure profiles at the midpoint of
the vessel, respectively. The corresponding L∞ errors (relative to the finest discretization of Δx¼ 1=128) are presented
in Figure 14 (right) and Figure 15 (right), respectively. As before, one can appreciate the convergence and accuracy as
expected from the second-order fluid discretization and the first order LV-elastance ODE time integration.

FIGURE 10 (Left) Snapshots in time of a manufactured solution (Equation (41)) of both the exact values (dashed lines) and those

produced by our numerical simulations (solid lines). (Right) The corresponding L∞ errors between the numerical and analytical solutions,

which demonstrate the expected second-order accuracy of the solid solver
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3.2 | An example physiological case: wall shear stress in the aorta

A predominant effect of advanced congestive heart failure (CHF) is reduced blood flow in the aorta that results from a
reduction in cardiac output (CO) and a low ejection fraction (in almost half of the patients). Many factors can influence
the heart's pumping ability, including those related to the direct coupling between the LV and the arterial system.38,75,76

The hybrid ODE-Dirichlet boundary condition considered in this paper has been chosen for its ability to model the
non-stationary and nonlinear effects of such complex coupling (which is expressed as an alternating boundary condi-
tion between systole—an ODE—and diastole—a Dirichlet condition—as described in Section 2.1.2). The 0D elastance-
(compliance-)based LV model enables the generation of physiological pressure and flow waveforms that can account
for different contractilities and cardiac outputs, and its corresponding coupling to 3D lattice Boltzmann equations can
enable investigation of the heart's influence on corresponding 3D fluid–structure effects such as those related to near-
wall shear stress (WSS). Indeed, mechanical experiments77 and both in vivo/in vitro studies78–81 have shown there can
exist negative WSS corresponding to a retrograde flow during a substantial interval within a cardiac cycle, and such
effects have been strongly correlated with the state of CHF.77

As a demonstration of the applicability of the proposed solver toward exploring these parameters for studying patho-
physiological conditions in the cardiovascular system (e.g., CHF), a computational model of a simplified 3D aorta that
includes carotid and renal branches is considered and illustrated in Figure 16 (left), where the elastic wall is discretized

Flow

y
x

z

A

B

FIGURE 11 (Left) Problem configuration for benchmarking the coupled FSI solver. (Right) Transverse displacements (solid lines)

corresponding to locations A and B (respectively demarcated in the left figure), demonstrate excellent agreement with those values

(presented as dots) obtained by Huang and Sung56

FIGURE 12 Diagram of the simplified straight aorta test case coupled to the LV-elastance model
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by finite elements and the fluid by lattice Boltzmann as described in Section 2.3.2. For an effective aortic diameter D
(taken to be unity in the non-dimensionalized configuration), such a domain corresponds to Cartesian coordinates
given by x � 0,18D½ �� �1:5D,1:5D½ �� 0,8D½ � for a non-dimensionalized D¼ 1 (corresponding to 24mm). The fluid is
considered Newtonian (although the LBM is well-known to also handle non-Newtonian flow) with a Reynolds number
of Re ¼ 884. For the compliant wall, a linear elastic material with Young's modulus of E¼ 0:5 MPa and a wall thickness
corresponding to h¼ 1 mm is considered. The complete fluid–structure (immersed boundary) solver, where a no-slip
condition is imposed at the fluid–structure interface, is coupled to the 0D LV-elastance heart model (Figure 4) at the
inlet and a Windkessel ODE at the outlet (see Section 2.1.2). At all peripheral branch outlets, extension tube boundary
models44 are employed. Figure 16 (right) presents the corresponding normalized velocity magnitudes produced by a
simulation that employs discretizations of Δx¼ 1=32D,Δt¼ 1=50000 s and is advanced up to a time T¼ 5 s (where 1 s
corresponds to the period of a cardiac cycle). The LV parameters (including the compliance function) and the
Windkessel lumped parameters are adopted from previous work10 and correspond to a healthy case with normal

FIGURE 13 (Left) Physiological pressure profiles at the inlet for successively-refined discretizations of a straight aorta as produced by

the LV-elastance model. (Right) The corresponding L∞ errors (relative to the finest solution)

FIGURE 14 (Left) Flow profiles at the inlet for successively-refined discretizations of a straight aorta as produced by the LV-elastance

model. (Right) The corresponding L∞ errors (relative to the finest solution)
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contractility. Additionally, Figure 17 illustrates the expected physiological characteristics of the LV and aortic pressures,
particularly the equality during systole (in the absence of a diseased valve condition) between ventricular pressure Pv tð Þ
and the aortic pressure P x, tð Þ at the coupled boundary. Figure 18 (left) further demonstrates that the simulations cap-
ture the expected increase in pressure amplitude as the LV-sourced waves propagate downstream. Figure 18 (right) pro-
vides the corresponding flow profiles as simulated at the inlet, midpoint and outlet of the 3D aorta, demonstrating the
physiologically-expected decrease in amplitude as flow propagates downstream. For an experimental reference,
Figure 19. additionally presents experimental,82 demonstrating similar morphology characteristics and physiological
ranges for both pressure and flow waveforms. Differences between the simulated results of Figures 17 and 18 and the
experiments of Figure 19 can be attributed primarily to differences in the physiological parameters employed
(HR = 60 BPM, CO = 3.5 L/min for the simulations; HR = 75 BPM, CO = 5.0 L/min for the pressure data; and
HR = 75 BPM, CO = 3.0 L/min for the flow data).

In investigating WSS (as a relevant hemodynamic biomarker in CHF77), two contractility cases (representing a low
flow rate and a high flow rate) can be considered employing the same Womersely number Wo ¼ 16. For normal con-
tractility, the end-systolic LV elastance Ees

10 is set to 1:76 mmHg/ml, which corresponds to a cardiac output of CO≈ 3:5
l/min and is in accordance with values employed in experimental studies.77 For the high contractility scenario,
Ees = 2:75 mmHg/ml. Again, for both cases, the Womersely number Wo ¼ 16 (corresponding to a heart rate of HR¼ 60

FIGURE 15 (Left) Pressure profiles at the midpoint for successively-refined discretizations of a straight aorta as produced by the LV-

elastance model. (Right) The corresponding L∞ errors (relative to the finest solution)

FIGURE 16 (Left) Diagram of a physiologically-relevant 3D aortic domain (with carotid and renal branches) coupled to an LV-

elastance model at the aortic inlet and a lumped-parameter Windkessel model at the aortic outlet. (Right) A temporal snapshot of the

normalized flow velocity magnitude produced by the solver
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BPM77) is fixed. Figure 20 presents the corresponding wall shear stress (WSS) for both normal and high contractility
cases, as calculated through the fluid points next to the solid wall77 via the expression

WSS x, tð Þ¼ μ
∂v1
∂x3

x, tð Þ, ð42Þ

where μ is the fluid viscosity (corresponding to 3.5 centipoise), v1 is the simulated axial velocity, and x3 is the dimension
normal to the wall. As expected,77 a negative WSS (corresponding to a retrograde flow) is evident for the normal con-
tractility case parameters, and such effects disappear in the high contractility case since the corresponding flow rate is
very high. These results are in agreement with the experimental results presented in Gharib and Beizaie.77

FIGURE 17 Aortic pressure at the inlet (blue) and the corresponding ventricular pressure (dashed red) for healthy patient parameters,

simulated by the 3D FSI solver. As expected, aortic inlet pressure is equal to LV pressure during the systolic phase (when the valve is

opened)

FIGURE 18 (Left) Pressure profiles at the inlet, midpoint and outlet of the 3D aorta model, demonstrating the expected amplification

as flow propagates downstream. (Right) Corresponding flow profiles simulated at the inlet, midpoint and outlet, demonstrating the expected

decrease in flow amplitude as the wave propagates downstream
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4 | CONCLUSION

This work presents a direct 0D-3D coupling for dynamic (ODE-based) boundary conditions applied to lattice Boltzmann
solvers for hemodynamic flow. Benchmark performance studies and a physiological case of wall shear stress in a simpli-
fied 3D aorta are treated in order to validate the proposed methodology and its implementation. In particular, this work
treats a most complicated configuration of such coupling conditions: a hybrid non-stationary ODE-Dirichlet boundary
condition. Such a methodology produces a physiologically-accurate hemodynamics solver (with a heart model) for
studying wave propagation and pulsatile blood flow in arterial vessels. The methodology introduced in this paper can
be easily extended to non-switching ODE conditions such as 0D lumped parameter models (e.g., Windkessels for trun-
cating vasculature at vessel outlets), as well as to other methods for treating fluid–structure interactions (facilitated here
by an immersed boundary method). Such a direct 0D-3D coupling with the proposed regularization of Section 2.2 can

FIGURE 19 (Left) Experimental data from an in vitro LV-aortic simulator.82 (Right) Experimental flow data (of a different run) from

the same setup. The overall morphologies and physiological ranges are in agreement with those of the simulations presented in this work

FIGURE 20 Simulated wall shear stress (WSS), for both normal and high contractility cases, at a location between the midpoint and

outlet of the 3D aorta model
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also be applied to any other fluid problem that is governed by lattice Boltzmann equations and that requires direct
time-dependent ODEs as boundary conditions.
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