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This document reviews the calculation of time-independent and time-dependent molecular
properties in quantum chemistry. Sections 1.1, 1.2 and 1.3 are inspired to a large extent by the
lectures of Prof. Trygve Helgaker (University of Olso, Norway) [1]. For more intensive reviews,
see Refs. [2–4].

1 Time-independent molecular properties

1.1 Definition

We consider an isolated molecular system of Hamiltonian Ĥ0, and apply a static perturbation
V̂ (x), depending on a variable x (representing the strength of the perturbation), such that the
perturbation vanishes for x = 0. The perturbed Hamiltonian is

Ĥ(x) = Ĥ0 + V̂ (x), (1)

and the total energy can be expanded with respect to x as

E(x) =
〈Ψ(x)|Ĥ(x)|Ψ(x)〉

〈Ψ(x)|Ψ(x)〉
= E(0) + E(1)x+

1

2
E(2)x2 + · · · , (2)

where Ψ(x) is the wave function of the state considered, which is usually the ground state. In
this expansion, E(0) = E0 is the unperturbed energy associated to the Hamiltonian Ĥ0, and the
energy derivatives

E(1) =
dE

dx

∣

∣

∣

∣

x=0

; E(2) =
d2E

dx2

∣

∣

∣

∣

x=0

; etc... (3)

are called time-independent molecular properties. They are characteristic of the molecule and
its quantum state, and contain important information about the response of the system to the
perturbation.

1.2 Examples

1.2.1 Geometrical derivatives

One the most important example of a static perturbation is a deformation of the molecular
geometry (in the Born-Oppenheimer approximation). In this case, x corresponds to variations
of nuclei positions ∆Ri, and the total energy is expanded as

E({Ri}) = E(0) +
∑

i

E
(1)
i ∆Ri +

1

2

∑

i,j

E
(2)
i,j ∆Ri∆Rj + · · · , (4)

where

E
(1)
i =

∂E

∂Ri
(5)

is called the molecular gradient, and

E
(2)
i,j =

∂2E

∂Ri∂Rj
(6)

is called the molecular Hessian. These quantities are used in geometry optimization for locating
and characterizing critical points on the molecular potential energy surface (energy minimum,
saddle point at a transition state). There are also used for calculating spectroscopic constants
such as harmonic vibrational frequencies. Note that anharmonicity vibrational corrections re-

quire the calculation of third-order derivatives E
(3)
i,j,k = ∂3E/∂Ri∂Rj∂Rk.
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1.2.2 Electric properties

In this case, the perturbation applied is an external electrostatic potential v(r). Let us consider
the corresponding interaction energy

Eint =

∫

n(r)v(r)dr, (7)

where n(r) is the charge density of the system. Expanding the potential v(r) around an origin
point r = 0, we have

v(r) = v(0) +
∑

i

∂v

∂ri

∣

∣

∣

∣

r=0

ri +
1

2

∑

i,j

∂2v

∂ri∂rj

∣

∣

∣

∣

r=0

rirj + · · ·

= v(0) −
∑

i

Ei ri −
1

2

∑

i,j

Fi,j rirj + · · · , (8)

where v(0) is a constant potential, Ei are the components of the corresponding electric field,
and Fi,j are the components of the electric field gradient. The interaction energy can thus be
expanded as

Eint = q v(0) −
∑

i

µi Ei −
1

2

∑

i,j

Qi,j Fi,j + · · · , (9)

where q =
∫

n(r)dr is the electric charge of the system, µi =
∫

n(r)ri dr are the components of
the electric dipole moment, and Qi,j =

∫

n(r)rirj dr are the components of electric quadrupole
moment. Hence, these properties can be defined as energy derivatives

q =
∂E

∂v(0)
; µi = −

∂E

∂Ei
; Qi,j = −2

∂E

∂Fi,j
. (10)

We can further decompose the dipole moment into permanent and field-induced contributions

µi = µ0,i +
∑

j

αi,jEj + · · · , (11)

which leads to the definition of the permanent electric dipole moment

µ0,i = −
∂E

∂Ei

∣

∣

∣

∣

E=0

, (12)

and the electric dipole polarizability

αi,j = −
∂2E

∂Ei∂Ej

∣

∣

∣

∣

E=0

. (13)

1.2.3 Magnetic properties

For magnetic properties, we consider the double expansion of the total energy with respect to
nuclear magnetic dipole moments ma (a refers to an atomic nucleus) and an externally applied
magnetic field B

E({ma} , B) = E(0) +
∑

a

E(10)
a ma + E(01)B+

1

2

∑

a,b

E
(20)
a,b mamb +

∑

a

E(11)
a maB+

1

2
E(02)B2 + · · · ,

(14)
the dependence of the total energy on the nuclear magnetic dipole moments requiring the inclu-
sion of the hyperfine-interaction terms in the Hamiltonian.
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In nuclear magnetic resonance (NMR), we measure the coupling between ma and B, which
is quantified by the second-order derivative

E(11)
a =

∂2E

∂ma∂B
. (15)

In vacuum, the interaction energy is simply Evac = −ma B, giving E
(11)
a,vac = −1. In a molecule,

due to the presence of electrons, it is modified by a few ppm, and we write E
(11)
a,mol = −1 + σa

where σa is the NMR shielding constant of the nucleus a. We also measure the nuclear spin-spin
coupling constants between two nuclei

E
(20)
a,b =

∂2E

∂ma∂mb

= Ja,b. (16)

In solution, only the indirect contribution to this coupling (mediated by the electrons) survives
and provides useful geometrical information about the molecule.

Similarly to the corresponding electric properties, we can also define properties such as the
permanent magnetic dipole moment M0 = −∂E/∂B|B=0 and the dipole magnetizability ξ =
−∂2E/∂B2|B=0.

There are also other important magnetic properties used in electron paramagnetic resonance
(EPR) such as EPR hyperfine coupling constants and g values.

1.3 Calculation of energy derivatives

1.3.1 Numerical versus analytical differentiation

There are two ways of calculating derivatives, by numerical differentiation and by analytical
differentiation.

In numerical differentiation, the derivatives are calculated by finite differences or by polyno-
mial fitting.

• It is simple to implement.

• The numerical precision is limited.

• The computational efficiency is low.

• It is not general. Usually, only real-valued and static perturbations can be done.

In analytical differentiation, the derivatives are calculated explicitly from the analytical ex-
pressions.

• It is difficult to implement.

• The precision is higher.

• The computational efficiency is higher.

• It is more general. In particular, frequency-dependent perturbations are possible.

Overall, analytical differentiation is preferable.
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1.3.2 Sum-over-state expression for exact wave functions

For “exact” wave functions (full configuration interaction in a basis), we can use straightforward
perturbation theory to find the expression of the energy derivatives. Expanding the perturbation
operator V̂ (x) in powers of x, we have

Ĥ(x) = Ĥ0 + V̂ (1)x+
1

2
V̂ (2)x2 + · · · . (17)

The first-order energy derivative is

E(1) = 〈Ψ0|V̂
(1)|Ψ0〉, (18)

where Ψ0 is the exact wave function of the unperturbed Hamiltonian Ĥ0 for the state considered,
normalized such that 〈Ψ0|Ψ0〉 = 1. Similarly, the second-order energy derivative is found from
the first-order wave function correction Ψ(1), using intermediate normalization 〈Ψ0|Ψ(x)〉 = 1,

E(2) = 〈Ψ0|V̂
(2)|Ψ0〉+ 2〈Ψ0|V̂

(1)|Ψ(1)〉

= 〈Ψ0|V̂
(2)|Ψ0〉 − 2

∑

n 6=0

〈Ψ0|V̂
(1)|Ψn〉〈Ψn|V̂

(1)|Ψ0〉

En − E0
, (19)

where Ψn and En form a set of complete exact eigenstates and associated eigenvalues of Ĥ0.
This last expression is very impractical since we need to know all the exact states of Ĥ0,

which is a complicated many-body Hamiltonian. Moreover, for approximate methods such as
Hartree-Fock, it is not clear what we should use for Ψn and En.

1.3.3 General expressions for approximate methods

In an (approximate) electronic-structure method, the total energy E(x) is obtained by optimizing
parameters p = (p1, p2, ....) in an energy function E(x,p) for each fixed value of x. The final
total energy E(x) is obtained for the optimal value of the parameters po(x) which are functions
of x

E(x) = E(x,po(x)). (20)

Note that the optimization is not necessarily variational, i.e. the optimization criterion is not
necessarily to minimize E(x,p) with respect to the parameters p.

Examples:

• Hartree-Fock (HF), Kohn-Sham (KS): p are the orbital parameters. The parameters are
variational.

• Multiconfiguration self-consistent field (MCSCF): p are the coefficients of the configura-
tions (or determinants) and the orbital parameters. All parameters are variational.

• Configuration interaction (CI): p are the coefficients of the configurations (or determinants)
and the orbital parameters. The coefficients of the configurations are variational but not
the orbital parameters.

• Coupled cluster (CC): p are the cluster amplitudes and the orbital parameters. None
parameters are variational.
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First-order energy derivative

The first-order derivative of E(x) with respect to x is made of two terms

dE(x)

dx
=

∂E(x,po)

∂x
+

∑

i

∂E(x,p)

∂pi

∣

∣

∣

∣

p=po

∂poi
∂x

, (21)

where the first term constitutes the explicit dependence on x and the second term constitutes
the implicit dependence on x. The derivative ∂poi /∂x appearing in the second term is called the
wave-function linear-response vector and contains information about how the electronic structure
changes when the system is perturbed. It is not straightforward to calculate it since we do not
know explicitly dependence of poi on x.

Where all the parameters are variational, there is an important simplification. Indeed, in
this case, the stationary condition (zero electronic gradient)

∂E(x,p)

∂pi

∣

∣

∣

∣

p=po

= 0, (22)

implies that the second term in Eq. (21) vanishes, so the first-order energy derivative reduces to

dE(x)

dx
=

∂E(x,po)

∂x
, (23)

and we do not need the wave-function linear-response vector.
For example, for the calculation of the HF molecular gradient, we need to consider only

the explicit dependence on the nuclear positions in the Hamiltonian and in the wave function,
but not the implicit dependence of the orbital coefficients on the nuclear positions since these
parameters are variational.

Second-order energy derivative

We will only consider the case where all the parameters are variational. In this case, the second-
order derivative of E(x) is obtained by taking the derivative of Eq. (23)

d2E(x)

dx2
=

∂2E(x,po)

∂x2
+

∑

i

∂2E(x,p)

∂x∂pi

∣

∣

∣

∣

p=po

∂poi
∂x

, (24)

where the perturbed electronic gradient ∂2E(x,p)/∂x∂pi|p=po is not zero. We thus now need the
wave-function linear-response vector.

Note that we need only the first-order derivative of the wave function to calculate the second-
order derivative of the energy. More generally, we have the so-called 2n+1 rule: For variational
parameters, the derivatives of the wave function to order n determine the energy derivatives to
order 2n+ 1.

Linear response equations

In order to obtain the wave-function linear-response vector ∂poi /∂x in the case where all the
parameters are variational, we start by noting that the stationary condition is true for all x

∀x,
∂E(x,p)

∂pi

∣

∣

∣

∣

p=po

= 0, (25)

which means that we can take the first-order derivative of Eq. (25) with respect to x, giving

∂2E(x,p)

∂x∂pi

∣

∣

∣

∣

p=po

+
∑

j

∂2E(x,p)

∂pi∂pj

∣

∣

∣

∣

p=po

∂poj
∂x

= 0. (26)
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We thus arrive at the linear response equations

∑

j

∂2E(x,p)

∂pi∂pj

∣

∣

∣

∣

p=po

∂poj
∂x

= −
∂2E(x,p)

∂x∂pi

∣

∣

∣

∣

p=po

, (27)

which is a linear system of equations whose solution gives the wave-function linear-response
vector ∂poi /∂x. Remember that, in practice, we are interested in energy derivatives evaluated
at x = 0. Therefore, these equations must in fact be solved using the unperturbed electronic
Hessian ∂2E(x = 0,p)/∂pi∂pj (independent of the perturbation). Since its dimensions are
usually large, the response equations are usually solved iteratively without explicitly constructing
and storing the Hessian matrix.

Remark: Lagrangian formalism for non-variational parameters

For methods with non-variational parameters (CI, CC, MP2, ...), we can simplify the calcu-
lation by using the technique of Lagrange’s multipliers. Let us consider the case of CI with
parameters p = (c,κ) where c are the coefficients of the configurations which are variational,
and κ are the orbital rotation parameters which are non variational. Indeed, the orbital rota-
tion parameters makes the HF energy stationary, ∂EHF(x,κ)/∂κi = 0, but not the CI energy,
∂ECI(x, c,κ)/∂κi 6= 0. In this case, we define the Lagrange function LCI(x, c,κ, κ̄) depending
on Lagrange’s multipliers κ̄

LCI(x, c,κ, κ̄) = ECI(x, c,κ) +
∑

i

κ̄i
∂EHF(x,κ)

∂κi
. (28)

For all values of x, LCI(x, c,κ, κ̄) takes the same value than ECI(x, c,κ), but LCI(x, c,κ, κ̄) has
the advantage of being stationary with respect to all parameters c, κ and κ̄. This simplifies
the calculation of the derivatives with respect to x, at the price of determining the Lagrange’s
multipliers κ̄.

1.4 Example of linear-response equations for Hartree-Fock: Coupled-perturbed Hartree-

Fock

1.4.1 Exponential parametrization

For optimizing the orbitals in the HF determinant wave function, it is convenient to use an
exponential parametrization

|Φ(κ)〉 = eκ̂|Φ0〉, (29)

where eκ̂ is an unitary operator performing rotations between occupied and virtual spin orbitals
in a reference determinant wave function Φ0. This rotation operator is constructed from an anti-
Hermitian single-excitation operator, κ̂ = −κ̂†, which can be written in the second-quantization
formalism as

κ̂ =

occ
∑

a

vir
∑

r

(

κarâ
†
râa − κ∗arâ

†
aâr

)

, (30)

where â†k and âk are the creation and annihilation operators of the spin orbital k, respectively,
and the indices a and r refer to occupied and virtual spin orbitals in the reference determinant,
respectively. The parameters κ = {κar} are called the orbital rotation parameters. In comparison
to the orbital coefficients on the atomic basis functions, the orbital rotation parameters have the
advantage of providing a non-redundant parametrization of the wave function, so that one can
vary them independently without having to impose any constraints.
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At each step of the optimization, the orbitals in the reference determinant Φ0 are updated
so that one always considers variations of the orbital rotation parameters around κ = 0. The
expansion of the HF wave function with respect to κ thus writes

|Φ(κ)〉 =

(

1̂ + κ̂+
1

2
κ̂2 + · · ·

)

|Φ0〉

= |Φ0〉+
occ
∑

a

vir
∑

r

κar|Φ
r
a〉

+

[

1

2

occ
∑

a

occ
∑

b

vir
∑

r

vir
∑

s

κarκbs|Φ
rs
ab〉 −

1

2

occ
∑

a

vir
∑

r

κarκ
∗
ar|Φ0〉

]

+ · · · , (31)

where |Φr
a〉 = â†râa|Φ0〉 is a singly excited determinant and |Φrs

ab〉 = â†râaâ
†
sâb|Φ0〉 is a doubly

excited determinant. Note that |Φrs
ab〉 = 0 if a = b or r = s, since a given spin orbital cannot be

annihilated or created more than once.

1.4.2 Electronic gradient and Hessian

We now want to calculate the HF electronic gradient and Hessian, i.e. the first- and second-order
derivatives of the HF total energy

EHF(κ) =
〈Φ(κ)|Ĥ0|Φ(κ)〉

〈Φ(κ)|Φ(κ)〉
(32)

with respect to the parameters κ. Here, we will only consider the case of real-valued orbitals and
real-valued orbital parameters κ∗ar = κar. In this case, from Eq. (31), the first- and second-order
derivatives of the HF wave function |Φ(κ)〉 are

∂|Φ(κ)〉

∂κar

∣

∣

∣

∣

κ=0

= |Φr
a〉, (33)

and

∂2|Φ(κ)〉

∂κar∂κbs

∣

∣

∣

∣

κ=0

= |Φ̃rs
ab〉 =

{

|Φrs
ab〉 if a 6= b or r 6= s

−|Φ0〉 if a = b and r = s.
(34)

Exercise: Assuming the reference wave function Φ0 is normalized, 〈Φ0|Φ0〉 = 1, show that
the HF electronic gradient writes

∂EHF

∂κar

∣

∣

∣

∣

κ=0

= 2〈Φr
a|Ĥ0|Φ0〉, (35)

and is thus zero for converged HF spin orbitals (Brillouin’s theorem). Also show that the HF
electronic Hessian writes

∂2EHF

∂κar∂κbs

∣

∣

∣

∣

κ=0

= 2 (Aar,bs +Bar,bs) , (36)

with Aar,bs = 〈Φr
a|Ĥ0 − EHF|Φ

s
b〉 and Bar,bs = 〈Φ̃rs

ab|Ĥ0 − EHF|Φ0〉 = 〈Φrs
ab|Ĥ0|Φ0〉.

Exercise: Using the Slater-Condon rules for calculating expectation values of operators over
Slater determinants, show that

Aar,bs = (εr − εa) δabδrs + 〈rb||as〉, (37)
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and
Bar,bs = 〈rs||ab〉, (38)

where εk is the energy of the HF spin orbital k, and 〈rb||as〉 = 〈rb|as〉 − 〈rb|sa〉 are the anti-
symmetrized two-electron integrals over the HF spin orbitals.

1.4.3 Example: Calculation of the electric dipole polarizability

The so-called coupled-perturbed Hartree-Fock (CPHF) electric dipole polarizability is, according
to Eq. (24),

αCPHF
i,j = −

∂2EHF

∂Ei∂Ej

∣

∣

∣

∣

E=0

= −

[

∂2EHF

∂Ei∂Ej
+

occ
∑

a

vir
∑

r

∂2EHF

∂Ei∂κar

∣

∣

∣

∣

κ=0

∂κar
∂Ej

]

, (39)

where in this expression EHF is the HF energy in the presence of a perturbing uniform electric
field E

EHF(E,κ) =
〈Φ(κ)|Ĥ0 − µ̂ · E|Φ(κ)〉

〈Φ(κ)|Φ(κ)〉
, (40)

where µ̂ is the dipole moment operator.
Clearly, since the explicit dependence of HF energy on the electric field is linear, we have

∂2EHF/∂Ei∂Ej = 0. Similarly to the calculation leading to Eq. (35), the HF perturbed electronic
gradient is found to be

∂2EHF

∂Ei∂κar

∣

∣

∣

∣

κ=0

= −2〈Φr
a|µ̂i|Φ0〉 = −2〈r|µ̂i|a〉, (41)

where 〈r|µ̂i|a〉 are the transition dipole moment one-electron integrals. Therefore, Eq. (39) gives

αCPHF
i,j =

occ
∑

a

vir
∑

r

2〈r|µ̂i|a〉
∂κar
∂Ej

, (42)

and it only remains to calculate the wave-function linear-response vector ∂κar/∂Ej . This requires
the resolution of the HF linear-response equations, also known as the CPHF equations, which
write, using Eqs. (27), (36) and (41),

occ
∑

b

vir
∑

s

(Aar,bs +Bar,bs)
∂κbs
∂Ej

= 〈r|µ̂j|a〉. (43)

Using vector/matrix notations, the CPHF electric dipole polarizability finally writes

αCPHF
i,j = 2µT

i (A+B)−1
µj , (44)

where µi is the vector of components µi,ar = 〈r|µ̂i|a〉 and A + B is the matrix of elements
Aar,bs +Bar,bs.

Remark: The non-interacting case: Uncoupled Hartree-Fock

In the simplified case of no electron-electron interaction, also called uncoupled Hartree-Fock
(UCHF) in this context, we have Aar,bs = (εr − εa) δabδrs and Bar,bs = 0. Therefore, Eq. (44)
becomes

αUCHF
i,j = 2

occ
∑

a

vir
∑

r

〈r|µ̂i|a〉〈a|µ̂j |r〉

εr − εa
. (45)
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This simple expression is convenient for discussing the physical contents of the polarizability. In-
deed, it is clearly seen that the UCHF static dipole polarizability is proportional to the transition
dipole-moment integrals 〈r|µ̂i|a〉 and inversely proportional to the (non-interacting) excitation
energies εr − εa. Therefore, we expect the polarizability to be large for systems with low-lying
excited states that can be reached from the ground-state by dipole-allowed transitions. For ex-
ample, alkaline-earth atoms (Be, Mg, Ca, ...) with their low-lying 2p orbitals have much larger
polarizabilities than the rare-gas atoms (He, Ne, Ar, Kr, ...) which have large gaps.

Examples of spherically averaged static dipole polarizabilities ᾱ = (αx,x + αy,y + αz,z)/3 for
rare-gas and alkaline-earth-metal atoms calculated at the UCHF and CPHF levels are given in
Table 1. The polarizabilities are indeed one order of magnitude larger for alkaline-earth-metal
atoms than for rare-gas atoms. The CPHF polarizabilities are in relatively good agreement with
the estimated exact values for the rare-gas atoms. The UCHF or CPHF polarizabilities are less
accurate for alkaline-earth-metal atoms. This is due to the neglect of electron correlation effects,
which are particularly large in these systems because of their small HF-orbital gaps.

UCHF CPHF Estimated exact

He 1.00 1.32 1.383
Ne 1.98 2.38 2.669
Ar 10.1 10.8 11.08
Kr 15.9 16.5 16.79

Be 30.6 45.6 37.76
Mg 55.2 81.6 71.26
Ca 125 185 157.1

Table 1: Spherically averaged static dipole polarizability ᾱ = (αx,x+αy,y+αz,z)/3 (in bohr3) for rare-gas
and alkaline-earth-metal atoms calculated at the UCHF and CPHF levels with uncontracted d-aug-cc-
pCV5Z basis sets. Table extracted from Ref. [5].
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2 Time-dependent molecular properties

2.1 Time-dependent Schrödinger equation and quasi-energy

We now consider a time-dependent Hamiltonian with a periodic time-dependent perturbation
operator of the form

Ĥ(t) = Ĥ0 + x1V̂1e
−iωt + x2V̂2e

+iωt, (46)

where Ĥ0 is still the time-independent unperturbed Hamiltonian, x1 and x2 are (real-valued)
variables representing the strengths of each perturbation term, and ω is the pulsation (or fre-

quency). For the perturbation operator to be Hermitian, we must impose the condition V̂1 = V̂ †
2

and note that we will ultimately be interested in the case x1 = x2. Think of this perturba-
tion as representing the interaction of a molecule with a monochromatic electromagnetic field.
The time-dependent wave function Ψ̄(t) of this system satisfies the time-dependent Schrödinger
equation

[

Ĥ(t)− i
∂

∂t

]

|Ψ̄(t)〉 = 0. (47)

This equation can be reformulated in a more convenient form. We first extract a phase factor
F(t) out of the wave function

|Ψ̄(t)〉 = e−iF(t)|Ψ(t)〉, (48)

where Ψ(t) is a new time-dependent wave function which satisfies the equation
[

Ĥ(t)− i
∂

∂t

]

|Ψ(t)〉 = Ḟ(t)|Ψ(t)〉, (49)

where Ḟ(t) = dF/dt. Equation (49) is in the form of an eigenvalue equation, similar to the
time-independent Schrödinger equation, and Ḟ(t) plays a role similar to the energy. As the
Hamiltonian is time periodic, Ĥ(t + T ) = Ĥ(t) where T = 2π/ω is the period, we define the
quasi-energy as the time average of Ḟ(t) over a period

Q =
1

T

∫ T

0
dt Ḟ(t) =

1

T

∫ T

0
dt

〈Ψ(t)|
[

Ĥ(t)− i ∂
∂t

]

|Ψ(t)〉

〈Ψ(t)|Ψ(t)〉
. (50)

The advantage of introducing the quasi-energy is that there is variational principle similar to
the time-independent one, namely the exact wave function Ψ(t) solution of Eq. (49) makes Q
stationary with respect to variations in Ψ(t). In the time-independent case, the quasi-energy
Q reduces to the energy E and the wave function Ψ(t) reduces to the time-independent wave
function Ψ.

2.2 Definition of time-dependent molecular properties

The quasi-energy can be expanded with respect to the perturbation parameters x1 and x2

Q = Q(0) +Q(10)x1 +Q(01)x2 +
1

2
Q(20)x21 +Q(11)x1x2 +

1

2
Q(02)x22 + · · · , (51)

where Q(0) = 〈Ψ0|Ĥ0|Ψ0〉 = E(0) = E0 is the unperturbed energy corresponding to the unper-
turbed normalized state considered Ψ0, and the derivatives

Q(10) =
∂Q

∂x1

∣

∣

∣

∣

x=0

; Q(01) =
∂Q

∂x2

∣

∣

∣

∣

x=0

Q(20) =
∂2Q

∂x21

∣

∣

∣

∣

x=0

; Q(11) = 2
∂2Q

∂x1∂x2

∣

∣

∣

∣

x=0

; Q(02) =
∂2Q

∂x22

∣

∣

∣

∣

x=0

; etc.., (52)

define time-dependent molecular properties. They depend on the frequency ω of the perturbation,
and encompass the static molecular properties as a special case for ω = 0.
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2.3 Sum-over-state expressions for exact wave functions

Using standard time-dependent perturbation theory on Eq. (49), we obtain the first-order deriva-
tive Q(10)

Q(10) =
1

T

∫ T

0
dt〈Ψ0|V̂1e

−iωt|Ψ0〉

= 〈Ψ0|V̂1|Ψ0〉δ(ω), (53)

where we used (1/T )
∫ T

0 dt e−iωt = δ(ω). Here, δ(ω) must be understood as a Kronecker delta
for finite T and as a Dirac delta function for T → ∞. It is seen that only the static component
(ω = 0) is not zero for first-order molecular properties. This can be intuitively understood
as follows: We consider molecular properties for a fixed state |Ψ0〉, and thus “absorption” or
“emission” of a photon of frequency ω 6= 0 is not allowed by energy conservation.

Similarly, we find the second-order derivative Q(20) by perturbation theory on Eq. (49), using
intermediate normalization 〈Ψ0|Ψ(t)〉 = 1,

Q(20) =
1

T

∫ T

0
dt 2〈Ψ0|V̂1e

−iωt|Ψ(10)(t)〉, (54)

where the first-order wave function correction has the form

|Ψ(10)(t)〉 =
∑

n 6=0

c(10)n (t)e−iωnt|Ψn〉, (55)

where ωn = En − E0 are the excitation energies of the unperturbed system, and the first-order

coefficients c
(10)
n (t) are found using Eq. (49)

c(10)n (t) = −i

∫ t

−∞

dt′ 〈Ψn|V̂1e
−iωt′eγt

′

|Ψ0〉e
iωnt

′

, (56)

where the factor eγt
′

with γ → 0+ adiabatically switches on the perturbation from t′ → −∞,

imposing the initial condition c
(10)
n (t → −∞) = 0. Performing the integration over t′ gives

c(10)n (t) =
〈Ψn|V̂1e

−iωt|Ψ0〉e
iωnt

ω − ωn + iγ
, (57)

where the factor eγt has been dropped. Combining Eqs. (54), (55) and (57), we find

Q(20) =
1

T

∫ T

0
dt 2

∑

n 6=0

〈Ψ0|V̂1e
−iωt|Ψn〉〈Ψn|V̂1e

−iωt|Ψ0〉

ω − ωn + iγ

= 2
∑

n 6=0

〈Ψ0|V̂1|Ψn〉〈Ψn|V̂1|Ψ0〉

ω − ωn + iγ
δ(2ω), (58)

where again only the static component is not zero. The case of the mixed second-order derivative
Q(11) is more interesting. The calculation is similar to the previous one and gives

Q(11) =
1

T

∫ T

0
dt

[

〈Ψ0|V̂2 e
+iωt|Ψ(10)(t)〉+ 〈Ψ0|V̂1 e

−iωt|Ψ(01)(t)〉
]

=
1

T

∫ T

0
dt

[

∑

n 6=0

〈Ψ0|V̂2 e
+iωt|Ψn〉〈Ψn|V̂1 e

−iωt|Ψ0〉

ω − ωn + iγ

+
∑

n 6=0

〈Ψ0|V̂1 e
−iωt|Ψn〉〈Ψn|V̂2 e

+iωt|Ψ0〉

−ω − ωn + iγ

]

=
∑

n 6=0

〈Ψ0|V̂2|Ψn〉〈Ψn|V̂1|Ψ0〉

ω − ωn + iγ
−

∑

n 6=0

〈Ψ0|V̂1|Ψn〉〈Ψn|V̂2|Ψ0〉

ω + ωn − iγ
, (59)
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where we see that Q(11) does not vanish for ω 6= 0. This is truly a dynamic molecular property.
Physically, it corresponds to the following phenomenon: The “absorption” of a (virtual) photon
of frequency ω (due to the perturbation V̂1e

−iωt) followed by the “emission”of a (virtual) photon
of the same frequency (due to the perturbation V̂2e

+iωt), which is allowed since there is no net
change in energy, probing in the process the excited states of the system. The quantity Q(11) is
called the linear-response function of operators V̂2 and V̂1 in the spectral representation and it is
often denoted as Q(11) = 〈〈V̂2; V̂1〉〉ω. It can also be seen as giving the change in the expectation
value of the operator V̂2 due to the perturbation V̂1e

−iωt. The linear-response function has
poles in ω at the excitation energies of the unperturbed system ωn = En − E0 (and at the de-
excitation energies −ωn for the second term), and hence gives access to all the excitation energies
of the system. The infinitesimal imaginary shifts ±iγ are kept because they are important for
manipulation of the linear-response function using complex analysis.

Similarly, higher-order derivatives of the quasi-energy Q leads to quadratic-response func-
tions, cubic-response functions, etc...

Example of the dynamic electric dipole polarizability

The simplest example of a second-order dynamic molecular property is the dynamic electric
dipole polarizability. We consider the following perturbed Hamiltonian

Ĥ(t) = Ĥ0 −E+ · µ̂ e−iωt −E− · µ̂ e+iωt, (60)

where E+ and E− are the amplitudes of the oscillating electric field and µ̂ is the dipole-moment
operator. The amplitudes E+ and E− are distinguished for the theoretical derivation but we
will eventually be interested in the physical case E+ = E− = E. The dynamic electric dipole
polarizability is then defined as the mixed second-order derivative

αi,j(ω) = −
∂2Q

∂E−
i ∂E

+
j

∣

∣

∣

∣

E=0

, (61)

where E = 0 refers to E+ = E− = 0. Using Eq. (59) with V̂2 = −µ̂i and V̂1 = −µ̂j, we find

αi,j(ω) = −
∑

n 6=0

〈Ψ0|µ̂i|Ψn〉〈Ψn|µ̂j |Ψ0〉

ω − ωn + iγ
+

∑

n 6=0

〈Ψ0|µ̂j |Ψn〉〈Ψn|µ̂i|Ψ0〉

ω + ωn − iγ
. (62)

We are often interested only in the spherical average (or isotropic component) of the polar-
izability tensor ᾱ(ω) = (1/3)

∑

i αi,i(ω), which can be written as (disregarding the infinitesimal
shifts ±iγ)

ᾱ(ω) =
∑

n 6=0

fn
ω2
n − ω2

, (63)

where fn are the oscillator strengths

fn =
2

3
ωn

∑

i

|〈Ψ0|µ̂i|Ψn〉|
2 . (64)

The oscillator strength fn gives the intensity in the absorption or emission spectrum of the
electronic transition from state |Ψ0〉 to state |Ψn〉 corresponding to the excitation energy ωn.
The knowledge of the dynamic polarizability ᾱ(ω) thus gives access to the full absorption or
emission spectrum of the system.
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2.4 General expressions for approximate methods

Just like in the static case, the previous expressions of the dynamic molecular properties are not
applicable for approximate methods such HF, MCSCF, etc... Due to the analogy between the
quasi-energy Q in the dynamic case and the energy E in the static case, essentially the same
expressions derived in Section 1.3.3 for approximate methods apply here as well.

The quasi-energy Q is obtained by plugging optimal parameters po(x1, x2) in a quasi-energy
function Q(x1, x2;p)

Q(x1, x2) = Q(x1, x2;p
o(x1, x2)). (65)

In contrast to the static case, the parameters now depend on time and take complex values.
They are written as

p = c e−iωt + d∗ e+iωt, (66)

where c and d∗ are complex numbers. The complex conjugate d∗ is introduced instead of d for
symmetry reason. We will consider only the case where all the parameters are variational, i.e.
fulfilling the stationary conditions

∂Q

∂c∗i

∣

∣

∣

∣

p=po

= 0 and
∂Q

∂d∗i

∣

∣

∣

∣

p=po

= 0, (67)

and similarly for the complex-conjugate equations. Note that the case of non-variational param-
eters can be treated using the Lagrangian formalism. Thus, only the explicit dependence term
contributes to the first-order derivative of the quasi-energy

∂Q

∂x1
=

∂Q

∂x1
, (68)

and the second-order derivative of the quasi-energy is

∂2Q

∂x1∂x2
=

∂2Q

∂x1∂x2
+

∑

i

(

∂2Q

∂x1∂ci

∂ci
∂x2

+
∂2Q

∂x1∂di

∂di
∂x2

+
∂2Q

∂x1∂c∗i

∂c∗i
∂x2

+
∂2Q

∂x1∂d∗i

∂d∗i
∂x2

)

, (69)

where it is understood that the parameters are evaluated at their optimal values p = po.
The wave-function linear-response vectors ∂ci/∂x2 and ∂di/∂x2 are determined from the time-
dependent linear-response equations, written in a 2× 2-matrix form,

∑

j





∂2Q
∂c∗

i
∂cj

∂2Q
∂c∗

i
∂dj

∂2Q
∂d∗

i
∂cj

∂2Q
∂d∗

i
∂dj









∂cj
∂x2

∂dj
∂x2



 = −





∂2Q
∂x2∂c

∗

i

∂2Q
∂x2∂d

∗

i



 , (70)

where it has been assumed that the terms ∂2Q/∂c∗i ∂c
∗
j , ∂

2Q/∂d∗i ∂d
∗
j , and ∂2Q/∂c∗i ∂d

∗
j vanish.

This is indeed normally the case, as it will be illustrated in the next section for time-dependent
Hartree-Fock. The linear-response vectors ∂c∗i /∂x2 and ∂d∗i /∂x2 satisfy a similar equation.

2.5 Example: Time-dependent Hartree-Fock

2.5.1 Time-dependent electronic Hessian

According to Eq. (66), the orbital rotation parameters are written as

κ = c e−iωt + d∗ e+iωt, (71)

and we want to calculate the second-order derivatives of the HF quasi-energy

QHF(κ) =
1

T

∫ T

0
dt

〈Φ(κ)|Ĥ0 − i ∂
∂t
|Φ(κ)〉

〈Φ(κ)|Φ(κ)〉
, (72)
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with respect to the parameters c, c∗, d, and d∗. We will work out the general case of complex-
valued HF orbitals. By plugging the time-dependent parameters of Eq. (71) in the expansion of
the HF wave function |Φ(κ)〉 in Eq. (31), we find that the only non-zero first- and second-order
derivatives of |Φ(κ)〉 are

∂|Φ(κ)〉

∂car

∣

∣

∣

∣

κ=0

= e−iωt|Φr
a〉, (73)

∂|Φ(κ)〉

∂d∗ar

∣

∣

∣

∣

κ=0

= e+iωt|Φr
a〉, (74)

and
∂2|Φ(κ)〉

∂car∂cbs

∣

∣

∣

∣

κ=0

= e−2iωt|Φrs
ab〉, (75)

∂2|Φ(κ)〉

∂d∗ar∂d
∗
bs

∣

∣

∣

∣

κ=0

= e+2iωt|Φrs
ab〉, (76)

∂2|Φ(κ)〉

∂car∂d
∗
bs

∣

∣

∣

∣

κ=0

=
∂2|Φ(κ)〉

∂d∗ar∂cbs

∣

∣

∣

∣

κ=0

= |Φrs
ab〉, (77)

∂2|Φ(κ)〉

∂c∗ar∂car

∣

∣

∣

∣

κ=0

=
∂2|Φ(κ)〉

∂d∗ar∂dar

∣

∣

∣

∣

κ=0

= −|Φ0〉, (78)

∂2|Φ(κ)〉

∂car∂dar

∣

∣

∣

∣

κ=0

= −e−2iωt|Φ0〉, (79)

∂2|Φ(κ)〉

∂c∗ar∂d
∗
ar

∣

∣

∣

∣

κ=0

= −e+2iωt|Φ0〉. (80)

Exercise: By using Eqs. (73)-(80) and performing the time average in Eq. (72), show that
the second-order derivatives of the HF quasi-energy are, for ω 6= 0,

∂2QHF

∂c∗ar∂cbs

∣

∣

∣

∣

κ=0

= Aar,bs − ωSar,bs, (81)

∂2QHF

∂d∗ar∂dbs

∣

∣

∣

∣

κ=0

= A∗
ar,bs + ωS∗

ar,bs, (82)

∂2QHF

∂c∗ar∂dbs

∣

∣

∣

∣

κ=0

= Bar,bs, (83)

∂2QHF

∂d∗ar∂cbs

∣

∣

∣

∣

κ=0

= B∗
ar,bs, (84)

where Aar,bs = 〈Φr
a|Ĥ0 − EHF|Φ

s
b〉 = (εr − εa) δabδrs + 〈rb||as〉, Bar,bs = 〈Φrs

ab|Ĥ0|Φ0〉 = 〈rs||ab〉
and Sar,bs = 〈Φr

a|Φ
s
b〉 = δabδrs.
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2.5.2 Time-dependent linear-response equation

In matrix/vector notations, the time-dependent linear-response equation of Eq. (70) takes the
following form in HF

[(

A B

B∗ A∗

)

− ω

(

1 0

0 −1

)](

X

Y

)

= −

(

V

W

)

, (85)

where A and B are the matrices of elements Aar,bs and Bar,bs, respectively, 1 is the identity
matrix, (X,Y) is the linear-response vector and (V,W) is the perturbed gradient vector. It
is interesting to consider the linear-response equation without the right-hand-side perturbation
term, which gives the following generalized eigenvalue equation

(

A B

B∗ A∗

)(

Xn

Yn

)

= ωn

(

1 0

0 −1

)(

Xn

Yn

)

. (86)

Note that the matrix A is Hermitian and the matrix B is symmetric, and thus the 2× 2-block
matrix on the left-hand-side of Eq. (86) is Hermitian. However, the 2 × 2-block matrix on
the right-hand-side of Eq. (86) is not positive definite. Eq. (86) is not a Hermitian eigenvalue
equation but a pseudo-Hermitian eigenvalue equation. One can show that if the 2 × 2-block
matrix on the left-hand-side of Eq. (86) is positive definite then all the eigenvalues ωn are real
numbers. Since this matrix corresponds to the Hessian of the HF energy with respect to the
orbital rotation parameters, it is positive definite if the HF solution is a stable minimum with
respect to the variation of all orbital parameters. This is known as the Hartree-Fock stability
conditions.

The solutions of Eq. (86) come in pairs: If (Xn,Yn) is an eigenvector with eigenvalue ωn,
then it is easy to check that (Y∗

n,X
∗
n) is also an eigenvector with opposite eigenvalue −ωn. When

calculating the dynamic dipole polarizability, we will see that the positive eigenvalues, ωn > 0,
correspond to excitation energies in the time-dependent Hartree-Fock (TDHF) approximation,
while the negative eigenvalues, ωn < 0, correspond to de-excitation energies.

2.5.3 Dynamic dipole polarizability

As a second-order derivative, the TDHF dynamic dipole polarizability is calculated according
to Eq. (69)

αTDHF
i,j (ω) = −

∂2QHF

∂E−
i ∂E

+
j

= −

[

∂2QHF

∂E−
i ∂E

+
j

+
occ
∑

a

vir
∑

r

∂2QHF

∂E−
i ∂car

∂car

∂E+
j

+
∂2QHF

∂E−
i ∂dar

∂dar

∂E+
j

+

occ
∑

a

vir
∑

r

∂2QHF

∂E−
i ∂c

∗
ar

∂c∗ar
∂E+

j

+
∂2QHF

∂E−
i ∂d

∗
ar

∂d∗ar
∂E+

j

]

, (87)

where all the terms are evaluated at E = 0 and κ = 0. In this expression QHF is the HF quasi-
energy of the perturbed system

QHF(E,κ) =
1

T

∫ T

0
dt

〈Φ(κ)|Ĥ(t)− i ∂
∂t
|Φ(κ)〉

〈Φ(κ)|Φ(κ)〉
, (88)

with the Hamiltonian Ĥ(t) in Eq. (60) which includes the oscillating electric field. As for the
static case, the second-order derivative ∂2QHF/∂E

−
i ∂E+

j vanishes, and the first two perturbed
gradients in Eq. (87) give the transition dipole-moment integrals

∂2QHF

∂E−
i ∂car

= −〈Φ0|µ̂i|Φ
r
a〉 = −〈a|µ̂i|r〉, (89)
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∂2QHF

∂E−
i ∂dar

= −〈Φr
a|µ̂i|Φ0〉 = −〈r|µ̂i|a〉, (90)

the two other terms being zero, ∂2QHF/∂E
−
i ∂c

∗
ar = ∂2QHF/∂E

−
i ∂d

∗
ar = 0. This leads to the

following expression for the polarizability

αTDHF
i,j (ω) =

(

µi

µ
∗
i

)† [(
A B

B∗ A∗

)

− ω

(

1 0

0 −1

)]−1(
µj

µ
∗
j

)

, (91)

where µi is the vector of elements µi,ar = 〈r|µ̂i|a〉.

Exercise: Check that the inverse of the time-dependent Hessian can be written as the fol-
lowing spectral representation:

[(

A B

B∗ A∗

)

− ω

(

1 0

0 −1

)]−1

=
∑

n

1

ωn − ω

(

Xn

Yn

)(

Xn

Yn

)†

+
1

ωn + ω

(

Y∗
n

X∗
n

)(

Y∗
n

X∗
n

)†

,

(92)
where the sum is over eigenvectors with positive eigenvalues ωn > 0 only. The following com-
pleteness relation will be assumed:

(

1 0

0 1

)

=
∑

n

(

Xn

−Yn

)(

Xn

Yn

)†

−

(

Y∗
n

−X∗
n

)(

Y∗
n

X∗
n

)†

. (93)

Plugging the spectral representation of Eq. (92) into Eq. (91), we finally arrive at, for real-
valued HF orbitals,

αTDHF
i,j (ω) = −

∑

n

µ
T
i (Xn +Yn) (Xn +Yn)

T
µj

ω − ωn
+

µ
T
i (Xn +Yn) (Xn +Yn)

T
µj

ω + ωn
. (94)

The comparison with the exact expression of the dynamic polarizability in Eq. (62) then confirms
that the eigenvalues ωn in Eq. (86) correspond to excitation energies. The corresponding TDHF
oscillator strengths are

fn =
2

3
ωn

∑

i

[

(Xn +Yn)
T
µi

]2
. (95)

2.5.4 Photoabsorption spectrum

TDHF can be used to calculate the discrete part of the photoabsorption spectrum of an electronic
system. Indeed, the resolution of the linear-response equation, Eq. (86), directly leads to the
excitation energies ωn from the ground state to state n, and to the associated oscillator strengths
fn (related to the probability of the transitions and therefore to the intensity of the spectrum).
Note, however, that linear-response theory does not provide the wave functions of the excited
states. This leads to the question of how to assign the calculated excitation energies to a physical
state.

It is useful to consider the so-called Tamm-Dancoff approximation (TDA) to linear-response
theory which corresponds to neglecting the matrix B in Eq. (86). After setting B = 0, Eq. (86)
simplifies to a standard Hermitian eigenvalue equation

AXn = ωnXn, (96)

where we recall that A is the matrix of the Hamiltonian (shifted by the HF energy) in the
basis of the single-excited determinants: Aar,bs = 〈Φr

a|Ĥ0 − EHF|Φ
s
b〉. Eq. (96) is simply a
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configuration-interaction calculation with only single excitations (CIS), whose resolution gives
the excited-state wave functions expanded in the basis of single-excited determinants

|Ψn〉 =

occ
∑

a

vir
∑

r

Xn,ar|Φ
r
a〉, (97)

and Xn,ar is the coefficient for the single orbital excitation a → r. Thus, in this case, the coeffi-
cients Xn exactly provide the physical contents of the excited state n as contributions of single
orbital excitations. Usually, one orbital excitation dominates over all the other orbital excita-
tions, and this is used to assign the state to this orbital excitation. By analogy, in the general
linear-response theory case without the TDA, Xn,ar + Yn,ar is often taken as an approximation
to the coefficient of the wave function of the excited state n on the single-excited determinant
Φr
a.
Table 2 shows an example of a TDHF calculation of excitation energies and oscillator

strengths, without and with the TDA, on the CO molecule. The results are compared with
those obtained with time-dependent density-functional theory (TDDFT) with the local-density
approximation (LDA), which shares essentially the same formalism, and with a more accurate
equation-of-motion coupled-cluster singles doubles (EOM-CCSD) calculation. Experimental val-
ues are also given. Due to the difficulty of extracting vertical excitation energies and oscillator
strengths from the experimental spectrum, the EOM-CCSD values are taken as reference.

The TDHF excitation energies to the low-lying valence spin-triplet states are very much
underestimated, while the TDHF excitation energies to the valence spin-singlet states tend to
be more accurate. The TDHF excitation energies to the (diffuse and high-lying) Rydberg states
tend to be overestimated. The TDHF underestimation of the excitation energies to the valence
spin-triplet states is connected to the so-called near-triplet Hartree-Fock instability. This refers to
the fact that, for this system, the spin-restricted Hartree-Fock (RHF) ground-state wave function
is close to being unstable to spin-triplet variations of the orbitals breaking the spin symmetry.
The TDA largely reduces the TDHF underestimation of the excitation energies to the valence
spin-triplet states, while not changing much the excitation energies to Rydberg states.

TDLDA does not suffer from near-triplet Hartree-Fock instability and overall gives more
accurate valence excitation energies than TDHF. However, the TDLDA Rydberg excitation
energies are much too low and pollute the valence spectrum. This is related to the fact that
the LDA ionization energy, given by the opposite of the HOMO orbital (I = −ǫHOMO), is much
too low. The somewhat opposite behaviors of TDHF and TDLDA suggest that more accurate
valence and Rydberg excitation energies can be obtained with a proper combination of these
two approaches. This is what is effectively done in TDDFT using (range-separated) hybrid
functionals.
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State Transition TDHF TDHF-TDA TDLDA TDLDA-TDA EOM-CCSD Expt

Valence excitation energies (eV)
3Π 5σ → 2π∗ 5.28 5.85 5.95 6.04 6.45 6.32
3Σ+ 1π → 2π∗ 6.33 7.79 8.38 8.54 8.42 8.51
1Π 5σ → 2π∗ 8.80 9.08 8.18 8.42 8.76 8.51
3∆ 1π → 2π∗ 7.87 8.74 9.16 9.20 9.39 9.36
3Σ− 1π → 2π∗ 9.37 9.73 9.84 9.84 9.97 9.88
1Σ− 1π → 2π∗ 9.37 9.73 9.84 9.84 10.19 9.88
1∆ 1π → 2π∗ 9.96 10.15 10.31 10.33 10.31 10.23
3Π 4σ → 2π∗ 13.05 13.31 11.40 11.43 12.49

Rydberg excitation energies (eV)
3Σ+ 5σ → 6σ 11.07 11.18 9.55 9.56 10.60 10.40
1Σ+ 5σ → 6σ 12.23 12.27 9.93 9.95 11.15 10.78
3Σ+ 5σ → 7σ 12.40 12.42 10.26 10.26 11.42 11.30
1Σ+ 5σ → 7σ 12.78 12.79 10.47 10.50 11.64 11.40
3Π 5σ → 3π 12.52 12.60 10.39 10.39 11.66 11.55
1Π 5σ → 3π 12.87 12.88 10.48 10.50 11.84 11.53

Ionization threshold: −ǫHOMO (eV)
15.11 15.11 9.12 9.12 15.58

MAD of excitation energies with respect to EOM-CCSD (eV)
Valence 0.89 0.49 0.37 0.33
Rydberg 0.93 0.97 1.21 1.19
Total 0.91 0.69 0.73 0.70

Oscillator strengths (×10−2)
1Π 5σ → 2π∗ 8.55 11.48 8.69 11.41 8.66
1Σ+ 5σ → 6σ 10.58 10.49 1.84 2.36 0.58
1Σ+ 5σ → 7σ 9.39 10.22 12.53 12.25 20.71
1Π 5σ → 3π 5.13 4.94 2.71 2.16 4.94

Table 2: Excitation energies and oscillator strengths of the COmolecule calculated by TDHF and TDLDA,
without and with the Tamm-Dancoff approximation (TDA), and by EOM-CCSD, using the Sadlej+ basis
set. Excitation energies above the ionization threshold are indicated in italics. Mean absolute deviations
(MADs) are calculated with respect to the EOM-CCSD values. Experimental values are also given for
comparison. Adapted from Ref. [6].
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