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ABSTRACT 
 Pump scheduling is a reputed demand-response tool 
for drinking water distribution. It is also a notorious 
difficult optimization problem. Mathematical 
programming is a privileged resolution approach, but 
efficiency highly depends on the strength of the 
considered mathematical models. This paper presents 
bound tightening and cut generation techniques to 
strengthen pump scheduling models. Numeric 
evaluations on both approximate and exact models show 
the benefit, if not the necessity, of such preprocessing. 
 
Keywords: water networks, pump scheduling, mixed-
integer nonlinear programming, preprocessing 

1. INTRODUCTION 
 A drinking water distribution network is an energy-
intensive utility with strong mitigation capacities: by 
intelligently managing the storage capacities of the 
water tanks and the nonlinear efficiency of the pumps, 
the energy consumption of pumping can be driven by 
tariff-based incentive [1,2]. Pump scheduling is the 
operational problem of deciding when and how to 
activate the pumps in a near future — the typical 
planning horizon is the day after — to meet the forecast 
demand profile at minimum cost given a dynamic 
electricity tariff. This optimization problem conjugates 
binary decisions (pump on/off status) and nonconvex 
constraints (hydraulic head/flow relations) and is thus 
notoriously hard. Besides metaheuristics, mathematical 
programming is a popular resolution approach, as it is 
able to assess the quality of the computed solutions 
[1,3]. When based on a monolithic – more or less 
accurate – formulation of the problem [2,4,5], it is also 
easily implemented on top of any off-the-shelf mixed-
integer linear programming (MILP) solver. The 
underlying branch-and-bound algorithm relies on the 
iterative resolution of the linear programming (LP) 
relaxation, and its efficiency heavily depends on the 
strength and the size of this relaxation: too loose and the 
number of iterations increases, too large and the 
computational time for each iteration increases. As 
illustrated in Fig. 1 (left), a nonconvex constraint can be 
relaxed linearly: given the bounds on the implied 
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variables, the strength of the relaxation is directly linked 
to the tightness of these bounds. Preprocessing the 
mathematical model with bound tightening (BT) 
techniques [7,8] is thus of the utmost importance. 
Modern solvers run efficient systematic routines, but a 
deeper reduction is expected from problem-specific 
reasoning. The main issue is to figure out sophisticated, 
but fast approaches in order to balance the additional 
time for preprocessing with the expected time reduction 
of the optimization process. 
 

 
Fig. 1 Left: a nonconvex constraint (orange) and a convex relaxation RCVX 

(gray) defined by linear constraints within the variable bounds 𝑄, 𝑄. Right: a 

piecewise linear approximation (APWL) defined with additional binary 
variables. 

 
 In this paper, we explore different techniques to be 
used in a preprocessing phase, both to tighten the 
variable bounds and to generate new valid constraints. 
We then present an empirical study to evaluate the 
impact of this preprocessing in a range of contexts: 
simple and complex networks, large and fine grain 
planning horizons, relaxed and approximate models, and 
exact and approximate approaches. Our experimental 
results highlight the importance of preprocessing in the 
different contexts, allowing the solvers either to 
compute feasible solutions in a reasonable 
computational time for the hardest instances or to 
significantly accelerate their convergence to near-
optimal solutions, if not optimal. This work aims at 
emphasizing that the direct application of off-the-shelf 
MILP solvers leads to practical and competitive 
approaches for pump scheduling optimization when 
suitable BT techniques are enforced in a preprocessing 
step. To the best of our knowledge, the valid inequalities 
are novel in the context of water distribution and the 
iterative bound tightening technique by considering 
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multi-period relaxation has not been appeared in the 
literature.   
 The next section presents a standard formal 
definition of the problem as a mixed-integer nonlinear 
program. Section 3 presents two preprocessing 
techniques, both for bound tightening and for constraint 
generation. Section 4 shows the experimental results. 
Concluding remarks and hints for future research are 
presented in the last section of this paper. 
 
2. THE PUMP SCHEDULING MODEL 

We briefly present a mathematical model for the 
pump scheduling problem. More details can be found, 
e.g., in [4, 5]. A water distribution network can be 
formalized as a directed graph 𝐺 = (𝐽, 𝐴): arcs 𝑎 ∈ 𝐴 are 
either pipes 𝑎 ∈  𝐴𝐿 or pumps 𝑎 ∈ 𝐴𝐾, and nodes 𝑗 ∈ 𝐽 
represent either sources 𝑗 ∈ 𝐽𝑆, or service nodes (also 
called junctions) 𝑗 ∈  𝐽𝐽, or water tanks 𝑗 ∈ 𝐽𝑇. The 

scheduling horizon is discretized in typically 𝑇 = 24 
hourly time steps: 𝑡 ∈  𝕋, with 𝕋 = {0, … , 𝑇 − 1}. Some 
arcs are controllable, namely fixed-speed pumps and 
pipes equipped with gate valves, and have two possible 
states (i.e., on or off) at each time instant 𝑡. This is 
formulated as a boolean variable: 𝑥𝑎𝑡 = 0 if arc 𝑎 ∈ 𝐴 is 
inactive (i.e., flow cannot pass) and 𝑥𝑎𝑡 = 1, otherwise. 
Each arc 𝑎 ∈ 𝐴 between the nodes 𝑖 and 𝑗 is also 
associated with a function ϕ𝑎, which relates the flow 
𝑞𝑎𝑡 ∈ 𝕽 with the head (potential) loss 𝑣𝑎𝑡 = ℎ𝑖𝑡 − ℎ𝑗𝑡 ∈

𝕽 at time 𝑡 ∈ 𝕋. The head ℎ𝑗𝑡 at a water tank 𝑗 is 

proportional to the filling level, which is limited by the 
tank capacity. The pump scheduling problem can be 
stated as: 
 

(P): min  ∑ ∑ 𝑐𝑎𝑡
0  𝑥𝑎𝑡𝐴𝐾𝕋    +  𝑐𝑎𝑡

1  𝑞𝑎𝑡   
s.t.: 

𝑞𝑗𝑡 = 𝐷𝑗𝑡 , ∀𝑗 ∈ 𝐽𝐿 , 𝑡 ∈ 𝕋 
 

(1) 

ℎ𝑗𝑡+1 = ℎ𝑗𝑡 + σ𝑗𝑞𝑗𝑡 , ∀𝑗 ∈ 𝐽𝑇 , 𝑡 ∈ 𝕋 
 

(2) 

𝑞𝑎𝑡 ≥ 𝑄𝑎𝑡𝑥𝑎𝑡 , ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝕋 
 

(3) 

𝑞𝑎𝑡 ≤ 𝑄𝑎𝑡𝑥𝑎𝑡 , ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝕋 
 

(4) 

𝑣𝑎𝑡 ≥  ϕ(𝑞𝑎𝑡)  +  𝑉𝑎𝑡(1 − 𝑥𝑎𝑡), ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝕋 
 

(5) 

𝑣𝑎𝑡 ≤ ϕ(𝑞𝑎𝑡) + 𝑉𝑎𝑡(1 − 𝑥𝑎𝑡), ∀𝑎 ∈ 𝐴, 𝑡 ∈ 𝕋 
 

(6) 

𝐻𝑗𝑡 ≤ ℎ𝑗𝑡 ≤ 𝐻𝑗𝑡 , ∀𝑗 ∈ 𝐽𝑇 , 𝑡 ∈ 𝕋 
 

(7) 

𝑥 ∈ 𝑋, 𝑥 ∈ {0,1}𝐴×𝕋 
 

(8) 

The objective function is to minimize the electricity cost 
of pumping and the constraints describe, at each time 
step: (1) demand satisfaction at junctions 𝑗 where 𝑞𝑗𝑡 =
∑ 𝑞𝑎𝑡𝑎∈𝐴  is the residual flow, (2) flow conservation at 
tanks, (3)-(4) flow bounds w.r.t. arc status, (5)-(6) 

potential-flow relation w.r.t arc status, (7) tank 
capacities, (8) any additional linear condition on the 
controllable arcs (e.g., dependencies between parallel 
pumps or usage limits). Model (P) is a mixed-integer 
nonlinear program where disjunctions on the arc activity 
are modeled in constraints (2)-(5) with the so-called ‘big-

M’ values: 𝑄 ≤ 𝑄 denote bounds on the flows 𝑞 in active 

arcs, and 𝑉 ≤ 𝑉 denote bounds on the head loss 𝑣 in 
inactive arcs. 

In this paper, we consider solving (P) with an 
approximate method, as proposed e.g., in [2], and an 
exact method, proposed in [4]. Both are based on solving 
a MILP and using a hydraulic simulator to attempt to 
recover the feasibility of the MILP solutions w.r.t. (P). The 
two MILPs are built from (P) and differ in the 
reformulation of the nonconvex functions ϕ in 
constraints (5)-(6) as depicted in Fig. 1: the exact method 
uses the convex relaxation RCVX (left) and the 
approximate method uses the piecewise-linear 
approximation APWL (right). Each delimiting plane is 
defined by a linear constraint, as well as, in APWL, an 
additional binary variable. The speed of resolution of a 
MILP mostly depends on the strength of its LP relaxation 
(obtained by relaxing the integrality constraints (8)). We 
denote with R the feasible set of the LP relaxation, either 
of APWL or RCVX. The strength of R is, in turn, closely tied 
to the tightness of the variable bounds figuring in 
constraints (3)-(7), as well as to the number of binary 
variables which can be fixed a priori to 0 or 1. 
 

3. OPTIMIZATION-BASED BOUND TIGHTENING (OBBT) 
In this section, we present different bound 

tightening techniques for preprocessing the LP relaxation 
R. These are feasibility-oriented and optimization-based, 
i.e., they rely on minimizing/maximizing a variable on a 
suited (possibly nonconvex) relaxation of (P) to derive 
lower/upper bounds of the variable. For any such OBBT 
auxiliary problem, we denote with O its relaxed feasible 
set, as opposed to the relaxed set R. The choice of 
relaxation O is very sensitive: too tight and solving one 
auxiliary problem may be as hard as solving (P), too loose 
and it provides no new information to R that the 
optimization process cannot infer alone. 

3.1.  Steady-state relaxation with floating demand 

The tightness of big-M values – here the bounds on 
variables 𝑞 and 𝑣 in constraints (3)-(6) – is known to have 
a major impact on the strength of R. Suited to these 
steady-state flow/potential variables, a small-size and 
accurate relaxation for O is obtained by ignoring in (P) all 
the time steps except one. Such a steady-state relaxation 
is considered in [4, 8] where demand 𝐷𝑗𝑡 in (2) is allowed 
to vary between some known minimum and maximum 
values.  
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Since the arc flow bounds 𝑄𝑎𝑡 ,  𝑄𝑎𝑡 are active in 

constraints (3)-(4) only if arc 𝑎 is active at time 𝑡, we also 
enforce condition 𝑥𝑎𝑡 = 1 in O when computing these 
bounds: if O is infeasible under this condition, then arc 𝑎 
cannot be active and variables 𝑥𝑎𝑡  can be turned into 

constant 0 in R. Similarly, the head-loss bounds 𝑉𝑎𝑡 , 𝑉𝑎𝑡  
in constraints (5)-(6) are computed by enforcing 𝑥𝑎𝑡 = 0 
in O, and 𝑥𝑎𝑡  can be fixed to 1 in R in case of infeasibility. 
This principle, known as probing [11], allows reducing 
both the big-M values and the number of binary variables 
in R. This preprocessing is very fast, as it consists in 
solving at most 4 small nonconvex MINLPs (2 bounds on 
2 variables) for each arc. In practice, the minimum and 
maximum demand values in O can be obtained from the 
historical data of the given water network, making this 
preprocessing instance-independent.  

3.2.  Steady-state relaxation with fixed demand profiles 

Still, probing and strong bound reduction are unlikely 
to occur without considering the exact demand profile 𝐷 
for a given instance. Given 𝐷, we can actually apply 
procedure of Section 3.1 to each time step 𝑡, 
independently, by enforcing in O the original constraints 
(2) with fixed demand values. The nature and size of the 
OBBT problems do not change. Still, their number is 
multiplied by 𝑇. One trivial improvement is to aggregate 
the time steps with the same demand, making this 
preprocessing still fast for the considered network sizes. 

3.3. Multi-period relaxation for state variables 

One major feasibility issue in (P) comes from the 

tank capacities in constraints (7), as tight bounds 𝐻, 𝐻 on 
the water level in the tanks may have a great impact on 
the strength of both R and the steady-state relaxations. 
OBBT should then also be applied to these variables ℎ 
and the whole procedure – including the one described 
in Section 3.2 – be iterated so that any bound 
improvement is propagated by updating O in the 
subsequent OBBT problems. However, the steady-state 
relaxation is not relevant for applying OBBT to variables 
ℎ since the level at time 𝑡 directly depends on the 
decisions made at 𝑡 − 1 and before. We thus consider a 
multi-period relaxation O instead. The period length 
(from 2 to 𝑇) and the strength of O (with or without 
nonconvex or integrality constraints) must be chosen 
carefully w.r.t. the complexity of the water network and 
the criticality of these bounds. Employing a loose 
relaxation may still benefit the complete OBBT 
procedure, by propagation. 

3.4. Probing on related network elements 

We can apply the values obtained by probing 
techniques to related network elements. For instance, if 
a branch is served by one pump, we can strengthen 
constraints (7) by  

ℎ𝑗𝑡 ≥ 𝐻𝑗𝑡
1 𝑥𝑎𝑡 + 𝐻𝑗𝑡

0 (1 − 𝑥𝑎𝑡) (9) 

where 𝐻𝑗𝑡
1 , 𝐻𝑗𝑡

0  are the lower bounds on the level of a 

tank 𝑗 computed conditionally to the status of the pump 
𝑎 serving it. 

Similarly, we can consider another usual scheme: a 
pipe outgoing from a pumping station made of inter-
dependent pumps. By examining the effect on the pipe 
flow of activating each possible combination of pumps 
separately, we may observe disjoint operation intervals. 
We can then convexify the disjoint regions for flow and 
head loss following techniques from disjunctive 
programming [12] in order to strengthen constraints (3)-
(6). Note that computing the conditional bounds on the 
pipe appearing in these disjunctive constraints does not 
ask for running additional OBBT in the preprocessing, 
when it can directly be inferred from the conditional 
bounds on the pumps, from the pump inter-
dependencies, and from flow conservation. 

3.5. Pushing the objective with Mixed-Integer Rounding 

OBBT applies not only to decision variables 𝑦 but also 
to any (linear) variable composition 𝑓(𝑦). The resulting 
bounds are then enforced in (P) with additional linear 
constraints, e.g., 𝑓(𝑦) ≥ 𝐹. This procedure must be 
reserved for some promising compositions. We applied 
it to the minimum total of active pumps ∑ 𝑥𝑎𝑡𝑎∈𝐴,𝑡∈�̅�  
with �̅� ⊂ 𝕋. The intuition behind this choice is: (i) 
pushing up this lower bound mechanically increases the 
objective cost on R, (ii) limiting the period length in O (to 
[0, τ] or [τ, 𝑇]) ensures its tractability, (iii) less flexibility 
is given to O when restricted to those intervals as the 
level of the tanks is fixed at times 0 and 𝑇, (iv) since the 
number of active pumps (corresponding to 𝑓(𝑦) here) is 
an integer, we can apply a Mixed-Integer Rounding 
technique [11] to lift the constraint above as follows: 

𝑓(𝑦) ≥
1

𝐹 − ⌊𝐹⌋
𝐺(𝑦 − 𝑦∗) + ⌈𝐹⌉, 

(10) 

where 𝑦∗ denotes an optimal solution of the OBBT 
problem min

𝑦∈𝑂
𝑓 (𝑦), 𝐹 = 𝑓(𝑦∗) is the optimum value, 

and 𝐺 is the gradient of 𝑓 at 𝑦∗. If relaxation O is an LP, 
then gradient 𝐺 is directly derived from an optimal dual 
solution. 

4. COMPUTATIONAL EXPERIMENTS 

We empirically evaluate and compare the effect of 
the BT techniques and inequalities on a benchmark set 
[4] made of two networks – one reportedly easy 
(S=‘Simple FSD’ with 3 parallel pumps, 1 tank) and one 
reportedly hard (P= real network ‘Poormond’ with 7 
pumps, 4 gate valves, 5 tanks) – and on 3 horizon lengths 
(𝑇 = 12, 24, 48). Results below are given for each set 
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(denoted as, e.g., S24 or P48) as the average of the values 
obtained for the 5 instances. All algorithms were 
implemented in Python using the LP and MILP default 
solvers from Gurobi 9.1.1 and executed on a personal 
computer (Intel(R) Core(TM) i7-10810, 6 cores at 1.6 
GHz, 32GB). The details on the test instances, algorithms, 
parameters, and results can be found at: 
https://github.com/sofdem/gopslpnlpbb/tree/icae22. 

The variable bounds were initialized using the 
procedure described in Section 3.1. We use these non-
trivial bounds (called B0) as the baseline to start the 
OBBT procedure described in Sections 3.2 to 3.4 (called 
B1) and to evaluate their impact. Precisely, in B1, we 
solve the auxiliary optimization problems in turn up to 3 
consecutive times within a given time limit. For the multi-
period relaxation O in Section 3.3, the RCVX MILP 
relaxation has been considered for instances of network 
S, and we relaxed the integrality constraints and 
restricted the horizon to 6 periods for network P.  

4.1. Impact on feasibility in the approximated model 

In Table 1, we show the effect of the preprocessing 
B1 on the tightness of the MILP approximation APWL and 
on the feasibility of its solutions w.r.t. (P). We measure 
the feasibility gap for a given pumping schedule as the 
accumulated absolute difference between the tank 
levels computed by the hydraulic simulator on this 
schedule and the approximated ones. The fitting of the 
nonlinear functions ϕ are chosen according to [2], with 
either 3 or 7 pieces, leading to two MILP models, namely 
APWL3 and APWL7. Unsurprisingly, APWL7 in time limit 
of 1 hour provides more accurate solutions (feasibility 
gap is 63% smaller in average) but it shifts the difficulty 
of obtaining near-feasible solutions to finding any 
approximate solution within the time limit for the larger 
instances, e.g.: APWL3 provides a feasible solution for 
the 5 instances of P48, whereas APWL7 only for 2. 
Preprocessing alleviates this difficulty: both models find 
feasible solutions for almost all instances with bounds 
B1, but for only half of them with bounds B0. For those 
instances where finding feasible solutions is not a critical 
issue, B1 also helps to improve the quality of the 
solutions: the best cost declines 1.4% for S24 and 0.7% 
for P48. Furthermore, the number of feasible solutions is 
significantly higher (111%), giving more versatility to the 
decision-making. 

4.2. Impact on optimality in the exact method  

We assess the effect of preprocessing and cut 
generation on the exact method discussed in [4] based 
on the MILP relaxation RCVX. For unbiased comparison, 
we let branch-and-bound run for 1 hour on model RCVX 
built by using bounds B1, say RCVX1, and on model RCVX 
including also the constraints (9)-(10), say RCVX2, 

described in Sections 3.4-3.5. Finally, we let the branch-
and-bound algorithm run for an additional hour (i.e., the 
time limit for preprocessing B1) on model RCVX built with 
bounds B0, say RCVX0.  

The three models solve the smallest and simplest 
instances S24 in a few seconds, but preprocessing speeds 
up the optimality proof thanks to a significant 59% 
reduction of the size of the search tree. As shown in 
Table 2, the search reduction and consequent speed-up 
are even more noticeable on the largest instances S48, 
as preprocessing appears necessary to close the 
optimality gap: RCVX0 proves optimality for only 1 
instance, against 3 and 4 instances respectively for 
RCVX1 and RCVX2. In the larger network P, the number 
of nonconvex constraints is considerably higher even for 
the shortest horizon 𝑇 = 12. As a consequence, solving 
exclusively MILP relaxation RCVX0 on P12 is possible in a 
few minutes, whereas the exact method applied to this 
relaxation does not even find a feasible solution in 2 
hours. By mitigating the accuracy of the relaxation, 
preprocessing allows the exact method with model 
RCVX1 not only to find feasible solutions for all instances 
but also to close the optimality gap in one case. With 
model RCVX2, we were able to solve 4 among 5 instances 
to their optimality and shrink the gap for the remaining 
instance from 5.7% to 1.4%. Finding a feasible solution is 
less an issue in problems P24 and P48, as shorter time 
steps provide more flexibility to the scheduling task. Still, 
the method with model RCVX0 takes an hour to obtain 
the first feasible solution, and it leaves one instance in 
P24 without any solution. Preprocessing in model RCVX1 
allows finding a feasible solution also on this instance, 
and it reduces the optimality gap from 3.7% to 2.8% on 
average for the 9 other instances. The additional 
constraints in model RCVX2 allow shrinking the gap to 
2.3% and to get the first feasible solutions in just a few 
minutes. It is worthy to highlight here that our approach 
improved the results presented so far in the literature for 
the Simple and Poormond networks. 

5. CONCLUSIONS 

This work presents different preprocessing 
techniques for the pump scheduling problem and gives 
insights into balancing the preprocessing time and its 
effect. The results show a solid incentive to employ 
problem-specific preprocessing for the drinking water 
distribution network. Therefore, we claim that additional 
improvements would be possible with more 
sophisticated, even if time-consuming, preprocessing. 
This observation demands some techniques for applying 
an aggressive bound tightening and cut generation to a 
smartly selected subset of network elements and time 
steps. 

https://github.com/sofdem/gopslpnlpbb/tree/icae22
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Table 1: Results of solving the APWL MILP model with 3 or 7 pieces, with 
bounds B0 and B1 on 5 benchmark sets of 5 instances each (#feas: number of 
instances for which at least 1 feasible solution is computed, avg_feas: the 
average feasibility gap w.r.t. the tank capacities, #OPT: number of instances 
solved within a 2% optimality gap, #sol: total number of feasible solutions).  

  S24 S48 P12 P24 P48 

APWL3_B0  #feas       1       4        0       0       5 

 avg_feas       8.3     13.3       3.5        5.9     11.9 

 #OPT        5       5        5       3       0 

  #sol       2     18        0       0       38      

APWL3_B1 #feas      5     5         1       2       5 

 avg_fea     1.4   12.4       0.9      2.3      4.7 

 #OPT      5     5        5       3        0 

 #sol      19     16        1       4      49 

APWL7_B0 #feas      2     5        0        0       2 

 avg_fea     3.6    3.8      1.2       2.9      6.0 

 #OPT      5      5        5        0       0 

 #sol      4     17        0       0       7 

APWL7_B1 #feas     4     5        2        4        5 

 avg_fea     0.8     3.3       0.2       1.1       1.1 

 #OPT     5      5        5        0        0 

 #sol     11     22        4       19       45 

 

Table 2: Results of the exact method [4] applied to the convex MILP relaxation 
without preprocessing (RCVX0), after preprocessing B1 (RCVX1), and with 
additional constraints (RCVX2)  (#feas: number of instances for which at least 
1 feasible solution is computed, avg_gap: the average optimality gap over 
instances, #OPT: number of instances solved within an 1e-6% optimality gap. 

  S24 S48 P12 P24 P48 

RCVX0 #feas       5       5        0      4       5 

 avg_gap       0     0.5%        inf      4.1%     3.2% 

 #OPT        5       1        0       0       0 

RCVX1 #feas       5         5        5       5        5 

 avg_gap       0               0.2%       2.3%      2.8%      2.8% 

 #OPT       5         3        1       0        0 

 RCVX2 #feas       5         5         5       5        5 

   avg_gap       0        0.0%        0.3%      2.4%       2.1% 

     #OPT       5         4          4        0          0 
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