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Global null-controllability for stochastic semilinear parabolic
equations

Víctor Hernández-Santamaría∗ Kévin Le Balc’h† Liliana Peralta‡

April 12, 2022

Abstract
In this paper, we prove the small-time global null-controllability of forward (respectively

backward) semilinear stochastic parabolic equations with globally Lipschitz nonlinearities
in the drift and the diffusion term (respectively in the drift term). In particular, we solve
the open question posed by S. Tang and X. Zhang, in 2009. We propose a new twist on
a classical strategy for controlling linear stochastic systems. By employing a new refined
Carleman estimate, we obtain a controllability result in a weighted space for a linear system
with source terms. The main novelty here is that the Carleman parameters are made explicit
and are then used in a Banach fixed point method. This allows to circumvent the well-known
problem of the lack of compactness embeddings for the solutions spaces arising in the study
of controllability problems for stochastic PDEs.

Keywords: Global null-controllability, Carleman estimates, forward and backward semilinear
stochastic parabolic equations, Banach fixed point method.
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1 Introduction

Let T > 0 be a positive time, D be a bounded, connected, open subset of RN , N ∈ N∗, with
a C4 boundary Γ := ∂D. Let D0 be a nonempty open subset of D. As usual, we introduce
the notation χD0 to refer to the characteristic function of the set D0. To abridge the notation,
hereinafter we write QT := (0, T )×D and ΣT := (0, T )× Γ.

Let (Ω,F , {Ft}t≥0,P) be a complete filtered probability space on which a one-dimensional
standard Brownian motion {W (t)}t≥0 is defined such that {Ft}t≥0 is the natural filtration
generated by W (·) augmented by all the P-null sets in F . Hereinafter, we denote {Ft}t≥0 by F
unless we want to emphasize what (Ft)t≥0 is.

Let X be a real Banach space, for every p ∈ [1,+∞], we introduce the functional space

LpF (0, T ;X) := {φ : φ is an X-valued F-adapted process on [0, T ] and φ ∈ Lp([0, T ]× Ω;X)},

endowed with the canonical norm and we denote by L2
F (Ω;C([0, T ];X)) the Banach space con-

sisting on all X-valued F-adapted process φ(·) such that E
(
‖φ(·)‖2C([0,T ];X)

)
<∞, also equipped

with the canonical norm.
Let us consider the stochastic forward semilinear equation

dy = (∆y + f(ω, t, x, y) + χD0h)dt+ (g(ω, t, x, y) +H)dW (t) in QT ,
y = 0 on ΣT ,

y(0) = y0 in D.
(1)

In the controlled system (1), y ∈ L2
F (Ω;C([0, T ];L2(D))) is the state variable, the couple

(h,H) ∈ L2
F (0, T ;L2(D0)) × L2

F (0, T ;L2(D)) is the control and y0 ∈ L2(Ω,F0;L2(D)) is the
initial datum.

We assume for the moment that f and g verify the following conditions:

f(·, ·, ·, z), g(·, ·, ·, z) are F-adapted, L2-valued stochastic processes for each z ∈ L2(D), (2)

∃L > 0, ∀(ω, t, x, s1, s2) ∈ Ω× [0, T ]×D × R2, |f(ω, t, x, s1)− f(ω, t, x, s2)| ≤ L|s1 − s2|, (3)

∃K > 0, ∀(ω, t, x, s1, s2) ∈ Ω× [0, T ]×D ×R2, |g(ω, t, x, s1)− g(ω, t, x, s2)| ≤ K|s1 − s2|, (4)

∀(ω, t, x) ∈ Ω× [0, T ]×D, f(ω, t, x, 0) = 0. (5)

Under these conditions, by taking y0 ∈ L2(Ω,F0;L2(D)) and (h,H) ∈ L2
F (0, T ;L2(D0)) ×

L2
F (0, T ;L2(D)), it is known (see [LZ19, Theorem 2.7] or [LZ21, Theorem 1.56]) that system (1)

is globally defined in [0, T ]. More precisely, we can establish the existence and uniqueness of the
solutions to (1) in the class

y ∈ WT := L2
F (Ω;C([0, T ];L2(D))) ∩ L2

F (0, T ;H1
0 (D)). (6)

One of the key questions in control theory of parabolic equations is to determine whether
a system enjoys the so-called null-controllability property. System (1) is said to be globally
null-controllable if for any initial datum y0 ∈ L2(Ω,F0;L2(D)), there exists a control (h,H) ∈
L2
F (0, T ;D0)× L2

F (0, T ;L2(D)) such that the corresponding solution satisfies

y(T, ·) = 0 in D, a.s. (7)

Observe that the regularity (6) justifies the definition we have introduced.
In this paper, we are interested in studying this controllability notion for system (1). Be-

fore introducing our main results we give a brief panorama of previous results available in the
literature and emphasize the main novelty of this work.
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1.1 Known results

The controllability of parabolic partial differential equations (PDEs) has been studied by many
authors and the results available in the literature are very rich. In the following paragraphs, we
focus on (small-time) global null-controllability results for scalar parabolic equations.

Deterministic setting. In the case where g ≡ H ≡ 0 and f and y0 are deterministic
functions, system (1) has been studied by several authors. In the mid 90’s, Fabre, Puel &
Zuazua in [FPZ95] studied the so-called global approximate null-controllability in the case where
f is a globally Lipschitz nonlinearity and condition (7) is replaced by the weaker constraint
‖y(T )‖L2(D) ≤ ε. Later, Imanuvilov [Ima95] and Fursikov & Imanuvilov [FI96] improved this
result and proved that the global null-controllability holds, see also [LR95] for the case of the
(linear) heat equation, i.e. f ≡ 0. After these seminal works, Fernández-Cara [FC97], Fernández-
Cara & Zuazua [FCZ00] have considered slightly superlinear functions f leading to blow-up
without control, see also [Bar00] and the more recent work [LB20] by the second author. Results
for nonlinearities including ∇y and depending on Robin boundary conditions have also been
studied for instance in [DFCGBZ02, FCGBGP06].

One common feature among these results is that the authors study the controllability problem
by using the following general strategy, due to Zuazua in the context of the wave equation, see
[Zua93] or [Cor07, Chapter 4.3]; first, linearize the system and study the controllability of
the system (1) replacing f(t, x, y) by a(t, x)y(t, x) where a ∈ L∞(QT ), then, use a suitable
fixed point method (commonly Schauder or Kakutani) for addressing the controllability of the
nonlinear system. At this point, the important property of compactness is needed. In fact,
compact embeddings relying on Aubin-Lions lemma like W (0, T ) := {y ∈ L2(0, T ;H1

0 (D)), yt ∈
L2(0, T ;H−1(D))} ↪→ L2(0, T ;L2(D)) are systematically used.

Stochastic setting. In the case where f(y) = αy and g(y) = βy, α, β ∈ R, the control-
lability results for (1) were initiated by Barbu, Răşcanu & Tessitore in [BRT03]. Under some
restrictive conditions and without introducing the control H on the diffusion, they established
a controllability result for linear forward stochastic PDEs. Later, Tang & Zhang in [TZ09]
improved this result and considered more general coefficients α and β (depending on t, x and
ω). The main novelty in that work was to introduce the additional control H and prove fine
Carleman estimates for stochastic parabolic operators. The same methodology has been used
to study other cases like the ones of Neumann and Fourier boundary conditions ([Yan18]), de-
generate equations ([LY19]) and fourth-order parabolic equations ([GCL15]). As a side note,
we shall mention the work by Lü in [L1̈1] who, by using the classical Lebeau-Robbiano strategy
([LR95]), noticed that the action of the control H can be omitted at the prize of considering
random coefficients α and β only depending on the time variable t.

In the framework proposed in this paper, as far the author’s knowledge, there are not any
results available in the literature. Compared to the deterministic setting, while establishing
controllability properties for stochastic PDEs, many new difficulties arise. For instance, the
solution of stochastic PDEs are usually not differentiable with respect to the variable with noise
(i.e., the time variable). Also the diffusion term introduces additional difficulties while analyzing
the problem. But most importantly, as remarked in [TZ09, Remark 2.5], the compactness
property, which is one of the key tools in the deterministic setting, is known to be false for the
functional spaces related to stochastic PDEs. This is the main obstruction for employing some
classical methodologies like in [FI96], [FCZ00] for establishing null-controllability of semilinear
problems at the stochastic level.

1.2 Statement of the main results and presentation of the methodology

Our first main result reads as follows.
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Theorem 1.1. Under assumptions (2), (3) and (5), system (1) is small-time globally null-
controllable, i.e. for every T > 0 and for every y0 ∈ L2(Ω,F0;L2(D)), there exist contols
h ∈ L2

F (0, T ;L2(D0)) and H ∈ L2
F (0, T ;L2(D)) such that the unique solution y of (1) satisfies

y(T, ·) = 0 in D, a.s.

We first present the main arguments to obtain Theorem 1.1.
Remove the semilinearity in the diffusion term. First, we highlight the fact that the

null-controllability of the equation (1) can be reduced to the null-controllability of
dy = (∆y + f(ω, t, x, y) + χD0h)dt+HdW (t) in QT ,
y = 0 on ΣT ,

y(0) = y0 in D.
(8)

Indeed, assume that one can construct a solution y ∈ L2
F (Ω;C([0, T ];L2(D))) associated to

controls h ∈ L2
F (0, T ;L2(D0)) and H ∈ L2

F (0, T ;L2(D)) for (8) such that y(T, ·) = 0 in D, a.s.
Noting that the control H is distributed in the whole domain D, we remark that y satisfies (1)
with controls h? = h and H? = H − g(·, ·, ·, y) ∈ L2

F (0, T ;L2(D)), which is well-defined by (2).
Moreover, we still have y(T, ·) = 0 in D a.s. This is why we can drop the Lipschitz condition on
g, i.e. (4) in Theorem 1.1.

Controllability of a linear system despite a source term and a Banach fixed-point
argument. To overcome the lack of compactness mentioned in the last section, we propose a
new tweak on an old strategy for controlling parabolic systems. We use a classical methodology
for controlling a linear system with a source term F ∈ L2

F (0, T ;L2(D)) of the form
dy = (∆y + F + χD0h)dt+HdW (t) in QT ,
y = 0 on ΣT ,

y(0) = y0 in D,
(9)

in a suitable weighted space. Note that this strategy has been widely used in the literature and
it has been revisited in [LTT13] to obtain local results. In turn, such weighted space is naturally
defined through the weights arising in the Carleman estimates needed for studying the observ-
ability of the corresponding linear adjoint system to (9) (see Theorem 2.1), which in this case is
a backward parabolic equation. Previous to this work, such Carleman estimate was not available
in the literature (see [BEG16, Theorem 2.5] for a similar estimate in the deterministic case).
The methodology employed to prove the result is the weighted identity method introduced in
the stochastic framework in [TZ09]. But, unlike many other works out there, we make precise
the dependency on the parameters involved in the construction of the Carleman weights and use
them in a second stage to prove that the nonlinear map N (F ) 7→ f(t, x, ω, y), with y solution
of (9), is well-defined and is strictly contractive in a suitable functional space. In this way, the
controllability of the system (8) is ensured through a Banach fixed point method which does not
rely on any compactness argument. As compared to some results in the deterministic frame-
work, on the one hand notice that here we are not considering any differentiability condition
on the nonlinearities, that is, f is merely a C0-function. On the other hand, our method does
not permit to establish global controllability result for slightly superlinearities as considered in
[FCZ00], see Section 4.2 below for a more detailed discussion.

As classical in the stochastic setting, for completeness, using the same strategy described
above, it is possible to establish a controllability result for semilinear backward parabolic equa-
tions. More precisely, consider
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dy = (−∆y + f(ω, t, x, y, Y ) + χD0h) dt+ Y dW (t) in QT ,
y = 0 on ΣT ,

y(T ) = yT in D,
(10)

where f satisfies the following assumptions:

f(·, ·, ·, z, Z) is F-adapted, L2(D)-valued for each z, Z ∈ L2(D), (11)

∃L > 0, ∀(ω, t, x, s1, s1, s2, s2) ∈ Ω× [0, T ]×D × R4,

|f(ω, t, x, s1, s1)− f(ω, t, x, s2, s2)| ≤ L (|s1 − s2|+ |s1 − s2|) , (12)

∀(ω, t, x) ∈ Ω× [0, T ]×D, f(ω, t, x, 0, 0) = 0. (13)

Under these conditions, by taking yT ∈ L2(Ω,FT ;L2(D)) and h ∈ L2
F (0, T ;L2(D0)), it is

known (see [LZ19, Theorem 2.12] or [LZ21, Theorem 1.62]) that system (10) is also globally
well-defined in [0, T ]. In this case, we can establish the existence and uniqueness of the solutions
to (10) in the class

(y, Y ) ∈ WT × L2
F (0, T ;L2(D)). (14)

Our second main result is as follows.

Theorem 1.2. Under assumptions (11)–(13), system (10) is small-time globally null-controllable,
i.e. for every T > 0 and for every yT ∈ L2(Ω,FT ;L2(D)), there exists h ∈ L2

F (0, T ;L2(D0))
such that the unique solution y of (10) satisfies y(0, ·) = 0 in D, a.s.

Theorem 1.2 extends to the nonlinear setting the previous results in [BRT03, Corollary 3.4]
and [TZ09, Theorem 2.2] for the backward equation.

The strategy to prove Theorem 1.2 is very close to the one of Theorem 1.1 but one major
difference can be spotted. For this case, it is not necessary to prove a Carleman estimate for
forward stochastic parabolic equations. Actually, it suffices to use the deterministic Carleman
inequality of [BEG16, Thm. 2.5] and employ the duality method introduced by Liu in [Liu14].

1.3 Outline of the paper

The rest of the paper is organized as follows. In Section 2, we present the proof of Theorem 1.1.
In particular, Section 2.1 is devoted to prove the new Carleman estimate for the adjoint system of
(9). Section 3 is devoted to prove Theorem 1.2. Finally in Section 4 we present some concluding
remarks.

2 Controllability of a semilinear forward stochastic parabolic equa-
tion

2.1 A new global Carleman estimate for a backward stochastic parabolic
equation

This section is devoted to prove a new Carleman estimate for a backward stochastic parabolic
equation. The main novelty here is that the weight does not degenerate as t → 0+ (compared
with the classical work [FI96]). This estimate has been proved in the deterministic case in
[BEG16, Theorem 2.5] in a slightly more general framework. Here, we use many of the ideas
presented there and adapt them to the stochastic setting.

5



To make a precise statement of our result, let D′ be a nonempty subset of D such that
D′ ⊂⊂ D0. Let us introduce β ∈ C4(D) such that

0 < β(x) ≤ 1, ∀x ∈ D,
β(x) = 0, ∀x ∈ ∂D,
infD\D′{|∇β|} ≥ α > 0.

(15)

The existence of such a function is guaranteed by [FI96, Lemma 1.1].
Without loss of generality, in what follows we assume that 0 < T < 1. For some constants

m ≥ 1 and σ ≥ 2 we define the following weight function depending on the time variable

γ(t) = 1 + (1− 4t
T )σ, t ∈ (0, T/4],

γ(t) = 1, t ∈ [T/4, T/2],

γ is increasing on [T/2, 3T/4],

γ(t) = 1
(T−t)m , t ∈ [3T/4, T ],

γ ∈ C2([0, T )).

(16)

We take the following weight functions ϕ = ϕ(t, x) and ξ = ξ(t, x)

ϕ(t, x) := γ(t)
(
eµ(β(x)+6m) − µe6µ(m+1)

)
, ξ(t, x) := γ(t)eµ(β(x)+6m), (17)

where µ is a positive parameter with µ ≥ 1 and σ is chosen as

σ = λµ2eµ(6m−4), (18)

for some parameter λ ≥ 1. Observe that with these elections on µ and λ, the parameter σ is
always greater than 2 and this also ensures that γ(t) ∈ C2([0, T )). We finally set the weight
θ = θ(t, x) as

θ := e` where `(t, x) := λϕ(t, x). (19)

Using these notations, we state the main result of this section which is a Carleman estimate
for backward stochastic parabolic equations.

Theorem 2.1. For all m ≥ 1, there exist constants C > 0, λ0 ≥ 1 and µ0 ≥ 1 such that, for any
zT ∈ L2(Ω,FT ;L2(D)) and any Ξ ∈ L2

F (0, T ;L2(D)), the solution (z, z) ∈ WT×L2
F (0, T ;L2(D))

to 
dz = (−∆z + Ξ)dt+ zdW (t) in QT ,
z = 0 on ΣT ,

z(T ) = zT in D,
(20)

satisfies

E
(∫
D
λ2µ3e2µ(6m+1)θ2(0)|z(0)|2 dx

)
+ E

(∫
QT

λµ2ξθ2|∇z|2 dxdt
)

+ E
(∫

QT

λ3µ4ξ3θ2|z|2 dxdt
)

≤ CE
(∫ T

0

∫
D0

λ3µ4ξ3θ2|z|2 dxdt+

∫
QT

θ2|Ξ|2 dxdt+

∫
QT

λ2µ2ξ3θ2|z|2 dxdt
)

(21)

for all µ ≥ µ0 and λ ≥ λ0.

Before giving the proof of Theorem 2.1, we make the following remark.

Remark 2.2. The following comments are in order.

6



• The proof of this result is rather classical except for the definition of the weight function
γ(t) which does not blow-up as t → 0+ and thus preventing θ to vanish at t = 0. This
change introduces some additional difficulties to the classical proof of the Carleman es-
timate for backward stochastic parabolic equations shown in [TZ09, Theorem 6.1], but
which can be handled just as in the deterministic case (see [BEG16, Appendix A.1]).

• Different to the Carleman estimate in [TZ09, Eq. (6.2)], the power of ξ in the last term
of (21) is 3 rather than 2. This is due to the definition of the weight γ which modifies a
little bit the estimate of ϕt in [0, T/4] as compared, for instance, to [TZ09]. This does not
represent any problem for proving our main controllability result.

• Just as in [TZ09, Remark 6.1], we can estimate the last term in (21) by weighted integrals
of Ξ and z, more precisely

E
(∫

QT

λ2µ2ξ3θ2|z|2 dxdt
)
≤ CE

(∫
QT

λ4µ4ξ6θ2|z|2 dxdt+

∫
QT

θ2|Ξ|2 dxdt
)
.

Nevertheless, the new term of z cannot be controlled by its counterpart in the left-hand
side of (21) and this does not improve our result.

Proof of Theorem 2.1. As we have mentioned before, the proof of this result is close to other
proofs for Carleman estimates in the stochastic setting (see, e.g. [TZ09, Yan18] or [FLZ19, Ch.
3]). Some of the estimates presented in such works are valid in our case but others need to be
adapted. For readability, we have divided the proof in several steps and we will emphasize the
main changes with respect to previous works.

Step 1. A point-wise identity for a stochastic parabolic operator. We set θ = e`

where we recall that ` = λϕ with ϕ is defined in (17). Then, we write ψ = θz and for the
operator dz + ∆zdt we have the following identity

θ(dz + ∆zdt) = I1 + Idt, (22)

where 
I1 = dψ − 2

∑
i `iψidt+ Ψψdt,

I = Aψ +
∑

i ψii,

A = −`t +
∑

i(`
2
i − `ii)−Ψ,

(23)

where Ψ = Ψ(x, t) is a function to be chosen later. Hereinafter, to abridge the notation, we
simply write ρi = ∂xiρ and ρt = ∂tρ and we denote

∑
i and

∑
i,j to refer to

∑N
i=1 and

∑N
i=1

∑N
j=1,

respectively.
From Itô’s formula, we have that

d(Aψ2) = Aψdψ + ψd(Aψ) + d(Aψ)dψ

= 2Aψdψ +Atψ
2dt+ 2ψdAdψ +A(dψ)2 + (dA)(dψ)2

and

ψiidψ = (ψidψ)i − ψidψi = (ψidψ)i −
1

2
d(ψ2

i ) +
1

2
(dψi)2.

Therefore

Idψ =

(
Aψ +

∑
i

ψii

)
dψ

=
∑
i

(ψidψ)i −
1

2
d

(∑
i

ψ2
i

)
+

1

2

∑
i

(dψi)2 +
1

2
d(Aψ2)− 1

2
Atψ

2dt− 1

2
A(dψ)2. (24)
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On the other hand, a direct computation gives

−2
∑
i

`iψiI =−
∑
i

(A`iψ
2)i +

∑
i

(A`i)iψ
2

−
∑
i

[∑
j

(2`jψiψj − `iψjψj)
]
i
+
∑
i,j

∑
k,h

[2δihδkj`kh − δijδkh`kh]ψiψj , (25)

where δij = 1 if i = j and 0 otherwise. Multiplying both sides of (22) by I and taking into
account identities (24)–(25), we get the following point-wise identity

θI(dz + ∆zdt) =

I2 +
∑
i,j

cijψiψj + Fψ2 + IΨψ +∇ · V

 dt+
∑
i

(ψidψ)i

+
1

2

∑
i

(dψi)2 − 1

2
A(dψ)2

− 1

2
d

(∑
i

ψ2
i −Aψ2

)
, (26)

where 
V =

[
V 1, V 2, . . . , V N

]
,

V i = −
∑

j (2`jψiψj − `iψjψj)−A`iψ2, i = 1, . . . , N,

cij =
∑

k,h [2δihδkj`kh − δijδkh`kh] ,

F = −1
2Atψ

2 +
∑

i(A`i)iψ
2.

Step 2. Some old and new estimates. The main goal of this step is to start building
our Carleman estimate taking as a basis the point-wise identity (26). Integrating with respect
to time in both sides of (26), we get∫ T

0
θI(dz + ∆zdt) (27)

= −1

2

(∑
i

ψ2
i −Aψ2

)∣∣∣∣∣
T

0

(28)

+

∫ T

0

(
Fψ2 + IΨψ

)
dt (29)

+

∫ T

0
I2dt+

∫ T

0

∑
i,j

cijψiψjdt+

∫ T

0
∇ · V dt+

∫ T

0

∑
i

(ψidψ)i (30)

+

∫ T

0

1

2

∑
i

(dψi)2 −
∫ T

0

1

2
A(dψ)2, (31)

for a.e. x ∈ RN and a.s. ω ∈ Ω. We will pay special attention to terms (28) and (29) which
yield positive terms that are not present in other Carleman estimates using the classical weight
vanishing both at t = 0 and t = T .

At this point, we shall choose the function Ψ = Ψ(x, t) as

Ψ := −2
∑
i

`ii (32)
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and, for convenience, we give some identities that will be useful in the remainder of the proof.
From the definition of ` in (19), we have

`i = λγµβie
µ(β+6m),

`ii = λγµ2β2
i e
µ(β+6m) + λγµβiie

µ(β+6m).
(33)

For shortness, we have dropped the explicit dependence of x and t on the expressions above.
-Positivity of the term (28). From the definitions of ψ and `, we readily see that limt→T− `(t, ·) =

−∞ and thus the term at t = T vanishes. Therefore, (28) simplifies to

− 1

2

(∑
i

ψ2
i −Aψ2

)∣∣∣∣∣
T

0

=
1

2

(∑
i

ψ2
i (0) +A(0)ψ2(0)

)
. (34)

It is clear that the first term in the right-hand side of (34) is positive. For the second one, we
will generate a positive term by using the explicit expression of the function γ. Using definition
(16), we obtain that

γ′(t) = −4σ

T

(
1− 4t

T

)σ−1

, ∀t ∈ [0, T/4],

whence, from (18) and the above expression, we get

`t(0, ·) = −4λ2µ2eµ(6m−4)

T

(
eµ(β(·)+6m) − µe6µ(m+1)

)
≥ cλ2µ3eµ(12m+2) (35)

for all µ ≥ 1 and some constant c > 0 uniform with respect to T . On the other hand, from the
derivatives (33) and using the facts that γ(0) = 2 and β ∈ C4(D), we get

|`2i (0, ·) + `ii(0, ·)| ≤ Cλ2µ2e2µ(6m+1). (36)

In this way, by using (34), the definition of A in (23) and estimates (35)–(36), there exists
µ1 > 0, such that for all µ ≥ µ1 ≥ 1, we get

−1

2

(∑
i

ψ2
i −Aψ2

)∣∣∣∣∣
T

0

≥ 1

2
|∇ψ(0)|2 + cλ2µ3e2µ(6m+1)ψ2(0)− Cλ2µ2e2µ(6m+1)ψ2(0)

≥ c1|∇ψ(0)|2 + c1λ
2µ3e2µ(6m+1)ψ2(0), (37)

for some constant c1 > 0 only depending on D and D′.
-Estimate of the term (29). This term is the most cumbersome one since the combination

of some terms of Fψ2 and IΨψ will yield a positive term that does not appear in the classical
Carleman estimate with weight vanishing at t = 0 and t = T .

Recalling the definition of A, we see that that the first term in (29) can be written as∫ T

0
Fψ2dt =

∫ T

0
(F1 + F2 + F3)ψ2dt, (38)

where

F1 =
1

2
`tt, F2 = −1

2

∑
i

(`2i + `ii)t, F3 =
∑
i

(Ai`i +A`ii). (39)
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For the first term of (38) we argue as follows. For t ∈ (0, T/4), using the definition of γ(t),
it is not difficult to see that |γtt| ≤ Cλ2µ4e2µ(6m−4) thus

|`tt| ≤ Cλ3µ5e2µ(6m−4)e6µ(m+1) ≤ Cλ3µ2ξ3 (40)

where we recall that ξ = ξ(t, x) is defined in (17). Here, we also have used that µ3e−2µ < 1/2
for all µ > 1.

For t ∈ (T/2, T ), using once again the definition of γ we have |γtt| ≤ Cγ3. Noting that
ϕtt = γtt

γ ϕ and using the estimate |ϕγ| ≤ µξ2 we get

|`tt| =
∣∣∣∣λγttγ ϕ

∣∣∣∣ ≤ Cλµξ3. (41)

Since obviously `tt vanishes for t ∈ (T/4, T/2), we can put together estimates (40) and (41) to
deduce that ∫ T

0
F1ψ

2dt ≥ −Cλ3µ2

∫ T

0
ξ3ψ2dt. (42)

We move now to the second and third terms of (38). To abridge the notation, in what
follows, we set

α(x) := eµ(β(x)+6m) − µe6µ(m+1).

Notice that α(x) < 0 for all x ∈ D.
From (33), a direct computation yields

(`2i + `ii)t = 2λ2µ2β2
i e

2µ(β+6m)γγt + λµ2β2
i e
µ(β+6m)γt + λµβiie

µ(β+6m)γt,

=: Mi (43)

On the other hand, after a long but straightforward computation, we get from (33) that

Ai`i +A`ii = P
(1)
i + P

(2)
i (44)

where

P
(1)
i := −λ2αγtγµ

2β2
i e
µ(β+6m) − λ2αγtγµβiie

µ(β+6m) − λ2γtγµ
2β2
i e

2µ(β+6m), (45)

P
(2)
i :=

∑
k

[
3λ3µ4ξ3β2

kβ
2
i + 2λ2µ4ξ2β2

kβ
2
i + λ2µ3ξ2βkkβ

2
i + λ3µ3ξ3βkβiβki

+2λ2µ3ξ2βkβkiβi + λ3µ3ξ3β2
kβii + λ2µ3ξ2β2

kβii + λ2µ2ξ2βkkβii
]
. (46)

In the term P
(2)
i , we have further simplified the notation by recalling that ξ = eµ(β+6m)γ.

Also observe that we have deliberately put together all the terms containing γt in the above
expression.

We will use now the term IΨψ in (29) to collect other terms containing γt. Indeed, from the
definition of Ψ (see eq. (32)), we see that this term can be rewritten as∫ T

0
IΨψdt =

∫ T

0
AΨψ2dt− 2

∫ T

0

∑
i,k

ψii`kk

ψdt

= 2

∫ T

0

∑
i

P
(3)
i ψ2dt− 2

∫ T

0

∑
i,k

(`2i + `ii)`kk

ψ2dt

− 2

∫ T

0

∑
i,k

ψii`kk

ψdt, (47)
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where
P

(3)
i := λ2αγγtµ

2β2
i e
µ(β+6m) + λ2αγγtµβiie

µ(β+6m).

Hence, from (39), (43), (44), and (47), we get∫ T

0
(F2 + F3)ψ2dt+

∫ T

0
IΨψdt

=

∫ T

0

(∑
i

(
−1

2
Mi − P (1)

i + P
(3)
i

))
ψ2dt︸ ︷︷ ︸

=:Q1

+

∫ T

0

∑
i

(
P

(2)
i − 2

∑
k

(`2i + `ii)`kk

)
ψ2dt︸ ︷︷ ︸

=:Q2

− 2

∫ T

0

∑
i,k

ψii`kk

ψdt

︸ ︷︷ ︸
=:Q3

. (48)

We shall focus on the term Q1. From the definition ofMi, (45) and using that ξ = eµ(β+6m)γ
and ϕ = αγ, we see that

−Mi

2
− P (1)

i + P
(3)
i =− γt

γ

(
2λ2µ2ξ2β2

i +
1

2
λµ2ξβ2

i +
1

2
λµξβii

)
− γt
γ

(
λ2(−ϕ)ξµ2β2

i + λ2(−ϕ)ξµβii
)
. (49)

From the definition of γ, it is clear that the above expression vanishes on (T/4, T/2). On
(T/2, T ), we use the fact that there exists C > 0 such that |γt| ≤ Cγ2. Hence, for all (t, x) ∈
(T/2, T )×D, there exists a constant C > 0 only depending on D and D′ such that∣∣∣∣∣∑

i

(
−Mi

2
− P (1)

i + P
(3)
i

)∣∣∣∣∣ ≤ Cλ2µ2
(
ξ2 + ξϕ

)
≤ Cλ2µ3ξ3, (50)

where we have used that |ϕγ| ≤ µξ2.
On (0, T/4), we are going to use the fact that γt ≤ 0, ϕ < 0, and γ ∈ [1, 2] to deduce that

Q1 has the good sign outside D′. Indeed, from (15), we can find µ2 = µ2(α, ‖∆ψ‖∞) such that
for all µ ≥ µ2 ≥ µ1 ≥ 0∑

i

[
2λ2µ2ξ3β2

i +
1

2
λµ2ξβ2

i +
1

2
λµξβii

]
+
∑
i

[
λ2(−ϕ)ξµ2β2

i + λ2(−ϕ)ξµβii
]
≥ cλ2µ2|ϕ|ξ, x ∈ D \ D′. (51)

In this way, in a subsequent step, by (49), (51), we will obtain from Q1 a positive term in
(0, T )×D and a localized term at D′ in the right-hand side of the inequality.

The conclusion of this sub-step is quite classical. For the term Q2 in (48), we can readily see
that the leading term in (46) is positive. Hence, from (33) and straightforward computation, we
have

Q2 ≥
∫ T

0
λ3µ4ξ3|∇β|4ψ2dt− C

∫ T

0

(
λ2µ4ξ2 + λ2µ3ξ3 + λ3µ3ξ3

)
ψ2dt (52)

for some constant C = C(‖∇β‖∞, ‖D2β‖∞) > 0. As in the previous case, using (15) will yield
a positive term, a localized term on the right-hand side. The terms with lower powers of µ and
λ will be absorbed later.
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Finally, for analyzing Q3, we will use that −ψii`kkψ = −(ψi`kkψ)i +ψi`kkiψ+ψ2
i `kk. Thus,

Q3 = 2

∫ T

0

∑
i,k

ψ2
i `kkdt+ 2

∫ T

0

∑
i,k

ψiψ`kkidt− 2

∫ T

0

∑
i,k

(ψi`kkψ)idt. (53)

We will leave this term as it is. In the next sub-step we will use it for producing a positive term
depending on |∇ψ|.

-Estimates on the gradient of ψ. The last positive term we shall obtain in this step, comes
from the second term in (30) and the first term in (53). Using (33) it can be readily seen that∫ T

0

∑
i,j

(
2ψ2

i `jj + cijψiψj
)
dt ≥

∫ T

0
λµ2ξ|∇β|2|∇ψ|2 − C

∫ T

0
λµξ|∇ψ|2, (54)

for some C > 0 only depending on D and D′. From here, using the properties of β we will obtain
a positive term and a localized term in D′.

From the second term in (53) and the fact that

`kki = 2λξµ2βkβki + λξµ3β2
kβi + λξµβkki + λξµ2βkkβi,

we can use Cauchy-Schwarz and Young inequalities to deduce∫ T

0

∑
i,k

ψiψ`kkidt ≥ −C
∫ T

0
µ2|∇ψ|2dt− C

∫ T

0
λ2µ4ξ2|ψ|2dt. (55)

Notice that the term containing ∇ψ does not have any power for λ so it can be absorbed later.
The last term in (53) is left as it is, since by the divergence theorem we will see later that

this term is actually 0.
Step 3. Towards the Carleman estimate. We begin by integrating (27)–(31) in D and

take expectation in both sides of the identity. Taking into account the estimates obtained in the
previous step, i.e., (37), (42), (48), and (50)–(55), we get

c1E
(∫
D
|∇ψ(0)|2 dx+

∫
D
λ2µ3e2µ(6m+1)|ψ(0)|2 dx

)
+ cE

(∫ T/4

0

∫
D\D′

λ2µ2ξ|ϕ||γt||ψ|2 dxdt

)

+ E
(∫

QT

λ3µ4ξ3|∇β|4|ψ|2 dxdt+

∫
QT

λµ2ξ|∇β|2|∇ψ|2 dxdt
)

+ E
(∫

QT

I2 dxdt
)

+
1

2
E

(∫
QT

∑
i

(dψi)2 dx

)

≤ E
(∫

QT

θI(dz + ∆zdt) dx
)

+
1

2
E
(∫

QT

A(dψ)2 dx
)

+ BT +R, (56)

where

BT := 2E

∫
QT

∑
i,k

(ψi`kψ)i dxdt

− E

(∫
QT

∑
i

(ψidψ)i

)
− E

(∫
QT

∇ · V dxdt
)
, (57)

R := CE
(∫

QT

[
λ2µ3ξ3 + λ2µ4ξ2 + λ3µ3ξ3

]
|ψ|2 dxdt+

∫
QT

[
µ2 + λµξ

]
|∇ψ|2 dxdt

)
. (58)

We remark that the positive constants c1 and C in (56)–(58) only depend on D and D′, while
c > 0 depends only on D,D′ and α (see (15)).
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We proceed to estimate the rest of the terms. We begin with those gathered on BT , defined
in (57). It is clear that z = 0 on ΣT implies ψ = 0 on ΣT . Moreover, ψi = ∂ψ

∂ν ν
i, with

ν = (ν1, . . . , νN ) being the unit outward normal vector of D at x ∈ ∂D. Also, by the construction
of the weight β, we have

`i = λµξψi = λµξ
∂ψ

∂ν
νi and

∂ψ

∂ν
< 0, on ΣT .

Hence, it is not difficult to see that using divergence theorem we have

2E
(∫

QT

(ψi`kψ)i dxdt
)

= 2E

∫
ΣT

∑
i,k

ψi`kψν
i dxdt

 = 0,

−E

(∫
QT

∑
i

(ψidψ)i

)
= −E

(∫
ΣT

∑
i

ψiνidψ dx

)
= 0,

and

−E
(∫

QT

∇ · V dxdt
)

= E

∫
ΣT

∑
i,j

[
(2`iψiψj − `iψjψj) +A`iψ

2
]
νj dxdt


= E

∫
ΣT

λµξ
∂β

∂ν

(
∂z

∂ν

)2∑
i,j

(
νiνj

)2 dxdt

 ≤ 0.

Thus, we get
BT ≤ 0. (59)

For the following three terms, we will use the change of variables ψ = θz and the fact that
z solves system (20). First, we see that

E

(∫
QT

∑
i

(dψi)2 dx

)
= E

(∫
QT

θ2
∑
i

(zi + `iz)
2 dxdt

)
≥ 0. (60)

In the same spirit, using the equation verified by z and Cauchy-Schwarz and Young inequalities,
we get

E
(∫

QT

θI(dz + ∆zdt) dx
)
≤ 1

2
E
(∫

QT

I2 dxdt
)

+
1

2
E
(∫

QT

θ2|Ξ|2 dxdt
)
. (61)

Lastly, from (33) and the fact that |ϕt| ≤ Cλµξ3 for (t, x) ∈ (0, T ) × D, a direct computation
shows that

E
(∫

QT

A(dψ)2 dx
)

= E
(∫

QT

θ2A|z|2 dxdt
)
≤ C

(∫
QT

θ2λ2µ2ξ3|z|2 dxdt
)
. (62)

Using that infx∈D\D′ |∇β| ≥ α > 0, we can combine estimate (56) with (59)–(62) to deduce

E
(∫
D
|∇ψ(0)|2 dx+

∫
D
λ2µ3e2µ(6m+1)|ψ(0)|2 dx

)
+ E

(∫ T/4

0

∫
D
λ2µ2ξ|ϕ||γt||ψ|2 dxdt

)

+ E
(∫

QT

λ3µ4ξ3|ψ|2 dxdt+

∫
QT

λµ2ξ|∇ψ|2 dxdt
)

+
1

2
E
(∫

QT

I2 dxdt
)

≤ CE

(∫ T/4

0

∫
D′
λ2µ2ξ|ϕ||γt||ψ|2 dxdt+

∫ T

0

∫
D′
λ3µ4ξ3|ψ|2 dxdt+

∫ T

0

∫
D′
λµ2ξ|∇ψ|2 dxdt

)

+ CR+ CE
(∫

QT

θ2|Ξ|2 dxdt+

∫
QT

θ2λ2µ2ξ3|z|2 dxdt
)
,
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for some C > 0 only depending on D, D′ and α. We observe that, unlike the traditional
Carleman estimate with weight vanishing at t = 0 and t = T , we have three local integrals, one
of those being only for t ∈ (0, T/4). We will handle this in the following step.

Also notice that all of the terms in R have lower powers of λ and µ, thus, we immediately
see that there exists some µ3 ≥ µ2 and λ1 ≥ C such that, for all µ ≥ µ3 and λ ≥ λ1

E
(∫
D
|∇ψ(0)|2 dx+

∫
D
λ2µ3e2µ(6m+1)|ψ(0)|2 dx

)
+ E

(∫ T/4

0

∫
D
λ2µ2ξ|ϕ||γt||ψ|2 dxdt

)

+ E
(∫

QT

λ3µ4ξ3|ψ|2 dxdt+

∫
QT

λµ2ξ|∇ψ|2 dxdt
)

≤ CE

(∫ T/4

0

∫
D′
λ2µ2ξ|ϕ||γt||ψ|2 dxdt+

∫ T

0

∫
D′
λ3µ4ξ3|ψ|2 dxdt+

∫ T

0

∫
D′
λµ2ξ|∇ψ|2 dxdt

)

+ CE
(∫

QT

θ2|Ξ|2 dxdt+

∫
QT

θ2λ2µ2ξ3|z|2 dxdt
)
. (63)

Step 4. Last arrangements and conclusion. As usual, the last steps in Carleman
strategies consist in removing the local term containing the gradient of the solution and coming
back to the original variable. We will see that the original strategy also helps to remove the
local term in (0, T/4).

First, using that zi = θ−1(ψi − `iψ), it is not difficult to see that θ2|∇z|2 ≤ 2|∇ψ|2 +
2Cλ2µ2ξ2|ψ|2 for some C > 0 only depending on D and D′, hence from (63) we have

E
(∫
D
θ2(0)|∇z(0)|2 dx+

∫
D
λ2µ3e2µ(6m+1)θ2(0)|z(0)|2 dx

)
+ E

(∫ T/4

0

∫
D
θ2λ2µ2ξ|ϕ||γt||z|2 dxdt

)

+ E
(∫

QT

θ2λ3µ4ξ3|z|2 dxdt+

∫
QT

θ2λµ2ξ|∇z|2 dxdt
)

≤ CE

(∫ T/4

0

∫
D′
θ2λ2µ2ξ|ϕ||γt||z|2 dxdt+

∫ T

0

∫
D′
θ2λ3µ4ξ3|z|2 dxdt+

∫ T

0

∫
D′
θ2λµ2ξ|∇z|2 dxdt

)

+ CE
(∫

QT

θ2|Ξ|2 dxdt+

∫
QT

θ2λ2µ2ξ3|z|2 dxdt
)
, (64)

for all λ ≥ λ1 and µ ≥ µ3.
We choose a cut-off function η ∈ C∞c (D) such that

0 ≤ η ≤ 1, η ≡ 1 in D′, η ≡ 0 in D \ D0 (65)

with the additional characteristic that

∇η
η1/2

∈ L∞(D)N . (66)

This condition can be obtained by taking some η0 ∈ C∞c (D) satistying (65) and defining η = η4
0.

Then η will satisfy both (65) and (66).
Using Itô’s formula, we compute d

(
θ2ξz2

)
= (θ2ξ)tz

2 + 2θ2ξzdz + θ2ξ(dz)2 and thus, using
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the equation verified by z, we get

E
(∫
D0

θ2(0)ξ(0)|z(0)|2η dx
)

+ 2E
(∫ T

0

∫
D0

θθtξ|z|2η dxdt
)

+ 2E
(∫ T

0

∫
D0

θ2ξ|∇z|2η dxdt
)

+ E
(∫ T

0

∫
D0

θ2ξ|z|2η dxdt
)

= −E
(∫ T

0

∫
D0

θ2ξt|z|2η dxdt
)
− 2E

(∫ T

0

∫
D0

θ2ξzΞη dxdt
)

− 2E
(∫ T

0

∫
D0

θ2ξ∇η · ∇zz dxdt
)
− 2E

(∫ T

0

∫
D0

∇(θ2ξ) · ∇zzη dxdt
)
. (67)

We readily see that the first and last terms in the left-hand side of (67) are positive, so they
can be dropped. Also, notice that using the properties of η, the third term gives (up to the
constants µ and λ) the local term containing |∇z|.

We shall focus on the second term on the left-hand side of (67). Similar to Step 2 above,
we analyze it on different time intervals. Obviously, for t ∈ (T/4, T/2) this term vanishes since
γt = 0. For t ∈ (0, T/4), we notice that θθt = θ2λϕγtγ ξ and since γt ≤ 0, ϕ < 0 and γ ∈ [1, 2],
this yields a positive term. Lastly, in the interval (T/2, T ), we use that |ϕt| ≤ Cλµξ3 to obtain
the bound |θt| ≤ Cθλ2µξ3. Summarizing, we have

2E
(∫ T

0

∫
D0

θθtξ|z|2η dxdt
)

≥ E

(∫ T/4

0

∫
D0

θ2λξ|γt||ϕ||z|2η dxdt

)
− CE

(∫ T

T/2

∫
D0

θ2λ2µξ3|z|2η dxdt

)
. (68)

Let us estimate each term on the right-hand side of (67). For the first one, using that
|ξt| ≤ Cλµξ3 for all (t, x) ∈ (0, T )×D, we get∣∣∣∣E(∫ T

0

∫
D0

θ2ξt|z|2η dxdt
)∣∣∣∣ ≤ CE(∫ T

0

∫
D0

θ2λµξ3|z|2η dxdt
)
. (69)

For the second one, using Cauchy-Schwarz and Young inequalities yields∣∣∣∣E(∫ T

0

∫
D0

θ2ξzΞη dxdt
)∣∣∣∣

≤ 1

2
E
(∫ T

0

∫
D0

θ2λ−1µ−2|Ξ|2η dxdt
)

+
1

2
E
(∫ T

0

∫
D0

θ2λµ2ξ2|z|2η dxdt
)
. (70)

For the third one, we will use property (66) and Cauchy-Schwarz and Young inequalities to
deduce that ∣∣∣∣E(∫ T

0

∫
D0

θ2ξ∇η · ∇zz dxdt
)∣∣∣∣

≤ εE
(∫ T

0

∫
D0

θ2ξ|∇z|2η dxdt
)

+ C(ε)E
(∫ T

0

∫
D0

θ2ξ|z|2 dxdt
)

(71)

for any ε > 0. For the last term, using that |∇(θ2ξ)| ≤ Cθ2λµξ2 and arguing as above, we get∣∣∣∣E(∫ T

0

∫
D0

∇(θ2ξ) · ∇zzη dxdt
)∣∣∣∣

≤ εE
(∫ T

0

∫
D0

θ2ξ|∇z|2η dxdt
)

+ C(ε)E
(∫ T

0

∫
D0

θ2ξ3µ2λ2|z|2η dxdt
)
. (72)
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Therefore, taking ε = 1
2 and using estimates (68)–(72) together with the properties of the cut-off

η, we get

E

(∫ T/4

0

∫
D′
θ2λξ|γt||ϕ||z|2 dxdt

)
+ E

(∫ T

0

∫
D′
θ2ξ|∇z|2 dxdt

)
≤ CE

(∫ T

0

∫
D0

θ2(λ2µξ3 + λµ2ξ2 + λ2µ2ξ3)|z|2 dxdt
)

+ CE
(∫

QT

θ2λ−1µ−2|Ξ|2 dxdt
)
.

(73)

As usual, we have paid the price of estimating locally the gradient by enlarging a little bit
the observation domain. Notice that this procedure gives us the local estimate in (0, T/4) by
using the properties of the weight function ϕ and γt. Finally, the desired estimate follows by
multiplying both sides of (73) by λµ2 and using the result to bound in the right-hand side of
(64). We conclude the proof by setting µ0 = µ3 and λ0 = λ1.

2.2 A controllability result for a linear forward stochastic heat equation with
one source term and two controls

In this section, we will prove a controllability result for a linear forward equation. More precisely,
recall the equation defined in (9)

dy = (∆y + F + χD0h)dt+HdW (t) in QT ,
y = 0 on ΣT ,

y(0) = y0 in D.
(74)

In (74), (h,H) ∈ L2
F (0, T ;L2(D0)) × L2

F (0, T ;L2(D)) is a pair of controls and F is a given
source term in L2

F (0, T ;L2(D)). Observe that given y0 ∈ L2(Ω,F0;L2(D)) and the aforemen-
tioned regularity on the controls and source term, system (74) admits a unique solution y ∈ WT ,
see [LZ19, Theorem 2.7].

Under the notation of Section 2.1, let us set the parameters λ and µ to a fixed value sufficiently
large, such that inequality (21) holds true. We define the space

Sλ,µ =

{
F ∈ L2

F (0, T ;L2(D)) :

[
E
(∫

QT

θ−2λ−3µ−4ξ−3|F |2 dxdt
)]1/2

< +∞

}
, (75)

endowed with the canonical norm.
Our linear controllability result reads as follows.

Theorem 2.3. For any initial datum y0 ∈ L2(Ω,F0;L2(D)) and any source term F ∈ Sλ,µ, there
exists a pair of controls (h,H) ∈ L2

F (0, T ;L2(D0)) × L2
F (0, T ;L2(D)) such that the associated

solution y ∈ WT to system (74) satisfies y(T ) = 0 in D, a.s. Moreover, the following estimate
holds

E
(∫

QT

θ−2|y|2 dxdt
)

+ E
(∫ T

0

∫
D0

θ−2λ−3µ−4ξ−3|h|2 dxdt
)

+ E
(∫

QT

θ−2λ−2µ−2ξ−3|H|2 dxdt
)

≤ C1E
(
‖y0‖2L2(D)

)
+ C ‖F‖2Sλ,µ , (76)

where C1 > 0 is a constant depending on D,D0, λ, µ and C > 0 only depends on D and D0.
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Remark 2.4. Using classical arguments, see for instance [LTT13, Proposition 2.9], from The-
orem 2.3 one can construct a linear continuous mapping that associates every initial datum
y0 ∈ L2(Ω,F0;L2(D)) and every source terms F ∈ Sλ,µ, to a trajectory (y, h,H) such that
y(T ) = 0 in D, a.s. and (76) holds.

The proof of Theorem 2.3 is based on a classical duality method, called penalized Hilbert
Uniqueness Method, which ideas can be traced back to the seminal work [GL94]. The general
strategy consists in three steps:

- Step 1. Construct a family of optimal approximate-null control problems for system (74).

- Step 2. Obtain a uniform estimate for the approximate solutions in terms of the data of
the problem, i.e., the initial datum y0 and the source terms F and G.

- Step 3. A limit process to derive the desired null-controllability result.

We shall mention that in the stochastic setting, similar strategies have been used for deducing
controllability results and Carleman estimates for forward and backward equations, see e.g.
[Liu14, Yan18, LY19].

In what follows, C will denote a generic positive constant possibly depending on D,D0, but
never on the parameters λ and µ.

Proof of Theorem 2.3. We follow the steps described above.
Step 1. For any ε > 0, let us consider the weight function γε(t) given by

γε(t) = 1 + (1 + 4t
T )σ, t ∈ [0, T/4],

γε(t) = 1, t ∈ [T/4, T/2 + ε],

γε(t) = γ(t− ε), t ∈ [T/2 + ε, T ],

σ as in (18).

Defined in this way, it is not difficult to see that γε does not blow up as t → T− and that
γε(t) ≤ γ(t) for t ∈ [0, T ]. With this new function, we set the weight ϕε as in (17) by replacing
the function γ by γε. In the same manner, we write θε = eλϕε .

With this notation, we introduce the functional

Jε(h,H) :=
1

2
E
(∫

QT

θ−2
ε |y|2 dxdt

)
+

1

2
E
(∫ T

0

∫
D0

θ−2λ−3µ−4ξ−3|h|2 dxdt
)

+
1

2
E
(∫

QT

θ−2λ−2µ−2ξ−3|H|2 dxdt
)

+
1

2ε
E
(∫
D
|y(T )|2 dx

)
(77)

and consider the minimization problem{
min(h,H)∈H Jε(h,H),

subject to equation (74),
(78)

where

H =
{

(h,H) ∈ L2
F (0, T ;L2(D)) :

E
(∫ T

0

∫
D0

θ−2λ−3µ−4ξ−3|h|2 dxdt
)
< +∞, E

(∫
QT

θ−2λ−2µ−2ξ−3|H|2 dxdt
)
< +∞

}
.
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It can be readily seen that the functional Jε is continuous, strictly convex and coercive.
Therefore, the minimization problem (78) admits a unique optimal pair solution that we denote
by (hε, Hε). From classical arguments: the Euler-Lagrange equation for (77) at the minimum
(hε, Hε) and a duality argument (see, for instance, [Lio71]), the pair (hε, Hε) can be characterized
as

hε = −χD0θ
2λ3µ4ξ3zε, Hε = −θ2λ2µ2ξ3Zε in Q, a.s., (79)

where the pair (zε, Zε) verifies the backward stochastic equation
dzε = (−∆zε − θ−2

ε yε)dt+ ZεdW (t) in QT ,
zε = 0 on ΣT ,

zε(T ) = 1
εyε(T ) in D,

(80)

and where (yε, yε(T )) can be extracted from yε the solution to (74) with controls h = hε and
H = Hε. Observe that since yε ∈ L2

F (Ω;C([0, T ];L2(D))) the evaluation of yε at t = T is
meaningful and (80) is well-posed for any ε > 0.

Step 2. Using Itô’s formula, we can compute d(yεzε) and deduce

E
(∫
D
yε(T )zε(T ) dx

)
= E

(∫
D
yε(0)zε(0) dx

)
+ E

(∫
QT

(∆yε + F + χD0hε)zε dxdt
)

+ E
(∫

QT

(−∆zε − θ−2
ε yε)yε dxdt

)
+ E

(∫
QT

HεZε dxdt
)

whence, replacing the initial data of systems (74), (80) and using identity (79), we get

E
(∫ T

0

∫
D0

θ2λ3µ4ξ3|zε|2 dxdt
)

+ E
(∫

QT

θ2λ2µ2ξ3|Zε|2 dxdt
)

+ E
(∫

QT

θ−2
ε |yε|2 dxdt

)
+

1

ε
E
(∫
D
|yε(T )|2 dx

)
= E

(∫
D
y0zε(0) dx

)
+ E

(∫
QT

Fzε dxdt
)
. (81)

Now, we will use the Carleman estimate in Theorem 2.1. We will apply it to equation (80)
with Ξ = −θ−2yε and z = Zε. Then, after removing some unnecessary terms, we get for any λ
and µ large enough

E
(∫
D
λ2µ3θ2(0)|zε(0)|2 dx

)
+ E

(∫
QT

λ3µ4ξ3θ2|zε|2 dxdt
)

+ E
(∫

QT

λ2µ2ξ3θ2|Zε|2 dxdt
)

≤ CE
(∫ T

0

∫
D0

λ3µ4ξ3θ2|zε|2 dxdt+

∫
QT

θ2|θ−2
ε yε|2 dxdt+

∫
QT

λ2µ2ξ3θ2|Zε|2 dxdt
)
. (82)

Notice that we have added an integral of Zε on the left-hand side of the inequality. This increases
a little bit the constant C on the right-hand side but it is still uniform with respect to λ and µ.

In view of (82), we use Cauchy-Schwarz and Young inequalities in the right-hand side of (81)
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to obtain

E
(∫ T

0

∫
D0

θ2λ3µ4ξ3|zε|2 dxdt
)

+ E
(∫

QT

θ2λ3µ4ξ3|zε|2 dxdt
)

+ E
(∫

QT

θ−2|yε|2 dxdt
)

+
1

ε
E
(∫
D
|yε(T )|2 dx

)
≤ δ

[
E
(∫
D
θ2(0)λ2µ3|zε(0)|2 dx

)
+ E

(∫
QT

θ2λ3µ4ξ3|zε|2 dxdt+

∫
QT

θ2λ2µ2ξ3|Zε|2 dxdt
)]

+ Cδ

[
E
(∫
D
θ−2(0)λ−2µ−3|y0|2 dx

)
+ E

(∫
QT

θ−2λ−3µ−4ξ−3|F |2 dxdt
)]

(83)

for any δ > 0. Using inequality (82) to estimate in the right-hand side of (83) and the fact that
θ2θ−2

ε ≤ 1 for all (t, x) ∈ QT , we obtain, after taking δ > 0 small enough, that

E
(∫ T

0

∫
D0

θ2λ3µ4ξ3|zε|2 dxdt
)

+ E
(∫

QT

θ2λ2µ2ξ3|Zε|2 dxdt
)

+ E
(∫

QT

θ−2
ε |yε|2 dxdt

)
+

1

ε
E
(∫
D
|yε(T )|2 dx

)
≤ C

[
E
(∫
D
θ−2(0)λ−2µ−3|y0|2 dx

)
+ E

(∫
QT

θ−2λ−3µ−4ξ−3|F |2 dxdt
)]

.

Recalling the characterization of the optimal control hε in (79) we obtain

E
(∫ T

0

∫
D0

θ−2λ−3µ−4ξ−3|hε|2 dxdt
)

+ E
(∫

QT

θ−2λ−2µ−2ξ−3|Hε|2 dxdt
)

+ E
(∫

QT

θ−2
ε |yε|2 dxdt

)
+

1

ε
E
(∫
D
|yε(T )|2 dx

)
≤ C

[
E
(∫
D
θ−2(0)λ−2µ−3|y0|2 dx

)
+ E

(∫
QT

θ−2λ−3µ−4ξ−3|F |2 dxdt
)]

. (84)

Observe that the right-hand side of (84) is well-defined and finite since θ−2(0) < +∞ and the
source term F belongs to Sλ,µ, defined in (75).

Step 3. Since the right-hand side of (84) is uniform with respect to ε, we readily deduce
that there exists (ĥ, ŷ, Ŷ ) such that

hε ⇀ ĥ weakly in L2(Ω× (0, T );L2(D0)),

Hε ⇀ Ĥ weakly in L2(Ω× (0, T );L2(D)),

yε ⇀ ŷ weakly in L2(Ω× (0, T );L2(D)).

(85)

We claim that ŷ is the solution to (74) associated to (ĥ, Ĥ). To show this, let us denote by ỹ
the unique solution in L2

F (0, T ;C([0, T ];L2(D)))∩L2
F (0, T ;H1

0 (D)) to (74) with controls (ĥ, Ĥ).
For any m ∈ L2

F (0, T ;L2(D)), we consider (z, Z) the unique solution to the backward equation
dz = (−∆z −m)dt+ ZdW (t) in QT ,
z = 0 on ΣT ,

z(T ) = 0 in D.
(86)
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Then, using Itô’s formula, we compute the duality between (86) and (74) associated to (h,H) =
(hε, Hε) and (h,H) = (ĥ, Ĥ), respectively. We have

−E
(∫
D
y0z(0) dx

)
= −E

(∫
QT

myε dxdt
)

+ E
(∫

QT

Fz dxdt
)

+ E
(∫ T

0

∫
D0

hεz dxdt
)

+ E
(∫

QT

Hεz dxdt
)

(87)

and

−E
(∫
D
y0z(0) dx

)
= −E

(∫
QT

mỹ dxdt
)

+ E
(∫

QT

Fz dxdt
)

+ E
(∫ T

0

∫
D0

ĥz dxdt
)

+ E
(∫

QT

Ĥz dxdt
)
. (88)

Then, using (85) in (87) to pass to the limit ε→ 0 and subtracting the result from (88), we get
ỹ = ŷ in QT , a.s.

To conclude, we notice from (84) that ŷ(T ) = 0 in D, a.s. Also, from the weak convergence
(85), Fatou’s lemma and the uniform estimate (84) we deduce (76). This ends the proof.

2.3 Proof the nonlinear result for the forward equation

Now, we are in position to prove Theorem 1.1. To this end, let us fix the parameters λ and µ in
Theorem 2.3 to a fixed value sufficiently large. Recall that in turn, these parameters come from
Theorem 2.1 and should be selected as λ ≥ λ0 and µ ≥ µ0 for some λ0 ≥ 1 and µ0 ≥ 1, so there
is no contradiction.

Note that at this point, we have preserved explicitly the parameters λ and µ in the con-
trollability result of Theorem 2.3. This was possible due to the selection of the weight θ in the
Carleman estimate (21), which allows to have a term depending on z(0) in the left-hand side.

Proof of Theorem 1.1. Let us consider a nonlinearity f fulfilling (2), (3), and (5). We define the
nonlinear map

N : F ∈ Sλ,µ 7→ f(ω, t, x, y) ∈ Sλ,µ,

where y is the trajectory of (74) associated to the data y0, F , see Theorem 2.3 and Remark 2.4.
In what follows, to abridge the notation, we simply write f(y).

We will check the following facts for the nonlinear mapping N .
The mapping N is well-defined. To this end, we need to show that for any F ∈ Sλ,µ,

N (F ) ∈ Sλ,µ. We have from (2), (3), and (5), that

‖N (F )‖2Sλ,µ = E
(∫

QT

θ−2λ−3µ−4ξ−3|f(y)|2 dxdt
)
≤ λ−3µ−4L2E

(∫
QT

θ−2ξ−3|y|2 dxdt
)
.

Using (76) and
∥∥ξ−1

∥∥
∞ ≤ 1 for all (t, x) ∈ QT , we get

‖N (F )‖2Sλ,µ ≤ L
2λ−3µ−4

(
C1E ‖y0‖2L2(D) + C ‖F‖2Sλ,µ

)
< +∞.

This proves that N is well-defined.
The mapping N is strictly contractive. Let us consider source terms Fi ∈ Sλ,µ, i = 1, 2.

We denote the solutions of the corresponding equations by y1 and y2, respectively. Using the
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fact that the nonlinearity f is globally Lipschitz, i.e. (3), we have

‖N (F1)−N (F2)‖2Sλ,µ = E
(∫

QT

θ−2λ−3µ−4ξ−3|f(y1)− f(y2)|2 dxdt
)

≤ L2λ−3µ−4E
(∫

QT

θ−2|y1 − y2|2 dxdt
)
.

where we have used again that
∥∥ξ−1

∥∥
∞ ≤ 1 for all (t, x) ∈ QT .

Then applying Theorem 2.3 and Remark 2.4, and using estimate (76) for the equation asso-
ciated to F = F1 − F2, y0 = 0, we deduce from the above inequality that

‖N (F1)−N (F2)‖2Sλ,µ ≤ CL
2λ−3µ−4

[
E
(∫

QT

θ−2λ−3µ−4ξ−3|F1 − F2|2 dxdt
)]

= CL2λ−3µ−4 ‖F1 − F2‖2Sλ,µ , (89)

where C = C(D,D0) > 0 comes from Theorem 2.3. Observe that all the constants in the right-
hand side of (89) are uniform with respect to λ and µ thus, if necessary, we can increase their
value so CL2λ−3µ−4 < 1. This yields that the mapping N is strictly contractive.

Once we have verified these two conditions, by the Banach fixed point theorem, it follows
that N has a unique fixed point F in Sλ,µ. By setting y the trajectory associated to this F , we
observe that y is the solution to

dy = (∆y + f(ω, t, x, y) + χD0h)dt+HdW (t) in QT ,
y = 0 on ΣT ,

y(0) = y0 in D,
(90)

and verifies that y(T, ·) = 0 in D, a.s. This concludes the proof of Theorem 1.1.

3 Controllability of a semilinear backward stochastic parabolic
equation

As for the forward equation, the main ingredient to prove Theorem 1.2 is a controllability result
for a linear system with a source term. In this case, we shall focus on studying the controllability
of 

dy = (−∆y + χD0h+ F )dt+ Y dW (t) in QT ,
y = 0 on ΣT ,

y(T ) = yT in D,

where F ∈ L2
F (0, T ;L2(D)) and yT ∈ L2(Ω,FT ;L2(D)) are given. Unlike the previous section,

we shall not devote to prove a Carleman estimate for the corresponding adjoint system (i.e. a
forward equation). Although this is possible, we will see later that we can greatly simplify the
problem by studying a random parabolic equation, for which a deterministic Carleman estimate
will suffice.

3.1 A deterministic Carleman estimate and its consequence

As we mentioned in Section 2.1, in [BEG16] the authors have proved a Carleman estimate for
the (backward) heat equation with weights that do not vanish as t → 0+ (see (16) and (17)).
Following their approach it is possible to prove the analogous result for a forward equation. For
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this, we need to introduce some new weight functions which are actually the mirrored version
of (16) and (17).

In more detail, let us consider the function β as in (15) and let 0 < T < 1. We define the
function γ̃(t) as 

γ̃(t) = 1
tm , t ∈ (0, T/4],

γ̃ is decreasing on [T/4, T/2],

γ̃(t) = 1, t ∈ [T/2, 3T/4],

γ̃(t) = 1 +
(

1− 4(T−t)
T

)σ
, t ∈ [3T/4, T ],

γ̃ ∈ C2([0, T ]),

(91)

where m ≥ 1 and σ ≥ 2 is defined on (18). Observe that γ̃(t) is the mirrored version of γ(t)
in (16) with respect to T/2. Analogous to the properties of γ, the function γ̃ preserves one
important property which is that for the interval [3T/4, T ] the derivative of γ̃ has a prescribed
sign, i.e., γ̃t ≥ 0.

With this new function, we define the weights ϕ̃ = ϕ̃(t, x) and ξ̃ = ξ̃(t, x) as

ϕ̃(t, x) := γ̃(t)
(
eµ(β(x)+6m) − µe6µ(m+1)

)
, ξ̃(t, x) := γ̃(t)eµ(β(x)+6m), (92)

where µ ≥ 1 is some parameter. In the same spirit, we set the weight θ̃ = θ̃(t, x) as

θ̃ := e
˜̀ where ˜̀(t, x) = λϕ̃(t, x)

for a parameter λ ≥ 1.
In what follows, to keep the notation as light as possible and emphasizing that there is no

possibility for confusion since the notation is specific for this section, we simply write γ̃ = γ,
θ̃ = θ, and so on.

We have the following Carleman estimate for the heat equation with source term
∂tq −∆q = g(t, x) in QT ,
q = 0 on ΣT ,

q(0) = q0(x) in D.
(93)

Theorem 3.1. For all m ≥ 1, there exist constants C > 0, λ0 ≥ 1 and µ0 ≥ 1 such that for
any q0 ∈ L2(D) and any g ∈ L2(QT ), the weak solution to (93) satisfies∫

QT

θ2λµ2ξ|∇q|2 dxdt+

∫
QT

θ2λ3µ4ξ3|q|2 dxdt+

∫
D
λ2µ3e2µ(6m+1)θ2(T )|q(T )|2 dx

≤ C

(∫
QT

θ2|g|2 dxdt+

∫∫
D0×(0,T )

θ2λ3µ4ξ3|q|2 dxdt

)
,

for all µ ≥ µ0 and λ ≥ λ0.

The proof of this result is a straightforward adaptation of [BEG16, Theorem 2.5], just by
taking into account that in this case the weight γ verifies γt ≥ 0 in [3T/4, T ], contrasting with
the fact that γt ≤ 0 in [0, T/4] as in [BEG16] or as we have used in the proof of Theorem 2.1.

Let us consider the forward parabolic equation given by
dq = (∆q +G1)dt+G2dW (t) in QT ,
q = 0 on ΣT ,

q(0, x) = q0(x) in D,
(94)
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where Gi ∈ L2
F (0, T ;L2(D)), i = 1, 2, and q0 ∈ L2(Ω,F0;L2(D)). An immediate consequence of

Theorem 3.1 is a Carleman estimate for a random parabolic equation. More precisely, we have
the following.

Lemma 3.2. Assume that G2 ≡ 0. For all m ≥ 1, there exists constants C > 0, λ0 ≥ 1 and
µ0 ≥ 1 such that for any q0 ∈ L2(Ω,F0;L2(D)) and any G1 ∈ L2

F (0, T ;L2(D)), the corresponding
solution to (94) with G2 = 0 satisfies

E
(∫

QT

θ2λµ2ξ|∇q|2 dxdt
)

+ E
(∫

QT

θ2λ3µ4ξ3|q|2 dxdt
)

+ E
(∫
D
θ2(T )|∇q(T )|2 dx

)
+ E

(∫
D
λ2µ3e2µ(6m+1)θ2(T )|q(T )|2 dx

)
≤ CE

(∫
QT

θ2|g|2 dxdt+

∫∫
D0×(0,T )

θ2λ3µ4ξ3|q|2 dxdt

)
, (95)

for all µ ≥ µ0 and λ ≥ λ0.

3.2 A controllability result for a linear backward stochastic heat equation
with source term and one control

Inspired by the duality technique presented in [Liu14, Prop. 2.2], we present a controllability
result for a linear backward stochastic heat equation with a source term. To this end, consider
the linear control system given by

dy = (−∆y + χD0h+ F )dt+ Y dW (t) in QT ,
y = 0 on ΣT ,

y(T ) = yT in D,
(96)

where F ∈ L2
F (0, T ;L2(D)) is a given fixed source term and h ∈ L2

F (0, T ;L2(D0)) is a control.
In what follows, we consider constants µ and λ large enough such that (95) holds. We define

the space S̃λ,µ :=
{
F ∈ L2

F (0, T ;L2(D)) : E
(∫

QT
θ−2λ−3µ−4ξ−3|F |2 dxdt

)
< +∞

}
, endowed

with the canonical norm. We have the following global null-controllability result for system
(96).

Theorem 3.3. For any initial datum yT ∈ L2(Ω,FT ;L2(D)) and any F ∈ S̃λ,µ, there exists a
control h ∈ L2(0, T ;L2(D0)) such that the associated solution (y, Y ) ∈ [L2

F (Ω;C[0, T ];L2(D)) ∩
L2
F (0, T ;H1

0 (D))] × L2
F (0, T ;L2(D)) to system (96) satisfies y(0) = 0 in D, a.s. Moreover, the

following estimate holds

E
(∫

QT

θ−2|y|2 dxdt
)

+ E
(∫

QT

θ−2λ−2µ−2ξ−2|Y |2 dxdt
)

+ E
(∫

QT

θ−2λ−3µ−4ξ−3|h|2 dxdt
)

≤ C1E
(
‖yT ‖2L2(D)

)
+ CE

(∫
QT

θ−2λ−3µ−4ξ−3|F |2 dxdt
)
, (97)

where C1 > 0 is a constant depending on D,D0, µ, λ and C > 0 only depends on D and D0.

Remark 3.4. As before, from classical arguments, see e.g. [LTT13, Proposition 2.9], from
Theorem 3.3 we can construct a linear continuous mapping that associates every initial datum
yT ∈ L2(Ω,FT ;L2(D)) and every source term F ∈ S̃λ,µ, to a trajectory (ŷ, ĥ) such that ŷ(0) = 0
in D, a.s. and (97) holds.
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Proof. The proof is very similar to the one of Theorem 2.3 and requires only some adaptations.
We emphasize their main differences.

Step 1. For any ε > 0, let us consider the weight function γε(t) given by
γε(t) = γ(t+ ε), t ∈ [0, T/2− ε],
γε(t) = 1, t ∈ [T/2− ε, 3T/4]

γε(t) = 1 + (1 + 4(T−t)
T )σ, t ∈ [3T/4, T ],

σ as in (18).

In this way, γε(t) ≤ γ(t) for t ∈ [0, T ]. We set the corresponding weight ϕε as in (92) by replacing
the function γ by γε. Also, we write θε = eλϕε .

We introduce the cost functional

Iε(h) :=
1

2
E
(∫

QT

θ−2
ε |y|2 dxdt

)
+

1

2
E
(∫ T

0

∫
D0

θ−2λ−3µ−4ξ−3|h|2 dxdt
)

+
1

2ε
E
(∫
D
|y(0)|2 dx

)
and consider the minimization problem{

minh∈H Iε(h),

subject to equation (96),
(98)

where

H =

{
h ∈ L2

F (0, T ;L2(D0)) : E
(∫ T

0

∫
D0

θ−2λ−3µ−4ξ−3|h|2 dxdt
)
< +∞

}
.

It can be readily seen that the functional Iε is continuous, strictly convex and coercive.
Therefore, the minimization problem (98) admits a unique optimal solution that we denote by
hε. As in the proof of Theorem 2.3 the minimizer hε can be characterized as

hε = χD0λ
3µ4ξ3θ2qε in Q, a.s., (99)

where qε verifies the random forward equation
dqε = (∆qε + θ−2

ε yε)dt in QT ,
qε = 0 on ΣT ,

qε(0) = 1
εyε(0) in D,

(100)

and where (yε, yε(0)) can be extracted from (yε, Yε) the solution to (96) with control h = hε.
Observe that since yε ∈ L2

F (Ω;C([0, T ];L2(D))) the evaluation of yε at t = 0 is meaningful and
(100) is well-posed for any ε > 0. Also notice that there is no term containing W (t) so (100) is
regarded as a random equation. This greatly simplifies our task, since we only need to use the
Carleman estimate of Lemma 3.2 to deduce the uniform estimate for the solutions to (yε, Yε) in
the next step.

Step 2. Using Itô’s formula, we can compute d(yεqε) and deduce

E
(∫
D
yε(T )qε(T ) dx

)
= E

(∫
D
yε(0)qε(0) dx

)
+ E

(∫
Q

(−∆yε + F + χD0hε)qε dxdt
)

+ E
(∫

Q
(∆qε + θ−2

ε yε)yε dxdt
)
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whence, using equations (96), (100), and identity (99), we get

E
(∫ T

0

∫
D0

λ3µ4ξ3θ2|qε|2 dxdt
)

+ E
(∫

QT

θ−2
ε |yε|2 dxdt

)
+

1

ε
E
(∫
D
|yε(0)|2 dx

)
= E

(∫
D
yT qε(T ) dx

)
− E

(∫
QT

Fqε dxdt
)
. (101)

In view of (95), we use Cauchy-Schwarz and Young inequalities in the right-hand side of
(101) to introduce the weight function as follows

E
(∫ T

0

∫
D0

θ2λ3µ4ξ3|qε|2 dxdt
)

+ E
(∫

QT

θ−2
ε |yε|2 dxdt

)
+

1

ε
E
(∫
D
|yε(0)|2 dx

)
≤ δ

[
E
(∫
D
λ2µ3θ2(T )|qε(T, x)|2 dx

)
+ E

(∫
QT

θ2λ3µ4ξ3|qε|2 dxdt
)]

+ Cδ

[
E
(∫
D
λ−2µ−3θ−2(T )|yT |2 dx

)
+ E

(∫
QT

θ−2λ−3µ−4ξ−3|F |2 dxdt
)]

(102)

with δ > 0. Applying inequality (95) to (100) and using it to estimate in the right-hand side of
(102), we obtain, after taking δ > 0 small enough, that

E
(∫ T

0

∫
D0

θ2λ3µ4ξ3|qε|2 dxdt
)

+ E
(∫

QT

θ−2
ε |yε|2 dxdt

)
+

1

ε
E
(∫
D
|yε(0)|2 dx

)
≤ C

[
E
(∫
D
λ−2µ−3θ−2(T )|yT |2 dx

)
+ E

(∫
QT

θ−2λ−3µ−4ξ−3|F |2 dxdt
)]

for some constant C > 0 only depending on D and D0. At this point, we have used the fact that
θ2θ−2

ε ≤ 1 for all (t, x) ∈ QT .
Recalling the characterization of the optimal control hε in (99) we obtain

E
(∫ T

0

∫
D0

θ−2λ−3µ−4ξ−3|hε|2 dxdt
)

+ E
(∫

QT

|yε|2 dxdt
)

+
1

ε
E
(∫
D
|yε(0)|2 dx

)
≤ C

[
E
(∫
D
θ−2λ−2µ−3|yT |2 dx

)
+ E

(∫
QT

θ−2λ−3µ−4ξ−3|F |2s−3ξ−3 dxdt
)]

. (103)

Now, our task is to add a weighted integral of the process Y on the left-hand side of the
above inequality. To do that, using Itô’s formula and equation (96) with h = hε yield

d(θ−2
ε λ−2ξ−2y2

ε ) =(θ−2
ε λ−2ξ−2)ty

2
εdt+ θ−2

ε λ−2ξ−2Y 2
ε

+ 2θ−2
ε λ−2ξ−2yε [(−∆yε + χD0hε + F )dt+ YεdW (t)]

and after some integration by parts and substituting the initial datum, we get

E
(∫

QT

θ−2
ε λ−2ξ−2|Yε|2 dxdt

)
+ 2E

(∫
QT

θ−2
ε λ−2ξ−2|∇yε|2 dxdt

)
+ E

(∫
QT

(θ−2
ε λ−2ξ−2)t|yε|2 dxdt

)
= E

(∫
D
θ−2
ε (T )λ−2ξ−2(T )|yT |2 dx

)
− 2E

(∫
QT

∇(θ−2
ε λ−2ξ−2) · ∇yεyε dxdt

)
− 2E

(∫
QT

θ−2
ε λ−2ξ−2yεF dxdt

)
− 2E

(∫ T

0

∫
D0

θ−2
ε λ−2ξ−2yεhε dxdt

)
(104)
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Observe that the term containing yT is well defined since, by construction, the weight θ−1
ε does

not blow up at t = T . Also, notice that there is no term of yε(0, x) since ξ−1(0) = 0 and the
weight θ−1

ε does not blow up at t = 0.
Let us analyze the term containing (θ−2

ε λ−2ξ−2)t in the left-hand side of the above identity.
We split the integral as

E
(∫

QT

(θ−2
ε λ−2ξ−2)t|yε|2 dxdt

)
= E

(∫ 3T/4

0

∫
D

(θ−2
ε λ−2ξ−2)t|yε|2 dxdt

)

+ E

(∫ T

3T/4

∫
D

(θ−2
ε λ−2ξ−2)t|yε|2 dxdt

)
. (105)

We note that for t ∈ [3T/4, T ], γε(t) = γ(t), so we can drop the dependence of ε. Also notice
that on this time interval γt ≥ 0 and 1 ≤ γ ≤ 2. Thus, computing explicitly, we have

(θ−2λ−2ξ−2)t = −2θ−2λ−1γt
γ
ϕξ−2 − 2θ−2λ−2γt

γ
ξ−2. (106)

Recall that ϕ < 0, thus
(θ−2λ−2ξ−2)t ≥ cθ−2λ−1γt|ϕ|ξ−2. (107)

for all t ∈ [3T/4, T ], where c > 0 only depends on D and D0. Therefore,

E

(∫ T

3T/4

∫
D

(θ−2
ε λ−2ξ−2)t|yε|2 dxdt

)
≥ 0 (108)

and this term can be dropped. For t ∈ [0, 3T/4], we can use expression (106) (replacing every-
where the weights depending on ε) and the fact that |∂tγε| ≤ Cγ2

ε to obtain∣∣(θ−2
ε λ−2ξ−2)t

∣∣ ≤ Cθ−2
ε λ−1µ,

where the constant C > 0 is uniform with respect to λ and µ. Therefore,∣∣∣∣∣E
(∫ 3T/4

0

∫
D

(θ−2
ε λ−2ξ−2)t|yε|2 dxdt

)∣∣∣∣∣ ≤ CE
(∫ 3T/4

0

∫
D
θ−2
ε λ−1µ|yε|2 dxdt

)
. (109)

Thus, using formulas (105) and (108)–(109) we deduce from (104) that

E
(∫

QT

θ−2
ε λ−2ξ−2|Yε|2 dxdt

)
+ 2E

(∫
QT

θ−2
ε λ−2ξ−2|∇yε|2 dxdt

)
≤ CE

(∫
D
θ−2(T )λ−2|yT |2 dx

)
+ CE

(∫ 3T/4

0

∫
D
θ−2
ε λ−1µ|yε|2 dxdt

)

+ 2

∣∣∣∣E(∫
QT

∇(θ−2
ε λ−2ξ−2) · ∇yεyε dxdt

)∣∣∣∣+ 2

∣∣∣∣E(∫
QT

θ−2
ε λ−2ξ−2yεF dxdt

)∣∣∣∣
+ 2

∣∣∣∣E(∫ T

0

∫
D0

θ−2
ε λ−2ξ−2yεhε dxdt

)∣∣∣∣ . (110)

For the first term in the right-hand side, we have used that θ−2
ε (T ) = θ−2(T ) and ξ−1(T ) ≤ C

for some C > 0 only depending on D and D0.
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Employing Cauchy-Schwarz and Young inequalities, we estimate the last three terms of the
above inequality. For the first one, we have

2

∣∣∣∣E(∫
QT

∇(θ−2
ε λ−2ξ−2) · ∇yεyε dxdt

)∣∣∣∣
≤ δE

(∫
QT

θ−2
ε λ−2ξ−2|∇yε|2 dxdt

)
+ C(δ)E

(∫
QT

θ−2
ε µ2|yε|2 dxdt

)
(111)

for any δ > 0. Here, we have used that |∇(θ−2
ε λ−2ξ−2)| ≤ Cθ−2

ε µλ−1ξ−1. For the second term,
we get

2

∣∣∣∣E(∫
QT

θ−2
ε λ−2ξ−2yεF dxdt

)∣∣∣∣
≤ E

(∫
QT

θ−2
ε µ2λ−1ξ−1|yε|2 dxdt

)
+ E

(∫
QT

θ−2λ−3µ−2ξ−3|F |2 dxdt
)
, (112)

where we have used that θ−2
ε ≤ θ−2. For the last one, we readily have

2

∣∣∣∣E(∫ T

0

∫
D0

θ−2
ε λ−2ξ−2yεhε dxdt

)∣∣∣∣
≤ E

(∫
QT

θ−2
ε µ2|yε|2 dxdt

)
+ E

(∫ T

0

∫
D0

θ−2
ε λ−4µ−2ξ−4|hε|2 dxdt

)
. (113)

Using estimates (111)–(113) in (110) and taking δ > 0 small enough, we deduce after col-
lecting similar terms that

E
(∫

QT

θ−2
ε λ−2µ−2ξ−2|Yε|2 dxdt

)
+ E

(∫
QT

θ−2
ε λ−2µ−2ξ−2|∇yε|2 dxdt

)
≤ CE

(∫
D
θ−2(T )λ−2µ−2|yT |2 dx

)
+ CE

(∫
QT

θ−2
ε |yε|2 dxdt

)
+ CE

(∫
QT

θ−2λ−3µ−4ξ−3|F |2 dxdt
)

+ CE
(∫ T

0

∫
D0

θ−2
ε λ−3µ−4ξ−3|hε|2 dxdt

)
. (114)

At this point, we have adjusted the powers of λ and ξ in the last term by using the fact that
λ−1ξ−1 ≤ C for some constant only depending on D,D0.

Finally, combining (114) and (103) we get

E
(∫ T

0

∫
D0

θ−2
ε λ−3µ−4ξ−3|hε|2 dxdt

)
+ E

(∫
QT

θ−2
ε (|yε|2 + λ−2µ−2ξ−2|Yε|2) dxdt

)
+ E

(∫
QT

θ−2
ε λ−2µ−2ξ−2|∇yε|2 dxdt

)
+

1

ε
E
(∫
D
|yε(0)|2 dx

)
≤ C

[
E
(∫
D
θ−2(T )λ−2µ−2|yT |2 dx

)
+ E

(∫
QT

θ−2λ−3µ−4ξ−3|F |2 dxdt
)]

, (115)

for some positive constant C only depending on D,D0.
Step 3. The last step is essentially the same as in the proof of Theorem 2.3. Since the right-

hand side of (115) is uniform with respect to ε, we readily deduce that there exists (ĥ, ŷ, Ŷ ) such
that 

hε ⇀ ĥ weakly in L2(Ω× (0, T );L2(D0)),

yε ⇀ ŷ weakly in L2(Ω× (0, T );H1
0 (D)),

Yε ⇀ Y weakly in L2(Ω× (0, T );L2(D)).

(116)
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To check that (ŷ, Ŷ ) is the solution to (96) associated to ĥ can be done exactly as in Theorem 2.3,
so we omit it.

To conclude, we notice from (103) that ŷ(0) = 0 in D, a.s. Also, from the weak convergence
(116), Fatou’s lemma and the uniform estimate (103) we deduce (97). This ends the proof of
Theorem 3.3.

3.3 Proof the nonlinear result for the backward equation

Now, we are in position to prove Theorem 1.2. The proof is very similar to the one of Theorem 1.1
but for the sake of completeness, we give it.

Let us fix the parameters λ and µ in Theorem 3.3 to a fixed value sufficiently large. Recall
that in turn, this parameter comes from the Theorem 3.1 and should be selected as λ ≥ λ0 and
µ ≥ µ0 for some λ0, µ0 ≥ 1, so there is no contradiction.

Let us consider a nonlinearity f fulfilling (12) and (13) and define

Ñ : F ∈ S̃λ,µ 7→ f(ω, t, x, y, Y ) ∈ S̃λ,µ,

where (y, Y ) is the trajectory of (96) associated to the data yT and F , defined by Theorem 3.3
and Remark 3.4. In what follows, to abridge the notation, we simply write f(y, Y ).

We will check the following facts for the nonlinear mapping Ñ .
The mapping N is well-defined. To this end, we need to show that for any F ∈ S̃λ,µ,

N (F ) ∈ S̃λ,µ. We have from (12) and (13)∥∥∥Ñ (F )
∥∥∥2

S̃λ,µ
= E

(∫
QT

θ−2λ−3µ−4ξ−3|f(y, Y )|2 dxdt
)

≤ 2L2E
(∫

QT

θ−2λ−3µ−4ξ−3
[
|y|2 + |Y |2

]
dxdt

)
≤ 2L2λ−1µ−2

[
E
(∫

QT

θ−2λ−2µ−2ξ−2|Y |2 dxdt
)

+ E
(∫

QT

θ−2|y|2 dxdt
)]

≤ 2L2λ−1µ−2

(
C1E

[
‖yT ‖2L2(D)

)
+ CE

(∫
QT

θ−2λ−3µ−4ξ−3|F |2 dxdt
)]

< +∞,

where we have used (97) and that
∥∥ξ−1

∥∥
∞ ≤ 1. This proves that N is well-defined.

The mapping N is a strictly contraction mapping. Let us consider Fi ∈ S̃λ,µ, i = 1, 2.
From the properties of the nonlinearity f , we have∥∥∥Ñ (F1)− Ñ (F2)

∥∥∥2

S̃λ,µ

= E
(∫

QT

θ−2λ−3µ−4ξ−3|f(y1, Y1)− f(y2, Y2)|2 dxdt
)

≤ 2L2λ−1µ−2E
(∫

QT

θ−2λ−2µ−2ξ−2|Y1 − Y2|2 dxdt+

∫
QT

θ−2|y1 − y2|2 dxdt
)
.

Then applying Theorem 3.3 to the equation associated to F = F1 − F2, yT = 0, and using the
corresponding estimate (97), we deduce from the above inequality that∥∥∥Ñ (F1)− Ñ (F2)

∥∥∥2

S̃λ,µ
≤ 2CL2λ−1µ−2E

(∫
QT

θ−2λ−3µ−4ξ−3|F1 − F2|2 dxdt
)

= 2CL2λ−1µ−2 ‖F1 − F2‖2S̃λ,µ , (117)
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where C = C(D,D0) > 0 comes from Theorem 3.3. Observe that all the constants in the right-
hand side of (117) are uniform with respect to λ and µ thus, if necessary, we can increase the
value of λ and µ so CL2λ−1µ−2 < 1. This yields that the mapping is strictly contractive.

Once we have verified these two conditions, it follows that Ñ has a unique fixed point F in
S̃λ,µ. By setting (y, Y ) the trajectory associated to this F , we observe that (y, Y ) is the solution
to (10) and verifies y(0, ·) = 0 in D, a.s. This concludes the proof of Theorem 1.2.

4 Further results and remarks

4.1 A new Carleman estimate for forward equation as a consequence of The-
orem 3.3

The controllability result provided by Theorem 3.3 yields as a byproduct the obtention of a new
global Carleman estimate for forward stochastic parabolic equations with a weight that do not
vanish as t → T−. In fact, under the construction of weights shown in (91) and (92) (where
again we drop the tilde notation for simplicity), we are able to prove the following result.

Proposition 4.1. For all m ≥ 1, there exist constants C > 0, λ0 ≥ 1 and µ0 ≥ 1 such that
for any q0 ∈ L2(Ω,F0;L2(D)) and Gi ∈ L2

F (0, T ;L2(D)), i = 1, 2, the solution y ∈ WT to (94)
satisfies

E
(∫

QT

θ2λµ2ξ|∇q|2 dxdt
)

+ E
(∫

QT

θ2λ3µ4ξ3|q|2 dxdt
)

+ E
(∫

Ω
θ2(T )λ2µ2|q(T )|2 dx

)
≤ CE

(∫
QT

θ2|G1|2 dxdt+

∫
QT

θ2λ2µ2ξ2|G2|2 dxdt+

∫∫
D0×(0,T )

θ2λ3µ4ξ3|q|2 dxdt

)
,

for all µ ≥ µ0 and λ ≥ λ0.

The proof of Proposition 4.1 can be achieved by following the proof of [Liu14, Theorem 1.1]
with a few straightforward adaptations. For completeness, we give a brief sketch below.

The starting point is to use Theorem 3.3 with F = θ2λ3µ4ξ3q and yT = −s2µ2θ2(T )q(T ),
where q is the solution to (94) with given G1 and G2. Observe that the weight functions in these
data are well defined and bounded. We also remark that since the solution q belongs to WT ,
we have that yT = −λ2µ2θ2(T )q(T ) ∈ L2(Ω,FT ;L2(D)) and thus system (96) with these given
data is well-posed.

Thus, from Theorem 3.3, we get that there exists a control ĥ ∈ L2
F (0, T ;L2(D)) such that

the solution ŷ to 
dŷ = (−∆ŷ + χD0 ĥ+ θ2λ3µ4ξ3q)dt+ Ŷ dW (t) in QT ,
ŷ = 0 on ΣT ,

ŷ(T ) = −θ2λ2µ2q(T ) in D,
(118)

satisfies ŷ(0) = 0 in D, a.s. Moreover, the following estimate holds

E
(∫

QT

θ−2|ŷ|2 dxdt
)

+ E
(∫

QT

θ−2λ−2µ−2ξ−2|Ŷ |2 dxdt
)

+ E
(∫

QT

θ−2λ−3µ−4ξ−3|ĥ|2 dxdt
)

≤ CE
(∫
D
λ2µ2θ2(T )|q(T )|2 dx+

∫
QT

e−2sϕs3ξ3|q|2 dxdt
)
, (119)

for some constant C > 0 only depending on D,D0.
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From (94), (118) and Itô’s formula, we get

E
(∫
D
θ2(T )λ2µ2|q(T )|2 dx

)
+ E

(∫
QT

e−2sϕs3ξ3|q|2 dxdt
)

= −E
(∫

QT

ŷG1 dxdt
)
− E

(∫
QT

Ŷ G2 dxdt
)
− E

(∫ T

0

∫
D0

ĥq dxdt
)
.

Using Cauchy-Schwarz and Young inequalities, together with (119), it can be obtained from the
above identity that

E
(∫
D
θ2(T )λ2µ2|q(T )|2 dx

)
+ E

(∫
QT

θ2λ3µ4ξ3|q|2 dxdt
)

≤ CE
(∫

QT

θ2|G1|2 dxdt+

∫
QT

θ2λ2µ2ξ2|G2|2 dxdt+

∫ T

0

∫
D0

θ2λ3µ4ξ3|q|2 dxdt
)
.

To add the integral containing ∇q, it is enough to compute d(e−2sϕλξq2) and argue as in Step
2 of the proof of Theorem 3.3. For brevity, we omit the details.

4.2 Other type of nonlinearities

It should be interesting to extend Theorem 1.1 to the case where the semilinearities f and g
depend on the gradient of the state. More precisely, let us consider

dy = (∆y + f(ω, t, x, y,∇y) + χD0h)dt+ (g(ω, t, x, y,∇y) +H)dW (t) in QT ,
y = 0 on ΣT ,

y(0) = y0 in D,
(120)

where f and g are two globally Lipschitz nonlinear functions. We may wonder if (120) is small-
time globally null-controllable. A good starting point seems to obtain a Carleman estimate
for the backward equation (20), with a source term Ξ ∈ L2

F (0, T ;H−1(D)). This seems to
be possible, according to [Liu14, Remark 1.4]. By a duality argument, this would lead to a
null-controllability result for the system (74) similar to Theorem 2.3, with an estimate of ρŷ in
L2
F (0, T ;H1

0 (D)), where ρ is some suitable weight function. Details remain to be written.
Another open question is whether Theorem 1.1 can be extended to slightly superlinear non-

linearities in the spirit of [FCZ00]. In the recent paper [ELM21], the authors revisit the null-
controllability of semilinear heat equations in the deterministic setting through a constructive
approach based on a Banach fixed point argument similar to the one performed here. It would
be interesting to see if their method can be adapted to the stochastic setting.

4.3 Extension of the method to other equations

The method introduced in this article could probably be applied to other nonlinear equations
for which there is a lack of compactness embeddings for the solutions spaces and for which we
are able to derive Carleman estimates in the spirit of [BEG16, Theorem 2.5]. For instance, for
the Schrödinger equation, it is a well known fact that there is no regularizing effect so there is a
lack of compactness. Up to our knowledge, the following question is still open. Let f : C → C
be a globally Lipschitz nonlinearity and (T,D,D0) be such that the so-called Geometric Control
Condition holds. Is the system

i∂ty = ∆y + f(y) + χD0h in QT ,
y = 0 on ΣT ,

y(0) = y0 in D,
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globally null-controllable? See [Zua03] or [Lau14] for an introduction to this problem. We also
refer to [L1̈3] for results in the stochastic setting.
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