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Abstract

Structures that are 3D printed by an extrusion process have periodic geometrical heterogeneity whose

influence on the final stiffness properties is not extensively discussed in the existing literature. The objective

of this article is to quantify the effect of local lace geometry on the anisotropy of extrusion-based 3d printed

structures. A numerical homogenisation scheme is implemented to compute an equivalent homogeneous

Kirchhoff-Love plate stiffness. The methodology is applied to the parametric study of an oblong lace resulting

from oriented-lace pressing. The study reveals that the bending stiffness in the two principal directions may

vary by an order of magnitude for common lace geometries, even in the assumption of a perfect bound

between layers.

Numerical benchmarks against 3D Finite Element Analysis show that the proposed approach is accurate

while significantly decreasing the number of degrees of freedom of the numerical model. Beyond understand-

ing of geometrical defects on the overall stiffness of 3D printed structures, this approach can thus be applied

for efficient structural analysis of 3D printed pieces with thousands of layers.

Keywords: Homogenisation, oriented lace pressing, 3D concrete printing, Shell theory

1. Introduction

1.1. Context

3D printed structures are fabricated by the successive deposition of material, in a layered manufacturing

process. This deposition can be achieved with different techniques, including extrusion, or powder bed print-

ing. In the construction industry, Pegna [1] proposed freeform construction through additive manufacturing5

as a new field of investigation. Extrusion is by far the most common process found nowadays in 3D concrete

printing, in the followings of pioneering work by B. Khoshnevis’s Contour Crafting [2] and by the University

of Loughborough [3].
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Figure 1: Concrete sample obtained by layer-wise extrusion. Geometrical heterogeneity (layering) is clearly visible, with
H = 6mm, B = 20mm (Photo: Leo Demont).

The layerwise nature of 3D printing naturally prompts the question of anisotropy of the resulting struc-

tures. This anisotropy has been experimentally measured on 3D printed samples, with a heavy focus on10

inter-layer strength in the concrete 3D-printing community [4]. The anisotropy may have two origins:

• Material anisotropy: the material properties are modified by the deposition process (stretching, phase

change, etc.)

• Geometrical anisotropy: the geometry of the filaments induces a non-homogenous distribution of the

material15

A geometrical origin for anisotropy due to thickness variation has nonetheless been recently highlighted

in 3D printed steel structures by Margerit et al. [5]. Structures obtained by an extrusion process with a

circular nozzle, like some 3D printed concrete structures, exhibit more geometrical irregularities than those

studied in [5]. This is illustrated in Figure 2, where the heterogeneity is not negligible compared to the wall

thickness. Concrete printing by extrusion does not involve phase change, leaving cold joints as one of the20

main sources of material heterogeneity between layers. Poor interfaces behaviour, which might come from

the microstructure of the interface itself has been studied in previous publications, like Nerella et al. [6].

However, proper mix formulation and inter-layer time can be adjusted to avoid weak interfaces, as suggested

by Roussel [7]. Therefore, the geometrical origin of anisotropy in concrete or clay 3D printing cannot be

disregarded as easily as in the conventional Fused Deposition Modelling process.25
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1.2. Previous work

1.2.1. Extrusion process for concrete printing

There is a continuum of strategies for extruding cementitious materials, which depend on the paste

rheological properties, but it is possible to describe two asymptotical cases [8].

• Extruded lace shaping or infinite brick extrusion is a printing strategy in which a lace is extruded, and30

left undeformed after deposition. It relies on a high yield stress of the fresh mortar. This strategy is

widespread and has been used on large-scale projects, for example by the team of TU Eindhoven [9].

• Oriented Lace Pressing relies on the deformation of the lace, which allows to control the layer height.

This can be achieved with a mortar with low-yield stress and accelerator, as done by the company

XTreeE [10], or with a mortar with high yield stress and a long printing time allowing structuration35

of the mix.

Both strategies have their own benefits depending on their context of application. For example, when

printing overhangs, the oriented lace pressing strategy offers more possibility, beyond simple corbel [11].

1.2.2. Lace geometry

While extruded-lace shaping mainly relies on high yield stress to maintain the shape of the laces, oriented-40

lace shaping implies a deformation of laces. The lace geometry depends on kinematic parameters (extrusion

and robotic speed, flow rate) and material parameter (yield stress, viscosity). Comminal et al. have simulated

the deposition of viscous materials and proposed simplified lace cross-sections, including elliptical, cuboid

and oblong shapes [12]. They later validated their model experimentally in [13]. Carneau et al. [14] have

extended this study to yield stress fluids and experimentally measured that the oblong model is compatible45

with the mass conservation equation and measurements of the laces width and height. The typical lace

geometry, which is studied in the followings of this article is shown in Figure 2.

Recently, those simple models for lace geometry have been proposed in [15], which proposed effective

Young modulus depending on lace geometry and based on experimental measurements. This article proposes

a more theoretical point of view, which complements this work.50

1.2.3. Structural modelling for 3D printed-concrete

It should be noted that most 3D printed concrete structures are thin wall structures, with a wall thickness

B in the centimeter range whereas other characteristic lengths (L0, L1) are in the metric range [16, 17]. It

is therefore natural to rely on Kirchhoff-Love plate theory, which makes the assumption that the normal
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Figure 2: A crushed sample of 3d printed concrete exhibiting the oblong lace geometry (contour highlighted by the authors)
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of the mid-plane of the plate remains normal after transformation. Isotropic Kirchhoff-Love plate models55

have already been proposed to simulate the printing process of concrete structures and have shown good

agreement with experimental data [18, 19]. The Kirchhoff-Love theory has the advantage to be simple to

implement in Finite Element Modelling, but maybe more importantly, to provide engineers with intuitive

generalised forces and moments instead of the local 3D strains and stresses.

Other recent work focus on mechanical modelling of 3D printed structures with voxelisation and 3D60

elements [20, 21]. While this approach is precise (when the voxel dimension is sufficiently small), it can be

argued that it risks to scale poorly for models of components with several hundreds of layers compared to

an equivalent Kirchhoff-Love plate model. This approach also makes it more difficult to identify the role of

different geometrical or material parameters on the structural performance, since the notion of generalised

force or moment is lacking in 3D modelling.65

1.3. Homogenisation of periodic plates

It is well-known since the 1980’s that a 3D plate which is periodic in its in-plane directions can be

modelled as a 2D homogeneous Kirchhoff-Love plate if its thickness and the heterogeneity typical length are

of the same order of magnitude, and if they are very small in comparison with the in-plane typical length

of the plate.70

The homogenisation problem can be summed up as follows: ”Considering a given heterogeneous mi-

crostructure, how the overall properties of an equivalent homogeneous medium can be obtained?”. One can

find in [22], and the references cited in this monograph, the theoretical justifications of this homogenisation

process and the methodology for the determination of the homogenised plate Kirchhoff-Love elastic stiffness

tensors in terms of the 3D elastic properties of the unit-cell that generates the 3D periodic plate. To sum up75

the method, in the case of a periodic plate, it is based on the energy equivalence between the 3D medium

and the plate model.

Figure 3 shows some examples of application of periodic homogenisation. in the scientific literature. The

homogenisation can be applied to evaluate the stiffness properties of a structure, which is the focus of this

article, but also to evaluate the load-bearing capacity of periodic structures, such as masonry structures. In80

a design context, periodic homogenisation is also applied to curved structures, which are not periodic stricto

sensu, it offers however sufficient accuracy and considerably speeds up optimisation routines, as illustrated

in [23, 24].
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Figure 3: Examples of homogenised structures: a) beam lattice [25] , b) quadrangular gridshells [23], c) Kagome gridshells [24],
d) masonry walls [26], e) sandwich panels [27].

1.4. Problem statement

The aim of this article is to use the homogenisation of periodic plates to estimate the anisotropy of85

3D printed structures in the assumption of a perfectly homogeneous material. To do so, an equivalent

homogeneous plate model is constructed: it allows the access to axial and bending stiffness and to easily

interpret the influence of geometrical parameters on the behaviour of 3D printed structures. The result is

a model allowing to interpret the contribution of the sole geometrical imperfection on the stiffness of 3D

printed thin shell structures. Since the model considers a homogeneous material without softening defects,90

it constitutes therefore an upper bound on the stiffness that could be expected from a 3D printed sample.

The homogenised model retains however practical relevance, both for the modelling of structures in the dry

and fresh state.

The first section has introduced relevant literature and problem statement. The second section presents

the research methodology with a summary of periodic plate homogenisation. The third section specifies95

the periodic domain studied and introduces the non-dimensional parameters describing the geometry of the

laces. The fourth section sums up the results of numerical simulations and compares them to the analytical

bounds previously found.

2. Methodology

2.1. Constitutive equations in Kirchhoff-Love plate theory100

We consider a linear elastic plate with mid-plane S. The plate fields are described using coordinates

(x1, x2, x3) and frame (e1, e2, e3), where e3 is orientated along the thickness direction which is normal to
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the mid-plane. The displacement of the mid-plane is the 3-component vector U (x1, x2). The notations for

the frames are shown in Figure 4.

e3

S

e2

e1

e3 e2

e1

Figure 4: Depiction of a periodic plate and notations for frames in this article

The membrane forces Nαβ (x1, x2)
1 and bending moments Mαβ (x1, x2) are the usual generalised stresses105

of plate theory. Their respective dual strain variables are the classical membrane strain Eαβ (x1, x2) and

curvature χαβ (x1, x2) 
Eαβ =

1

2
(Uβ,α + Uα,β)

χαβ = −U3,αβ

(1)

It will be shown that the considered periodic cell has two planes of symmetry, which means that there is no

membrane-bending coupling [22]. Considering the (e2, e3) or (e3, e1) plane symmetry and the invariance

property of strain energy, we have :110

A1112 = A2212 = D1112 = D2212 = 0 (2)

The simplified constitutive equations in Kirchhoff-Love orthotropic plate theory are recalled in equation

(3) and (4). There are in general 12 parameters of a orthotropic elastic Kirchhoff-Love plate, due to the

symmetry of the stiffness matrix. For a uniform material distribution, this number of parameters is reduced

1Greek letters indicate that the subscript index can take either the value 1 or 2.
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to 5 (E1,E2,ν12, G12, and thickness).


N11

N22

N12

 =


A1111 A1122 0

A1122 A2222 0

0 0 2A1212

 ·


E11

E22

E12

 (3)

115 
M11

M22

M12

 =


D1111 D1122 0

D1122 D2222 0

0 0 2D1212

 ·


χ11

χ22

χ12

 (4)

Equations (3) and (4) can be written in matrix form as N = AE and M = Dχ. The plate strain energy

(surface) density is given by equation (5). It is strictly positive unless N and M are both null.

W =
1

2
ET .A.E +

1

2
χTD.χ (5)

2.2. Summary of the homogenisation procedure

Periodic homogenisation is applied to micro-structures with invariance by translation. In Figure 4, the

micro-structure is periodic along e1 and e2. The smallest periodic sub-cell is written Y . It assumed that120

all characteristic lengths of Y are small compared to the dimensions of the plate, i.e. when the number of

cells is large. The objective of homogenisation is to create a consistent equivalent plate model, in the sense

that strain energy of the plate model converges towards the one of the micro-structure when the number of

cells increases.

It will be shown that the considered periodic cell Y , whose geometry is shown in Figure 4, of dimensions125

l1,l2,l3 has two planes of symmetry with an isotropic material. In this case, it is possible to reduce the

problem to a portion of cell Y0 delimited by the two planes of symmetry. The periodic cell and boundary

conditions for Love-Kirchhoff plates are presented in [22] and recalled in Figure 5. Note that notations

for cell dimensions of Figure 5 are identical to [22], usual notations found in the literature on 3D printing

[12, 28] are l1 = B, l2 = L and l3 = H.130

Generalised forces in the cell are defined by equation (6). In the followings, the notation ⟨ . ⟩ denotes an

average. We introduce SY0 , the surface area of the middle surface of the cell. With the notations of Figure
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e1

e2
e3

ξ1   = 0

σ12 = 0

σ13 = 0{

σ21 = 0

ξ2   = 0

σ23 = 0{

free face

σ21 = 0

ξ2   = (E22+y3χ22)l2/2

σ23 = 0{

free face

ξ1   = (E11+y3χ11)l1/2

σ12 = 0

σ13 = 0{
l1/2 l2/2

l3/2

l3/2

(a) symmetric loads

e1

e3

σ11 = 0

ξ2   = 0

ξ3   = 0{

ξ1   = 0

σ22 = 0

ξ3   = 0{

free face

ξ1   = (E12+y3.χ12).l2/2

σ22 = 0

ξ3   = -y1.χ12.l2/2
{

free face

σ11 = 0

ξ2   = (E12+y3χ12).l1/2

ξ3   = -y2.χ12.l1/2
{

e1

e2

l1/2

l2/2

l3/2

l3/2

(b) Skew symmetric loads.

Figure 5: Boundary conditions applied to a periodic cell with two planes of symmetry.

5, SY0 = l1l2
4 . 

Nαβ = ⟨σαβ⟩ =
1

SY0

∫
Y0

σαβdV

Mαβ = ⟨x3σαβ⟩ =
1

SY0

∫
Y0

σαβx3dV

(6)

General displacements can be defined in a similar manner:


Eαβ =

1

B
⟨εαβ⟩

χαβ =
12

B3
⟨x3εαβ⟩

(7)

The homogenisation procedure requires the solution of elasticity problem (8) solved for the appropriate135

boundary conditions represented in Figure 5.



divσ = 0

σ = C (x1, x2, x3) : ε

ε = ∇sξ

boundary conditions from Figure 5

(8)

The solution of an elasticity problem allows to compute generalised forces associated to generalised displace-

ments. Computing the average of the stress fields through the stiffness of the plate (along e3) should be

enough to determine the equivalent stiffness matrix, however this is not trivial in Finite Element Software.

Therefore, we use the elastic strain energy W of the elasticity problem and identify it to the strain energy140

Whom associated with the macroscopic field W = Whom.
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2.3. Numerical homogenisation

The Finite Element Software Abaqus is used to solve the static problems over the sub-cell Y0. For each

problem, total strain energy is computed and divided by the middle surface of the sub-cell, HL/2, in order

to obtain plate strain energy Whom. Application of the Hill-Mandel principle yields equality between the145

microscopic energy computed by the finite element analysis and the macroscopic energy. It will be shown

in the next section that we have to determine at most eight coefficient, since energy depends linearly on the

coefficients of the stiffness matrices A,B,D: eight well-chosen problems are thus enough to construct the

homogenised stiffness matrix.

The periodic subcell is modelled as a parallelepiped. For the sake of applying proper boundary conditions,150

the Finite Element Model uses two materials, shown in Figure 6. The constitutive material of the cell, shown

in light blue in the image, has a Young Modulus E = 1 MPa. The second material, shown in a darker blue

in the image is used to represent voids and has a Young modulus E = 10−6MPa. With such a small value,

its influence on total strain energy is negligible. This is indeed verified in the section discussing the results.

e1

e3

e2

ww

H/2

L/2

"void" material

Constitutive material

Figure 6: The unit cell Y0, as modelled in Abaqus with constitutive material in light blue and void material in darker. The
mirror image of the Y0 cell is represented in transparency.

2.4. Load cases155

This section introduces now the eight load cases used to determine the Aijkl and the Dijkl coefficients.

The boundary conditions associated to the macroscopic fields Eαβ and χαβ applied to the periodic cell

are shown in Figure 5. No internal forces are applied. The total elastic strain energy Wtot is computed

numerically over the sub-cell geometry Y0 for each loading case. To get surface strain energy defined in

equation (5), we divide its value by SY0
= HL/4, the area of the middle surface of subcell Y0.160

Whom =
4Wtot

HL
(9)
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E11 E22 E12 χ11 χ22 χ12 Whom

Problem 1 1 0 0 0 0 0 1
2A1111

Problem 2 0 1 0 0 0 0 1
2A2222

Problem 3 0 0 1 0 0 0 2A1212

Problem 4 1 1 0 0 0 0 1
2 (A1111 +A2222 +A1122)

Problem 5 0 0 0 1 0 0 1
2D1111

Problem 6 0 0 0 0 1 0 1
2D2222

Problem 7 0 0 0 0 0 1 2D1212

Problem 8 0 0 0 1 1 0 1
2 (D1111 +D2222 +D1122)

Table 1: Strain energy associated to each subproblem solved with the finite element method and its relation to macroscopic
stiffness coefficients.

Table 1 sums up the different elasticity problems solved with the finite element method (i.e. which bound-

ary conditions are applied), and the relation between strain energy of the cell and macroscopic stiffness

coefficients obtained by application of equation (5).

2.5. Polynomial fitting

The finite element method allows to solve the homogenisation problems for specific lace geometries.165

Rather than solving the homogenisation problem for any possible lace geometry, a structural engineer might

be more inclined to use a pseudo-analytical formula in order to define the equivalent plate model. We

propose thus a simple and realistic parametrisation of lace shapes allowing to perform polynomial fitting of

numerical results.

The overall methodology for constructing a plate model has been presented. The next section introduces170

the relevant parameters describing a simplified geometrical model of laces.

3. Problem description: oriented lace pressing

3.1. Periodic homogenisation procedure

Figure 7 displays a cross-section of a 3D printed wall using the oblong lace geometry. It has been

experimentally demonstrated that this shape is close to the actual lace shape resulting from Oriented Lace175

Pressing [12, 14, 15], and it has the benefit to be described with few geometrical parameters. The geometry

is invariant along e2, and the cell highlighted in the blue rectangle in the image is periodic along e1.

The periodic cell Y is depicted more precisely in Figure 8. It is an oblong shape, with a rectangular

cross-section of width wb and height H connected to two elliptical caps, each of width wc/2, extruded along

e2. The wall width ww is simply defined as ww = wb + wc. The independent shape parameters describing180
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ww

He3

e1

Figure 7: Cross-section of a 3D-printed wall and identification of a cell that is periodic in e2 and invariant along e1.

the cell are thus its height H, and the bond width and the wall width of the section ww. The material

parameters are the Young modulus E and Poisson’s ratio ν.

wb

H

wc/2

e3

e1

wc/2

ww

Figure 8: Geometry of the unit periodic cell

3.2. Non-dimensional analysis: parameters

In the followings, non-dimensional parameters are used to describe the cell geometry and the stiffness:

H∗ = H/ww is the cell aspect ratio, w∗ = wb/ww is the normalised bond width, whereas L∗ = L/H is185

the length ratio. However, since the cell is invariant along e2 and since L can be arbitrarily chosen, all

non-dimensional numbers are independent of L∗. Intuitively, the stiffness is governed by the normalised

bond width: for w∗ = 1, the plate is a uniform plate, whereas for w∗ = 0, the lace would be independent.
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The bond width was observed to be a key factor in the axial stiffness in experiments by Fang et al. [15]. In

order to keep the study as simple as possible, the simplest geometrical model for the lace, used for example190

by Comminal et al. [12], is chosen. Namely the parametric study is restricted to the case H = wc, where

the caps are circular. With the non-dimensional parameters, this equality reads as H∗ = 1− w∗.

The constitutive material is here modelled as linear, elastic and isotropic, and can thus be described with

Young Modulus E and ν. Note that A and D are obviously proportional to the Young modulus, because

for each auxiliary problem, only two numbers are expressed in Newtons. Therefore, there is no need to195

vary the Young modulus in the numerical study and there are only two independent non-dimensional input

parameters describing each auxiliary problem: ν and w∗.

Table 2 shows the different values for w∗ and ν considered in the numerical study.

Name Symbol Values
Poisson’s ratio ν [0.15, 0.2, 0.25, 0.3]

Normalised bond width w∗ [0.05, 0.25, 0.5, 0.75, 0.95]
Aspect ratio H∗ 1− w∗

Table 2: Non-dimensional parameters for the study

The values of w∗ were chosen to evenly map the possible range of parameters. The corresponding shapes

are shown in Figure 9. The practical values for w∗ might vary with the chosen material and process, a more200

detailed view on concrete printing is proposed in the discussion.

H*=0.05 H*=0.25 H*=0.5 H*=0.75 H*=0.95

w*=0.95 w*=0.75 w*=0.5 w*=0.25 w*=0.05

Figure 9: Lace shapes considered in the parametric study

The geometry of the lace converges to the one of uniform plate when w∗ −→ 1. Indeed, it can be

seen that the volume of material V = πH2L + wbHL converges towards the volume of the bounding box

Vbox = wwHL.

V
Vbox

=
πH

ww
+

wb

ww
= π (1− w∗) + w∗

Therefore, the heterogeneity of the microstructure is a decreasing function of w∗, and the homogenised205

model is expected to converge towards the isotropic plate properties when limit w∗ tends to unity.
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3.3. Non-dimensional analysis: results

The components of the non-dimensional stiffness matrix A∗ and D∗ are constructed from the stiffness

of a uniform plate of thickness B, for which there are analytical expression. A non-dimensional number

equal to 1 means that the term of the stiffness matrix is equal to the one of a uniform plate of thickness B.210

Note again that A and D are obviously proportional to the Young modulus, and that all coefficients of A∗

and D∗ should be inferior to 1, the uniform plate of thickness B being stiffer than the structures studied

here. Other scaling could be used, for example by comparing with the stiffness of a plate of width wb, which

constitutes a lower bound to the stiffness of the actual structure.



A∗
1111 =

A1111

(
1− ν2

)
EB

A∗
2222 =

A2222

(
1− ν2

)
EB

A∗
1122 =

A1122

(
1− ν2

)
νEB

A∗
1212 =

2A1212 (1 + ν)

EB

D∗
1111 =

12D1111

(
1− ν2

)
EB3

D∗
2222 =

12D2222

(
1− ν2

)
EB3

D∗
1122 =

12D1122

(
1− ν2

)
νEB3

D∗
1212 =

24D1212 (1 + ν)

EB3

(10)

3.4. Analytical relations between coefficients of the stiffness matrix215

The problems defined in Table 1 do not have an obvious analytical solution, and numerical study remains

necessary to evaluate the stiffness Aijij and Dijij . However, it is possible to construct an exact analytical

solution that will highlight coupling between the different terms of the stiffness matrix.

To do so, we consider stress fields in the form of equation (11), which are statically compatible. Indeed,

they are at equilibrium (divσ = 0) and continuity of σ · n.220

∀ (α, β) ∈ R2, σ =


0 0 0

0 α+ βx2 0

0 0 0

 (11)

The associated membrane force are given by equation (12), the quantity S, which is the cross-sectional area
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of the lace is introduced. 
N11

N22

N12

 =


1
H

∫
Y σ11dV

1
H

∫
Y σ22dV

1
H

∫
Y σ12dV

 =


0

αS/H

0

 (12)

and the associated bending moment is given by equation (13). The notation I stands for the second moment

of inertia I1 of the cell geometry in the (e1, e3) plane. The analytical value of I and its derivation are detailed

in the appendix.225 
M11

M22

M12

 =


1
H

∫
Y σ11x3dV

1
H

∫
Y σ22x3dV

1
H

∫
Y σ12x3dV

 =


0

β I
H

0

 (13)

The strain field compatible with σ are given by equation (14).

ε =


−νσ22

E 0 0

0 σ22

E 0

0 0 −ν
E σ22

 (14)

Application of equation (7) allows to construct macroscopic displacements and curvature E and χ.



E11

E22

E12

χ11

χ22

χ12


=

1

E



−αν

α

0

−βν

β

0


(15)

The strain field ε is kinematically admissible, since it satisfies following relation:

ε =


E11 + χ11x3 0 0

0 E22 + χ22x3 0

0 0 0

+∇s


0

0

− να
E

−− νβx3
2E

 (16)

The fields σ, ε are respectively statically and kinematically admissible and they are compatible (related

by the constitutive equations of an isotropic material). Therefore, N,M are statically compatible, the230

macroscopic strains E, χ are compatible with the stress and are also kinematically admissible. We have thus

the solution of a problem of elasticity. Application of (3) and (4) yields relation between the terms of the
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stiffness matrix. 
0

N22

0

 =


A1111 A1122 0

A1122 A2222 0

0 0 A1212



−νE22

E22

0

 (17)


0

M22

0

 =


D1111 D1122 0

D1122 D2222 0

0 0 D1212



−νχ22

χ22

0

 (18)

Equations (17) and (18) are true for any value of E22 and χ22. The solution of the linear system yields235

following equation: 

A1122 = νA1111

A2222 = ν2A1111 +
ES

H

D1122 = νD1111

D2222 = ν2D1111 +
EI

H

(19)

This equality can be written in terms of non-dimensional numbers.



A1111
∗ = A1122

∗

A2222
∗ = ν2A1111

∗ +

(
1− ν2

)
S

HB

D1111
∗ = A1122

∗

D2222
∗ = ν2D1111

∗ +
12I

(
1− ν2

)
HB3

(20)

These equations are exact relations between the coefficient of the stiffness matrix. Therefore, one is required

to compute only four values (instead of eight in the general case) to get the whole stiffness matrix coefficients

A1111, A12112, D1111, D1212.240

4. Numerical results

The previous section highlights exact relations between the coefficients of the stiffness matrix, which

decrease the number of numerical problems to solve down to four for each set of values of (H∗, ν). No

assumption has been made on the exact geometry of the lace, besides central symmetry. This section presents

the numerical results obtained with finite element analysis and to propose simple polynomial regressions245

that can readily be used.
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4.1. Convergence of numerical model and analytical relations

Convergence studies on the mesh density have been conducted to guarantee the accuracy of the results

of the Finite Element Analysis. The analytical results proposed in the previous section have been verified by

solving the auxiliary problems for A2222, A1122, D2222, D1122, and by computing their expected values from250

equation (20). The agreement between numerical and analytical results is perfect (error inferior machine

precision).It was also ensured that the equality are verified for ν = 0, which proves that the ”void” material

chosen in the Finite Element simulation is indeed negligible.

As shown in 3.2, the limit case w∗ −→ 1 corresponds to a uniform shell of thickness B, it is thus clear

that all non-dimensional values Aijij
∗ and Dijij

∗ should converge to unity. This trend can also be observed255

on our numerical results. Therefore, we have enforced the fitting polynomials to take the value 1 for w∗ = 1.

4.2. Numerical results on membrane stiffness

4.2.1. A1111
∗

The numerical results for A1111
∗ are shown in Table B.5, in the appendix. It appears that Poisson’s ratio

has very little influence on the values of this non-dimensional ratio. This observation is confirmed by the260

linear regression in w∗ and ν, where the dependency in ν is obviously negligible compared to the one in H∗.

We propose therefore the following linear fitting:

A1111
∗ (H∗, ν) ≃ 0.19 + 0.81w∗ (21)

The fitting is accurate, with R2 = 0.9998 and a maximal error of 0.6% on the numerical results. Figure

10 shows the numerical values of A1111
∗ and the proposed linear fitting.

4.2.2. A2222265

The combination of equations (21) and (19) yields the approximation of A2222
∗ written in equation (22).

Here, a term in ν2w∗ appears from the analytical relation between A1111 and A2222. The value of A2222 is

therefore influenced by Poisson’s ratio, but this influence remains limited.

A2222
∗ (H∗, ν) ≃ 0.79− 0.60ν2 +

(
0.21 + 0.60ν2

)
w∗ (22)

Figure 11 displays the ratio between A2222 and A1111, together with its approximation constructed from

equations (21) and (22). For w∗ = 0.5, this ratio is close to 1.5, which means that axial stiffness in the270
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Figure 10: Numerical values for A1111 for ν = 0.3 and the proposed linear regression.

longitudinal direction is 50% higher than in the transverse direction. This difference is significant, although

no material heterogeneity is assumed.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2

3

w∗

A
2
2
2
2

A
1
1
1
1

Fitting, ν = 0.15

Fitting, ν = 0.3

ABAQUS, ν = 0.15

ABAQUS, ν = 0.3

Figure 11: Ratio A2222
A1111

and regression from equation (22).
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4.2.3. A1212
∗

The results on A1212 are similar to A1111 and are shown in Table B.6 in the appendix. Figure 12 shows

the numerical results for ν = 0.3 together with the proposed linear regression. The influence of Poisson’s
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Figure 12: Numerical results for A1212 for ν = 0.3 and linear regression in H∗.

275

ratio on A1212
∗ is negligible and a linear regression is proposed in equation (23).

A1212
∗ (H∗, ν) ≃ 0.35 + 0.65w∗ (23)

4.3. Numerical results on bending stiffness

4.3.1. D1111
∗

Figure 13 shows the numerical values for D1111
∗ for ν = 0.3 together with various polynomial approxi-

mations. The observed trend is different from the one of membrane stiffness: D1111
∗ converges indeed to 0280

as H∗ converges to 1, which is in accordance with the intuition. Here, both quadratic and cubic regressions

are proposed. The quadratic regression (dark blue curve) is accurate enough for a wide range of values of

w∗ but can yield negative values for w∗ close to 0, which is not realistic. Constraining positive values for

the quadratic regression is possible (light blue curve), but is not accurate for intermediate values of w∗.

Therefore, a cubic regression in H∗ is proposed in equation (24). It is positive for w∗ > 0.04, which falls285
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Figure 13: Numerical values for D1111
∗ for ν = 0.3 and the proposed polynomial regressions.

well within the practical range of structures resulting from oriented lace pressing.

D1111
∗ ≃ −0.006 + 0.192w + 0.124w2 + 0.69w3 (24)

4.3.2. D2222
∗

D2222
∗ depends linearly on D1111

∗ and 12I
HB3 . The analytical value of 12I

HB3 is given in the appendix: it

turns out to be a cubic polynomial in H∗, so that a cubic regression for D2222
∗ can be constructed.

D2222
∗ ≃

(
0.094− 0.675ν2

)
+
(
1.718 + 3.851ν2

)
w∗ −

(
1.362 + 3.811ν2

)
w∗2 +

(
0.55 + 0.635ν2

)
w∗3 (25)

The ratio between D2222
∗ and D1111

∗ is displayed in Figure 14. The ratio is significant for a wide range of290

values of w∗. For example, for w∗ = 0.5, this ratio is superior to 3. The ratio tends towards infinity when w∗

goes to 0. The regression proposed with the cubic polynomial accurately predicts the relative longitudinal

and transverse bending stiffness. In practice, the anisotropy of 3D printed structures can thus be significant,

even under the assumption of uniform material. Although the geometrical origin of anisotropy in 3d printed

structures is often overlooked, this simple comparison shows that the shape of the extruded lace may have295

an influence on the stiffness properties at the structural scale.

20



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10

100

w∗

D
2
2
2
2
∗

D
1
1
1
1
∗

Fitting, ν = 0.15

Fitting, ν = 0.3

ABAQUS, ν = 0.15

ABAQUS, ν = 0.3
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and regression.

4.3.3. D1212
∗

The results for D1212
∗ have similar trend to D1111. They have very little sensibility to Poisson’s ratio.

The quadratic regression follows:

D1212
∗ ≃ 0.307− 0.306w∗ + 0.999w∗2 (26)

A cubic regression can also be proposed (D1212
∗ ≃ 0.294 − 0.135w + 0.591w2 + 0.25w3), but it doesn’t300

fundamentally improves the results. Figure 15 shows numerical result for ν = 0.3 together with the quadratic

and cubic regressions. Both regressions are very close, which indicates that there is no over-fitting of the

numerical data.

4.4. Synthesis of numerical results

This section has introduced the results of the parametric study with finite element analysis. The nu-305

merical results show that the dimensionless numbers have little sensitivity to Poisson’s ratio ν, and polyno-

mial fitting have been proposed. Linear regression is sufficient to accurately estimate axial stiffness, while

quadratic or even cubic polynomials are required for bending stiffness. The proposed linear regressions for
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Figure 15: Numerical values for D1212
∗ for ν = 0.3 and the proposed polynomial regressions.

membrane stiffness are recalled in equation (27).

A∗ =


0.19 + 0.81w∗ 0.19 + 0.81w∗ 0

0.19 + 0.81w∗ 0.79− 0.6ν2 +
(
0.21 + 0.6ν2

)
w∗ 0

0 0 0.35 + 0.65w∗

 (27)

The polynomial regression for bending stiffness are recalled in equation (28).310

D∗ =


eq.(24) eq.(24) 0

eq.(24) eq.(25) 0

0 0 eq.(26)

 (28)

The polynomial regression of the coefficients of the stiffness matrix are different, which means that the

homogenised stiffness cannot be described with an equivalent Young’s Modulus or thickness, as sometimes

seen in the literature.

5. Comparative study

The previous section has presented the numerical results and introduced polynomial regression for the315

stiffness matrices A and D. The aim of this section is to discuss the application of the homogenisation
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method to the structural analysis of 3d printed components by extrusion. First a comparative study between

a 3D brick model and an equivalent orthotropic shell computed with the method proposed in this article is

presented. In order to illustrate the accuracy of the homogenisation, we apply this technique to a practical

example: a cylinder similar to the one described in [29]. We perform finite-element analysis both for a 3D320

finite element and a homogenised plate finite element found with our regression formula.

5.1. Geometry and material properties

The cylinder has a diameter of 35cm, a height of 45cm, H = 6mm and B = 12mm. The Young’s modulus

is E = 100 kPa, similar to geopolymer used in [29] after one hour and Poisson’s ratio is ν = 0.2 and density

is 2.5.325

5.2. Load cases

Two load cases are considered:

• Load case 1: Self-weight

• Load case 2: Self-weight for a tilted cylinder with an angle of 5◦

The first case has a practical interest, since it can model the printing process of the cylinder. Similar case330

studies have been performed, without considering geometrical heterogeneity in [30]. It is however obvious

that most of the strain energy is due to the axial deformation of the cylinder, so that this load-case provides

information mainly on the quality of approximation of A1111.

The second load-case might be relevant for the 3d printing of cantilevers, but more importantly, it

involves all the terms of the stiffness matrix.335

5.3. Models

This study compares two models:

• A 3D model with C3D8R elements.

• A plate model with S8R elements and homogenised stiffness.

The stiffness matrix of the plate model has been computed with the polynomial regressions proposed in the340

previous section. The shell thickness can be arbitrarily defined, the choice of the material density should

thus be carefully selected so that the plate surface weight (in N/m2) remains equal to ρgS/H. In the

followings, we compare the strain energy and displacement of the structures.
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5.4. Boundary conditions

In both models, the cylinders are clamped, we have u = 0 and R = 0. These conditions are not345

exactly equivalent, since Poisson effect is restricted on the 3D model, and not in the equivalent plate model.

However, the effect should be localised to a few laces and be negligible in the numerical results, due to the

large number of laces.

5.5. Convergence

First, a convergence study is conducted in order to guarantee the accuracy of the finite element model.350

It should be noted that the size of the 3D elements should be small compared to the size of the lace in

order to capture the influence of geometrical heterogeneity, as shown in Figure 16, whereas the size of the

2d elements do not depend on the lace dimension, but rather on the curvature of the shell. As a result,

the plate model requires far less elements to converge, and this tendency is expected to be amplified as the

number of laces increases.

Figure 16: Mesh edges on section of lace in the 3D model upon convergence of the results.

355

Table 3 shows the convergence of the plate model for both load cases. It can be seen that few degrees

of freedom are needed to reach convergence: if we accept a relative error of 1% between the finite element

model and a reference solution, only 528 degrees of freedom are required. On the other hand, table 4 shows

a slower convergence of the model with 3D elements, with more that 500, 000 degrees of freedom to reach

convergence with the same criterion. The 3D model does not seem to have fully converged for load case 2,360

and further refinements are not possible with an academic license of ABAQUS (limited to 250,000 nodes).

This in itself illustrates a practical limit of 3D modelling for complex 3d printed pieces in a realistic printing

scenario.
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Number of degrees of freedom 384 528 2808 5 670 14 784 90 420 182 748 359 040

Strain energy E , LC1 (mJ) 1619.99 1618.96 1620.04 1 620.07 1 620.08 1 620.08 1 620.08 1 620.08
Strain energy E , LC2 (mJ) 1672.86 1676.71 1682.8 1 683.61 1 684.39 1 685.09 1 685.22 1 685.31
Displacement δ, LC1 (mJ) 37.48 37.45 37.44 37.44 37.44 37.44 37.44 37.44
Displacement δ, LC2 (mJ) 48.7 50.18 49.85 49.89 49.94 49.97 49.98 49.98
relative error on E , LC1 (-) 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
relative error on E , LC2 (-) 0.7% 0.5% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0%
relative error on δ, LC1 (-) 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
relative error on δ, LC2 (-) 2.6% 0.4% 0.3% 0.2% 0.1% 0.0% 0.0% 0.0%

Table 3: Convergence of strain energy and displacement for LC1 and LC2 of the homogenised plate model. The model for
which, 1% deviation with the reference solution is obtained is highlighted in bold numbers.

Number of degrees of freedom 37 458 127 890 181 092 325 125 580 614 706 917

Strain energy E , LC1 (mJ) 891.3 1 292.70 1 498.50 1 558.80 1 585.00 1 590.80
Strain energy E , LC2 (mJ) 932.889 1 348.65 1 594.42 1 624.30 1 647.10 1 662.97
Displacement δ, LC1 (mm) 25.12 31.43 36.14 36.92 37.29 37.33
Displacement δ, LC2 (mm) 34.5 42.68 47.91 48.43 49.66 49.7
relative error on E , LC1 (-) 44,0% 18.7% 5.8% 2.0% 0.4% 0.0%
relative error on E , LC2 (-) 43,9% 18.9% 4.1% 2.3% 1.0% 0.0%
relative error on δ, LC1 (-) 32.7% 15.8% 3.2% 1.1% 0.1% 0.0%
relative error on δ, LC2 (-) 30,6% 14.1% 3.6% 2.6% 0.1% 0.0%

Table 4: Convergence of strain energy and displacement for LC1 and LC2 of the 3D model. The model for which, 1% deviation
with the reference solution is obtained is highlighted in bold numbers.

Although a single example should not lead to simplistic generalization, it is clear that the number of

degrees of freedom should remain significantly lower for the homogenised solution, since, unlike for conven-365

tional 3D models, mesh size is not bounded by lace dimension. For example, in the model with 528 degrees

of freedom the typical mesh size is 20 centimeters, 15 times more than the lace dimension. This is in line

with previous studies where homogenisation has lower computational complexity [22]. The example shown

in this article is far from extreme, with 75 layers, compared to some industrial applications with several

hundreds of layers. In this particular example, the plate model requires approximately 500-1000 times less370

degrees of freedom than the 3D model to converge within the same accuracy in displacement and energy.

More complex and localised load cases, like the pressing force exerted by the nozzle [28] would however

require adaptive refinement and thus decrease the relative performance of the equivalent plate model with

respect to 3D model.

5.6. Accuracy of the homogenised plate model375

Strain energy and maximal displacement for the homogenised model (with 359,040 degrees of freedom)

and 3D model (with 706,917 degrees of freedom) are compared in order to assess the accuracy of the
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homogenisation scheme:

• For load case 1, the relative gap between the converged 3D and plate models is 1.8% on strain energy

and 0.3% for displacements.380

• For load case 2, the relative gap between the converged 3D and plate models is 1.3% on strain energy

and 0.6% for displacements.

Figure 17 shows the deformed geometries of the 3D and plate models for both load cases. Only the

displacements of a vertical wall are shown: for the first load case, the displacements are axially-symmetrical

and this is representative of the whole deformation; for the second load case, the wall with the highest385

displacement is chosen. It can be noticed that the displacements are in very good agreement, including the

localised curvature occurring near the clamped segment of the cylinder for load case 2.

r
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r r

r r

z z

zz

Load 1 Load 2

3D model

Plate model

Figure 17: Visualisation of deformed configurations for the 3D model and homogenised model constructed in this article.

Therefore, it can be seen that the homogenisation technique provides good results on practical examples

in elasticity. The homogenised model is accurate, despite the shell curvature, which is not accounted for in

our homogenisation procedure. The accuracy of the homogenisation is due to the fact that the radius of390

curvature of the cylinder R remains large compared to the size of the periodic cell. Therefore, the proposed

methodology can be used not only for planar periodic plates, but also to curved structures, which are of

practical interest with 3d printing.
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5.7. Experimental validation

The homogenisation strategy can also be compared to experimental results, although no previous pub-395

lication estimates all the matrix stiffness of a 3d printed plate. The uniaxial stiffness K along e1 was

experimentally measured by a uniaxial tensile test in [15]. Additionally, the lace dimensions were also re-

trieved from the same study. The reader is referred to the supplementary material for further details. This

allows to estimates the geometrical parameters w∗, as well as material parameters required as input in our

model. Figure 18 shows the comparison between those experimental results and the homogenisation, and400

shows good consistency, within the standard deviation of experimental results. The details on the deter-

mination of geometrical parameters for our model, which lead to the construction of this figure are in the

supplementary material.
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Figure 18: Dimensionless uniaxial stiffness: comparison between [15] and this article.

Interestingly, although Fang et al. [15] consider plastic extrusion, and a process involving a phase change,

the geometrical model explains most of the orthotropy of the plate. This was already discussed in [15], where405

the change in Young’s modulus for a single filament is less than 2%, whereas the axial stiffness may vary

by 40%, as seen in Figure 18. It should also be noted that the equality H∗ = 1 − w∗ is not fulfilled by

experimental results for large values of H∗ (superior to 0.35), but our simple model remains accurate. This

should be confirmed with experimental results on bending.
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6. Discussion410

The comparative study has illustrated the accuracy of the homogenisation technique. This section a

discussion on practical applications of the proposed methodology to other extrusion strategies with a special

focus on 3d concrete printing.

6.1. Sensitivity of axial and bending stiffness to geometrical anisotropy

The homogenisation procedure has illustrated the potential influence of geometrical imperfections at415

the layer’s scale on the stiffness of 3d printed structures. The numerical results show that this influence is

much more prevalent for the bending stiffness than for the axial stiffness. This can be understood by two

considerations. First, we may look back at the isotropic plate, where bending stiffness scales in D ∝ w3
w and

axial stiffness scales in A ∝ ww: it is clear that a change in thickness will affect the bending stiffness much

more than the axial stiffness. Writing δ = ε/ww, we have indeed:420


D (ww)−D (ww − ε)

D (ww)
= 3δ − 3δ2 + δ3

A (ww)−A (ww − ε)

A (ww)
= δ

This simple explanation may illustrate the good accuracy of the linear fit between defect amplitude and

A∗ components in the homogenisation, and why it is not sufficient for the D∗ components. Second, the

geometrical defect is distributed along the lace: the extra amount of material acts as a stiffener in the

longitudinal direction, while the the transverse bending stiffness mainly depends on the bond width wb. It

therefore natural that D1111 converges to 0 as w∗ and thus the bond width tend to zero. In such case, the425

plate structure becomes a juxtaposition of beams with a partial restriction of Poisson’s effect.

6.2. Significance of geometrical anisotropy

As indicated in the literature review, material anisotropy has been observed in 3D printed. Keita et

al. identified drying as the key factor in the material anisotropy, because 3d printed laces are exposed to

air [31]. They also show that, the decrease in strength remains inferior to 20% for non-protected material430

with an interlayer time of 10 minutes, and remains negligible when the 3d printed structures is protected

from water loss and the inter-layer time remains inferior to the open time of the mix. To the best of our

knowledge, no study seem to investigate the stiffness of 3d printed concrete. By extrapolating data on layer

strength, we may however infer that for structures printed with good curing conditions, the geometrical

origin of anisotropy is most likely to be the dominant factor explaining structural anisotropy.435
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6.3. Practical applications to concrete printing

The homogenisation method presented in this article may be applied to linear elastic material. While

this framework may seem restrictive for cementitious materials, it is perfectly adapted to other materials

with a large elastic domain, such as plastics. The model proposed here also retains practical relevance in

3DCP:440

• For stability analysis during printing. It has been shown in [32] that homogenization theory also

applied for linearized buckling with good accuracy. Our approach could thus be used to estimate the

buckling load of fresh samples during printing. Elastic buckling is indeed the typical failure mode for

very slender structures, as recalled in [19]. We consider that studying post-bifurcation behaviour is

not relevant from a practical perspective, since the printing can be considered a failure.445

• At the fresh state, we can also use this model to evaluate deformation of the piece, similarly to [29].

• For determining natural frequencies of 3d printed structures. This is especially relevant in the case of

footbridges, which begin to become more commonplace in 3d printing applications, [9].

• In pre-stressed structures, the elastic domain is more important and our approach could be used to

evaluate the structural behaviour of the structure.450

In oriented-lace pressing, we can consider a circular nozzle2 of diameter D. In this situation, existing

literature usually mentions the ratio H/D rather than H/ww. Writing V ∗ = Vr/Ve, the ratio between robot

and extrusion velocity, the parameter ww can be obtained from the mass conservation equation [14]:

(ww −H) ·H +
πH2

4
=

πD2

4V ∗ (29)

which yields a relation between H∗ and D∗ = D/H.

H∗ =
1

1 + π
4

(
D∗2

V ∗ − 1
) (30)

The value D∗ has a lower bound dictated by the force induced by the shaping of one lace. Indeed, the455

deformation of the lace induces a shear stress proportional to D∗3, as shown experimentally in [14], which

2Non-circular nozzles can also be used in oriented-lace pressing, in this kind of situation, the material has sufficient yield
stress to withstand the weight of one layer and the printing time is long enough to have an evolution of the rheological properties
of the mix.

29



jeopardises the structural integrity of the lowest layers. Practical values for D∗ are therefore usually com-

prised between 1.25 and 5, which is on par with values from [3]. Application of equation (30) yields that H∗

is comprised between 0.2 and 0.6. The numerical results show that D2222/D1111 varies drastically within

this practical range of H∗, from 1.5 to 5. This is mainly due high variations of D1111
∗ with H∗, as illustrated460

in Figure 13.

6.4. Guidelines for oriented-lace pressing strategy

With this result in mind, some guidelines for printing efficient structures can thus be proposed. Obviously,

modifying the toolpath in order to control the lace geometry is possible, but dimensional properties are

related by the mass conservation equation. This means that the designer should also modify the geometry465

of the nozzle together with the layer height.

First, it appears that all terms of the stiffness matrix decrease with H∗. If one considers the effective

width B as a design constraint, the best strategy from the unique standpoint of stiffness is to decrease the

diameter of the nozzle and to further press the layer, i.e. decreasing H/D. Indeed, equation (29) can be

written as D =
√
V ∗

√
4wwH/π +H2(1− 4/π), which decreases with H. Therefore, in order to further470

press layers, it is necessary to change the diameter of the nozzle. It can be noticed that it is also possible to

change the speed of the robot via the parameter V ∗, but the influence of this parameter is far less significant

than the nozzle diameter (linear vs. quadratic terms in equation (29)). The nozzle size could be adapted

either before printing or during printing [33]. There are several obvious limitations to this approach:

• The pressing force increases greatly when H∗ decreases, which sets a minimum practical value for H∗,475

which depends on the thixotropy of the material

• The nozzle diameter cannot be made arbitrarily small, as viscous forces are inversely proportional to

D2 in laminar viscous flow and granular effects are bound to appear in mortars.

Second, one can also opt for a non-circular nozzle, which would result in a more regular lace geometry.

Given the very low values of D1111
∗ for high values of H∗, one can indeed consider that using a wide480

rectangular nozzle would result in oblong laces with low values of H∗, which yield more efficient structures.

The main technical difficulty with this technique is the fact that the nozzle orientation has to remain aligned

with the lace, which requires an additional axis. This is an undeniable technological complication compared

to a simple circular nozzle, but it remains feasible, and is used in extruded lace shaping strategies. To

the best of our knowledge, the possibility of using non-circular nozzle with oriented-lace pressing strategies485

with accelerator is not mentioned in the existing literature: the structural efficiency seems to be a strong
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argument to further consider it. Therefore, there is a compromise between structural efficiency and the

process complexity to be found. This compromise depends on the final use of the 3d-printed structure.

6.5. Extension of the methodology

6.5.1. Effect of deposition strategy490

Although the methodology has been applied to an oblong shape resulting from an oriented-lace shaping

strategy, it could also be applied to other micro-structures, such as the staggered rectangular sections

obtained by printing cantilevers with corbels, shown in Figure 19 [11]. The gap between consecutive layers

α

δ
δ

δ H

B

α

B-
eff

Figure 19: Cross section of a shell extruded with a corbel strategy, often used in infinite brick extrusion (image inspired by
[11]). The middle surface is highlighted in dashed blue lines, and a periodic cell is shown in orange.

δ is expected to reduce the contact between laces B−
eff , and the overall stiffness, as seen in Figure 19. Small

geometrical irregularities arise from the successive gap between layers. Contrary to the case treated in this495

article, it is not possible to find a periodic cell with two planes of symmetry, which may indicate a coupling

between axial forces and bending. However, homogenisation remains applicable to evaluate the stiffness

properties of such structures if the variation of the gap δ between successive layers remains small compared

to the typical dimensions of the unit cell H. Based on the result obtained for the oblong shape, the bending

stiffness can be expected to drop significantly as the slope α increases.500

6.5.2. Material heterogeneity

The objective of this article being to understand the influence of geometrical parameters on the stiffness

of 3d-printed structures, our approach considered a uniform material. Phenomena, like loss of stiffness at

the interface that would come from cold joints can easily be integrated in the proposed methodology and

could refine the understanding of influence of cold-joints at the structural scale and not only at the lace505

scale.
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6.5.3. Towards local/global modelling

In this contribution, the proposed methodology is applied to an analytical shape for the lace, which is

in good accordance with experimental data, but it could be applied to other shapes that are experimentally

measured [12] or simulated. A link between an affordable local simulation at the nozzle scale and a global510

simulation using homogenisation is thus a promising research direction for efficient simulation of 3D printing

process.

So far, the homogenisation has been applied to a uniform material. It is possible to construct a model

where the stiffness properties are derived from the homogenised model and the time-dependent material

properties. However, the relative contrast between the material properties of successive layers should remain515

small in order to maintain applicability of the model. The accuracy of the homogenised model may thus

decrease when modelling structures printed with materials with a large structuration rate, especially near

the nozzle exit. This should be investigated in further research.

7. Conclusion

The aim of this paper was to propose a methodology to assess the geometrical influence of the lace520

geometry on the stiffness of 3d printed structures. To do so, we considered a homogeneous material and

eliminated the eventual influence of weak interfaces or ”cold joints”. A numerical homogenisation procedure

allowing to construct an equivalent orthotropic Kirchhoff-Love plate has been proposed. It leverages the

theory of periodic homogenisation, which is well established and seems particularly adequate in 3d printing:

the structures are (pseudo)-periodic, with a large number of cells, which guarantees a convergence of the525

homogenised model to the ”real” solution of the 3D problem.

Even in the assumption of a perfect interface between layers, the homogenisation procedure highlights a

significant anisotropy of 3d printed structures with a lace geometry similar to those obtained by pressing of

a circular lace. The ratio between longitudinal and transversal bending stiffness was found to be superior to

150% for usual dimensional values of laces obtained by oriented layer pressing. The anisotropy of the mem-530

brane stiffness is less pronounced, but should still be measurable experimentally. This study confirms that

even in favorable conditions for the inter-layer binding, a geometrical origin of anisotropy in some 3d-printed

structures should still be accounted for. These numerical and theoretical results could be experimentally

tested, for example with the method introduced in [34], which allows to measure all terms of the stiffness

matrix.535

The proposed model can readily be used for pre-stressed concrete structures or for process simulation,
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with a significant speed-up compared to 3D modelling. More importantly, the homogenisation scheme

provides a deeper understanding of the geometrical origin of anisotropy in concrete structures, allowing to

separate the influence of material (micro-scale) and the influence of the deposition process (meso-scale) on

the behaviour of the structure (macro-scale).540

Although the numerical focus was on circular nozzles and oriented lace pressing, the proposed methodol-

ogy can be extended to other configurations typically found in 3d concrete printing, like staggered rectangular

layers. Future work could also include a weak layer at the interface in order to assess the influence of cold-

joints on the overall structural behaviour. Finally, homogenisation can also be used to determine the yield

domain of structures: applications of these methods would pave the way to efficient implementations of545

nonlinear finite element plate models for 3d printed structures.

References

[1] J. Pegna, Exploratory investigation of solid freeform construction, Automation in construction 5 (5) (1997) 427–437.

[2] B. Khoshnevis, Automated construction by contour crafting—related robotics and information technologies, Automation

in Construction 13 (1) (2004) 5–19, the best of ISARC 2002. doi:https://doi.org/10.1016/j.autcon.2003.08.012.550

URL https://www.sciencedirect.com/science/article/pii/S0926580503000736

[3] S. Lim, R. Buswell, T. Le, S. Austin, A. Gibb, T. Thorpe, Developments in construction-scale additive manufacturing

processes, Automation in Construction 21 (2012) 262 – 268. doi:https://doi.org/10.1016/j.autcon.2011.06.010.

URL http://www.sciencedirect.com/science/article/pii/S0926580511001221

[4] Y. W. D. Tay, G. H. A. Ting, Y. Qian, B. Panda, L. He, M. J. Tan, Time gap effect on bond strength of 3d-printed concrete,555

Virtual and Physical Prototyping 14 (1) (2019) 104–113. arXiv:https://doi.org/10.1080/17452759.2018.1500420, doi:

10.1080/17452759.2018.1500420.

URL https://doi.org/10.1080/17452759.2018.1500420

[5] P. Margerit, D. Weisz-Patrault, K. Ravi-Chandar, A. Constantinescu, Tensile and ductile fracture properties of as-printed

316l stainless steel thin walls obtained by directed energy deposition, Additive Manufacturing 37 (2021) 101664. doi:560

https://doi.org/10.1016/j.addma.2020.101664.

URL https://www.sciencedirect.com/science/article/pii/S2214860420310368

[6] V. N. Nerella, S. Hempel, V. Mechtcherine, Effects of layer-interface properties on mechanical performance of concrete

elements produced by extrusion-based 3d-printing, Construction and Building Materials 205 (2019) 586–601. doi:https:

//doi.org/10.1016/j.conbuildmat.2019.01.235.565

URL https://www.sciencedirect.com/science/article/pii/S0950061819302843

[7] N. Roussel, F. Cussigh, Distinct-layer casting of scc: The mechanical consequences of thixotropy, Cement and Concrete

Research 38 (5) (2008) 624–632. doi:https://doi.org/10.1016/j.cemconres.2007.09.023.

URL https://www.sciencedirect.com/science/article/pii/S0008884607002426

[8] R. Duballet, R. Mesnil, N. Ducoulombier, P. Carneau, L. Demont, M. Motamedi, O. Baverel, J.-F. Caron, J. Dirren-570

berger, Free deposition printing for space truss structures, RILEM Bookseries 28 (2020) 873–882, cited By 3. doi:

33

https://www.sciencedirect.com/science/article/pii/S0926580503000736
https://doi.org/https://doi.org/10.1016/j.autcon.2003.08.012
https://www.sciencedirect.com/science/article/pii/S0926580503000736
http://www.sciencedirect.com/science/article/pii/S0926580511001221
http://www.sciencedirect.com/science/article/pii/S0926580511001221
http://www.sciencedirect.com/science/article/pii/S0926580511001221
https://doi.org/https://doi.org/10.1016/j.autcon.2011.06.010
http://www.sciencedirect.com/science/article/pii/S0926580511001221
https://doi.org/10.1080/17452759.2018.1500420
http://arxiv.org/abs/https://doi.org/10.1080/17452759.2018.1500420
https://doi.org/10.1080/17452759.2018.1500420
https://doi.org/10.1080/17452759.2018.1500420
https://doi.org/10.1080/17452759.2018.1500420
https://doi.org/10.1080/17452759.2018.1500420
https://www.sciencedirect.com/science/article/pii/S2214860420310368
https://www.sciencedirect.com/science/article/pii/S2214860420310368
https://www.sciencedirect.com/science/article/pii/S2214860420310368
https://doi.org/https://doi.org/10.1016/j.addma.2020.101664
https://doi.org/https://doi.org/10.1016/j.addma.2020.101664
https://doi.org/https://doi.org/10.1016/j.addma.2020.101664
https://www.sciencedirect.com/science/article/pii/S2214860420310368
https://www.sciencedirect.com/science/article/pii/S0950061819302843
https://www.sciencedirect.com/science/article/pii/S0950061819302843
https://www.sciencedirect.com/science/article/pii/S0950061819302843
https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.01.235
https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.01.235
https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.01.235
https://www.sciencedirect.com/science/article/pii/S0950061819302843
https://www.sciencedirect.com/science/article/pii/S0008884607002426
https://doi.org/https://doi.org/10.1016/j.cemconres.2007.09.023
https://www.sciencedirect.com/science/article/pii/S0008884607002426
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088265022&doi=10.1007%2f978-3-030-49916-7_85&partnerID=40&md5=4477ba5d6d0964d4173c1a3e87600614
https://doi.org/10.1007/978-3-030-49916-7_85
https://doi.org/10.1007/978-3-030-49916-7_85
https://doi.org/10.1007/978-3-030-49916-7_85


10.1007/978-3-030-49916-7_85.

URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088265022&doi=10.1007%2f978-3-030-49916-7_85&

partnerID=40&md5=4477ba5d6d0964d4173c1a3e87600614

[9] T. A. Salet, Z. Y. Ahmed, F. P. Bos, H. L. Laagland, Design of a 3d printed concrete bridge by testing, Virtual and575

Physical Prototyping 13 (3) (2018) 222–236.

[10] C. Gosselin, R. Duballet, P. Roux, N. Gaudillière, J. Dirrenberger, P. Morel, Large-scale 3d printing of ultra-high perfor-

mance concrete–a new processing route for architects and builders, Materials & Design 100 (2016) 102–109.

[11] P. Carneau, R. Mesnil, N. Roussel, O. Baverel, Additive manufacturing of cantilever - from masonry to concrete 3d

printing, Automation in Construction 116 (2020) 103184. doi:https://doi.org/10.1016/j.autcon.2020.103184.580

URL http://www.sciencedirect.com/science/article/pii/S0926580519308568

[12] R. Comminal, M. P. Serdeczny, D. B. Pedersen, J. Spangenberg, Numerical modeling of the strand deposition flow in

extrusion-based additive manufacturing, Additive Manufacturing 20 (2018) 68 – 76. doi:https://doi.org/10.1016/j.

addma.2017.12.013.

URL http://www.sciencedirect.com/science/article/pii/S2214860417305079585

[13] M. P. Serdeczny, R. Comminal, D. B. Pedersen, J. Spangenberg, Experimental validation of a numerical model for the

strand shape in material extrusion additive manufacturing, Additive Manufacturing 24 (2018) 145 – 153. doi:https:

//doi.org/10.1016/j.addma.2018.09.022.

URL http://www.sciencedirect.com/science/article/pii/S2214860418304585

[14] P. Carneau, R. Mesnil, O. Baverel, N. Roussel, Layer pressing in concrete extrusion-based 3d-printing: Experiments and590

analysis, Cement and Concrete Research 155 (2022) 106741. doi:https://doi.org/10.1016/j.cemconres.2022.106741.

URL https://www.sciencedirect.com/science/article/pii/S0008884622000321

[15] L. Fang, Y. Yan, O. Agarwal, J. E. Seppala, K. D. Migler, T. D. Nguyen, S. H. Kang, Estimations of the effective young’s

modulus of specimens prepared by fused filament fabrication, Additive Manufacturing 42 (2021) 101983. doi:https:

//doi.org/10.1016/j.addma.2021.101983.595

URL https://www.sciencedirect.com/science/article/pii/S2214860421001482

[16] B. Khoshnevis, D. Hwang, K.-T. Yao, Z. Yeh, Mega-scale fabrication by contour crafting, International Journal of Industrial

and Systems Engineering 1 (3) (2006) 301–320.

[17] R. Duballet, O. Baverel, J. Dirrenberger, Classification of building systems for concrete 3d printing, Automation in

Construction 83 (2017) 247 – 258. doi:https://doi.org/10.1016/j.autcon.2017.08.018.600

URL http://www.sciencedirect.com/science/article/pii/S0926580516302977

[18] A. Suiker, Mechanical performance of wall structures in 3d printing processes: Theory, design tools and experiments,

International Journal of Mechanical Sciences 137 (2018) 145 – 170. doi:https://doi.org/10.1016/j.ijmecsci.2018.01.

010.

URL http://www.sciencedirect.com/science/article/pii/S0020740317330370605

[19] A. Suiker, R. Wolfs, S. Lucas, T. Salet, Elastic buckling and plastic collapse during 3d concrete printing, Cement and

Concrete Research 135 (2020) 106016. doi:https://doi.org/10.1016/j.cemconres.2020.106016.

URL http://www.sciencedirect.com/science/article/pii/S0008884620300946

[20] T. Ooms, G. Vantyghem, R. Van Coile, W. De Corte, A parametric modelling strategy for the numerical simulation of 3d

concrete printing with complex geometries, Additive Manufacturing 38 (2021) 101743. doi:https://doi.org/10.1016/j.610

34

https://doi.org/10.1007/978-3-030-49916-7_85
https://doi.org/10.1007/978-3-030-49916-7_85
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088265022&doi=10.1007%2f978-3-030-49916-7_85&partnerID=40&md5=4477ba5d6d0964d4173c1a3e87600614
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088265022&doi=10.1007%2f978-3-030-49916-7_85&partnerID=40&md5=4477ba5d6d0964d4173c1a3e87600614
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088265022&doi=10.1007%2f978-3-030-49916-7_85&partnerID=40&md5=4477ba5d6d0964d4173c1a3e87600614
http://www.sciencedirect.com/science/article/pii/S0926580519308568
http://www.sciencedirect.com/science/article/pii/S0926580519308568
http://www.sciencedirect.com/science/article/pii/S0926580519308568
https://doi.org/https://doi.org/10.1016/j.autcon.2020.103184
http://www.sciencedirect.com/science/article/pii/S0926580519308568
http://www.sciencedirect.com/science/article/pii/S2214860417305079
http://www.sciencedirect.com/science/article/pii/S2214860417305079
http://www.sciencedirect.com/science/article/pii/S2214860417305079
https://doi.org/https://doi.org/10.1016/j.addma.2017.12.013
https://doi.org/https://doi.org/10.1016/j.addma.2017.12.013
https://doi.org/https://doi.org/10.1016/j.addma.2017.12.013
http://www.sciencedirect.com/science/article/pii/S2214860417305079
http://www.sciencedirect.com/science/article/pii/S2214860418304585
http://www.sciencedirect.com/science/article/pii/S2214860418304585
http://www.sciencedirect.com/science/article/pii/S2214860418304585
https://doi.org/https://doi.org/10.1016/j.addma.2018.09.022
https://doi.org/https://doi.org/10.1016/j.addma.2018.09.022
https://doi.org/https://doi.org/10.1016/j.addma.2018.09.022
http://www.sciencedirect.com/science/article/pii/S2214860418304585
https://www.sciencedirect.com/science/article/pii/S0008884622000321
https://www.sciencedirect.com/science/article/pii/S0008884622000321
https://www.sciencedirect.com/science/article/pii/S0008884622000321
https://doi.org/https://doi.org/10.1016/j.cemconres.2022.106741
https://www.sciencedirect.com/science/article/pii/S0008884622000321
https://www.sciencedirect.com/science/article/pii/S2214860421001482
https://www.sciencedirect.com/science/article/pii/S2214860421001482
https://www.sciencedirect.com/science/article/pii/S2214860421001482
https://doi.org/https://doi.org/10.1016/j.addma.2021.101983
https://doi.org/https://doi.org/10.1016/j.addma.2021.101983
https://doi.org/https://doi.org/10.1016/j.addma.2021.101983
https://www.sciencedirect.com/science/article/pii/S2214860421001482
http://www.sciencedirect.com/science/article/pii/S0926580516302977
https://doi.org/https://doi.org/10.1016/j.autcon.2017.08.018
http://www.sciencedirect.com/science/article/pii/S0926580516302977
http://www.sciencedirect.com/science/article/pii/S0020740317330370
https://doi.org/https://doi.org/10.1016/j.ijmecsci.2018.01.010
https://doi.org/https://doi.org/10.1016/j.ijmecsci.2018.01.010
https://doi.org/https://doi.org/10.1016/j.ijmecsci.2018.01.010
http://www.sciencedirect.com/science/article/pii/S0020740317330370
http://www.sciencedirect.com/science/article/pii/S0008884620300946
https://doi.org/https://doi.org/10.1016/j.cemconres.2020.106016
http://www.sciencedirect.com/science/article/pii/S0008884620300946
http://www.sciencedirect.com/science/article/pii/S2214860420311155
http://www.sciencedirect.com/science/article/pii/S2214860420311155
http://www.sciencedirect.com/science/article/pii/S2214860420311155
https://doi.org/https://doi.org/10.1016/j.addma.2020.101743
https://doi.org/https://doi.org/10.1016/j.addma.2020.101743
https://doi.org/https://doi.org/10.1016/j.addma.2020.101743


addma.2020.101743.

URL http://www.sciencedirect.com/science/article/pii/S2214860420311155

[21] G. Vantyghem, T. Ooms, W. De Corte, Voxelprint: A grasshopper plug-in for voxel-based numerical simulation of concrete

printing, Automation in Construction 122 (2021) 103469. doi:https://doi.org/10.1016/j.autcon.2020.103469.

URL http://www.sciencedirect.com/science/article/pii/S0926580520310499615

[22] K. Sab, A. Lebée, Homogenization of heterogeneous thin and thick plates, John Wiley & Sons, 2015.

[23] P. Winslow, S. Pellegrino, S. Sharma, Multi-objective optimization of free-form grid structures, Structural and multidis-

ciplinary optimization 40 (1) (2010) 257–269.
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Appendix A. Analytical expressions of cross-section

Appendix A.1. Analytical expression for S

The cross-section area of the oblong shape is simply given by adding the area of a rectangle of lengths

B −H and H and two half-disks of diameter H:660

S = BH +
(π
4
− 1

)
H2 (A.1)

The quantity S/(BH), which appears in (20) is thus:

S

BH
= 1 +

(π
4
− 1

)
H∗ (A.2)

Appendix A.2. Analytical expression for I

The second moment of area of the cross section is calculated using the parallel axis theorem and by

introducing the second moment area Ihalf−disk of a half-disk and dG, the distance between the center of

mass of the half-disk to the axis (x1 = 0).665

I = 2 · Ihalf−disk + 2Shalf−disk · d2G + Irectangle (A.3)

It can be shown that dG = B−H
2 + 2H

3π ,

Ihalf−disk =

∫ H/2

r=0

∫ π
2

θ=−π
2

(r cos θ − dG)
2
rdrdθ

Ihalf−disk =
H4

16

(
π

8
− 8

9π

) (A.4)
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Finally, we get an analytical solution for I.

I =
H4

8

(
π

8
− 8

9π

)
+

πH2

4
·
(
B −H

2
+

2H

3π

)2

+
H (B −H)

3

12
(A.5)

The non-dimensional number 12I
BH3 appearsin (20). The analytical value for this number follows immediately:

12I

BH3
=H∗3

(
3π

16
− 12

9π

)
+ 3πH∗ ·

(
1

2
+

(
2

3π
− 1

2

)
H∗

)2

+ (1−H∗)3

(A.6)

Appendix B. Numerical results

Follow tables sum up the numerical results of the Finite Element Analysis.

ν = 0.15 ν = 0.2 ν = 0.25 ν = 0.3

H∗ = 0.05 0.959 0.957 0.958 0.958
H∗ = 0.25 0.791 0.791 0.791 0.791
H∗ = 0.50 0.582 0.582 0.582 0.582
H∗ = 0.75 0.387 0.387 0.387 0.387
H∗ = 0.95 0.226 0.226 0.225 0.225

Table B.5: Numerical results of A1111
∗.

ν = 0.15 ν = 0.2 ν = 0.25 ν = 0.3

H∗ = 0.05 0.970 0.969 0.969 0.969
H∗ = 0.25 0.846 0.846 0.846 0.847
H∗ = 0.50 0.687 0.687 0.687 0.688
H∗ = 0.75 0.524 0.524 0.525 0.526
H∗ = 0.95 0.375 0.376 0.379 0.380

Table B.6: Numerical results of A1212
∗.

670

ν = 0.15 ν = 0.2 ν = 0.25 ν = 0.3

H∗ = 0.05 0.990 0.987 0.987 0.987
H∗ = 0.25 0.943 0.940 0.937 0.932
H∗ = 0.50 0.886 0.880 0.873 0.865
H∗ = 0.75 0.829 0.821 0.811 0.798
H∗ = 0.95 0.783 0.773 0.760 0.745

Table B.7: Numerical results for A2222
∗
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ν = 0.15 ν = 0.2 ν = 0.25 ν = 0.3

H∗ = 0.05 0.880 0.880 0.880 0.880
H∗ = 0.25 0.498 0.498 0.498 0.498
H∗ = 0.50 0.208 0.208 0.208 0.208
H∗ = 0.75 0.059 0.059 0.059 0.059
H∗ = 0.95 0.003 0.003 0.003 0.003

Table B.8: Numerical results for D1111
∗

ν = 0.15 ν = 0.2 ν = 0.25 ν = 0.3

H∗ = 0.05 0.912 0.912 0.913 0.913
H∗ = 0.25 0.630 0.630 0.630 0.630
H∗ = 0.50 0.407 0.407 0.407 0.407
H∗ = 0.75 0.300 0.300 0.300 0.300
H∗ = 0.95 0.289 0.289 0.289 0.289

Table B.9: Numerical results for D1212
∗

ν = 0.15 ν = 0.2 ν = 0.25 ν = 0.3

H∗ = 0.05 0.997 0.965 0.963 0.961
H∗ = 0.25 0.848 0.842 0.834 0.824
H∗ = 0.50 0.731 0.722 0.710 0.695
H∗ = 0.75 0.642 0.632 0.619 0.602
H∗ = 0.95 0.588 0.577 0.564 0.547

Table B.10: Numerical results for D2222
∗

Appendix C. Polynomial approximation

The result of the linear approximation of numerical results are shown in Table C.11. For axial stiffness,

linear regression have been preferred, since they already provide accurate estimation. For bending stiffness,

quadratic approximation in (H∗, ν) are chosen. The regressions show that the influence of ν is negligible

for the estimation of the dimensionless numbers (the coefficients for ν are two or three orders of magnitude675

smaller than those for H∗). However, it does not mean that the stiffness matrix is not influenced by ν,

because Poisson’s ratio is alreay factored in the dimensionless numbers.
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Polynomial approximation R2 max error %
A1111

∗ 1− 0.81H∗ − 0.001ν 0.9998 0.6%
A1212

∗ 1− 0.65H∗ + 0.009ν 0.9990 1.0%

D1111
∗ 1− 2.11H∗ − 0.0007ν + 1.16H∗2 + 0.00005H∗ν + 0.001ν2 0.997 2.0%

D1212
∗ 1− 1.68H∗ − 0.0003ν + 0.99H∗2 + 0.0005H∗ν + 0.0002ν2 0.9992 0.9%

Table C.11: Polynomial regression for the numerical data with R2 and maximal error.

39


	Introduction
	Context
	Previous work
	Extrusion process for concrete printing
	Lace geometry
	Structural modelling for 3D printed-concrete

	Homogenisation of periodic plates
	Problem statement

	Methodology
	Constitutive equations in Kirchhoff-Love plate theory
	Summary of the homogenisation procedure
	Numerical homogenisation
	Load cases
	Polynomial fitting

	Problem description: oriented lace pressing
	Periodic homogenisation procedure
	Non-dimensional analysis: parameters
	Non-dimensional analysis: results
	Analytical relations between coefficients of the stiffness matrix

	Numerical results
	Convergence of numerical model and analytical relations
	Numerical results on membrane stiffness
	A1111*
	A2222
	A1212*

	Numerical results on bending stiffness
	D1111*
	D2222*
	D1212*

	Synthesis of numerical results

	Comparative study
	Geometry and material properties
	Load cases
	Models
	Boundary conditions
	Convergence
	Accuracy of the homogenised plate model
	Experimental validation

	Discussion
	Sensitivity of axial and bending stiffness to geometrical anisotropy
	Significance of geometrical anisotropy
	Practical applications to concrete printing
	Guidelines for oriented-lace pressing strategy
	Extension of the methodology
	Effect of deposition strategy
	Material heterogeneity
	Towards local/global modelling


	Conclusion
	Analytical expressions of cross-section
	Analytical expression for S
	Analytical expression for I

	Numerical results
	Polynomial approximation

