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Nation-wide mapping of tree-level 
aboveground carbon stocks in Rwanda

Maurice Mugabowindekwe    1,2 , Martin Brandt    1 , Jérôme Chave    3, 
Florian Reiner1, David L. Skole    4, Ankit Kariryaa1,5, Christian Igel    5, 
Pierre Hiernaux6, Philippe Ciais    7, Ole Mertz    1, Xiaoye Tong1, Sizhuo Li1,8, 
Gaspard Rwanyiziri    2,9, Thaulin Dushimiyimana1, Alain Ndoli10, 
Valens Uwizeyimana    11,12, Jens-Peter Barnekow Lillesø    1, Fabian Gieseke5,13, 
Compton J. Tucker14, Sassan Saatchi15 & Rasmus Fensholt    1

Trees sustain livelihoods and mitigate climate change but a predominance of 
trees outside forests and limited resources make it difficult for many tropical 
countries to conduct automated nation-wide inventories. Here, we propose 
an approach to map the carbon stock of each individual overstory tree at the 
national scale of Rwanda using aerial imagery from 2008 and deep learning. 
We show that 72% of the mapped trees are located in farmlands and savannas 
and 17% in plantations, accounting for 48.6% of the national aboveground 
carbon stocks. Natural forests cover 11% of the total tree count and 51.4% 
of the national carbon stocks, with an overall carbon stock uncertainty 
of 16.9%. The mapping of all trees allows partitioning to any landscapes 
classification and is urgently needed for effective planning and monitoring 
of restoration activities as well as for optimization of carbon sequestration, 
biodiversity and economic benefits of trees.

Trees both inside and outside forests are important features of many 
ecosystems1. Individual tree traits are key determinants of ecosystem 
services including carbon storage, climate regulation and fuel wood2,3. 
Many countries regularly evaluate, quantify and monitor forests using 
field inventories as part of national forest monitoring systems4–6. Forest 
inventories are the backbone to measurement, reporting and valida-
tion (MRV) for climate change mitigation initiatives such as national 
level REDD+ (reducing emissions from deforestation and forest deg-
radation)5,6, Sustainable Development Goals (SDGs) especially SDG 15  
(ref. 7), the Paris Agreement8 and the Bonn Challenge9. In many northern 

countries, sample-based forest inventories are often accompanied by 
airborne LiDAR campaigns, providing detailed information on the car-
bon stocks of forests. However, field inventories and LiDAR campaigns 
are expensive and labour intensive4, resulting in trade-offs between 
accuracy, reproducibility and the frequency of reporting. In many 
tropical countries, financial and human resource constraints limit the 
coverage and frequency of the field inventories.

This is particularly problematic for many African countries, where 
submetre and country-scale LiDAR data are not available across a vari-
ety of landscape types, ranging from savannas, woodlands, subhumid 
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Initiative (AFR100), with more than 30 African governments making 
commitments to restore at least 100 million hectares of land across 
the continent by 2030 (ref. 22), the Africa Low Emissions Development 
Strategies27 and the Great Green Wall initiative28. However, there is 
currently no accurate and regularly updated monitoring platform to 
track the progress and biophysical impact of these initiatives22,29. Here, 
we propose an approach for rapidly and accurately mapping individual 
trees and quantifying their carbon stocks at national scale. We also 
illustrate how the aforementioned challenges can be addressed with 
efficient new monitoring tools, using Rwanda as a demonstration. The 
country is a signatory to most of the above-mentioned global climate 
mitigation initiatives and regularly reports on their implementation. 
Rwanda targeted at least 30% of the country to be covered by forests by 
the year 2020 (ref. 30), which was achieved in 2019 (ref. 31) and, under the 
Bonn Challenge, the country has also committed to restore 81% of the 
country’s surface area by 2030 (refs, 31,32). Moreover, Rwanda represents 
a great example of a place with contrasting landscape types, the full 
range and variety of tree-based systems and a rich mixture of land uses: 
drylands dominated by savannas and pastureland, plateaus dominated 
by agriculture and humid highlands dominated by natural forests and 
protected areas, including tropical montane rainforest33.

Recently, it was demonstrated that advanced machine learn-
ing techniques can map individual trees over large dryland areas17. 

and humid forests, to highly fragmented, small-scale agro-ecosystem 
mosaics10,11. This complexity makes it difficult to scale from sparsely 
sampled plots to the national scale. Indeed, many of these landscapes 
are dominated by non-forest trees which are very difficult to map with 
traditional methods12,13.

Inventories and existing large-scale tree cover maps often omit 
an accounting of trees growing outside forests, which is related to 
differences in forest definitions, mapping techniques and the com-
plexity of the environment14–16. This leads to incomplete censuses of 
trees and their related benefits and services at a national scale17,18. More 
specifically, these inaccuracies aggravate the existing uncertainties in 
estimates of both national carbon stocks and emission reference levels 
and may confound the relative contributions of emissions attributed 
to forest degradation or deforestation18–20. In turn, these inaccuracies 
in tree mapping complicate adequate natural resource management, 
climate change decision-making and policy formulation21. These chal-
lenges are especially notable in the tropics, where many landscape 
restoration projects have been initiated without fully functional moni-
toring systems in place22,23.

In Africa, the rate of tree cover loss in natural forests and projected 
biomass losses from climate change have prompted both policy and eco-
nomic initiatives for the restoration of tree-dominated landscapes24–26. 
Ongoing initiatives include the African Forest Landscape Restoration 
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Fig. 1 | Mapping of individual trees inside and outside of forests in Rwanda. 
a,b, Tree cover from a previously published global tree cover map using Landsat 
data in Africa (a) and in Rwanda (b). Global tree cover data in a and b from ref. 15. 
c, Country-wide tree cover estimated by deep learning from 0.25 m resolution 
aerial imagery from 2008 (L, lowlands; M, midlands; H, highlands). Labels d–g in 
a and b show location of expanded panels. d–g, Examples of individual tree crown 

mapping in tropical montane rainforest, note that artificial gaps were filled during 
a postprocessing step (Methods) (d); Eucalyptus plantations (e); farmlands (f); 
and Pinus plantations (g). An example of previously published manual forest area 
delineations is shown in Extended Data Fig. 1. Boundary shapefiles of Rwanda in 
b and c from https://geodata.rw/portal/home/. Panel e adapted with permission 
from ref. 50, Springer Nature Limited. Credit: photographs in d–g, Swedesurvey.
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However, the analysis was limited to isolated trees in savannas exclud-
ing small trees with a crown area <3 m2 and did not cover other complex 
and heterogeneous ecosystems such as woodlands and forests. Here, 
we use aerial images and map both crown size and carbon stock of each 
individual overstory tree in Rwanda, regardless of ecosystem type. We 
define trees as woody plants visible from above and with a crown size of 
at least 0.25 m2 and a visible shadow. We also show the applicability of 
the model trained in Rwanda in other African countries using satellite 
imagery. This study suggests a rapid, reproducible and highly accurate 
way to upscale field inventory data collected at the level of individual 
trees to the entire country. This will allow tree inventory reports to be 
of unprecedented accuracy and can support MRV of climate change 
mitigation initiatives.

Mapping individual trees at national scale
Aerial images with a spatial resolution of 25 × 25 cm2 were acquired 
in 2008 covering the entire country34 (Extended Data Fig. 1). A 
deep-learning model was trained using 97,574 hand-labelled tree 
crowns and then used to map 355,268,345 trees with crown size >0.25 m2 
(excluding understory). The crown area threshold was set on the basis 
of visual inspection of the images, as trees of this size are still clearly 
visible (Fig. 1). Clumped crowns were separated using a postprocessing 
method that determines the crown centres in the predictions, assum-
ing that tree crowns have round shapes. The method then relabels the 
crown predictions on the basis of weighted distances to the identified 

crown centres (Methods; Extended Data Fig. 2). Crown area and count 
predictions were validated with an independent test dataset and field 
data (Methods).

Following a manual delineation, which is based on the same aerial 
images as used here and which includes forest patches down to a size 
of 0.25 ha (ref. 35; Extended Data Fig. 1), we stratified the landscapes 
into broad classes that can be found in most African countries: natural 
forest (including both large rainforest trees in the Nyungwe park in 
the southwest of Rwanda and smaller trees in the volcanoes park in 
the northwest), Eucalyptus plantations (excluding isolated Eucalyptus 
trees in farmlands), non-Eucalyptus tree plantations, farmlands, urban 
and built-up areas, as well as savannas and shrublands (Methods). We 
further subdivided each class in protected and non-protected areas. 
Overall, our results show a dominance of trees with small crown sizes 
of 0.25–3 m2, which account for 48.2% of the mapped trees, followed 
by trees with crown sizes of 3–15 m2, which account for 44.6% of the 
trees. Related to our land stratification, these two crown size ranges are 
dominant in farmlands and Eucalyptus plantations (Fig. 2a,b). Trees of 
the largest crown size class (crown sizes >200 m2) are very scarce and 
mainly found in natural forests which dominate areas under protection.

We show that only 11% of the mapped trees are located inside natu-
ral forests, whereas most trees are located in farmland (37%). Specifi-
cally, natural forests have 39.3 million trees, with a median density of 
298 (s.d. 159) trees ha−1 and a median canopy cover of 96.0% (s.d. 31.7). 
Farmlands have a median tree density of 64 (s.d. 139) trees ha−1 and a 
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Fig. 2 | Tree counts, crown areas and carbon stocks for different land cover/
use types. a, Percentage covered by different crown sizes in each land cover/
use type. The percentage number shows the contribution of the land cover/use 
type to the total area. Crown sizes >200 m2 comprise only 0.003% of the total 
tree count, making the class barely visible. b, Percentage covered by each land 
cover/use type in different crown size categories. c, Total count of trees by land 
cover/use. d, Boxplot showing the average number of trees per hectare by land 
cover/use type. e, Same as d but for canopy cover. f, Total estimated carbon 
stock per land cover/use type (see Methods for details on uncertainties and error 
propagation). g, Barplot showing the average carbon density per hectare per 
land cover/use. h, Boxplots showing the average carbon stock per tree per land 

cover/use. Number of trees = 355,268,345 (for c–h, n = 39,347,302 for natural 
forest; 123,381,245 for savannah and shrubland; 47,921,438 for Eucalyptus 
plantation; 8,296,494 for non-Eucalyptus plantation; 131,822,508 for farmland; 
and 4,499,358 for urban/built-up). In boxplots in d, e and h (from left to right), the 
start of the horizontal line represents the minimum value, vertical lines represent 
first quartile, median and third quartile values, respectively, and the end of 
the horizontal line represents the maximum value. The red lines in f and g are 
the error bars presented as absolute difference between the final carbon stock 
predictions and the NFI data (Extended Data Table 1). The overall uncertainty at 
national scale is 16.9% (Methods; Extended Data Table 1b).
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median canopy cover of 7.6% (s.d. 18.7). Eucalyptus plantations account 
for about 48 million trees (~13.4% of the total mapped trees), a median 
density of 110 (s.d. 195) trees ha−1 and median canopy cover of 13.9% 
(s.d. 26.3). Here the canopy cover is low because the manually drawn 
classification of plantation areas also includes bare areas close to plan-
tations (Extended Data Fig. 1). Non-Eucalyptus tree plantations have 
8.3 million trees (~2.3% of the total mapped trees), a median density of 
221 (s.d. 222) trees ha−1 and a median canopy cover of 31.5% (s.d. 37.8). 
Urban and built-up areas have 4.5 million trees (~1.3% of the total 
mapped trees) and a median density of 74 (s.d. 142) trees ha−1. Savan-
nas and shrublands account for 123.3 million trees (~35% of the total 
mapped trees), with a median density of 100 (s.d. 164) trees ha−1 and a 
median canopy cover of 12.2% (s.d. 23.2). Overall, trees outside of natural 
forests are about 315.9 million trees of which 41.6% are in farmlands. The 
quantification of non-forest trees depends on how forests are defined. A 
total of 89% of the trees in Rwanda do not belong to the classes of natural 
forests and can thus be considered as trees outside natural forests.

The importance of protected areas for tree density and count is 
worthwhile to note. Although they cover only 5% of the country, they 
have 11% of the total mapped trees with the highest median tree density 
of 298 trees ha−1 as well as the highest median canopy cover of 96.3%. 
Overall, 20.8% of Rwanda was covered by trees (canopy cover) in 2008.

Carbon stocks estimated for individual trees
We used data from a field campaign in December 2021 and existing 
databases to estimate the stem diameter from the mapped crown sizes 
via allometric equations36–39 (Methods). We then estimated the above-
ground carbon stocks for each tree using existing equations based on 
stem diameter (Methods; Extended Data Figs. 3–5). We established 
land cover class-specific relationships and report here the combined 

results using allometric equations from ref. 38 for natural forest; ref. 39 
for Eucalyptus and non-Eucalyptus plantations, farmlands and urban 
and built-up areas; and ref. 37 for savannas and shrublands. For each 
class, we evaluated the aggregated carbon stocks with data from the 
Rwanda National Forest Inventory (NFI) from 2013/2014 and field data 
from refs. 40,41, covering all land cover classes and serving as a measure of 
uncertainty which we quantify to 16.9% at national scale (Extended Data 
Tables 1 and 2). We estimate a total of 14.3 ± 2.8 Tg (± is the uncertainty) 
of aboveground carbon stocks in trees (Fig. 3, Extended Data Figs. 4 and 
6 and Extended Data Tables 1 and 2). For areas outside the natural for-
ests, we estimate 7.0 ± 1.1 TgC, which is 48.6% of the total national above-
ground carbon stocks and slightly lower than NFI estimates (8.4 TgC). 
Farmlands have a total estimate of 3.5 ± 0.2 TgC corresponding to 24.4% 
of the national aboveground C stock with a C density of 3.0 ± 0.18 (s.d. 
3.2) MgC ha−1. Urban and built-up areas have 0.1 ± 0.006 TgC corre-
sponding to 1.03% of the national aboveground C stock with a C density 
of 4.0 ± 0.24 (s.d. 4.0) MgC ha−1. Eucalyptus plantations comprise a total 
estimate of 1.1 ± 0.6 TgC corresponding to 7.7% of the national above-
ground C stocks, with a C density of 4.2 ± 2.2 (s.d. 4.3) MgC ha−1. These 
low estimates can be explained by sparse tree planting and the regular 
harvesting keeping the trees young39,40. Non-Eucalyptus plantations 
have a total estimate of 0.3 ± 0.16 TgC corresponding to 2.2% of the 
national aboveground carbon stocks, with a C density of 10.0 ± 5.2 (s.d. 
9.9) MgC ha−1. Savannas and shrublands have 1.9 ± 0.36 TgC correspond-
ing to 13.2% of the national aboveground C stock with a C density of 
2.4 ± 0.45 (s.d. 2.4) MgC ha−1. For natural forests, we estimate a median 
C density of 81 ± 21 MgC ha−1 for areas where field data are available 
(the Nyungwe tropical montane rainforest), which is lower than the 
field measurements of 121 MgC ha−1 (refs. 40,41), possibly due to trees 
from lower layers not visible from above. Overall, we estimate that 
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51.6% of the total national aboveground carbon stocks are in natural 
forests with a total estimate of 7.4 ± 2.47 TgC and an overall C density 
of 62 ± 20 (s.d. 31.2) MgC ha−1.

Scalability of the approach
We acquired 83 Skysat images at 80 cm ground sampling resolution 
for 2019–2021 for Tanzania, Kenya, Uganda, Burundi and Rwanda and 
directly applied the model trained with the aerial images from Rwanda 
(Fig. 4). The tree detection and crown delineation work elsewhere, even 
beyond Africa (Extended Data Fig. 8). We then compared the predicted 
carbon density from 150 randomly selected 1 × 1 km2 patches with pre-
viously published maps of biomass42–45. Both the magnitudes of the 
predictions (Fig. 4b) and the spatial correlation (R = 0.84) match well 
with the most recent map42.

Assessments and reporting schemes for tree resources at country 
scale are limited by poor data quality and ambiguous or inconsistent 

definitions of land cover and land use types2,46. Forests have been 
defined differently depending on location, measurement protocols 
and landscape contexts. When forests are specified as continuous tree 
cover at a predetermined mapping resolution, the underlying defini-
tion and the quality of the data product are essential to understand 
precisely what is being mapped and ambiguities and uncertainties 
result from different datasets. For instance, at medium spatial resolu-
tion >5–10 m, tree cover products may be dominated by continuous 
clusters of trees of a certain size and may exclude many isolated trees. 
Also, previous work has overestimated the extent of forests by the 
inclusion of shrubs and bushes as forestland47. Uncertainties in tree 
cover estimates propagate to estimations of carbon stocks, resulting 
in large uncertainties in biomass and carbon estimates and maps48 
(Extended Data Fig. 4 and Extended Data Table 1b).

This analysis presents an assessment of all overstory trees, aside 
from the assessment of their cover, density or land use. We estimate 
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aboveground carbon stocks at the tree level, not on an aggregate 
area basis as it has been in most previous carbon stock mapping. This 
approach is more closely aligned with standard methods and protocols 
for allometric scaling of carbon from inventory plots. Most allometric 
scaling from a tree parameter to biomass or carbon involves nonlinear 
relationships, where the size class distribution of trees matters for the 
final estimate of landscape carbon stocks. Furthermore, the ability to 
map all trees makes our assessment independent of forest, tree cover 
and land use definitions. Reporting carbon stocks on the basis of indi-
vidual trees would solve important uncertainties caused by definitions, 
methods, data sources and spatial resolution. Our example shows that 
even a very detailed manual forest delineation approach missed 38.4% 
of the isolated trees in Rwanda, which account for 25.5% of the national 
aboveground carbon stocks. With results as presented here, manage-
ment and conservation decision-making can be more targeted by dis-
criminating various types of tree systems under specific conditions and 
in specific locations. Our approach therefore could support manage-
ment of a broad array of tree-based systems such as agroforestry, as well 
as catalyse important cross-sector management strategies inclusive of 
Agriculture, Forestry and other Land Use (AFoLU). A focus on AFoLU 
provides a way to simultaneously manage both emission reductions 
and removals of greenhouse gases49. Integrating non-forest trees in 
conservation initiatives expands the scope of climate change mitiga-
tion and adaptation efforts by also accounting for trees not included 
in standard forest assessments50. Forests have been an important focal 
point for land cover change monitoring for decades and progress has 
been made developing tools and methods applied to forests1–3. How-
ever, less effort has been given to monitoring trees and carbon stocks 
for trees outside of forests. This would provide a more robust approach 
for reducing emissions and increasing removals, making it possible to 
implement comprehensive national climate change mitigation actions 
in countries with mostly sparse tree cover. This analysis deploys a com-
plete inventory of trees in AFoLU as a comprehensive approach that 
could support a more inclusive formulation of national programmes. 
Moreover, when considering the large number of trees in croplands, 
it is possible to monitor—and thus include in policies—economically 
poor rural communities in marginal landscapes that are particularly 
vulnerable to climate change. Quantitative data as presented here 
have the potential to link both mitigation and adaptation in a single 
framework. Many of the non-forest tree systems have direct connec-
tions to livelihoods and therefore are also important for economic 
development, poverty alleviation and climate change resilience and 
adaptation. Through innovations in landscape management practices 
using tree-based systems and associated monitoring and reporting 
systems, millions of farmers could be important participants in climate 
change mitigation actions, while also enhancing their livelihoods at the 
same time. By bringing a broad array of tree-based systems into carbon 
monitoring platforms, there is an opportunity to increase the engage-
ment of countries with low tree densities in climate change mitigation.

The aerial images and NFI data used here have a high quality and 
cover the entire country, which is a ‘best-case’ scenario that can hardly 
be met by countries with limited resources and heterogeneous land-
scapes. However, we have demonstrated that our model trained on 
aerial images in Rwanda can be directly applied on images from Skysat 
satellites, which can be obtained for a reasonable price for monitoring 
restoration projects.

We acknowledge that a satellite- or aerial image-based approach 
cannot resolve the full range of crown sizes because small trees are 
shaded out by large trees, and also the conversion of crown area to 
carbon stocks includes uncertainty36 (Methods; Extended Data Table 
1b). To reduce uncertainty, future versions of the proposed method 
should include more localized field inventory databases that allow for 
more local biome and species-specific wood densities and allometric 
conversions, as well as integrate tree height estimations from field and 
airborne LiDAR surveys. Ideally, national inventories are coupled with 

results such as those presented here to identify systematic bias and 
optimize the upscaling from field plot information to country scale. 
If limited funds are available, low-cost imagery from PlanetScope or 
Sentinel-2 may be trained with tree-level data such as provided here, 
which would also allow a deeper temporal dimension.

Having the capability of mapping tree-level carbon stocks is impor-
tant to a range of applications including monitoring of forest landscape 
restoration, tree plantation survival rate, forest demography: dynamics 
of mortality and recruitment, tree-dominated land ownership, pay-
ments for ecosystem services, issuance of concession permits and 
tracking compliance, among other benefits. Therefore, we emphasize 
the inclusion of funding for regular high-resolution imagery along with 
localized field inventory databases in development packages. We also 
highlight the relevance of all trees for conservation and protection 
efforts and encourage that trees outside forests are considered as 
equally important as trees in forests.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41558-022-01544-w.
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Methods
Aerial images
We use publicly available aerial images of Rwanda at 0.25 × 0.25 m2 reso-
lution, collected in June–August of 2008 and 2009. The images were 
acquired from 3,000 m altitude above ground level, originally with a 
mean ground resolution of 0.22 × 0.22 m2 pixel size then resampled 
to 0.25 × 0.25 m2, using a Vexcel UltraCam-X aerial digital photogra-
phy camera34. The images exhibit a red, green and blue band stored 
under 8 bit unsigned integer format. The aerial images cover 96% of 
the country and the remaining 4% was filled with satellite images from 
WorldView-2, Ikonos, Spot and QuickBird satellite sensors which are 
part of the publicly available dataset.

Environmental data
We use locally available climate data: mean annual rainfall, mean annual 
temperature and elevation data (10 × 10 m2 resolution) to assess rela-
tionships between tree density, crown cover and environmental gra-
dients. We also use land cover data to extract the spatial extent of 
plantations, forest, farmland, and urban and built-up areas for our 
landscape stratification. Climate data were obtained from the Rwanda 
Meteorological Agency as daily records from 1971 to 2017. The national 
forest map was manually created in 2012 using on-screen digitizing 
techniques over the 2008 aerial images35. A forest was defined as ‘a 
group of trees higher than 7 m and a tree cover of more than 10% or 
trees able to reach these thresholds in situ on a land of about 0.25 ha 
or more’51. A shrub was defined as ‘a group of perennial trees smaller 
than 7 m at maturity and a canopy cover of more than 10% on a land of 
about 0.25 ha or more’. The forest dataset was composed of 105,690 
forest polygons, classified as either natural forest (closed natural 
forest, degraded natural forest, bamboo stand, wooded savanna and 
shrubland) or ‘forest plantations’ (Eucalyptus spp., eucalyptus; Pinus 
spp., pine; Callitris spp., callitris; Cupressus spp., cypress; Acacia 
mearnsii, black wattle; Acacia melanoxylon, melanoxylon; Grevillea 
robusta, grevillea; Maesopsis eminii, maesopsis; Alnus acuminata, 
alnus; Jacaranda mimosifolia, jacaranda; mixed species, mixed; and 
others) (Extended Data Fig. 7i). We separate shrubland from natural 
forest and merged it with savanna into the class ‘savannas and shrub-
lands’. We further separated tree plantations and grouped them into 
Eucalyptus and non-Eucalyptus plantations. Then, a farmland map 
was acquired from the Rwanda Land Management and Use Authority 
(RLMUA)52 and overlaid with the 2012 forest cover map as a reference 
to clean the overlapping parts, under an assumption that the overlap 
is due to land use dynamics. Finally, a layer marking urban and built-up 
areas was acquired from RLMUA as well and the same preprocessing 
step as done for farmlands was applied. The combination of the land 
cover datasets resulted in our stratification scheme with six classes: 
natural forests, savannas and shrublands, Eucalyptus plantations, 
non-Eucalyptus plantations, farmland and urban and built-up.

Mapping of individual trees using deep learning
We used the open-source framework developed by ref. 17 to map indi-
vidual tree crowns. The framework uses a deep neural network based 
on the U-Net architecture53,54. We trained the network using 97,574 
manually delineated tree crowns spread over 103 areas/bounding boxes 
representing the full range of biogeographical conditions found across 
Rwanda. To cope with the challenge of separating touching tree crowns, 
we used a higher weight for boundary areas between crowns, as sug-
gested in refs. 17,53. Crown sizes in the predictions were found to be 27% 
smaller as compared to the manual delineations within the 103 train-
ing areas, due to the applied boundary weight that emphasizes gaps 
between tree crowns. Therefore, to calculate the real canopy cover, we 
extended each predicted tree crown by 27% and dissolved the touch-
ing crowns into continuous features. We counted single tree crowns 
for each hectare presented here as tree density and the percentage of 
each hectare covered by the extended tree crowns as canopy cover.

We developed a postprocessing method that separates clumped 
tree crowns and fills any gap inside a single crown (Extended Data  
Fig. 2). Our postprocessing method, which we refer to as detect centre 
and relabel (DCR), determines the crown centres in the model predic-
tions assuming that tree crowns have a round shape and then relabels 
the model predictions on the basis of weighted distances to the identi-
fied crown centres. First, DCR performs a distance transform, comput-
ing for each pixel the Euclidean distance to the nearest pixel predicted 
as background. Let the transformed image be distance-transformed 
(DT). Then an m × m maximum filter is applied to DT, where m depends 
on the size of the smallest object to be separated. We store all pixels for 
which the original DT value is the same before and after max-filtering. 
These pixels are the instance centres as they are furthest away from 
the boundary and have the highest distance values within the area 
defined by m. In the case of several connected instance centres in 
regions where multiple connected pixels have the same distance from 
the background, only a single instance centre is kept. Finally, each pixel 
x predicted as a crown in the original image is assigned to its nearest 
instance centre, where the distance function penalizes background 
pixels on the connecting line between the instance centre and x.

Allometry for biomass and carbon stock estimation
Generally, allometric equations define a statistical relationship 
between structural properties of a tree and its biomass55,56. In our case, 
we assume a relationship between the crown area and aboveground 
biomass (AGB), which varies between biomes36. Since destructive 
AGB measurements are rare, we established biome-specific relation-
ships between crown diameter (CD) derived from the crown area 
(CD = 2√(crown area/π)) and stem diameter at breast height (DBH) 
(equations (3) and (6)). DBH has been shown to be highly correlated 
with AGB36–40. We then used established relationships from litera-
ture to derive AGB from DBH for savannas and shrublands (equation 
(4)), tree plantations (equation (5)) and natural forests (equation (7)). 
AGB was predicted for each tree and summed for 1 ha grids to derive 
AGB in the unit Mg per ha. Values were multiplied by 0.47 (refs. 57,58) to 
derive aboveground carbon (AGC). Summed numbers over land cover 
classes are considered as carbon stocks. The bias as reported here was 
calculated following the approach from ref. 36 reporting the relative 
systematic error in per cent:

bias = 1
N

N
∑
i=1

(Yobs − Ypred)
Yobs

× 100 (1)

The error for the evaluation with NFI data was defined by:

bias =
||∑N (Yobs − Ypred)||

||∑N Yobs||
(2)

For trees outside natural forests, we used the database from ref. 
36 including 10,591 field-measured trees from woodlands and savanna 
plus 952 samples from agroforestry landscapes in Kenya37 to establish 
a linear relationship between CD and DBH (Extended Data Fig. 3a). The 
Kenyan dataset is compatible with the trees in Rwanda. To ensure com-
patibility, the Kenya data contained open-grown trees most of which 
are of the same families or genus as in Rwanda grown under the same 
conditions, the latter factor shown to be important for generalizing37.

A major axis regression (average of four runs each 50% of the data) 
led to equation (3):

DBHpredicted in cm = −4.665 + 5.102 × CD (3)

Equation (3) showed a reasonable performance with a very low bias 
(average of four runs on the 50% not used to establish the equation (3)): 
r² = 0.71; slope = 0.95; root mean square error (RMSE) = 6.2 cm; relative 
RMSE (rRMSE) = 42%; bias = 1%). We tested equation (3) on an independent 
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dataset from Kenya consisting of 93 trees where AGB was destructively 
measured (Fig. 3b). The Kenyan database provides an uncommon 
opportunity to use destructive samples in which the carbon mass is not 
estimated indirectly and the relationship between crown area and car-
bon is direct: we do not need to invoke a second allometry to derive the 
dependent variable. All trees were open-grown trees in the same growing 
conditions as the agricultural areas of Rwanda. On these 93 trees, DBH 
can be predicted reasonably well from CD using equation (3) (r² = 0.84; 
slope = 0.86; RMSE = 8 cm; rRMSE = 25%; bias = 6%). We then applied an 
allometric equation from literature37 established for non-forest trees 
in East Africa to estimate AGB from DBHpredicted and compared the pre-
dicted AGB with the destructively measured AGB (r² = 0.81; RMSE = 511 kg; 
rRMSE = 55%; bias = 25%) showing an acceptable performance (Extended 
Data Fig. 3c) but indicating a systematic bias, which will be further tested 
with biome-specific field data (next section). We apply equation (4) to esti-
mate AGB for trees outside forests in Rwanda in savannas and shrublands:

AGBpredicted in kg = 0.091 × DBHpredicted
2.472 (4)

Given the different structure of trees in farmlands, urban and 
built-up areas and plantations as compared to trees in natural forests 
and in natural non-forest areas, we used a different equation for trees 
in these areas. It was established in Rwanda using destructive samples 
from tree plantations39:

AGBpredicted in kg = 0.202 × DBHpredicted
2.447 (5)

A different CD–DBH relationship was established for natural for-
ests. Here, we conducted a field campaign in December 2021 sampling 
793 overstory trees in Rwanda’s protected natural forest. We measured 
both CD and DBH and established a logarithmic major axis regression 
model with a Baskerville correction59 between the two variables to 
predict DBH from CD (Extended Data Fig. 3d). We did four runs each 
using 50% of the data to establish equation (6) (average of the four runs) 
and the other 50% to test the performance also averaged over the four 
runs (r² = 0.71; slope = 0.99; RMSE = 13 cm; rRMSE = 45%; bias = 19%). 
Note that CD is extended by 27% to account for underestimations of 
touching crowns in dense forests (see previous section):

DBHpredicted in cm = (exp (1.154 + 1.248 × ln(CD × 1.27))

× (exp(0.33152/2)))
(6)

We then used a state-of-the-art allometric equation established 
for tropical forests38 to predict AGB from DBH for natural forests in 
Rwanda:

AGBpredicted in kg = exp[1.803 − 0.976E + 0.976 ln (ρ)

+2.673 ln (DBH) − 0.0299 [ln (DBH)]2 ]
(7)

where E measures the environmental stress38 (a gridded layer is acces-
sible via https://chave.ups-tlse.fr/pantropical_allometry.htm) and ρ 
is the wood density. Here, we used a fixed number (0.54), which is the 
average wood density for 6,161 trees from ref. 40, weighted according 
to the abundance of the species in the plots. The relative error was 
calculated by the quadratic mean of the intraplot and interplot vari-
ations, which is 18.2% (Extended Data Table 1b). No destructive AGB 
measurements were found that showed a similar CD–DBH relationship 
as we measured during the field trip in Rwanda’s forest. We could thus 
not evaluate the performance for natural forests at tree level but had 
to rely on plot-level comparisons (next section).

Evaluation and uncertainties of the allometry
Biomass estimations without direct measurements of height or DBH 
inevitably include a relatively high level of uncertainty at tree level38,60. 

Uncertainty does not only originate from the CD to DBH conversion 
but also the equation converting DBH to AGB. As shown in the previ-
ous section, no strong systematic bias could be detected for the CD 
to DBH conversion but the evaluation of the CD-based AGB predic-
tion with an independent dataset from destructively measured AGB 
revealed a bias of 25%. However, this comparison (Extended Data Fig. 
3c) may not be representative for an entire country having a variety of 
landscapes and tree species, so a systematic propagation is unlikely. 
We also did not have sufficient field data to evaluate the conversions 
in natural forests. Here, we used data from 15 natural forest plots with 
6,161 trees published by ref. 40 and ref. 41 and directly compared the 
summed biomass of the trees we predicted over their plots. The median 
measured biomass for the plots is 121 MgC ha−1 and we predict a median 
biomass of 81 MgC ha−1 (plot-based rRMSE = 54%; bias = 11%; bias on 
summed plots = 26%). The overall underestimation by our predic-
tion is not necessarily a model bias but may be partly explained by 
the contribution of the understory trees, which cannot be captured 
by aerial images. Interestingly, our C stock estimates are in the same 
range of magnitude as global biomass products43–45,61 (Extended Data 
Fig. 4), indicating that overstory tree-level carbon stock assessments 
are possible from optical very high resolution images, even in tropical 
forests. Several global products overestimated biomass for non-forest 
areas like savannas or croplands, which is probably because they are 
calibrated in denser forests. The most recent products of ref. 42 and ref. 
61 are much closer to the estimates from our results and the NFI. This is 
also seen in the grid-based correlation matrix where ref. 42 correlates 
best with our map, followed by ref. 61.

We further use NFI data from 2014 to measure the uncertainty of 
the final carbon stock estimates and evaluate if systematic differences 
between AGB predictions and field assessments can be found for differ-
ent land cover classes (Extended Data Table 1). For the NFI data, a total of 
373 plots with 2,415 trees were measured and species-specific allometric 
equations applied62. To identify systematic errors at landscape scale, we 
extracted averaged values for areas around the plots from our predic-
tions and calculated statistics on averages over all plots. Interestingly, 
our predictions for farmlands only show a bias of 5.9%: we estimate on 
average 2.46 MgC ha−1 and the inventories measure 2.37 MgC ha−1 on 
their 150 plots. For savanna and shrublands, we estimate 4.16 MgC ha−1 
while inventories measure 3.31 MgC ha−1 (bias = 18.9%). For planta-
tions, we estimate lower values (8.16 compared to 16.79 MgC ha−1; 
bias = 52.6%). To calculate the total uncertainty on country-wide C 
stock estimates, we weighted the bias from the different classes accord-
ing to their relative area. We estimate a total uncertainty on the carbon 
stock predictions of 16.9% at the national scale (Extended Data Table 1).

We found a very low bias for estimated C density in farmlands 
(5.9% bias) which make up most of the areas outside natural forests in 
Rwanda (Extended Data Table 1, Extended Data Fig. 6). The high bias 
for plantations can be explained by three factors: large bare areas 
considered part of plantations by the manual delineation of plantation 
areas (Extended Data Fig. 1); regular harvesting and continual thinning 
which keep many plantation trees young and small; and the fact that 
our aerial images are from 2008 while plantation trees have grown until 
2014 with a few new NFI plots initiated after 2008. The bias in savannas 
and shrublands can be explained by the following factors: the presence 
of multistemed trees with large crowns such as Acacia spp. and Ficus 
spp. among others; the fact that a crown-based method overestimates 
C stocks of shrubs with a small height; and presence of shrub trees 
with both small height and small (multiple) stems. If tree-level based 
carbon stock assessments derived from crown diameter as presented 
here should become standard to complement national inventories, 
a database with sufficient samples to evaluate for systematic errors 
needs to be established for each biome and inventory and satellite/
aerial image-based methods need to be further harmonized.

To further quantify the error propagation of the CD to DBH conver-
sion for our application, we established four equations each randomly 

http://www.nature.com/natureclimatechange
https://chave.ups-tlse.fr/pantropical_allometry.htm


Nature Climate Change

Article https://doi.org/10.1038/s41558-022-01544-w

using 50% of the dataset and predicted the carbon stock for each tree in 
Rwanda with each equation. We did this separately for natural forests 
and trees outside natural forests. We calculated the rRMSE between the 
aggregated carbon stocks for each hectare. We averaged the rRMSE for 
each land cover class and show that the uncertainty for all classes does 
not exceed 5% (Extended Data Table 2a).

Evaluation and uncertainties of tree crown mapping
We created an independent test dataset, which was never seen during 
training and was also not used to optimize hyperparameters. The test 
set consists of 6,591 manually labelled trees located in 15 random 1 ha 
plots (Extended Data Fig. 5). Thanks to the size of the country, the plots 
represent all rainfall zones and three major landscapes of the country. 
The plot-level comparison yielded very high correlations between the 
predictions and the labels and is shown in Extended Data Fig. 5. We also 
calculated a confusion matrix showing an overall per pixel accuracy 
of 96.2%, a true positive rate of 79.6% and a false positive rate of 6.8% 
(Extended Data Table 2b). Trees outside natural forests are easy to spot 
and count for the human eye, so we have confidence in the plot-based 
evaluation. However, it is often challenging in natural forests. Here, we 
used again the field measurements from 15 plots with 6,161 trees40,41. We 
find that we underestimate the total tree count by 22.6%, which may, 
at least partly, be explained by understory trees hidden by overstory 
trees and which are, therefore, not visible in our images. New field 
campaigns are needed to better understand and calibrate our results 
and possibly correct for systematic bias.

Application and evaluation beyond Rwanda
We acquired 83 Skysat scenes at 80 cm for Tanzania, Burundi, Uganda, 
Rwanda and Kenya. The model trained on the 25 cm resolution aerial 
images of Rwanda from 2008 was directly applied on the Skysat images. 
Forest and non-forest areas were manually delineated to decide which 
allometric equation to use for the carbon stock conversion. We ran-
domly selected 150 1 × 1 km2 patches and aggregated the predicted 
carbon density per patch and compared the results with previously 
published maps42–45. Results show that the model can directly be 
applied to comparable landscapes on different datasets. Note, how-
ever, that accurate carbon stock predictions need local adjustments 
with field data. We then tested the tree crown model transferability 
on aerial images from California (NAIP; 60 cm) and France (20 cm) 
and found that the model delivers realistic results without any local 
training or calibration (Extended Data Figure 8).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Global tree cover maps are available at http://earthenginepartners.apps-
pot.com/science-2013-global-forest. Climate data are freely accessible 
through an online application to the Rwanda Meteorological Agency via 
http://mis.meteorwanda.gov.rw/. Aerial images and land use and land 
cover data are freely available for research through formal application to 
the Rwanda Land Management and Use Authority at https://www.rlma.
rw. Products produced in this study: tree density, tree cover, carbon stock 
estimates are freely accessible at https://doi.org/10.5281/zenodo.7118176 
(ref. 63). The global database with tree measurements including biomass 
is available from J.C. Tree measurements from Kenya are available from 
D.S. Tree measurements from Rwanda are available from M.M.

Code availability
The code for the tree detection framework based on U-Net is publicly 
available at https://doi.org/10.5281/zenodo.3978185. Support and more 
information are available from A.K. (ak@di.ku.dk or ankit.ky@gmail.
com) or F.R. (flr@ign.ku.dk).
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Extended Data Fig. 1 | An example showing previous manual forest 
delineations. The red lines are manually labelled forest boundaries from the 
Rwanda national forest map of 2012 (ref. 35). a, Several patches which would 
qualify for the used forest definition were missed by the manual delineation 

(yellow lines). Also, some bare areas inside forest patches (cyan line) were 
considered as part of forests. b, Our results are shown in green, highlighting the 
improvements over the previous method. Shapefiles for national forest cover 
map from RFA. Credit: background photographs, Swedesurvey.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 2 | Examples from the postprocessing algorithm 
separating clumped trees. a, Example of predicted tree crowns in the rainforest, 
with many trees being predicted as clumped objects. b, Results after the 
postprocessing algorithm separated the clumped crowns. The algorithm first 

finds the object centres, and then relabels the image based on weighted distances 
to the identified centres. Thus, blobs containing multiple centres are divided into 
various instances accordingly. The algorithm adds a large penalty for not-in-sight 
centres, and additionally performs a majority filtering to remove the lone-pixels.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 3 | Tree crown allometry. a, DBH is predicted from CD 
using a total of 11,593 samples from a global database36. The plot compares the 
predicted against the measured DBH. b, DBH is predicted for an independent 
dataset of 93 trees from Kenya using the equation derived from (a). c, We used 
an allometric equation from literature37 to calculate AGB from the CD predicted 

DBH shown in (b). Predicted AGB is here compared with destructively measured 
AGB. d, While samples shown in a–c are all outside forests, (d) shows 793 
field-measured trees from Rwanda’s natural forest. As in (a), DBH was predicted 
from CD. The bias was calculated following equation (1).

http://www.nature.com/natureclimatechange
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Comparison of aboveground carbon estimations at 
country scale. a, Comparison of predicted total aboveground carbon stocks by 
this study, NFI and existing global products for non-forest areas. b, Same as (a) 
but for natural forests. c, Comparison of predicted aboveground carbon density 
by this study, NFI, and existing global products for non-forest areas. d, Same as 
(c) but for natural forests. e, Correlation matrix showing the two-tailored Pearson 

correlation for 1×1 km2 grids between different biomass datasets. Note that ref. 
45 does not report values above 85 Mg biomass per hectare (Supplementary Fig. 
2), explaining the lower correlation values. P < 0.001 for all correlations. (^ We 
selected the 2010 version; - Natural forest is not considered as part of the NFI; * 
ref. 40 and ref. 41).
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Extended Data Fig. 5 | Tree crown model evaluation at plot level. We manually labelled 6,591 trees and compared predictions and labelled trees at plot level. a, Tree 
density, b, canopy area, c, mean crown size. Each point represents one 25×25 m grid, n = 153. The bias was calculated following equation (2). d, Density distribution of 
the crown areas in the training and test dataset.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 6 | Visual illustration of tree count and carbon stock per 
land cover type in Rwanda. a, Area size (1000 ha) covered by different land 
cover types, and b, tree count per land cover type (million trees), and c, carbon 

stocks per land cover type (TgC). Although natural forests cover a small portion 
of land, they are home to a remarkable number of trees with the largest C stocks 
of the country.

http://www.nature.com/natureclimatechange
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Extended Data Fig. 7 | Tree properties of different landscape types. a, 
Percentage covered by different crown sizes in each landscape type. The percent 
number shows the contribution of the landscape type to the total area. b, 
Percentage covered by each landscape type in different crown size categories. 
c, Total count of trees by landscape type. d, Boxplot showing the average 
number of trees per ha by landscape type. e, Same as d but for tree cover. f, Total 
estimated carbon stock per landscape type. g, Barplots showing the distribution 
of average carbon stock per ha per landscape type, and h, boxplots showing 

the average carbon stock per tree per landscape type. i, Average tree density 
per tree species in Rwanda. Species data are from Rwanda national forest map 
of 201251. In boxplots in d, e and h (from left to right), the start of the horizontal 
line represents the minimum value, vertical lines represents first quartile, 
median and third quartile values respectively, and the end of the horizontal 
line represents the maximum value. In i, lines from left to right represent the 
minimum, first quartile, median, third quartile and maximum values. Number of 
trees = 355,268,345.

http://www.nature.com/natureclimatechange


Nature Climate Change

Article https://doi.org/10.1038/s41558-022-01544-w

Extended Data Fig. 8 | Beyond Rwanda. a, We took 150 (n = 150) random 1 × 1 km 
samples and aggregated the predicted tree-level carbon stocks and compared 
the results to previously published maps using two-tailored Pearson correlation. 
We did not include ref. 61 because of the coarse native resolution which did not 
guarantee that the same areas were compared. Note that ref. 45 does not report 
values above 85 Mg biomass per hectare, explaining the lower correlation 

values. P < 0.001 for all correlations. b, The model trained on the Rwanda aerial 
images was directly applied on aerial images from France (20 cm) and c, NAIP 
aerial images at 60 cm. In boxplots in a, lines from top to bottom represent the 
maximum, third quartile, median, first quartile and minimum values. Credit: 
photographs in b, USGS NAIP; c, IGN France.
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Extended Data Table 1 | Evaluation with field data

a, We compared our tree-level carbon stock estimates aggregated to 1 ha grids with field data from different sources. The exact location of the NFI plots was unknown, so we used averages 
of the areas close by. The statistics were then calculated for averages per class, except for natural forests where exact plot coordinates were available, therefore, comparisons could be done 
per plot. We then weighted the bias according to the relative area at the national scale to derive a nation-wide uncertainty of 16.9% (NFI total C in TOF: 8.35 TgC; this study estimates 6.95 TgC). 
*The NFI original measurements are the aboveground biomass expressed in volume (m3). We have converted them in weight (metric tonnes) using the conversion rate: 1 m3 = 0.714 tonne (ref. 65) 
which assumes an overall average wood density of 0.714 g/cm3 per tree, then multiplied by the AGB-to-AGC conversion factor: 0.47 to get the C equivalent. b, Different sources of uncertainty 
and how we evaluated and quantified their impact. Errors at the biome level may be systematic. Errors at tree level were evaluated with equation (1), and errors at biome and plot level with 
equation (2)

http://www.nature.com/natureclimatechange
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Extended Data Table 2 | Evaluation

a, Evaluation of the crown diameter to stem diameter conversion. Four CD–DBH equations were established, each using a random subset of 50% of the data. Tree biomass was predicted with 
each equation and aggregated to the hectare level. We then calculated the RMSE, rRMSE and bias between the 4 predictions for each 1 ha grid. Results shown here are aggregated over land 
cover classes. b, Tree crown model evaluation at pixel level. Confusion matrix between predicted and 6,591 manually labelled trees. These data are independent and were not used to establish 
or validate the model and the results.

http://www.nature.com/natureclimatechange
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The aerial image data were provided by the Centre for Geographic Information Systems and Remote Sensing of University of Rwanda. There 
was no special software involved

Data analysis Only free and open source software was used for data analysis: Python (3.8), RStudio (1.4), QGIS (3.22), GDAL tools (3.1). The deep learning 
code was written in Python (3.8) using Tensoflow (2.5). The clumped trees separation code was written in Python (3.8)
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Global tree cover maps are available at http://earthenginepartners.appspot.com/science-2013-global-forest. Climate data are freely accessible through an online 
application to the Rwanda Meteorological Agency via http://mis.meteorwanda.gov.rw/. Aerial images, and land use and land cover data are freely available for 
research through formal application to the Rwanda Land Management and Use Authority: https://www.rlma.rw. Products produced in this study: tree density, tree 
cover, carbon stock estimates are freely accessible at https://doi.org/10.5281/zenodo.7118176 (ref 65). The global database with tree measurements including 
biomass is available from J.C.. Tree measurements from Kenya are available from D.S.. Tree measurements from Rwanda are available from M.M..  Any more 
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Study description This study uses 198 aerial images at 0.25 m2 resolution. We used a deep learning algorithm trained on 97,574 hand-lebelled tree 
crowns to map 355,268,345 trees with a crown size larger than 0.25 square meters both inside and outside forests in Rwanda, a 
country located in East Africa, spanning a wide range of African landscapes: natural forests including  tropical montane rainforest, 
savannas, shrublands, tree plantations including young plantations and coppices, agroforestry trees in farmlands, and isolated trees. 
Furthermore, we apply state-of-the art allometric equations to estimate and map carbon stock of every mapped individual tree at the 
national scale.

Research sample The study is a nation-wide mapping of individual tree carbon stocks, where over 355 million trees were mapped, and charecterised in 
terms of their crown size and carbon stock all over Rwanda: a country with surface area of more than 25 thousand square kilomeres, 
excluding an area of about 4,000 square kilometers where 0.25 m resolution aerial images were not available.

Sampling strategy We did not do a specific sampling, because all trees and shrubs are included in the study. However, we have excluded any woody 
plant with a crown size below 0.25 m2, a threshold set based on the visual inspection of the aerial images, as trees of this size and 
above were still clearly visible

Data collection We use publicly available aerial images of Rwanda at 0.25x0.25 m resolution, collected in June - August of 2008 and 2009. The images 
were acquired from 3000 meter altitude above ground level, initially with a mean ground resolution of 0.22x0.22 m pixel size, using a 
Vexcel UltraCam-X aerial digital photography camera. They include a red, green, and blue band stored under 8 bit unsigned integer 
format. The aerial images cover 96% of the country, and the remaining 4% was filled by satellite images from WorldView-2, Ikonos, 
Spot, and QuickBird satellite sensors which are part of the publicly available dataset. For the carbon stocks estimation, we conducted 
a field campaign in December 2021 and measured 793 trees in the natural forest, and also used previously published 10,591 
measurements of pan-tropical non-forest trees, as well as previously published 952 non forest trees from Kenya. We validated the 
results with data from the Rwanda National Forest Inventory (NFI) from 2013/2014 collected in 373 NFI permanent plots with 2,415 
trees, and previously published 6161 measurements of afromontane rainforests in Rwanda.

Timing and spatial scale The aerial images are from June-August 2008 and 2009, and cover the extent: 28.86,-2.84 : 30.90,-1.05 of Rwanda in East Africa.

Data exclusions Aerial images were taken only during dry season of 2008 and 2009 because it is time when the sky is clear and features on the 
ground are very visible for the air-borne or space-borne sensor. However, 4% of the country (about 100,000 km2) was not covered 
by the aerial images due to permanent clouds or trans-boundary security issues during the images acquisition, which made it 
imperative to opt for image fusion approach using WorldView-2, Ikonos, Spot, and QuickBird satellite images. However, there is an 
area about 4,000 km2 around the location (longitude: 29.62, latitude: -1.95) where fusion has used a 2.5-m resolution images from 
Spot satellite sensor, and trees were not accurately visible. This area was excluded from further analysis.

Reproducibility Data were processed 3 times at different time intervals leading to the same results

Randomization NA, we have used all 355 milllion trees with no sampling

Blinding NA, we have used all 355 million trees with no sampling

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Fieldwork was conducted in December 2021. The conditions were humid with temperatures around 20oC

Location The data collection was done in South-western part of Rwanda, in the tropical montane forest located in a protected area of  
Nyungwe National Park (29.31, -2.51)

Access & import/export NA, the data were noted digitally

Disturbance Measuring the tree dimensions (crown diameter, tree height, diameter at breast height, tree location) did not involve disturbances. 
However, since the field collection area is a protected area with a natural forest, we had to work with forest rangers to guide our 
field work and advise on accessible plot locations. This way, we followed existing trails and ensured not to do any destructive 
sampling or vegetation clearing for new trails. To abide by the conditions of the area, our sample plots were limited to locations 
within 200 m from the existing major roads within the forest
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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