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Abstract

Elastic gridshells are efficient structures covering large spans with little material.

They are fabricated using a network of straight members deformed into doubly

curved shapes. Researchers and builders have used two families of remarkable

curves to generate gridshells with straight planks: geodesic gridshells, where the

planks follow the geodesic curves and lay along the tangent plane of the surface,

and asymptotic gridshells, where the planks follow asymptotic lines and are

orthogonal to the surface normal. This article proposes the concept of pseudo-

geodesic gridshells, where planks follow pseudo-geodesic curves of a surface.

This article introduces a scaling argument showing that the structural efficiency

of pseudo-geodesic gridshells may be twice as much as geodesic gridshells. This

is illustrated by a parametric study that implements linear buckling analysis on

various pseudo-geodesic gridshells.

Keywords: architectural geometry, gridshell, buckling analysis, performance

assessment

1. Introduction

Elastic gridshells are structures composed of a network of beams that are

elastically deformed to map a doubly-curved surface. They have been pioneered

by Frei Otto in the 1970’s, with the Mannheim Multihalle, designed in collab-

oration with engineers from Ove Arup and Partners, being the culmination of5

timber elastic gridshells of that era [1]. However, few gridshells have been built

since then, with the notable exception of the roofs of the Downland museum
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[2] and Savill Building designed by Buro Happold in the early 2000s. Elas-

tic gridshells have since then known a rebirth, with the introduction of novel

form-finding techniques, like the formulation of beam elements with dynamic10

relaxation [3], but also of new materials, such as composite materials (GFRP),

which significantly increase the stiffness of elastic gridshells [4, 5].

In parallel, the knowledge of architectural geometry has vastly increased

during the last decade. A new point of view on constructive geometry, based

on theoretical results on discrete geometries and computational methods from15

the computer graphics community has paved the way to more flexible design

workflows for free-form structures [6]. This paper aims to make a modest con-

tribution that would bridge these two communities by introducing a new family

of structures for elastic gridshells, based on pseudo-geodesic lines, a seemingly

unexplored family of curves in structural engineering.20

1.1. Previous work on constructive geometry of gridshell structures

Frei Otto and the Institute for Lightweight Structures in Stuttgart (ILEK)

are the pioneers of elastic gridshells. Their projects rely on Tchebycheff net, a

constant-length quadrilateral network with zero-shear stiffness. Such gridshells

can be laid flat on the ground and then deformed in a 3D shape with cranes.25

Tchebycheff nets are the preferred method to construct elastic gridshells nowa-

days and are still an active topic of research [7, 8].

The main limitation of Tchebycheff nets is that those networks may result

in large torsion in members. As such, it is extremely difficult to map a grid

structure constituted of laths that would be at equilibrium on an arbitrary30

shape: the simulation of the coupling between bending and torsion is then

necessary to determine whether the construction of elastic gridshell with straight

planks is feasible [9].

The late Julius Natterer proposed a different methodology to construct elas-

tic gridshells with timber laths, namely to follow geodesic curves. Geodesic35

curves have a straight flattening property: a lath that follows a geodesic curve

and remains tangent to the target surface can be unrolled in a rigorously flat
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(a) EPFL Polydome: an example of

geodesic gridshell (picture : EPFL-

MEDIACOM, distributed under Cre-

ative Commons 4.0 License.) (b) An example of asymptotic gridshell (picture :[10])

Figure 1: Examples of gridshells constructed with straight planks.

and straight strip. The largest timber gridshell built using this technique seems

to be the EXPO Dach in Hannover [11]. The Polydome at EPFL, shown in

Figure 1a is also a significant example of this construction technique. Due to40

their simplicity of assembly, geodesic gridshells have been the subject of small

research pavilions [12, 13]. The main limitation of geodesic gridshell is that

laths are laid tangentially on the surface and the resulting structure has limited

bending stiffness. It is then necessary to stack laths and bind them by nailing

them, which is the technological solution for the previous examples. Further-45

more, it shows that it is rather difficult to build a geodesic gridshell from a flat

configuration.

More recently, Schling et al. [14] proposed to use asymptotic lines to con-

struct elastic gridshells. Asymptotic lines have zero normal curvature so that

a lath following an asymptotic line and remaining perpendicular to the surface50

can be unrolled in a straight manner. The main limitation of asymptotic lines

is that they only exist on surfaces with negative Gaussian curvature. An exam-

ple of an asymptotic gridshell is shown in Figure 1b: despite the geometrical

complexity, all steel strips are rigorously straight upon unrolling.

It will be shown in the second section of this article that the two seemingly55

independent design approaches of Natterer and Schling may be unified through

the definition of pseudo-geodesic curves. The main objective of this unifying
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approach is to circumvent the limitations of both methods, namely to benefit

from a significant bending stiffness while being able to map positively curved

surfaces.60

1.2. Previous work on the structural design of elastic gridshells

This section aims now at introducing relevant background on the design of

elastic gridshells. Detailed design issues are left aside, and the emphasis is set

on simple scaling arguments on gridshell buckling.

Due to their slenderness, the design of gridshell is often governed by potential65

instabilities, a topic that has been studied by Victor Gioncu in the early 1990s

[15]. A collaborative research effort from the Working Group on Metal Spatial

Structures of the International Association for Shell and Spatial Structures led

to guidelines in 2012 [16]. Eurocode 3 states that linear buckling analysis may

be used, but that the buckling factor should exceed 10, which is considered70

too conservative, and nonlinear analysis is preferred in practical applications.

Gridshells are sensitive to geometrical and material imperfections, as initially

shown in [17] and more recently in [18]. It has been shown in two studies that the

pre-stress of elastic gridshells has little influence on their buckling load [19, 20],

while a robustness study illustrates the low reserve of post-buckling resistance,75

due to the redistribution of the pre-stress after buckling [21]. The same study

showed that for a gridshell with few openings, the stress at buckling failure

was ten times less than the pre-stress due to the elastic bending of rods, and

remained far below the material failure criterion. A recent study with numerical

and experimental results comes to a similar conclusion for geodesic gridshell [22].80

Therefore, the initial buckling load is the main quantity of interest in the study

of elastic gridshells.

Equivalent continuum models for buckling load of gridshells have been pro-

posed in previous literature [23, 24]. The equivalent bending stiffness D depends

on the grid topology (triangular, quadrangular, tri-hex, etc.) [25], orientation85

[26], and may depend non-linearly on the grid subdivision. In practice, elastic

gridshells are two-way grids with almost zero membrane shear stiffness, to allow
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a change in Gaussian curvature. Bracing is added, either through rigid brac-

ing [27], cables or a third layer of bent elastic rods [28], to fully benefit from

a shell-like behaviour. In the case of a properly braced structure, the critical90

pressure scales as in equation (1), as proposed by Malek et al. [23] following a

series of previous work on equivalent continuum models for gridshells [29] and

analytical thin-shell buckling formulae for spherical caps. It should be recalled

however that this equation is only valid for global buckling mode, and that

gridshell structures are subject to other instabilities, like nodal snap-through,95

or lateral-torsional buckling of a single member [17]. This scaling equation, al-

though useful for preliminary design, does not replace a nonlinear analysis of the

gridshell with imperfections, which is the only way to capture the local buckling

modes and potential interaction between buckling modes. The critical buckling

pressure proposed by [23] reads as follows:100

p ∝
√
AD
R2

(1)

Where A = ES/l and D = EI/l are homogenised membrane and bending

stiffness and the scaling factor depends on the geometry and pattern [30, 31].

With rectangular cross-section of width b and height h, A = Ebh/l and D =

Ebh3/(12l). The structural efficiency may be defined as the ratio between crit-

ical buckling pressure and surface weight. This notion has already been used

in [23] and [24]. Since the surface weight is proportional to S/l, the structural

efficiency Π∗ is thus

Π∗ ∝ E

R2
·
√

I

S
(2)

The simple formula for critical pressure shows that curvature positively and

greatly impacts the buckling capacity of gridshell structures. The application

of the formula for a beam of height h and width b also shows that structural

efficiency scales with h, and thus that an increase in beam height results in

more efficient structures. However, in elastic gridshells, a compromise between

curvature and member stiffness must be met. Indeed, the Euler-Bernoulli model

gives a relation between the maximal bending stress σmax, Young modulus E,
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the beam curvature κ and the height of the beam in the bending direction h.

σmax =
Ehκ

2
(3)

For a given material, the design stress for long-term bending σd and Young

modulus E are known. For a given targeted curvature, we may thus deduce the

maximal height of the beam:

h <
2σd

Eκ
(4)

Therefore, the structural efficiency of elastic gridshells is limited by the shaping

process, which restricts the maximal dimensions of its members.

1.3. Problem statement

This article aims to unify the geometrical approach of Natterer and Schling

by proposing the concept of pseudo-geodesic gridshells. We will show the funda-105

mental geometrical properties of these objects, and discuss the potential benefit

in terms of structural performance. Simplified guidelines will be proposed to

optimise the performance of pseudo-geodesic gridshells.

The second section recalls the definition of pseudo-geodesic curves and impli-

cations for construction. The third section discusses some scaling considerations110

regarding their efficiency. The fourth section proposes a numerical parametric

study of pseudo-geodesic gridshells on a toroidal cap with positive Gaussian

curvature. We conclude this paper with a discussion on the potential of pseudo-

geodesic gridshells as lightweight structures based on the numerical evidence

gathered in this study.115

2. Geometrical properties of pseudo-geodesic networks

2.1. Curves on surfaces

Elastic gridshells are constituted of slender members: their geometry lends

thus itself to the study of curves (the neutral axes of the gridshells) drawn on a

surface (understood as the mid surface of the equivalent shell). This subsection120
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aims at providing a brief overview of this topic for the reader and recalls the

mathematical definition of pseudo-geodesic curves.

While structural engineers may be used to work with Frenet-Serret frame

(t,N,B), which is convenient for computing stresses, this frame does not cap-

ture any information on an embedding surface. This limitation has led to the125

introduction of the Darboux frame. It is defined as follows and is illustrated in

Figure 2.

� t is the tangent vector of the curve;

� n is the surface normal;

� g = t ∧ n is the tangent normal vector.130

tg

n

Figure 2: Darboux frame of a curve embedded on a surface.

The Darboux frame allows to define three new curvatures:

� κn = dt
ds · n is the normal curvature.

� κg = dt
ds · g is the geodesic curvature.
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θ=90° θ=45°θ=0°n

B

n = B n
B

Figure 3: Visualisation of material frame in pseudogeodesic curve gridshells in the plane

perpendicular to t. From left to right: plank laid along a geodesic, asymptotic gridshell, and

a 45◦ pseudo-geodesic curve.

� τg = dn
ds · g is the geodesic torsion.

The normal curvature is the projection of the curvature vector κN in the (t,n)

plane, while the geodesic curvature is the projection of the curvature vector in

the osculating plane. It follows that κ2
g +κ2

n = κ2. Writing θ the angle between

n and N, we have a more compact formula, sometimes referred to as Meusnier

theorem. κn = κ sin θ

κg = κ cos θ
(5)

Normal curvature plays an important role in differential geometry. It is well-

known that, at any point, two directions respectively minimise and maximise

normal curvature. They are called principal curvature directions, and we write

κ1 and κ2 the maximal values of normal curvature. By convention, we have

κ1 > κ2. It is then possible to define Gaussian and mean curvature as follows:
K = κ1 · κ2

H =
1

2
· (κ1 + κ2)

(6)

2.2. Basic geometry of pseudo-geodesic curves135

Pseudo-geodesic curves have first been studied by Wunderlich [32]. A series

of equivalent definitions of pseudo-geodesic curves can be found in the literature.

Definition 1. pseudo-geodesic curves are curves traced on surfaces so that the

angle between the curve binormal B and the surface normal n, written θ in the

followings of this article, is a constant.140
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Definition 2. Pseudo-geodesic curves are such that the ratio between normal

curvature and total curvature is constant.

Proof of equivalence:. Definitions 1 and 2 are equivalent by direct application

of equation (5). The ratio is constant and equal to sin θ.

The reader should by now be familiar with the two limit cases of pseudo-145

geodesic curves, shown in Figure 3.

� The case θ = π corresponds to geodesics (left of Figure 3).

� The case θ = 0 corresponds to asymptotic curves, which exist only on

anticlastic surfaces (middle of Figure 3).

It shall be noticed that pseudo-geodesics create a one-parameter interpolation150

between the two extreme scenarios: this is why the authors consider it to be

the generalization of both geodesics and asymptotic lines. Some properties of

pseudo-geodesics have been used in the context of pleated structures in [33].

Pseudo-geodesics all benefit from the straight-flattening property. First, the

strip generated from the ruling direction emerging from the binormal vector of155

a curve B has a rigorously straight development. Second, by Definition 1 these

directions happen to make a constant angle θ with the normal, which greatly

simplifies the fabrication of connectors.

2.3. Pseudo-geodesic gridshells

Definition 3. Pseudo-geodesic gridshells are gridshells which are constructed160

from a network of beams, whose neutral axis is following pseudo-geodesic curves

of a surface.

Pseudo-geodesics may guarantee a high node congruence, a topic of interest

in gridshell manufacturing [34]. The key fact is that, by definition, the osculating

plane (T,N) of a pseudo-geodesic has a constant angle with the osculating plane165

of the surface, as shown in Figure 3. Conversely, the surface normal also has

a constant angle with the plane (T,B) of the pseudo-geodesic curve. Figure 4

illustrate a potential concept of connection detail. The blue axis is aligned with
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the surface normal: the two wedges can rotate freely around the blue axis to

accommodate the angle between two pseudo-geodesic curves. The wedges have170

a constant angle because they are aligned with the surface normal on one side

and the binormal vector of the pseudo-geodesic curve on the other side. Figure

Figure 4: A node in a pseudo-geodesic gridshell. The blue axis is aligned with the surface

normal, the grey parts are free to rotate along the axis. The wedge angle is constant.

5 shows a negatively curved surface mapped with a pseudo-geodesic gridshell.

The angle θ is equal to 45◦, which is an intermediate configuration between

asymptotic lines and geodesic lines.

Figure 5: A pseudo-geodesic-gridshell with θ = 45◦ on a negatively-curved surface.

175

2.4. Local existence of pseudo-geodesic curves

So far, it seems that existence of pseudo-geodesic curves on surfaces is only

proven locally but their global behaviour has not been thoroughly studied. The
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local existence can be determined thanks to red Euler’s formula for normal

curvature, given by equation (7).

κn = κ1 cos
2 ϕ+ κ2 sin

2 ϕ (7)

This equation links the normal curvature κn of a curve making an angle ϕ

with the first principal direction at a point of a surface with principal curvatures

κ1 and κ2. Figure 6 represents the relation between curvature and the orienta-

tion of a curve with respect to the first principal curvature direction. The angle180

ϕ corresponds to the angle between the tangent vector of a curve and the first

principal curvature direction.

κ1=1ϕ

κ2=0.5

κ n
(ϕ
)

Figure 6: Visualisation of Euler formula for normal curvature in polar coordinates in the κ1,κ2

space.

This formal equation linking curvature and orientation is recalled in equation

(7). There is one solution for ϕ, except for θ = 0, and thus the local existence

of a pseudo-geodesic curve is always guaranteed, except for asymptotic curves,185

which only exist when Gaussian curvature is negative.

2.5. Global existence of pseudo-geodesic curve

The local existence of pseudo-geodesics is guaranteed by equation (7), except

in the case of asymptotic lines on positively curved surfaces. However, one

might be interested in the properties of pseudo-geodesic curves on arbitrary

surfaces. This paragraph discusses the intrinsic limitations of pseudo-geodesic

curves by introducing an upper bound on the total area of curvature enclosed by
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pseudo-geodesic lines (grey area in Figure 7). The comparison of curvature of

pseudo-geodesic in positive and negative Gaussian curvature regions illustrates

significant differences. Let us now consider a closed pseudo-geodesic line as

t1

t2 α

Figure 7: A closed pseudo-geodesic curve. The enclosed region is represented in light grey.

shown in Figure 7. Gauss-Bonnet Formula can be used to relate the integral

of Gaussian curvature K to the geodesic curvature of a pseudo-geodesic with a

closing angle of α. Meusnier equation (equation (5)) can be used to substitute

curve curvature for geodesic curvature.∫
S

KdS + cos θ ·
∫
Γ

κ (s) ds+ α = 2πχ (8)

The integral of curvature (also called total curvature) is a quantity superior to

2π, with equality only for plane curves with a turning number of 1. This gives an

upper bound to the integral of Gaussian curvature bounded by a closed smooth

pseudo-geodesic. This upper bound is reached for planar pseudo-geodesics with

a turning number of 1. ∫
S

KdS ≤ 2π (χ− cos θ)− α (9)

The right-hand side is a decreasing function of θ. If we restrict our study to

bounded surfaces homotopic to a disk (χ = 1), which is a reasonable assumption

for elastic gridshells, then we see that the integral of the right-hand-side becomes190

0 for θ = 0 and α = 0, which is the trend observed on the sphere. Notice that

no limitation appears for negatively curved surfaces, since the derivation of the

Gauss-Bonnet formula yields an upper bound.
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2.6. Curvature of pseudo-geodesics

Another point of view on the practical limitations of pseudo-geodesics on

surfaces is the study of their curvature. Euler formula and Meusnier theorem

yield a remarkable equality for pseudo-geodesic curves:

κ =
κ1 cos

2 ϕ+ κ2 sin
2 ϕ

sin θ
(10)

Upper and lower bounds can be constructed for positively curved surfaces (κ1κ2 >

0). Equation (11) sums up these bounds when |κ1| > |κ2|.

|κ1|
sin θ

> |κ| > |κ2|
sin θ

(11)

Therefore, the closer θ gets to 0 in positively curved regions, the higher the195

curvature. The lower bound does not exist in negatively curved surfaces since

the numerator in equation (10) can be zero. This fact is well illustrated by

doubly ruled surfaces since ruling directions are asymptotic directions (κ = 0,

θ = 0◦).

3. Analytical considerations on the mechanical performance of pseudo-200

geodesic gridshells

The previous section has introduced pseudo-geodesic gridshells and some

key geometrical properties. This section is devoted to the comparison of rela-

tive performance between conventional geodesic gridshells with pseudo-geodesic

gridshells.205

3.1. Bending stiffness

Although geodesic gridshells are easily constructed, they suffer from a low

bending stiffness. Indeed, the restrictions on beam height set in equation (4)

impose a limitation of bending stiffness, and thus of critical buckling pressure.

Pseudo-geodesic gridshells offer the potential to circumvent this limitation.210

Indeed, the bending I stiffness of a lath of with b and height h, whose strong

axis is inclined at an angle θ with the surface normal is given in equation(12).
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I =
hb3

12
cos2 θ +

bh3

12
sin2 θ (12)

Figure 8 shows the ratio between I (θ) and I (0) for different ratios between b

and h. The derivative dI/dθ is 0 for θ = 0 and θ = 90◦, which means that small

changes compared to asymptotic curves lead to a marginal decrease of bending215

stiffness. The graph also shows that geodesic gridshells have comparatively

lower bending stiffness than asymptotic gridshells.

10 20 30 40 50 60 70 80 90

0.2

0.4

0.6

0.8

1.0

b/h = 4

b/h = 5

b/h = 7

θ

12I
hb3

Figure 8: Evolution of dimensionless bending stiffness with respect to θ. θ = 0◦ corresponds

to asymptotic gridshells while θ = 90◦ corresponds to geodesic gridshells.

The relative structural efficiency of pseudo-geodesic gridshells can be esti-

mated with (13), which combines equations (2) and (12).

Π∗

Π∗
geodesic

∼
√

12I

S
(13)

The graph of this function is shown in Figure 9. It hints that the inclination

of members should result in more efficient structures. For example, with a lath

with a ratio b/h = 7, an angle θ = 65◦ yields a 3-folds improvement of structural220

efficiency if the same cross-section is used.

3.2. Accounting member curvature in positively curved areas

Section 2.6 has highlighted intrinsic curvature limitation for pseudo-geodesic

curves in positively-curved gridshells. It has been shown that κ > kmin · κ2,

where kmin = 1/ sin θ is shown in Figure 10. An upper bound on maximal
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2

4

6

8

10

b/h = 4

b/h = 5

b/h = 7

θ

Π∗

Π∗(90◦)

Figure 9: Structural efficiency normalised with respect to the structural efficiency of geodesic

gridshells for structures with the same cross-section..

10 20 30 40 50 60 70 80 90

2

4

6

8

10

θ

kmin

Figure 10: Evolution of curvature amplification factor in positive Gaussian curvature kmin

with respect to θ

lath height results from equation (4) and is written in equation (14). In this

equation the first term of the right-hand side depends on material only, the

second depends on shape only, while the third term sin θ only depends on the

pseudo-geodesic angle.

hmax =
2σd

E
· κ2 · sin θ (14)

The structural efficiency taking into account the constraint on maximal

member height is expected to follow the following equation:

Π∗
constrained

Π∗
constrained,90◦

= sin θ

√
sin2 θ +

b2

h2
cos2 θ (15)

The plot of equation (15) is shown in Figure 11. It can be seen that the efficiency
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converges to zero for θ → 0 and that a maximum is reached for θ ∼ 45◦. More

precisely, a simple derivation of equation (15) with respect to θ shows that the

minimum is reached for θ = θopt:

θopt = atan

√
1

1− 2h2

b2

(16)

The value of θopt converges to θ ∼ 45◦ when the ratio b/h becomes large, which

is the case of interest in pseudo-geodesic gridshells. In the end, a simplified value

of the optimal relative efficiency is found by using the approximation θopt ∼ 45◦:

max

(
Π∗

constrained

Π∗
constrained,90◦

)
∼ 0.5

√
1 +

b2

h2
(17)

The ratio determined in equation (17) corresponds thus to the limits of struc-

tural efficiency of pseudo-geodesic gridshells in positively-curved surfaces, as

local failure mode may occur before the global failure described by equation225

(1).

10 20 30 40 50 60 70 80 90

1

2

4

6

8

10

b/h = 4

b/h = 5

b/h = 7

θ

Π∗
constrained

Π∗
constrained,90◦

Figure 11: Relative structural efficiency of pseudo-geodesic gridshells on positive Gaussian

curvature normalised with the efficiency of a geodesic gridshell. This takes into account the

limit curvature of members in pseudo-geodesic gridshells.

4. Mechanical performance of pseudo-geodesic gridshells

The previous sections have introduced pseudo-geodesic gridshells and some

analytical considerations on their efficiency. In this section, we investigate the
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structural performance of pseudo-geodesic gridshells by performing linear buck-230

ling analysis on various gridshells. The goal is to highlight the influence of the

inclination of laths on the overall performance. Thus, a simple parametric study

is conducted.

4.1. Geometry

Since the previous sections of this article highlight potential limitations in235

positively curved areas, we generate a portion of torus with positive Gaussian

curvature, as shown in Figure 12: the axis of revolution is in the (XY ) plane.

The torus is then split with a plane parallel to (XY ) and offset by L.

L

H

X

Figure 12: Generation of a portion of a torus

For the sake of conciseness, only one shape is considered. Other studies have

thoroughly discussed the influence of shape on the mechanical performance of

gridshells [23, 24, 20]. The shape parameters are summed up in eq. (18). The

rise-over-span ratio H/X = 1/7 is comparable to other gridshells [35].
H = 1m

L = 5m

X = 7m

(18)
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4.2. Bracing

Gridshell should be braced to fully benefit from their curvature and mem-240

brane stiffness [4, 35]. Therefore, the mechanical study should consider a bracing

strategy. Several alternatives exist for bracing elastic gridshells.

� Use cables, like for the Mannheim Multihalle [1]. The main disadvantage

of this solution is that the pre-stress may be affected by creep-induced

deformations of the structure, which requires re-tensioning during the first245

years.

� Use rigid panels, which requires a geometrical strategy that guarantees

planarity of panels, as proposed in [8].

� Use a third layer of elastically bent rods, like in [28]. Although techno-

logically sound, it turns out that the rod’s axial stiffness depends on the250

curvature and spacing of the rods. Details on this aspect can be found in

[36].

� Use a third layer of rigid members like done in [37, 27].

� Use moment rigid connections. This is generally not sufficient on its own

[4], but this solution can be combined with other bracing strategies. This255

was used in the Downland Museum gridshell [2], with a patented connec-

tion detail.

In this study, we chose to both rigid connections and rigid members, with

50% of the axial stiffness of the laths, and model the rods as truss elements,

i.e., they do not contribute to the bending stiffness of the gridshell. Figure260

13 shows a possible technological solution for the construction of rigid rod,

published by d’Amico et al. [27]. So-called sticks are attached to the node axis

(which in pseudo-geodesic gridshell conicides with the surface normal). The

rigid diagonals are then overlapped over the sticks and fixed with screws.

18



Figure 13: Possible configuration for rigid joints in an elastic gridshell (photo: [27])

4.3. Parametric study265

The parametric study consists in generating pseudo-geodesic gridshells on

the portion of torus described in Section 4.1. The network of pseudo-geodesic is

constructed by generating a single pseudo-geodesic curve, and then by rotating

it at an angle π/n. The method used to generate is detailed in the appendix.

The parameters to generate a grid are the following:270

� The angle θ

� The angle ϕ made by the pseudo-geodesic with the smallest parallel.

� The angle π/n

There are two cross-section parameters for the rectangular profile.

� The beam thickness t275

� The beam width b

The parameters n and ϕ were selected so that the average length remains con-

stant while reducing inter-nodal length variations. The maximal length remains

thus limited, which avoids lateral-torsional buckling. This selection of param-

eters reduces the number of parameters in the study.The beam thickness was280

arbitrarily chosen as 2 centimetres.
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Quantity Values

θ 90, 85, 80, 75, 70, 65, 60

l 0.35 m

b/t 5, 7

Table 1: Parameters used in the study.

Figure 14 shows some possible configurations of pseudo-geodesic gridshells.

It can be noticed that for the gridshells with θ ̸= 90◦, the member length l is

longer at the bottom of the image. The smaller θ, the more pronounced the

phenomenon. It was possible to make a rather even grid spacing with geodesic285

curves. Interestingly, although the shape has a plane of symmetry in addition

to its symmetry of revolution, it is not possible to make a smooth symmetrical

grid structure with a pseudo-geodesic gridshell.

Figure 14: Pseudo-geodesic gridshells with, from left to right, θ = 90◦, 80◦, 70◦, 60◦. Notice

that the variability of length increases as θ decreases.

Figure 15 illustrates the length variation for different values Φ and θ, where

the average length is set to 35cm. It can be seen that the maximal length is,290

as expected, a decreasing function of θ. For the particular shape treated in

this article, the maximal member length becomes more than twice the average

member length for θ < 65◦. The notion of average member length used in the
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Figure 15: Length variation for two values of Φ. Thick lines represent the minimal and

maximal length in the grid.

scaling study becomes then dubious.

4.4. Loads295

A non-symmetrical global load pointing downwards is applied to the whole

structure according to the pattern shown in Figure 16. Non-symmetrical loads

are known to be more critical for the buckling of gridshells, but self-weight

may be an important load case in practice, especially because materials used

in elastic gridshells are subject to creep and must be designed with a reduced300

stiffness for those load cases (the kdef factor in Eurocode 5 for example). In the

followings, pcr refers to the magnitude of the smallest load shown in Figure 16.

4.5. Finite Element Analysis

The structural performance is assessed by performing a linear buckling anal-

ysis. The Finite Element software use in this study is Karamba3D. This soft-305

ware is integrated within the visual programming environment Grasshopper [38].

The material used is wood with E = 10.5GPa, G12 = 3.6GPa, G3 = 3.6GPa,

ρ = 6kN/m3. The laths are simply supported (no translation allowed at their

extremities). The loads are applied as a mesh load, and automatically transfered

as line loads to the beams.310

The result of linear buckling analysis should be taken with caution because it

tends to overestimate the load-bearing capacity of gridshells. Furthermore, it is
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Figure 16: Applied load pattern, seen from top.

necessary to take imperfections into account in detailed design phases. Gioncu

and Balut have shown that geometrical imperfections tend to be more critical

than material imperfection for large-span slender gridshells [15]. In this study,315

the neutral axes of the beams are offset due to the geometrical configuration

of the laths. This offset is shown in Figure 17, where the thick coloured lines

correspond to the geometrical lines used to define the geometry, and dashed lines

represent the true position of the beam centroids. It can be noticed in the figure

that the eccentricity is equal to b/2, which corresponds to at least 5 centimeters320

for the laths considered in this study. The eccentricities are generated when

constructing the beam elements based on information on binormal vector of the

beam.

Lefevre et al. have studied gridshells with offset resulting from nodal eccen-

tricity and have shown that the offset has the same behaviour as a geometrical325

imperfection [19]. Therefore, we restrict our study to the structure with the

offset.
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Figure 17: Eccentricity in the finite element model: thick coloured lines correspond to the

geometry used for constructing the beams while dashed lines correspond to the true centroid

of beams.

4.6. Results

Tables 2 and 3 sum up the results of the parametric study. The result trends

are analysed in two graphs shown in Figure 18 and 19.

θ 90 85 80 75 70 67.5 65 62.5 60

ϕ 30 30 30 30 30 15 15 15 15

n 66 72 77 82 86 89 90 94 95

Mass [kg] 514 513 513 513 512 512 512 516 511

pcr [kPa] 12.3 14.9 20.4 25.5 29.0 31. 32.1 33.0 19.1

Π∗

Π∗
90

1.0 1.21 1.66 2.07 2.36 2.53 2.61 2.67 1.57

Table 2: Results of the linear buckling analysis calculation for b/h = 7.

330

Figure 18 shows the relative structural efficiency for b/h = 7. Here, a con-

stant lath height h = 2cm has been considered. For high values of θ, the

structure is subject to a global buckling mode and the scaling equation from

equation (2) is appropriate. However, for θ = 65◦ and below, the first buckling

mode corresponds to lateral torsional buckling. As shown in Figure 15, the335

maximal member length increases as θ decreases, so local buckling is more and
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θ 90 85 80 75 70 67.5 65 62.5 60 57.5

ϕ 30 30 30 30 15 15 15 15 15 15

n 66 72 75 82 74 76 78 82 84 86

Mass [kg] 367 364 352 363 360 358 358 365 360 360

pcr [kPa] 8.0 9.8 11.4 13.1 14.9 16.4 17.4 17.9 13.7 6.0

Π∗

Π∗
90

1 1.24 1.48 1.65 1.89 2.10 2.23 2.25 1.73 0.76

Table 3: Results of the linear buckling analysis calculation for b/h = 5.

more likely to occur.

50 60 70 80 90
1

2

4

6

eq.(12)

FEA

θ

Π∗

Π∗(90◦)

Figure 18: Relative structural efficiency for b/h = 7, h = 2cm

Figure 19 shows the relative structural efficiency for b/h = 5. The same

trend can be observed: the finite element analysis is in good agreement with

the curve obtained from equation (2) for values of θ above 65◦. The relative340

efficiency of pseudo-geodesic gridshell is multiplied by 2.5 for θ = 65◦.

Figure 20 shows the shape associated with the first buckling mode. The

transition from a global buckling mode (θ = 85◦) to a hybrid buckling mode

with nodal snap-through (θ = 80◦) and finally to lateral torsional buckling
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Figure 19: Relative structural efficiency for b/h = 5, h = 2cm. Buckling pattern is shown for

thicker dots.

(θ = 62.5◦) is visible.

(a) θ = 85◦, top (b) θ = 80◦, top (c) θ = 62.5◦, top

(d) θ = 85◦, perspective (e) θ = 80◦, perspective (f) θ = 62.5◦, perspective

Figure 20: Shape of the first buckling mode for b/h = 5 (darker shade indicate larger dis-

placement).

345
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4.7. Design guidelines

Pseudo-geodesic gridshells seem to offer a promising alternative to geodesic

gridshells, as the structural efficiency and load-bearing capacity increase for

low values of θ. The finite element analysis shows a good correlation with the

analytical formula derived from previous work [23].350

However, pseudo-geodesic gridshells are subject to some limitations in posi-

tively curved areas. The maximal length decreases with θ, and the combination

of this fact with the inclination of members makes them sensitive to a failure

by lateral-torsional buckling of a single member. Therefore, appropriate con-

structive solutions that restrict lateral-torsional buckling, like the connection of355

beams to rigid panels, could be envisioned.

Finally, the limitations highlighted in this paper only concern positively

curved areas. It is now well-known that asymptotic gridshells can yield aesthet-

ically pleasing curve networks without any limitation on curvature. Negatively

curved surfaces or surfaces with both positive and negative curvature are thus360

a natural application of pseudo-geodesic gridshells.

5. Conclusion

This article has introduced the concept of pseudo-geodesic gridshell, as a gen-

eralisation of asymptotic and geodesic gridshells. The geometric principle has

been detailed and explains why pseudo-geodesic gridshells may be constructed365

with a single node and laths with a straight development. Unlike asymptotic

gridshells, pseudo-geodesic gridshells may be constructed on surfaces with pos-

itive Gaussian curvature, extending thus the formal potential of gridshells built

with straight strips. Figure 21 shows three configurations for the same shape.

A lower bound for the curvature of pseudo-geodesic curves on positively370

curved surfaces has been proposed, and an upper bound for the integral of

Gaussian curvature mapped with pseudo-geodesic curves has been derived from

the Gauss-Bonnet formula. These two considerations give simple guidelines

for mapping pseudo-geodesic curves on complex shapes. Information on the
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Figure 21: From left-to-right: geodesic gridshell, pseudo-geodesic gridshell and asymptotic

gridshell.

maximal normal curvature and integral of positive Gaussian curvature provide375

necessary conditions for the construction of pseudo-geodesic gridshells.

Simple estimations of the relative efficiency of pseudo-geodesic gridshells

have been made. This estimation leverages previous work on equivalent contin-

uum formulation and analytical considerations on the buckling of thin shells.

This analytical approach is illustrated by a short parametric study on linear380

buckling analysis of pseudo-geodesic networks. This study shows that pseudo-

geodesic gridshells have the potential to significantly increase the structural

performance of gridshells built from straight strips. However, lateral torsional

buckling and sensitivity to length variation should be treated with great care in

practical applications.385

To conclude, some open questions in geometry remain to be solved. First,

we used a propagation algorithm to generate pseudo-geodesics. This is also

the approach used in [33], but it remains difficult to control the behaviour of

pseudo-geodesics and to create regular quadrilateral patterns, especially with

high positive Gaussian curvature. Second, it is well-known that asymptotic390

gridshells can be built on a flat surface and deployed in the fashion of tradi-

tional elastic gridshells. Likewise, the spatial deployment of geodesic gridshells

is well-understood [39]. However, the spatial deployment of pseudo-geodesic

gridshells remains an open question. Finally, by taking a non-constant θ angle,

a large potential of innovative structures with high-node congruence remains to395
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be explored.
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Appendix A. Generation of pseudo-geodesic curves

This section presents the method to generate pseudo-geodesic on surfaces.

The adopted methodology is similar to the one employed in [40].

Appendix A.1. Pseudo-geodesic from point and tangent vector

It is well-known that it is possible to construct a geodesic on a surface

from one point and one arbitrary tangent vector. This property also holds
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for pseudo-geodesic curves. Indeed, let us consider a point P on the surface

and ϕ the angle between the tangent vector and the first principal curvature

direction. It has already established that, for pseudo geodesics with θ ̸= 0,

we have κg = cotanθ · κn. The normal curvature is known by Euler formula.

Furthermore, we can use Bonnet’s formula for geodesic curvature:

κg =
dϕ

ds
(A.1)

Where s is the arclength of the curve. The combination of equation (A.1) with

Euler’s formula yield a first order differential equation in ϕ.

dϕ

ds
= cotanθ

(
κ1 cos

2 ϕ+ κ2 sin
2 ϕ
)

(A.2)

This equation rarely has analytical solution. Wunderlich found one for cylinders,

where κ1 is constant and κ2 = 0 [32]. We may notice however that when an

initial value of ϕ is known, then we may immediately have access to dϕ/ds.

Thus, an Euler-forward method allows to construct a numerical approximation

of the solution when making a small step ε. This method is illustrated in Figure

A.22, where e1 and e2 are the first and second principal curvature directions.

Figure A.22: Iterative generation of a pseudo-geodesic curve.

ϕ (s+ ε) = ϕ (s) + ε
(
κ1 cos

2 ϕ+ κ2 sin
2 ϕ
)
+ o (ε)

P (s+ ε) = P (s) + ε (cosϕ e1 + sinϕ e2) + o (ε)
(A.3)

It is possible to iteratively apply this discrete integration scheme, and by doing525

so, to construct a polyline that converges to the pseudo-geodesic curve when ε
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tends to zero. Off course, more sophisticated integration schemes, like Runge-

Kutta method may be used to improve accuracy.

Appendix A.2. Implementation

The previous section shows that the iterative construction of a pseudo-530

geodesic curve from one point and one tangent is possible. However, (A.3)

requires to know the principal curvature directions, and may require special

care near singularities. For example −e1 is also a principal curvature direction,

so the definition of ϕ may be ambiguous when the principal curvature direction

evolves rapidly. This is illustrated in Figure A.23.535

Figure A.23: Principal curvature directions may rapidly change near a lemon-type singularity.

An alternative numerical procedure has thus been implemented in a Grasshop-

per plug-in. The algorithm also generates a polyline, but doesn’t require the

computation of principal curvature directions. It is illustrated in Figure A.24

and relies on the very definition of pseudo-geodesics, namely that the angle be-

tween the binormal and the surface normal is constant. The algorithm consists540

in the following steps:

� Estimate tangent vector as T̂ n+1 = P n+1 − P n.

� Retrieve the surface normal nn+1.

� Construct B̂n+1 by rotating nn+1 along T̂ n+1 with an angle θ.
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Figure A.24: Determination of the estimation of the curve binormal vector B̂n+1 from two

previous points Pn and Pn+1.

� Construct the plane P of centre P n+1 and normal B̂n+1.545

� Intersect P with the reference surface, this results in a curve Γ.

� Find a new point P n+2 of Γ, for example by intersecting it with a sphere.

� Iterate.
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