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MULTISCALE ANALYSIS FOR TRAVELING-PULSE SOLUTIONS TO THE

STOCHASTIC FITZHUGH-NAGUMO EQUATIONS

KATHARINA EICHINGER, MANUEL V. GNANN, AND CHRISTIAN KUEHN

Abstract. We investigate the stability of traveling-pulse solutions to the stochastic FitzHugh-
Nagumo equations with additive noise. Special attention is given to the effect of small noise
on the classical deterministically stable fast traveling pulse. Our method is based on adapting
the velocity of the traveling wave by solving a scalar stochastic ordinary differential equation
(SODE) and tracking perturbations to the wave meeting a system of a scalar stochastic partial
differential equation (SPDE) coupled to a scalar ordinary differential equation (ODE). This
approach has been recently employed by Krüger and Stannat [Nonlinear Anal., 162:197–223,
2017] for scalar stochastic bistable reaction-diffusion equations such as the Nagumo equation.
A main difference in our situation of an SPDE coupled to an ODE is that the linearization
has essential spectrum parallel to the imaginary axis and thus only generates a strongly con-
tinuous semigroup. Furthermore, the linearization around the traveling wave is not self-adjoint
anymore, so that fluctuations around the wave cannot be expected to be orthogonal in a cor-
responding inner product. We demonstrate that this problem can be overcome by making use
of Riesz instead of orthogonal spectral projections as recently employed in a series of papers
by Hamster and Hupkes in case of analytic semigroups. We expect that our approach can also
be applied to traveling waves and other patterns in more general situations such as systems of
SPDEs with linearizations only generating a strongly continuous semigroup. This provides a
relevant generalization as these systems are prevalent in many applications.
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1. Introduction

1.1. The stochastic FitzHugh-Nagumo equations. We consider the stochastic FitzHugh-
Nagumo equations

dũpt, xq “
`

νB2
xũpt, xq ` f pũpt, xqq ´ ṽpt, xq

˘

dt ` σ dW pt, xq for pt, xq P R` ˆ R, (1.1a)

dṽpt, xq “ ε pũpt, xq ´ γṽpt, xqqdt for pt, xq P R` ˆ R, (1.1b)

in which the independent variables t and x denote time and position on a neural axon, respec-
tively. The dependent variable ũ denotes the electric potential and ṽ is a gating variable. The
parameter ν ą 0 determines the strength of the diffusion B2

xũ, while the nonlinearity f pũq is
a reaction term which typically has the form f pũq “ χpũq ũ p1 ´ ũq pũ ´ aq with 0 ă a ă 1

and is suitably cut off by the factor χ. The parameter σ ą 0 determines the strength of the
noise W . Here, we assume that W is an infinite-dimensional Wiener process taking values in a
Hilbert space to be specified in what follows. The parameter ε ą 0 determines the strength of
the coupling of the electric potential ũ to the gating variable ṽ and is assumed to be sufficiently
small. The parameter γ ą 0 determines the decay of the gating variable ṽ.

The classical FitzHugh-Nagumo [34,73] partial differential equations (PDEs) obtained for σ “ 0

form a simplified, yet qualitatively very similar, model for the Hodgkin-Huxley equations [45],
which was a key part of Hodgkin’s and Huxley’s Nobel prize awarded in 1963. By now, the
FitzHugh-Nagumo system is a standard model for the generation and transmission of electrical
signals in neuroscience [26, 47]. The literature on the PDE version of the FitzHugh-Nagumo
system (σ “ 0) is very large, see for example the recent papers [15, 38] and detailed references
therein. For the ODE version (σ “ 0, ν “ 0), the literature is vast [76], mostly due to the crucial
role played by bistable nonlinearities in all areas of nonlinear science and the commonly found
multiple time scale structure of the FitzHugh-Nagumo system [58]. Also the SODE variant
for ν “ 0 is quite well-studied, mainly due to a flurry of activity since the mid 1990s; see
e.g. [3,7,9,63,64,72]. Yet, the full SPDE variant (1.1) has only attracted major attention quite
recently, including a large number of numerical studies [67,80,81,83,86–88] as well as analytical
studies regarding existence, regularity, invariant measures and attractors [4,8,12,61,62,90]. The
question regarding stochastic stability of pulses for additive noise is far less studied. We refer
to [41] for multiplicative noise with a regularized equation (diffusion in the second variable) and
to the review [60] for the stochastic Nagumo case (ε “ 0). For further biophysical motivation
regarding various noise terms in the FitzHugh-Nagumo equation we refer to the review [63].

Here we contribute to a more detailed understanding of stochastic pulse stability of the FitzHugh-
Nagumo equations (1.1) exploiting the multiscale nature of the problem. More precisely, our
aim is to understand the dynamics of (1.1) near a deterministically stable pulse in the regime,
where the parameters σ ą 0 (strength of the noise) and ε ą 0 (coupling to the gating variable)
are small. The subsequent analysis generalizes the recent analysis of Krüger and Stannat [55] for
corresponding scalar stochastic bistable reaction-diffusion equations such as the Nagumo equa-
tion. We remark that the idea of tracking small noise fluctuations for SPDEs around traveling
waves via a multiscale SODE approximation goes back at least to the early 1980s and works by
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Ebeling, Mikhailov, and Schimansky-Geier [70, 71]. From the viewpoint of applications the ex-
tension from Nagumo to FitzHugh-Nagumo is a crucial generalization as the FitzHugh-Nagumo
model (1.1) is far more realistic than the one studied in [55] since only (1.1) allows for determin-
istically stable traveling-pulse solutions. In fact, deterministically stable localized pulses model
far better the real action potentials generated in neurons in comparison to the deterministically
stable traveling fronts appearing in the Nagumo equation. From a mathematical viewpoint,
our generalization is important as it does extend beyond the setting of treating the equation
in a Hilbert space in which the linearization of the traveling wave is self-adjoint (this is the
case in [55]) or generates an analytic semigroup and thereby makes the methods of multiscale
approximation available to a broad class of stochastic SPDE-ODE reaction-diffusion systems.

1.2. Traveling-pulse solutions and their stability. We recall some of the well-known results
on existence of traveling-pulse solutions to the deterministic version of (1.1) where σ “ 0. These
solutions have the form ũpt, xq “ ûpξq and ṽpt, xq “ v̂pξq, where ξ “ x ` st and s P R is the
velocity of the traveling wave. The tuple pû, v̂q therefore fulfills the set of equations

dû
dξ

“ û1 for ξ P R, (1.2a)

dû1

dξ
“ 1

ν

`

sû1 ´ f pûq ` v̂
˘

for ξ P R, (1.2b)

dv̂
dξ

“ ε

s
pû ´ γv̂q for ξ P R. (1.2c)

Traveling-pulse solutions to (1.2) are solutions ps, û, v̂qt such that pû, û1, v̂qt Ñ pb1, b2, b3qt as
ξ Ñ ˘8 where pb1, b2, b3qt P R

3 is a stationary solution to (1.2) fulfilling

b2 “ 0, fpb1q “ b3, and b1 “ γb3,

i.e., they are homoclinic orbits of the dynamical system (1.2). In what follows we will also have
the convention that we mean non-trivial traveling pulses. Furthermore, we are only interested in
solutions pû, v̂qt such that pû, v̂qt Ñ p0, 0qt as ξ Ñ ˘8. Indeed, this situation will occur if the
equilibrium point pb1, b2, b3qt “ p0, 0, 0qt is unique, which is the case e.g. if γ ě 0 is sufficiently
small [76]. Further note that the velocity s of the traveling wave is not a parameter but a
functional of f and ε.

Next, we give a very brief overview of the existing literature on the existence of homoclinic orbits
of (1.2) corresponding to traveling-pulse solutions. For a wave speed s “ 0 and ε “ 0, we recover
the planar ODE associated to traveling waves of the Nagumo equation. Using the resulting
Hamiltonian structure of the ODE, it is easy to see that a homoclinic orbit exists for s “ 0 and
ε “ 0. A singular perturbation argument in combination with Melnikov’s method [44, 58, 85]
yields the existence of a slow pulse with wave speed s « 0. Yet, an application of Sturm-Liouville
theory [52,59] shows that the slow pulse is unstable. As it is deterministically already unstable,
considering this pulse under the influence of noise is not expected to be biophysically relevant
as the noisy small perturbations will be amplified exponentially near the slow pulse. Yet, there
is also a fast pulse corresponding to much higher wave speeds s “ spf, εq. Carpenter [13] and
Conley [20] constructed these homoclinic orbits to (1.2) employing the method of isolating blocks
of the fast and slow subsystems [21]. See also [35], where the methods developed in [20] have been
further improved. Then a generalization of the pulse construction to large classes of FitzHugh-
Nagumo-like models has been provided in [33]. Later, a fully geometric construction of the fast
pulse via the Exchange Lemma [49, 50, 58] was proved by Jones, Kopell and Langer [51] using
differential forms. The connection in parameter space between slow and fast pulses has been
proved in [56]. Then the parametric bifurcation structure has been analyzed in a more refined
way in [15, 16, 38, 39]. A non-perturbative approach to construct traveling-pulse solutions of
(1.2) has been carried out by Arioli and Koch [2] for the value ε “ 0.01 using computer-assisted
proofs.

Stability of the fast traveling-pulse solutions to the deterministic version of (1.1) with σ “ 0 in
the space of bounded uniformly continuous functions has been obtained by Jones [48] for the
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case of a cubic polynomial, in the sense that solutions starting sufficiently close to a wave profile
decay to a translate of

pûp¨ ` stq, v̂p¨ ` stqqt .
The proof relies on analysis developed by Evans [27–32], where it is proved that in the space
of bounded uniformly continuous functions that linear stability implies nonlinear stability and
that the point spectrum of the linearization around the traveling pulse is determined by the
roots of a function Dpλq, the Evans function. Jones proves that instability can only occur due
to eigenvalues of the linear operator near λ “ 0. By calculating the winding number of Dpλq
for a small circle around λ “ 0, it is shown that only two eigenvalues lie in it, one of which is
λ “ 0 (related to the translation invariance of the problem) and the other is negative because
dD
dλ

p0q ą 0. For a more recent stream-lined stability analysis allowing for more general reaction
terms f but still restricted to the space of bounded uniformly continuous functions, we refer
to [2,91] while stability in L2pR;R2q and H1pR;R2q is proved in [36,77,92] (see §2.2 for further
details). Nonlinear stability of the fast FitzHugh-Nagumo pulse with oscillatory tails (instead of
monotone tails as considered in this paper) has been proved by Carter, de Rijk, and Sandstede
in [14]. For general introductions into the subject, we refer to [19, 79].

1.3. An approach for computing the velocity correction. Our aim is to investigate the
following decomposition

ũpt, xq “ û px ` st ` ϕptqq ` uϕpt, xq, (1.3a)

ṽpt, xq “ v̂ px ` st ` ϕptqq ` vϕpt, xq (1.3b)

of solutions to (1.1), where the function ϕptq is a random correction to the position of the wave
front, and uϕpt, xq and vϕpt, xq denote lower-order fluctuations that are uniquely defined through
(1.3) for any choice of ϕ “ ϕptq. Ideally, we would like to choose ϕ to minimize the distance in

the direction of the traveling wave between the solution X̃ :“ pũ, ṽqt of the FitzHugh-Nagumo

SPDEs (1.1) and the suitably translated traveling wave X̂ “ pû, v̂qt, i.e.,

ϕptq P argminϕPR

∥

∥

∥
Π0

st`ϕ

´

X̃pt, ¨q ´ X̂p¨ ` st ` ϕq
¯∥

∥

∥

2

H
, with X̃ :“

ˆ

ũ

ṽ

˙

, X̂ :“
ˆ

û

v̂

˙

,

(1.4)
where ‖¨‖H is the norm in the spatial variable of a suitable underlying Hilbert space H and

Π0
st`ϕ is a suitable projection operator onto the traveling wave such that Π0

st`ϕ
dX̂
dξ

p¨ ` st`ϕq “
dX̂
dξ

p¨ ` st ` ϕq (see Proposition 2.8 (d) and (3.1) further below). However, as the minimization

problem (1.4) is not necessarily convex, uniqueness of a minimizer is not ensured. We follow the
approach in [55] and replace (1.4) by the weaker condition for a critical point of finding ϕ “ ϕptq
such that

0 “
´

Π0
st`ϕ

´

X̃pt, ¨q ´ X̂p¨ ` st ` ϕq
¯

, dX̂
dξ

p¨ ` st ` ϕq
¯

H
, (1.5)

where p¨, ¨qH denotes the inner product of H. This approach has been employed by Inglis and
MacLaurin in [46] for more general classes of SPDE systems with the drawback that results only
hold up to the first stopping time when the local minimum turns into a saddle. Here, we follow
the work around proposed in [55] in the sense that ϕptq is approximated by a process ϕmptq,
which in our case fulfills the random ordinary differential equation (RODE)

dϕm

dt
ptq “ m

´

Π0
st`ϕmptq

´

X̃pt, ¨q ´ X̂p¨ ` st ` ϕmptqq
¯

, dX̂
dξ

p¨ ` st ` ϕmptqq
¯

H
(1.6)

for given initial condition and a relaxation parameter m ą 0 that is chosen sufficiently large.
Notably, approximating ϕ with ϕm through (1.6) implies differentiability while this is in general
not true for (1.5). By further analyzing (1.6) we will construct ϕ as a solution of an SODE
and puϕ, vϕqt as the solution of a system of an SPDE coupled to an SODE in such a way that
puϕ, vϕqt fulfill estimates in suitable function spaces, making precise what the notion ‘lower
order’ means.
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In [55, §3.4], it has been pointed out that with the strategy described above the first-order
fluctuations around the traveling wave are orthogonal in their suitably chosen inner product. In
fact, in the case of of second-order bistable reaction-diffusion equations, the spatial linearization
around the traveling wave, the frozen-wave operator, is of Sturm-Liouville type. Hence, one can
always find a weighted L2-inner product in which it is self-adjoint, so that one can replace the
projection operator used in (1.4) with an orthogonal projection induced by this inner product.
One cannot expect a similar approach to be applicable in our situation (1.1) of an SPDE coupled
to an ODE or other more complicated systems of SPDEs. Instead, we will build up our analysis
on Riesz spectral projections of the frozen-wave operator that do not require a self-adjoint
structure and yield a partition into two subspaces invariant under the linearized flow. Note that
non-orthogonal Riesz spectral projections have also been employed by Hamster and Hupkes
in [40–43] by projecting onto the eigenvector of the adjoint of the frozen-wave operator. Their
SODE to determine ϕ is more involved compared to (1.6). Their method applies to a variety
of (systems) of reaction-diffusion equations with special forms of multiplicative noise (partially
only including a one-dimensional Wiener process). However, in all situations treated there, the
frozen-wave operator is sectorial with spectral angle larger than π

2
and therefore generates an

analytic semigroup. Specifically, in [41, (1.2)], [42, (1.3)], [43, (1.17)] the second component of the
FitzHugh-Nagumo system is regularized by adding cB2

xṽ with some c ą 0 to the right-hand side
of (1.1b) (see [17,22] for existence and stability of the pulse in this case), which is different from
the only partly parabolic FitzHugh-Nagumo system without diffusion in the second component
as treated for instance in [2, 13, 20, 35, 48, 51, 91]. In our setting, the frozen-wave operator has
essential spectrum parallel to the imaginary axis (see §2.2 and §A.2 below) and therefore is so
far not covered by this approach.

Historically, one can track back stability and fluctuation analysis of bistable scalar SPDEs,
such as the Nagumo SPDE, at least to early works by Ebeling, Mikhailov, and Schimansky-
Geier in [70,71], where it was recognized that the deterministic reference wave speed should be
corrected by a stochastic term, which in turn satisfies an SODE. Many further works followed,
e.g., using a more rigid/frozen stochastic frame in combination with numerical simulations by
Lord and Thümmler in [68], employing functional inequalities to establish stability bounds by
Stannat in [84], the adaptation of a rigorous multiscale expansion by Krüger and Stannat in [55]
originally motivated by work on the related problem of stochastic traveling waves for bistable
neural field equations by the same authors in [54] and by Inglis and MacLaurin in [46], and
work on long-time stochastic stability tracking for suitable multiplicative noise by Hamster and
Hupkes in [41] via stochastic convolution estimates by the same authors in [40]. We also remark
that in case of stochastic dispersive PDEs, the random modulation of soliton solutions (i.e.,
standing or traveling wave packages) has been investigated by de Bouard and Debussche for the
stochastic Korteweg-de Vries equation in [24] and by de Bouard and Fukuizumi for the Gross-
Pitaevskii equation in [25]. Furthermore, multiscale expansions also frequently appear in the
context of SPDE amplitude equations at bifurcation points as treated for instance by Blömker
in [10] and by Blömker, Hairer, and Pavliotis in [11].

1.4. Outline. We continue with the setting and auxiliary results in §2, followed by the main
results in §3. The proofs of auxiliary results are contained in Appendix A while the proofs of
the main results can be found in §4. In §2.1 and §A.1 we construct solutions to (1.1) using the
variational approach for equations with locally monotone coefficients [65,66]. In §2.2 and §A.2,
we then formulate the SPDE of perturbations around the traveling wave which to leading-order
is governed by the linearization around the deterministically-stable fast FHN pulse. Results on
the deterministic linearized evolution of perturbations around the traveling wave are provided
in Proposition 2.6 and Proposition 2.8 below. Afterwards, in §3.1 and §4.1, we derive an SODE
approximating the correction of the wave velocity (cf. Proposition 3.2 below). The leading-order
part of this SODE is an Ornstein-Uhlenbeck-type process with a linear damping in the drift due
to the relaxation method of the frame and additive stochastic fluctuations obtained from project-
ing the infinite-dimensional noise onto the deterministic translation-invariant mode. Practically,
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this entails that the deterministic reference wave has phase diffusion along the translation direc-
tion. Subsequently, in §3.2 and §4.2, we prove a multiscale expansion in terms of the linearized
evolution (cf. Theorem 3.3 below), which is further investigated in §3.3 and §4.3 in the limit as
m Ñ 8 of immediate relaxation (cf. Theorem 3.4 and Proposition 3.5 below). In particular, our
results yield bounds on

‚ the first exit time where the multiscale decomposition cannot be guaranteed to hold
anymore and

‚ on the second moment of fluctuations transverse to the traveling wave mode after cor-
recting the wave velocity.

Concluding remarks and an outlook on future research can be found in §5.

2. Setting and auxiliary results

For what follows, we fix a stochastic basis, that is, a complete filtered probability space
`

Ω,F , pFtqtPr0,T s,P
˘

,

with a complete and right-continuous filtration pFtqtPr0,T s, where T P p0,8q is arbitrary.

2.1. Existence and uniqueness of solutions using the variational approach. In line with
the classical findings for the deterministic FitzHugh-Nagumo PDE discussed above, we make the
following assumption on (1.1) or (1.2), respectively. In particular, we are only going to study
stochastic perturbations to the deterministically stable fast pulse solution:

Global Assumption 2.1. In a right-neighborhood of ε “ 0 the system (1.2) has a non-trivial
homoclinic orbit of the point p0, 0, 0qt in phase space. The corresponding traveling-pulse solution
pû, v̂qt of the FitzHugh-Nagumo equations (1.1) with σ “ 0 is locally asymptotically stable up to
translation.

We will assume certain properties on the reaction term fpwq that are fulfilled for instance by
the choice fpwq “ χpwqwp1 ´ wqpw ´ aq, where a P p0, 1q and χ P C8pRq meets χ|r´c1,8q ” 1

and χpwq “ c22
w2 for w P p´8,´c2s, where 1 ă c1 ă c2 sufficiently large (cut-off at ´8), for

which existence of a traveling-pulse solution (cf. Global Assumption 2.1) is guaranteed provided
ε ą 0 is small. Here, we directly make the usual abstract bi-stability assumptions [18,55,91] for
f so that the nonlinearity effectively behaves like the classical cubic nonlinearity chosen for the
Nagumo and FitzHugh-Nagumo equations.

Global Assumptions 2.2. We have f P C3pRq and there exist a P p0, 1q and d ą 0 with

fp0q “ fpaq “ fp1q “ 0, (2.1a)

fpwq ă 0 for w P p0, aq Y p1,8q, (2.1b)

fpwq ą 0 for w P p´8, 0q Y pa, 1q, (2.1c)

f 1p0q ă 0, f 1paq ą 0, f 1p1q ă 0, (2.1d)

fpwq ´ w

d
‰ 0 for w P Rzt0u, (2.1e)

ˆ 1

0

fpwq dw ą 0, (2.1f)

η1 :“ sup
wPR

f 1pwq ă 8, (2.1g)

∣

∣fpw1 ` w2q ´ fpw1q ´ f 1pw1qw2

∣

∣ ď η2 p1 ` |w1| ` |w2|q |w2|
2 for w1, w2 P R, (2.1h)

∣

∣f 1pwq
∣

∣ ď η3

´

1 ` |w|2
¯

for w P R, (2.1i)

|fpw1q ´ fpw2q| ď η4 |w1 ´ w2|
´

1 ` |w1|
2 ` |w2|

2
¯

for w1, w2 P R,

(2.1j)
∣

∣f 1pw1 ` w2q ´ f 1pw1q ´ f2pw1qw2

∣

∣ ď η5 |w2|
2 for w1, w2 P R, (2.1k)
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∣

∣f 1pw1q ´ f 1pw2q
∣

∣ ď η6 |w1 ´ w2| p1 ` |w1| ` |w2|q for w1, w2 P R, (2.1l)
∣

∣f2pw1q ´ f2pw2q
∣

∣ ď η7 |w1 ´ w2| for w1, w2 P R, (2.1m)

where η2, η3, η4, η5, η6, η7 ă 8.

Note that the linearization of (1.2) in p0, 0, 0qt only depends on f 1p0q and because of (2.1d)

this point is hyperbolic and hence dj û
dξj

for j P t0, 1, 2, 3, 4, 5u and dj v̂
dξj

for j P t0, 1, 2, 3, 4u are

exponentially decaying as |ξ| Ñ ˘8. In particular,
∥

∥

∥

dj û
dξj

∥

∥

∥

L8pRq
ă 8 and

∥

∥

∥

dj û
dξj

∥

∥

∥

L2pRq
ă 8 for all j P t0, 1, 2, 3, 4, 5u,

as well as
∥

∥

∥

dj v̂
dξj

∥

∥

∥

L8pRq
ă 8 and

∥

∥

∥

dj v̂
dξj

∥

∥

∥

L2pRq
ă 8 for all j P t0, 1, 2, 3, 4u.

For ϕ ” 0, we may use (1.3) as a definition of pu, vq :“ pu0, v0q and employing (1.2), we obtain
the system

dupt, xq “
`

νB2
xupt, xq ` f pupt, xq ` ûpx ` stqq ´ f pûpx ` stqq ´ vpt, xq

˘

dt

`σ dW pt, xq, (2.2a)

dvpt, xq “ ε pupt, xq ´ γvpt, xqqdt. (2.2b)

In order to analyze (2.2), we use the following Hilbert space setting. Suppose that L2pRq is the
standard L2-space of R-valued functions on the real line,

H1pRq :“
 

u P L2pRq : Bxu P L2pRq
(

,

where Bxu denotes the distributional derivative, and H´1pRq denotes the topological dual of
H1pRq relative to L2pRq. The Laplacian B2

xu for u P H1pRq can be defined via its bilinear form
as

H1pRq
@

w, B2
xu
D

H´1pRq :“ ´
ˆ

R

pBxwq pBxuqdx. (2.3)

Then, we may recast the system (2.2) in form of the abstract stochastic evolution equation

dXpt, ¨q “ Apt,Xpt, ¨qqdt ` Bpt,Xpt, ¨qq dWU pt, ¨q (2.4)

and introduce the rigged space triple (Gelfand triple)

V :“ H1pRq?
εkL2pRq ãÑ H :“ L2pRq?

εkL2pRq “ H˚
ãÑ V ˚ “ H´1pRq?

εkL2pRq, (2.5)

where

pY1, Y2qH :“ Z

ˆ

R

pεw1w2 ` q1q2qdx, (2.6a)

pY1, Y2qV :“ Z

ˆ

R

pεw1w2 ` εpBxw1qpBxw2q ` q1q2qdx, (2.6b)

with

Yj :“
ˆ

wj

qj

˙

and Z :“
ˆ
ˆ

R

ˆ

ε
´

dû
dξ

¯2

`
´

dv̂
dξ

¯2
˙

dξ

˙´1

, (2.7)

and where

X :“
ˆ

u

v

˙

, (2.8a)

A : r0, T s ˆ V ˆ Ω Ñ V ˚,

pt,X, ωq ÞÑ Apt,Xq :“
ˆ

νB2
xu ` f pu ` ûp¨ ` stqq ´ f pûp¨ ` stqq ´ v

ε pu ´ γvq

˙

, (2.8b)

B : r0, T s ˆ V ˆ Ω Ñ L2 pU ;Hq ,

pt,X, ωq ÞÑ
ˆ

U Ñ H, N ÞÑ Bpt,XqN :“
ˆ

σ
?
QN

0

˙˙

. (2.8c)
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Here, we assume that U :“ L2pRq, Q P LpUq is a symmetric nonnegative-definite bounded
linear operator in U with finite trace, L2 pU ;Hq denotes the space of Hilbert-Schmidt operators
U Ñ H, and WU is a U -valued pFtqtPr0,T s-adapted cylindrical idU -Wiener process. Note that

W “ ?
QWU is in fact a U -valued pFtqtPr0,T s-adapted Q-Wiener process. We remark that

the assumption of Q having finite trace leads to a noise term in (2.4) which is not translation
invariant. However, since we study stability of a pulse with exponential tails traveling with finite
speed on an axon (which in reality has finite length), this assumption appears to be acceptable
regarding the relevance of our results in terms of applications. Further note that the scaling of
the first component with

?
ε in (2.6) changes the geometry of the orthogonal sums indicated

by the symbol ?
εk rather than k in (2.5). On the other hand, the normalization with Z

merely implies the convenient property that
∥

∥

∥

dX̂
dξ

∥

∥

∥

H
“ 1 but leaves all angles between vectors

unchanged.

In order to show existence of solutions to (2.4), one could use the concept of mild solutions as
employed for the FitzHugh-Nagumo SPDE with additive noise in [61]. The approach presented
in [55], which we build upon, uses variational solutions [57, 66, 75] for equations with locally
monotone coefficients [65,66]. As we will show in Proposition 2.5 below, the variational solution
(constructed in Proposition 2.4 below) also turns out to be a mild solution. We remark that the
authors of [41–43] use [65] to construct solutions, too, but as previously mentioned, their system
is regularized by adding cB2

xu with c ą 0 to the second component in (2.8b), which also changes
the Gelfand triple to H1pR;R2q ãÑ L2pR;R2q ãÑ H´1pR;R2q. Since the variational approach
has not been directly worked out for the FitzHugh-Nagumo SPDE with additive noise and no
regularization of the second component, we use this opportunity to fill this gap within this work
as an auxiliary step. Therefore, we use the concept of variational solutions (cf. [65, Definition 1.1]
and [66, Definition 5.1.2]):

Definition 2.3. A variational solution to (2.4) is a continuous H-valued pFtqtě0-adapted process
pXpt, ¨qqtPr0,T s such that the dtbP-equivalence class X̌ meets X̌ P L2 pr0, T s ˆ Ω, dt b P;V q and
such that the solution formula

Xpt, ¨q “ Xp0, ¨q `
ˆ t

0

A
`

t1, X̄pt1, ¨q
˘

dt1 `
ˆ t

0

B
`

t1, X̄pt1, ¨q
˘

dWU pt1, ¨q for t P r0, ts (2.9)

is satisfied, P-almost surely, where X̄ denotes any V -valued progressively measurable dt b P-
version of X̌.

Under the given hypothesis, we can prove existence of solutions and regularity in space under
additional assumptions:

Proposition 2.4. For p P r6,8q and T ą 0, the stochastic evolution equation (2.4) has for any

Xp0, ¨q “ pup0, ¨q, vp0, ¨qqt “ Xp0q “
`

up0q, vp0q˘t P Lp pΩ,F0,P;Hq a unique variational solution.

The solution further satisfies X P Lp
`

Ω,F ,P;C0 pr0, T s;Hq
˘

.

For the subsequent result, we define the stronger space

V :“ H1pRq?
εkH1pRq (2.10a)

with inner product

pY1, Y2qV :“ Z

ˆ

R

pεw1w2 ` εpBxw1qpBxw2q ` q1q2 ` pBxq1qpBxq2qqdx

(2.6a)“ pY1, Y2qH ` pBxY1, BxY2qH , (2.10b)

where Yj and Z are as in (2.7).

Proposition 2.5. In the situation of Proposition 2.4, the solution X is also a mild solution in
the sense of [23] with linear operator

ˆ

νB2
x 0

0 ´εγ

˙

: H Ě H2pRq?
εkL2pRq Ñ H.
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If additionally
?
Q P L2pU ;H1pRqq, up0q P L2pRq, and vp0q P H1pRq, then

tu, v P C0
`

r0, T s;H1pRq
˘

, P-almost surely.

If further up0q P H1pRq, i.e., Xp0q P V, then X P C0 pr0, T s;Vq, P-almost surely.

We will give the proof of Proposition 2.4 and Proposition 2.5 in §A.1.

2.2. Linearization around the traveling wave. We recall the global Assumptions 2.1 and
write X̂ :“ pû, v̂qt for the deterministically stable fast traveling pulse. Then we define

X̃pt, xq :“ pũpt, xq, ṽpt, xqqt “ Xpt, xq ` X̂px ` stq, (2.11)

and in line with (1.3) set

Xϕpt, xq :“ puϕpt, xq, vϕpt, xqqt :“ X̃pt, xq ´ X̂px ` st ` ϕq
“ Xpt, xq ` X̂px ` stq ´ X̂px ` st ` ϕq, (2.12)

where ϕ “ ϕptq is yet to be determined. We split the stochastic evolution equation (2.4) around

the traveling-wave profile X̂ into a linear and nonlinear part using (1.2). This yields

dXϕpt, ¨q “
´

Lst`ϕptqXϕpt, ¨q ` Rϕptqpt,Xϕpt, ¨q, ¨q ´ 9ϕptqdX̂
dξ

p¨ ` st ` ϕptqq
¯

dt `
ˆ

σ

0

˙

dW pt, ¨q
(2.13)

where

Lst`ϕY :“
ˆ

νB2
xw ` f 1 pûp¨ ` st ` ϕqqw ´ q

ε pw ´ γqq

˙

, Y :“
ˆ

w

q

˙

, (2.14)

and

Rϕpt, Y, ¨q :“
ˆ

f pw ` ûp¨ ` st ` ϕqq ´ f pûp¨ ` st ` ϕqq ´ f 1 pûp¨ ` st ` ϕqqw
0

˙

. (2.15)

We have the following result, which is proved in §A.2.1.

Proposition 2.6 (linearized evolution). The family of operators pLstqtě0, with

Lst : D pLstq “ H3pRq?
εkH1pRq Ñ V

(2.10)“ H1pRq?
εkH1pRq,

generates an evolution family
`

Pst,st1
˘

tět1ě0
in V with

∥

∥Pst,st1
∥

∥

LpVq ď eβpt´t1q, (2.16a)

where
β :“

∥

∥f 1pûq ´ f 1p0q
∥

∥

W 1,8pRq ´ min
 

´f 1p0q, εγ
(

, (2.16b)

and we have used the norm in the ξ “ x ` st coordinate in the last expression.

We also write

L#Y :“
ˆ

νB2
ξw ` f 1 pûqw ´ q ´ sBξw

ε pw ´ γqq ´ sBξq

˙

“
ˆ

νB2
ξ ` f 1 pûq ´ sBξ ´1

ε ´εγ ´ sBξ

˙

Y (2.17)

for the linearized evolution in the moving frame, i.e., with respect to ξ “ x ` st, and call L#

the frozen-wave operator. Defining the translation operator Tc by

TcY :“ Y p¨ ` cq for any c P R, (2.18)

one may readily check that

Bt ´ Lst “ Tst

´

Bt ´ L#
¯

T´st. (2.19)

Furthermore, by differentiating (1.2) it follows

L#dX̂
dξ

“ 0, where X̂ :“
ˆ

û

v̂

˙

. (2.20)

Equation (2.20) simply means that the derivative of the traveling wave is an eigenvector of the
frozen-wave operator, which actually arises due to translation invariance [59]. Here and in what
follows, we use the conventions of [52, §2.2.4, §2.2.5, Definition 2.2.3, (4.1.11)]:
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Definition 2.7. For a complex Banach space E and a linear operator B : E Ě DpBq Ñ E we
define

(a) the resolvent set ρpBq as the set of all λ P C such that λ idE ´B is invertible and pλ idE ´Bq´1

is bounded;
(b) the spectrum σpBq :“ CzρpBq;
(c) the point spectrum σppBq as the set of all λ P C such that the index indpλ idE ´Bq of

λ idE ´B satisfies indpλ idE ´Bq “ 0 but λ idE ´B is not invertible;
(d) the essential spectrum σesspBq as the set of all λ P C such that λ idE ´B is not a Fredholm

operator with indpλ idE ´Bq “ 0.
(e) for a C-Hilbert space E with inner product p¨, ¨qE the numerical range

REpBq :“ tpBY, Y qE : Y P DpBq, ‖Y ‖E “ 1u .
Next, we are going to list (spectral) properties of the frozen-wave operator in the statements
below, which make use of a complex Hilbert space

HC :“ L2pR;Cq?
εkL2pR;Cq, (2.21a)

endowed with the inner product

pY1, Y2qHC
:“ Z

ˆ

R

pεw1w2 ` q1q2qdξ, Yj :“
ˆ

wj

qj

˙

, Z
(2.7)“

ˆ
ˆ

R

ˆ

ε
´

dû
dξ

¯2

`
´

dv̂
dξ

¯2
˙

dξ

˙´1

.

(2.21b)
As mentioned in §1.2 already, the spectral properties of L# have in fact been studied by Jones [48]
(based on the framework developed in [27–32]) with shorter proofs given by Yanagida in [91]
and by Arioli and Koch in [2, §3] in the space of bounded uniformly continuous functions.
Furthermore, in [2, §4.1], bounds on the eigenvalues for square integrable functions on the torus
have been derived by a scaling of the components analogous to the one used in (2.6) or (2.21b).
Here, we adapt these approaches in order to give corresponding results in HC in §A.2.2, a choice
being compatible with the Hilbert-space setting of §2.1. Directly applying the deterministic
results [2, 48, 91] would require to adapt our stochastic framework to Banach spaces, which we
briefly comment on in §5.

We emphasize that the following stability result, Proposition 2.8, in the space of square-integrable
functions is (up to a scaling of the components of Y ) in more generality proved by Ghazaryan,
Latushkin, and Schecter in [36] and by Yurov in [92]. These proofs mainly rely on applying
the Gearhart-Prüss theorem (see e.g. [52, Theorem 4.1.5]) and Palmer’s theorem [5] and are
more complicated than our relatively elementary arguments provided in §A.2.2. See also [77] for
an alternative proof using the Laplace transform by Rottmann-Matthes and [78] by the same
author, where the method has been applied to first-order hyperbolic PDEs.

Proposition 2.8 (properties of the frozen-wave operator L#). For the frozen-wave operator

L# : DpL#q :“ H2pR;Cq?
εkH1pR;Cq Ñ HC

(2.21a)“ L2pR;Cq?
εkL2pR;Cq

it holds

(a) L# [L#|DpL#qXH ] generates a C0-semigroup
´

P
#
st

¯

tě0
[
´

P
#
st |H

¯

tě0
] in HC [H].

(b) We have Pst,st1 “ TstP
#

spt´t1q|VT´st1 with Pst,st1 as in Proposition 2.6.

(c) The spectrum σpL#q “ σesspL#q 9YσppL#q consists of

(i) essential spectrum σesspL#q Ď tλ P C : Reλ ď ´κu with

κ :“ min
 

´f 1p0q, εγ
(

(2.22)

and
(ii) point spectrum σppL#q consisting of an isolated eigenvalue 0 of multiplicity 1 with

eigenvector dX̂
dξ

such that σppL#qzt0u Ď tλ P C : Reλ ď λ˚pεqu for an eigenvalue λ˚pεq ă
0, which we will call the Jones eigenvalue [48] (see [91] for more general reaction terms
f as treated here).
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(d) Defining the Riesz spectral projections using Dunford calculus as

Π#,0 :“ 1

2πi

‰

|λ|“r

´

λ idHC
´L#

¯´1

dλ and Π# :“ idHC
´Π#,0, (2.23)

where r :“ 1
2
min t|λ˚pεq| , κu, it follows that for any ϑ ă mintκ,´λ˚pεqu there exists Cϑ P

r0,8q independent of t P r0,8q such that
∥

∥

∥
P

#
stΠ

#
∥

∥

∥

LpHCq
ď Cϑe

´ϑt, (2.24)

where ‖¨‖LpHCq denotes the operator norm of bounded linear operators

L2pR;Cq?
εkL2pR;Cq Ñ L2pR;Cq?

εkL2pR;Cq.

(e) The operators Π#,0
ˇ

ˇ

H
, Π#

ˇ

ˇ

H
: H Ñ H are well-defined and bounded, too, with

∥

∥Π#,0
∥

∥

LpHq ď
∥

∥Π#,0
∥

∥

LpHCq,
∥

∥Π#
∥

∥

LpHq ď
∥

∥Π#
∥

∥

LpHCq, and (2.24) holds true with HC replaced by H.

3. Main results

For the following results, we can choose T P r0,8q arbitrarily.

3.1. Correction of the wave velocity. In accordance with (1.6) we define the translated
spectral Riesz projections

Π0
st`ϕ :“ Tst`ϕΠ

#,0T´st´ϕ, Πst`ϕ :“ Tst`ϕΠ
#T´st´ϕ, (3.1)

and postulate the RODE as an approximation for the noise-induced wave velocity change

9ϕmptq “ dϕm

dt
ptq “ m

´

Π0
st`ϕmptqX

mpt, ¨q, dX̂
dξ

p¨ ` st ` ϕmptqq
¯

H
, (3.2a)

where m ą 0 and

Xmpt, xq :“ Xϕmpt, xq (2.12)“ X̃pt, xq ´ X̂px ` st ` ϕmptqq
(2.12)“ Xpt, xq ` X̂px ` stq ´ X̂px ` st ` ϕmptqq.

Remark 3.1. Indeed, from (1.4) with the choices (3.1) and H
(2.5)“ L2pRq?

εkL2pRq, for Xp0q P V
we obtain the necessary condition for a minimum to be

0 “ Bϕ
∥

∥Π0
st`ϕXϕpt, ¨q

∥

∥

2

H

(2.12)“ Bϕ
∥

∥

∥
Π0

st`ϕ

´

X̃pt, ¨q ´ X̂p¨ ` st ` ϕq
¯∥

∥

∥

2

H

(3.1)“ Bϕ
∥

∥

∥
Π#,0

´

X̃pt, ¨ ´ st ´ ϕq ´ X̂
¯∥

∥

∥

2

H

“ ´2
´

Π#,0
´

X̃ pt, ¨ ´ st ´ ϕq ´ X̂
¯

,Π#,0
´´

BxX̃
¯

pt, ¨ ´ st ´ ϕq
¯¯

H

“ ´
ˆ

R

Bξ
∣

∣

∣
diag

`?
ε, 1

˘

¨
´

Π#,0
´

X̃ pt, ¨ ´ st ´ ϕq ´ X̂
¯¯

pξq
∣

∣

∣

2

dξ
loooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooon

“0

´2
´

Π#,0
´

X̃ pt, ¨ ´ st ´ ϕq ´ X̂
¯

, dX̂
dξ

¯

H

“ ´2
´

Π0
st`ϕ

´

X̃pt, ¨q ´ X̂p¨ ` st ` ϕq
¯

, dX̂
dξ

p¨ ` st ` ϕq
¯

H

(2.12)“ ´2
´

Π0
st`ϕXϕpt, ¨q, dX̂

dξ
p¨ ` st ` ϕq

¯

H
,

so that (1.5) holds true, while (1.6) or (3.2a) correspond to a relaxation of this condition with
numerical parameter m.



12 KATHARINA EICHINGER, MANUEL V. GNANN, AND CHRISTIAN KUEHN

By choosing ϕm from (3.2a) as the velocity adaption, the SPDE (2.13) becomes

dXmpt, ¨q “
´

Lst`ϕmptqX
mpt, ¨q ` Rmpt,Xmpt, ¨q, ¨q ´ 9ϕmptqdX̂

dξ
p¨ ` st ` ϕmptqq

¯

dt

`
ˆ

σ

0

˙

dW pt, ¨q, (3.2b)

where

Rmpt, Y, ¨q :“ Rϕmpt, Y, ¨q
(2.15)“

ˆ

f pw ` ûp¨ ` st ` ϕmqq ´ f pûp¨ ` st ` ϕmqq ´ f 1 pûp¨ ` st ` ϕmqqw
0

˙

,

(3.3a)

Y “
ˆ

w

q

˙

. (3.3b)

The proof of the following proposition is contained in §4.1.

Proposition 3.2. Suppose
?
Q P L2pL2pRq;H1pRqq and up0q, vp0q P H1pRq.

(a) P-almost surely, there exists a unique pFtqtě0-adapted solution ϕm P C1pr0, T sq to the path-
wise ODE (3.2a) subject to ϕmp0q “ 0.

(b) The correction 9ϕm to the velocity s of the traveling pulse satisfies the SODE

d 9ϕmptq “ ´m 9ϕmptq
´

1 `
´

Π0
st`ϕmptqBxXmpt, ¨q, dX̂

dξ
p¨ ` st ` ϕmptqq

¯

H

¯

dt

`σm
´

Π0
st`ϕmptq p1, 0qt dW pt, ¨q, dX̂

dξ
p¨ ` st ` ϕmptqq

¯

H

`m
´

Π0
st`ϕmptqR

mpt,Xmpt, ¨q, ¨q, dX̂
dξ

p¨ ` st ` ϕmptqq
¯

H
dt. (3.4)

3.2. Reduced stochastic dynamics and multiscale analysis. Since for small values of σ,
Xm and 9ϕm are expected to be small, we may also consider the reduced set of equations (in
which by linearity σ can be scaled out)

d 9ϕm
0 ptq “ ´m 9ϕm

0 ptqdt ` m
´

Π0
st p1, 0qt dW pt, ¨q, dX̂

dξ
p¨ ` stq

¯

H
, (3.5a)

dXm
0 pt, ¨q “

´

LstX
m
0 pt, ¨q ´ 9ϕm

0 ptqdX̂
dξ

p¨ ` stq
¯

dt ` p1, 0qt dW pt, ¨q. (3.5b)

Note that the SPDE (3.5b) describes the stochastic fluctuations around the stable fast pulse with
stochastically adapted wave velocity. Due to the construction (cf. the definition of Lst in (2.14)),
the aforementioned SPDE arises from a multiscale argument and represents a leading-order
approximation to track the fluctuations around the deterministically stable fast pulse.

The following statements establish existence of solutions to (3.5) and yield a multiscale expansion

of the solution X̃ “ pũ, ṽqt to the original equation (1.1). Their proof is contained in §4.2.

Theorem 3.3. For
a

Q P L2pL2pRq;H1pRqq, Xm
0 p0, ¨q “ X

p0q
0 P V, 9ϕm

0 p0q “ m
´

Π#,0Xp0q, dX̂
dξ

¯

H
, ϕm

0 p0q “ 0,

we have:

(a) The system (3.5) has a unique mild solution [82, Definition 1.1] given by

ϕm
0 ptq “

`

1 ´ e´mt
˘

´

Π#,0Xp0q, dX̂
dξ

¯

H

`
ˆ t

0

´

1 ´ e´mpt´t1q
¯´

Π0
st1 p1, 0qt dW pt1, ¨q, dX̂

dξ
p¨ ` st1q

¯

H
, (3.6a)

Xm
0 pt, ¨q “ Pst,0X

p0q
0 ´ ϕm

0 ptqdX̂
dξ

p¨ ` stq `
ˆ t

0

Pst,st1 p1, 0qt dW pt1, ¨q, (3.6b)

P-almost surely, where
`

Pst,st1
˘

tět1ě0
is given by Proposition 2.6.
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(b) Let X be defined as in (2.12) using Proposition 2.4 and Proposition 2.5. Define the stopping
times

τq,σ :“ inf
` 

t P r0, T s : ‖Xpt, ¨q‖V ě σ1´q
(

Y tT u
˘

, (3.7a)

τmq,σ :“ inf
` 

t P r0, T s : |ϕm
0 ptq| ě σ´q

(

Y tT u
˘

, (3.7b)

where q P
“

0, 1
2

˘

. Then, on
 

min
 

τq,σ, τ
m
q,σ

(

“ T
(

we have

X̃pt, ¨q “: X̂ p¨ ` st ` σϕm
0 ptqq ` σXm

0 pt, ¨q ` σSmpt, ¨q, (3.8)

where the remainder Sm meets the estimate

‖Smpt, ¨q‖V ď Cσ1´2q
`

1 ` σ1´q
˘

, P-almost surely, (3.9)

with C ă 8 being independent of σ.
(c) For q P

“

0, 1
2

˘

it holds P
“

min
 

τq,σ, τ
m
q,σ

(

“ T
‰

ě 1 ´ Cσ2q Ñ 1 as σ Œ 0 for a constant
C ă 8.

Note that by scaling out σ beforehand, we have X
p0q
0 :“ σ´1Xp0q, where Xp0q is the initial

condition for the unscaled equations (2.4) describing the fluctuations around the traveling wave.

3.3. Immediate relaxation. In the limit as m Ñ 8 (immediate relaxation), the system (3.5)
further simplifies and we expect the solution pXm

0 , ϕm
0 q to (3.5) to converge to

ϕ8
0 ptq :“

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H
`
ˆ t

0

´

Π0
st1 p1, 0qt dW pt1, ¨q, dX̂

dξ
p¨ ` st1q

¯

H
, (3.10a)

X8
0 pt, ¨q :“ Pst,0Π

#X
p0q
0 `

ˆ t

0

Pst,st1Πst1 p1, 0qt dW pt1, ¨q, (3.10b)

where
`

Pst,st1
˘

tět1ě0
is given by Proposition 2.6.

The proof of the following statement is contained in §4.3.

Theorem 3.4. Suppose
?
Q P L2pL2pRq;H1pRqq and X

p0q
0 P V. Let ϕm be given as in Proposi-

tion 3.2 (a), Xm :“ Xϕm be defined as in (2.12) using Proposition 2.4 and Proposition 2.5, and
ϕm
0 and Xm

0 be given by Theorem 3.3.

(a) We have Π0
stX

8
0 pt, ¨q “ 0 or equivalently ΠstX

8
0 pt, ¨q “ X8

0 pt, ¨q for all t P r0, T s, P-almost
surely.

(b) For any δ ą 0, we have

E

«

sup
tPrδ,T s

|ϕm
0 ptq ´ ϕ8

0 ptq|
ff

Ñ 0 as m Ñ 8, (3.11a)

E

«

sup
tPrδ,T s

‖Xm
0 pt, ¨q ´ X8

0 pt, ¨q‖V

ff

Ñ 0 as m Ñ 8. (3.11b)

(c) Suppose q P
“

0, 1
2

˘

, let τq,σ be defined as in (3.7a), and

τ8
q,σ :“ inf

` 

t P r0, T s : |ϕ8
0 ptq| ě σ´q

(

Y tT u
˘

. (3.12)

On
 

min
 

τq,σ, τ
8
q,σ

(

“ T
(

the stochastic traveling wave has the multiscale decomposition

X̃pt, ¨q “: X̂ p¨ ` st ` σϕ8
0 ptqq ` σX8

0 pt, ¨q ` σS8pt, ¨q, (3.13)

with

‖S8pt, ¨q‖V ď Cσ1´2q
`

1 ` σ1´q
˘

, P-almost surely, (3.14)

where C ă 8 is independent of σ.
(d) For q P

“

0, 1
2

˘

it holds P
“

min
 

τq,σ, τ
8
q,σ

(

“ T
‰

ě 1 ´ Cσ2q Ñ 1 as σ Œ 0 for some C ă 8.
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(e) On
 

min
 

τq,σ, τ
8
q,σ

(

“ T
(

, where q P
“

0, 1
2

˘

, the function

R Q ϕ ÞÑ
∥

∥

∥
Π0

st

´

X̃pt, ¨q ´ X̂ p¨ ` st ` σϕq
¯∥

∥

∥

2

H
P R

is for 0 ď t ď T fixed, P-almost surely, locally approximately minimal at ϕ “ ϕ8
0 ptq in the

sense that

Bϕ
∥

∥

∥
Π0

st

´

X̃pt, ¨q ´ X̂ p¨ ` st ` σϕq
¯∥

∥

∥

2

H

ˇ

ˇ

ˇ

ˇ

ϕ“ϕ8
0 ptq

“ O
`

σ3´2q
˘

“ o
`

σ2
˘

, (3.15a)

and

B2
ϕ

∥

∥

∥
Π0

st

´

X̃pt, ¨q ´ X̂p¨ ` st ` σϕq
¯∥

∥

∥

2

H

ˇ

ˇ

ˇ

ˇ

ϕ“ϕ8
0 ptq

“ σ2

ˆ

2

∥

∥

∥

dX̂
dξ

∥

∥

∥

2

H
` O

`

σ1´2q
˘

˙

ą 0 (3.15b)

as σ Œ 0, P-almost surely.

Note that Theorem 3.4 (a) is a generalization of the orthogonality property in [55, §3.3]. Theo-
rem 3.4 (c) and Theorem 3.4 (d) yield a multiscale expansion in the immediate-relaxation limit.
Finally, Theorem 3.4 (e) relates to our original motivation in (1.4) to obtain the correction of
the translation of the wave through a minimization argument. The following result is proved in
in §4.3.

Proposition 3.5. Suppose that
?
Q P L2pL2pRq;L2pRqq and X

p0q
0 P H. Then the second

moment of X8
0 satisfies the bound

E

”

‖X8
0 pt, ¨q‖2H

ı

ď 2C2
ϑe

´2ϑt
∥

∥

∥
X

p0q
0

∥

∥

∥

2

H
` C2

ϑ

1 ´ e´2ϑt

ϑ

∥

∥

∥
Π#

∥

∥

∥

2

LpHq
εZ

∥

∥

∥

a

Q
∥

∥

∥

2

L2pL2pRqq
(3.16)

with ϑ ă min tκ,´λ˚pεqu, where κ and the Jones eigenvalue λ˚pεq have been introduced in
Proposition 2.8, and the constant Cϑ P r0,8q only depends on ϑ (and the parameters γ, ε, f ,
and ν of the deterministic FitzHugh-Nagumo system (1.1) with σ “ 0) but is independent of t,
T , and σ.

The inequality (3.16) is crucial for theoretical and application purposes as it bounds the expected
size of fluctuations/deviations from the deterministic pulse. It shows that the second moment of
the remaining deviations from the pulse, after correcting the wave velocity, are bounded by a sum

of two contributions. The first term is simply due to the initial data X
p0q
0 and is exponentially

decaying as in (2.24) of Proposition 2.8 (d). The second term is due to noise around the traveling
wave, where once more the decay constant of (2.24) enters. From a theoretical viewpoint the
multiscale estimate for the second moment can then be useful in Doob/Markov-type inequalities
to control the probabilities of individual sample paths [1, 6, 37].

Note that the noise contribution is of lower order compared to the second moment of fluctu-
ations around the corresponding deterministic traveling wave (i.e., without stochastic velocity
adaptation) because we have shifted appropriately to minimize the deviations in direction of
the derivative of the traveling wave (which corresponds to the eigenvector with eigenvalue 0 of
the frozen-wave operator). This is made more precise in the following proposition, in which we
compute the second moment of the fluctuations in direction of the derivative of the traveling
wave on the event

 

min
 

τq,σ, τ
8
q,σ

(

“ T
(

where the multiscale decomposition holds true. The
proof can be found in §4.3.

Proposition 3.6. There exists a sequence pQN qNPN with
?
QN P L2pL2pRq;H1pRqq such that

for the deviations without adapting the wave velocity X :“ X0 of (2.12) (i.e., with ϕ “ 0) with
respect to QN in the definition of the noise (2.8c), the second moment of deviations in direction
of the traveling wave satisfies

E

„

´

Π0
stXpt, ¨q, dX̂

dξ
p¨ ` stq

¯2

H
1tmintτq,σ ,τ8

q,σu“Tu


“ σ2
´

Π#,0X
p0q
0 , dX̂

dξ

¯2

H
` σ2εZ

ˆ

t
›

›

›
p1, 0qt

´

Π#,0
¯˚

dX̂
dξ

›

›

›

2

H
` opN0q

˙

` opσ2q,
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where
›

›

›
p1, 0qt

`

Π#,0
˘˚ dX̂

dξ

›

›

›

2

H
ą 0, opN0q can depend on t but not on σ, and opσ2q can depend

on t and N . In particular, asymptotically the in σ leading contribution of this moment grows
linearly in time.

4. Proofs of main results

4.1. Correction of the wave velocity. In this section, we prove Propositions 3.2.

Proof of Proposition 3.2 (a). We use the path-wise definition

F : r0, T s ˆ R ÞÑ R, pt, ϕq ÞÑ m
´

Π0
st`ϕ

´

X̃pt, ¨q ´ X̂p¨ ` st ` ϕq
¯

, dX̂
dξ

p¨ ` st ` ϕq
¯

H

and note that by employing translation invariance of integrals, we have

F pt, ϕq (3.1)“ m
´

Π#,0
´

X̃pt, ¨ ´ st ´ ϕq ´ X̂
¯

, dX̂
dξ

¯

H
for pt, ϕq P r0, T s ˆ R.

Then, we can compute for pt1, ϕ1q, pt2, ϕ2q P r0, T s ˆ R,

|F pt1, ϕ1q ´ F pt2, ϕ2q| ď m
∥

∥

∥
Π#,0

∥

∥

∥

LpHq

∥

∥

∥
X̃pt1, ¨ ´ st1 ´ ϕ1q ´ X̃pt2, ¨ ´ st2 ´ ϕ2q

∥

∥

∥

H

∥

∥

∥

dX̂
dξ

∥

∥

∥

H

and on noting that
∥

∥

∥
X̃pt1, ¨ ´ st1 ´ ϕ1q ´ X̃pt2, ¨ ´ st2 ´ ϕ2q

∥

∥

∥

H

ď
∥

∥

∥
X̃pt1, ¨ ´ st1 ´ ϕ1q ´ X̃pt2, ¨ ´ st1 ´ ϕ1q

∥

∥

∥

H

`
∥

∥

∥
X̃pt2, ¨ ´ st1 ´ ϕ1q ´ X̃pt2, ¨ ´ st2 ´ ϕ2q

∥

∥

∥

H
,

with
∥

∥

∥
X̃pt1, ¨ ´ st1 ´ ϕ1q ´ X̃pt2, ¨ ´ st1 ´ ϕ1q

∥

∥

∥

H

(2.11)
ď ‖Xpt1, ¨ ´ st1 ´ ϕ1q ´ Xpt2, ¨ ´ st1 ´ ϕ1q‖H

`
∥

∥

∥
X̂p¨ ´ ϕ1q ´ X̂ p¨ ` spt2 ´ t1q ´ ϕ1q

∥

∥

∥

H

“ ‖Xpt1, ¨q ´ Xpt2, ¨q‖H `
∥

∥

∥

∥

∥

ˆ ϕ1

spt1´t2q`ϕ1

dX̂
dξ

p¨ ´ ξqdξ
∥

∥

∥

∥

∥

H

ď ‖Xpt1, ¨q ´ Xpt2, ¨q‖H ` |s| |t1 ´ t2|
∥

∥

∥

dX̂
dξ

∥

∥

∥

H

and
∥

∥

∥
X̃pt2, ¨ ´ st1 ´ ϕ1q ´ X̃pt2, ¨ ´ st2 ´ ϕ2q

∥

∥

∥

H

“
∥

∥

∥

∥

ˆ st2`ϕ2

st1`ϕ1

BξX̃pt2, ¨ ´ ξqdξ
∥

∥

∥

∥

H

ď
∣

∣

∣

∣

ˆ st2`ϕ2

st1`ϕ1

∥

∥

∥
BξX̃pt2, ¨ ´ ξq

∥

∥

∥

H
dξ

∣

∣

∣

∣

ď p|s| |t1 ´ t2| ` |ϕ1 ´ ϕ2|q sup
tPr0,T s

∥

∥

∥
BξX̃pt, ¨q

∥

∥

∥

H

(2.11)
ď p|s| |t1 ´ t2| ` |ϕ1 ´ ϕ2|q

˜

sup
tPr0,T s

‖BξXpt, ¨q‖
H

`
∥

∥

∥

dX̂
dξ

∥

∥

∥

H

¸

,

and applying Proposition 2.5, we obtain suptPr0,T s ‖BξXpt, ¨q‖
H

ă 8, P-almost surely, so that
F is, P-almost surely, continuous and globally Lipschitz continuous in the second component.
Making use of the Picard-Lindelöf theorem finishes the proof. �

Proof of Proposition 3.2 (b). We can rewrite (3.2a) according to

9ϕmptq (3.2a)“ m
´

Π0
st`ϕmptqX

mpt, ¨q, dX̂
dξ

p¨ ` st ` ϕmptqq
¯

H



16 KATHARINA EICHINGER, MANUEL V. GNANN, AND CHRISTIAN KUEHN

(3.1)“ m
´

Π#,0Xm pt, ¨ ´ st ´ ϕmptqq , dX̂
dξ

¯

H
, P-almost surely.

Taking the differential yields

d 9ϕmptq “ m
´

Π#,0pdXmq pt, ¨ ´ st ´ ϕmptqq , dX̂
dξ

¯

H

´ ps ` 9ϕmptqqm
´

Π#,0BξXm pt, ¨ ´ st ´ ϕmptqq , dX̂
dξ

¯

H
dt

(3.1)“ m
´

Π0
st`ϕmptqdX

m pt, ¨q , dX̂
dξ

p¨ ` st ` ϕmptqq
¯

H
dt

´ ps ` 9ϕmptqqm
´

Π0
st`ϕmptqBξXm pt, ¨q , dX̂

dξ
p¨ ` st ` ϕmptqq

¯

H
dt

(3.2b)“ m
´

Π0
st`ϕmptqLst`ϕmptqX

m pt, ¨q , dX̂
dξ

p¨ ` st ` ϕmptqq
¯

H
dt

`m
´

Π0
st`ϕmptqR

m pt,Xm pt, ¨q , ¨q , dX̂
dξ

p¨ ` st ` ϕmptqq
¯

H
dt

´m 9ϕmptq
´

Π0
st`ϕmptq

dX̂
dξ

p¨ ` st ` ϕmptqq , dX̂
dξ

p¨ ` st ` ϕmptqq
¯

H
dt

`σm
´

Π0
st`ϕmptq p1, 0qt dW pt, ¨q, dX̂

dξ
p¨ ` st ` ϕmptqq

¯

H

´m ps ` 9ϕmptqq
´

Π0
st`ϕmptqBxXm pt, ¨q , dX̂

dξ
p¨ ` st ` ϕmptqq

¯

H
dt,

P-almost surely. Now, we note that
´

Π0
st`ϕmptq

dX̂
dξ

p¨ ` st ` ϕmptqq , dX̂
dξ

p¨ ` st ` ϕmptqq
¯

H

(3.1)“
´

Π#,0 dX̂
dξ

, dX̂
dξ

¯

H

(2.20),(2.23)“
∥

∥

∥

dX̂
dξ

∥

∥

∥

2

H

(2.6a)“ 1,

so that we obtain the simplification

d 9ϕmptq “ m
´

Π0
st`ϕmptq

`

Lst`ϕmptq ´ sBx
˘

Xm pt, ¨q , dX̂
dξ

p¨ ` st ` ϕmptqq
¯

H
dt

´m 9ϕmptq
´

1 `
´

Π0
st`ϕmptqBxXm pt, ¨q , dX̂

dξ
p¨ ` st ` ϕmptqq

¯

H

¯

dt

`σm
´

Π0
st`ϕmptq p1, 0qt dW pt, ¨q, dX̂

dξ
p¨ ` st ` ϕmptqq

¯

H

`m
´

Π0
st`ϕmptqR

m pt,Xm pt, ¨q , ¨q , dX̂
dξ

p¨ ` st ` ϕmptqq
¯

H
dt,

P-almost surely. Next, we use (2.14), (2.17), (2.18), (2.23), and (3.1) to conclude that

Π0
st`ϕmptq

`

Lst`ϕmptq ´ sBx
˘

“ Tst`ϕmptqΠ
#,0L# (2.23)“ Tst`ϕmptqL

#Π#,0

and therefore
´

Π0
st`ϕmptq

`

Lst`ϕmptq ´ sBx
˘

Xm pt, ¨q , dX̂
dξ

p¨ ` st ` ϕmptqq
¯

H

“
´

L#Π#,0Xm pt, ¨ ´ st ´ ϕmptqq , dX̂
dξ

¯

H

(2.6a),(2.7)“
´

L#dX̂
dξ

, dX̂
dξ

¯

H

´

Π#,0Xm pt, ¨ ´ st ´ ϕmptqq , dX̂
dξ

¯

H

(2.20)“ 0,

P-almost surely, so that we end up with (3.4). �

4.2. Reduced stochastic dynamics and multiscale analysis. In this section, we prove
Theorem 3.3. We note that the existence and uniqueness of mild solutions for all non-autonomous
linear SPDEs appearing in the next proof is guaranteed by standard results, see for instance [82,
Theorem 1.3] or the very general approach in [89].
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Proof of Theorem 3.3 (a). Since equation (3.5a) decouples from (3.5b), it forms a linear SDE
for which we have a unique mild solution given by

9ϕm
0 ptq “ me´mt

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H
` m

ˆ t

0

e´mpt´t1q
´

Π0
st1 p1, 0qt dW pt1, ¨q, dX̂

dξ
p¨ ` st1q

¯

H
,

P-almost surely. Another integration using ϕm
0 p0q “ 0 yields

ϕm
0 ptq “

`

1 ´ e´mt
˘

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

`m

ˆ t

0

ˆ t1

0

e´mpt1´t2q
´

Π0
st2 p1, 0qt dW pt2, ¨q, dX̂

dξ
p¨ ` st2q

¯

H
dt1,

P-almost surely. Utilizing

m

ˆ t

0

ˆ t1

0

e´mpt1´t2q
´

Π0
st2 p1, 0qt dW pt2, ¨q, dX̂

dξ
p¨ ` st2q

¯

H
dt1

“
ˆ t

0

ˆ t´t2

0

me´mt3
dt3

´

Π0
st2 p1, 0qt dW pt2, ¨q, dX̂

dξ
p¨ ` st2q

¯

H

“
ˆ t

0

´

1 ´ e´mpt´t2q
¯´

Π0
st2 p1, 0qt dW pt2, ¨q, dX̂

dξ
p¨ ` st2q

¯

H
,

we end up with (3.6a).

Since ϕm
0 is already uniquely defined, we may uniquely solve (3.5b) with the mild-solution

formula

Xm
0 pt, ¨q “ Pst,0X

p0q
0 ´

ˆ t

0

9ϕm
0 pt1qPst,st1 dX̂

dξ
p¨ ` st1q dt1 `

ˆ t

0

Pst,st1 p1, 0qt dW pt1, ¨q,

P-almost surely. With help of Proposition 2.8 (a) and (b) it follows

Pst,st1 dX̂
dξ

p¨ ` st1q (2.18)“ TstP
#

spt´t1q
dX̂
dξ

(2.18),(2.20)“ dX̂
dξ

p¨ ` stq,
so that

ˆ t

0

9ϕm
0 pt1qPst,st1 dX̂

dξ
p¨ ` st1qdt1 “

ˆ t

0

9ϕm
0 pt1q dt1 dX̂

dξ
p¨ ` stq “ ϕm

0 ptqdX̂
dξ

p¨ ` stq

and we arrive at (3.6b). �

Proof of Theorem 3.3 (b). In what follows, we restrict ourselves to paths on
 

min
 

τq,σ, τ
m
q,σ

(

“ T
(

,
which ensures smallness of Xpt, ¨q and ϕm

0 ptq.
We consider the remainder

σSmpt, ¨q (3.8)“ X̃pt, ¨q ´ X̂ p¨ ` st ` σϕm
0 ptqq ´ σXm

0 pt, ¨q
(2.11)“ Xpt, ¨q ` X̂ p¨ ` stq ´ X̂ p¨ ` st ` σϕm

0 ptqq ´ σXm
0 pt, ¨q,

so that with

dXpt, ¨q (2.13),(2.15)“ LstXpt, ¨qdt `
ˆ

σ

0

˙

dW pt, ¨q,

`
ˆ

f pupt, ¨q ` ûp¨ ` stqq ´ f pûp¨ ` stqq ´ f 1 pûp¨ ` stqqupt, ¨q
0

˙

dt

dX̂ p¨ ` stq (1.2),(2.14)“ LstX̂ p¨ ` stq dt `
ˆ

f pû p¨ ` stqq ´ f 1 pû p¨ ` stqq û p¨ ` stq
0

˙

dt,

as well as

dX̂ p¨ ` st ` σϕm
0 ptqq

(1.2),(2.14)“ LstX̂ p¨ ` st ` σϕm
0 ptqqdt
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`
ˆ

f pû p¨ ` st ` σϕm
0 ptqqq ´ f 1 pû p¨ ` stqq û p¨ ` st ` σϕm

0 ptqq
0

˙

dt

`σ 9ϕm
0 ptqdX̂

dξ
p¨ ` st ` σϕm

0 ptqqdt
and

dXm
0 pt, ¨q (3.5b)“ LstX

m
0 pt, ¨qdt ´ 9ϕm

0 ptqdX̂
dξ

p¨ ` stqdt `
ˆ

1

0

˙

dW pt, ¨q,

we get with

ũm0 pt, ¨q :“ upt, ¨q ` û p¨ ` stq ´ û p¨ ` st ` σϕm
0 ptqq (4.1)

that

dSmpt, ¨q ´ LstS
m pt, ¨qdt “ Sm

1 pt, ¨q ` Sm
2 pt, ¨q ` Sm

3 pt, ¨q,
where

Sm
1 pt, ¨q :“ σ´1

ˆ

f pû p¨ ` st ` σϕm
0 ptqq ` ũm0 pt, ¨qq ´ f pû p¨ ` st ` σϕm

0 ptqqq
0

˙

´σ´1

ˆ

f 1 pû p¨ ` st ` σϕm
0 ptqqq ũm0 pt, ¨q

0

˙

, (4.2a)

Sm
2 pt, ¨q :“ σ´1

`

f 1 pû p¨ ` st ` σϕm
0 ptqqq ´ f 1 pû p¨ ` stqq

˘

ˆ

ũm0 pt, ¨q
0

˙

, (4.2b)

Sm
3 pt, ¨q :“ 9ϕm

0 ptq
´

dX̂
dξ

p¨ ` stq ´ dX̂
dξ

p¨ ` st ` σϕm
0 ptqq

¯

. (4.2c)

Since pLstqtě0 generates an evolution family
`

Pst,st1
˘

tět1ě0
(cf. Proposition 2.6), we find the

mild-solution representation

Smpt, ¨q “
ˆ t

0

Pst,st1
`

Sm
1 pt1, ¨q ` Sm

2 pt1, ¨q ` Sm
3 pt1, ¨q

˘

dt1, P-almost surely. (4.3)

Note that (4.3) can be rigorously justified by following the arguments detailed at the beginning

of the proof of Proposition 2.5. We continue by treating the terms
´ t

0
Pst,st1Sm

j pt1, ¨qdt1 for

j P t1, 2, 3u separately.

First observe that we have the point-wise estimate

|Sm
1 pt, xq|

(2.1h),(4.2a)
ď σ´1η2 p1 ` |û px ` st ` σϕm

0 ptqq| ` |ũm0 pt, xq|q |ũm0 pt, xq|2

ď σ´1η2

´

1 ` ‖û‖L8pRq ` ‖ũm0 pt, ¨q‖H1pRq

¯

‖ũm0 pt, ¨q‖H1pRq |ũ
m
0 pt, xq| ,

where the Sobolev embedding in form of ‖ũm0 pt, ¨q‖L8pRq ď ‖ũm0 pt, ¨q‖H1pRq has been applied.

This already yields

‖Sm
1 pt, ¨q‖H

(2.6a)
ď σ´1

?
εZ η2

´

1 ` ‖û‖L8pRq ` ‖ũm0 pt, ¨q‖H1pRq

¯

‖ũm0 pt, ¨q‖H1pRq ‖ũ
m
0 pt, ¨q‖L2pRq .

(4.4)
On the other hand, a direct computation gives (suppressing the arguments in Sm

1 “ Sm
1 pt, xq,

um0 “ um0 pt, xq, û “ û px ` st ` σϕm
0 ptqq, and ũm0 “ ũm0 pt, xq)

σBxSm
1

(4.2a)“
´

f 1 pû ` ũm0 q
´

Bxũm0 ` dû
dξ

¯

´ f 1 pûq dû
dξ

´ f2 pûq dû
dξ
ũm0 ´ f 1 pûq Bxũm0

¯

p1, 0qt

“
´

`

f 1 pû ` ũm0 q ´ f 1 pûq ´ f2 pûq ũm0
˘

dû
dξ

`
`

f 1 pû ` ũm0 q ´ f 1 pûq
˘

Bxũm0
¯

p1, 0qt.

Now, we note that
∣

∣

∣

`

f 1 pû ` ũm0 q ´ f 1 pûq ´ f2 pûq ũm0
˘

dû
dξ

∣

∣

∣

(2.1k)
ď η5 pũm0 pt, xqq2

∣

∣

∣

dû
dξ

px ` st ` σϕm
0 ptqq

∣

∣

∣

ď η5 ‖ũ
m
0 pt, ¨q‖H1pRq

∥

∥

∥

dû
dξ

∥

∥

∥

L8pRq
|ũm0 pt, xq| ,

∣

∣

`

f 1 pû ` ũm0 q ´ f 1 pûq
˘

Bxũm0
∣

∣

(2.1l)
ď η6 |ũ

m
0 pt, xq| |Bxũm0 pt, xq|
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p1 ` 2 |û px ` st ` σϕm
0 ptqq| ` |ũm0 pt, xq|q

ď η6 ‖ũ
m
0 pt, ¨q‖H1pRq |Bxũm0 pt, xq|

´

1 ` 2 ‖û‖L8pRq ` ‖ũm0 pt, ¨q‖H1pRq

¯

,

where ‖ũm0 pt, ¨q‖L8pRq ď ‖ũm0 pt, ¨q‖H1pRq has been utilized once again. Hence,

‖BxSm
1 pt, ¨q‖H

(2.6a)
ď σ´1

?
εZ η5 ‖ũ

m
0 pt, ¨q‖H1pRq

∥

∥

∥

dû
dξ

∥

∥

∥

L8pRq
‖ũm0 pt, ¨q‖L2pRq

`σ´1
?
εZ η6 ‖ũ

m
0 pt, ¨q‖H1pRq ‖Bxũm0 pt, ¨q‖L2pRq

´

1 ` 2 ‖û‖L8pRq ` ‖ũm0 pt, ¨q‖H1pRq

¯

.

The combination with (4.4) yields

‖Sm
1 pt, ¨q‖V

(2.10b)
ď σ´1C1 ‖ũ

m
0 pt, ¨q‖2H1pRq

´

1 ` ‖ũm0 pt, ¨q‖H1pRq

¯

, (4.5)

where C1 ă 8 is independent of σ.

Next, we estimate Sm
2 . Notice that on one hand we have

∣

∣f 1 pû px ` st ` σϕm
0 ptqqq ´ f 1 pûpx ` stqq

∣

∣

(2.1l)
ď η6 |û px ` st ` σϕm

0 ptqq ´ ûpx ` stq|
p1 ` |û px ` st ` σϕm

0 ptqq| ` |ûpx ` stq|q
ď η6

∥

∥

∥

dû
dξ

∥

∥

∥

L8pRq

´

1 ` 2 ‖û‖L8pRq

¯

σ |ϕm
0 ptq| ,

so that

‖Sm
2 pt, ¨q‖H

(2.6a),(4.2b)
ď

?
εZ η6

∥

∥

∥

dû
dξ

∥

∥

∥

L8pRq

´

1 ` 2 ‖û‖L8pRq

¯

|ϕm
0 ptq| ‖ũm0 pt, ¨q‖L2pRq . (4.6)

On the other hand, for the derivative we get

Bx
“`

f 1 pûpx ` st ` σϕm
0 ptqqq ´ f 1 pûpx ` stqq

˘

ũm0 pt, xq
‰

“
”

f2 pû px ` st ` σϕm
0 ptqqq dû

dξ
px ` st ` σϕm

0 ptqq ´ f2 pûpx ` stqq dû
dξ

px ` stq
ı

ũm0 pt, xq
`
“

f 1 pû px ` st ` σϕm
0 ptqqq ´ f 1 pûpx ` stqq

‰

Bxũm0 pt, xq
“

“

f2 pû px ` st ` σϕm
0 ptqqq ´ f2 pûpx ` stqq

‰

dû
dξ

px ` st ` σϕm
0 ptqq ũm0 pt, xq

`f2 pûpx ` stqq
”

dû
dξ

px ` st ` σϕm
0 ptqq ´ dû

dξ
px ` stq

ı

ũm0 pt, xq
`
“

f 1 pûpx ` st ` σϕm
0 ptqqq ´ f 1 pûpx ` stqq

‰

Bxũm0 pt, xq,
so that
∣

∣Bx
“`

f 1 pûpx ` st ` σϕm
0 ptqqq ´ f 1 pûpx ` stqq

˘

ũm0 pt, xq
‰∣

∣

(2.1l),(2.1m)
ď η7 |ûpx ` st ` σϕm

0 ptqq ´ ûpx ` stq|
∣

∣

∣

dû
dξ

px ` st ` σϕm
0 ptqq

∣

∣

∣
|ũm0 pt, xq|

`
∣

∣f2 pûpx ` stqq
∣

∣

∣

∣

∣

dû
dξ

px ` st ` σϕm
0 ptqq ´ dû

dξ
px ` stq

∣

∣

∣
|ũm0 pt, xq|

`η6 |ûpx ` st ` σϕm
0 ptqq ´ ûpx ` stq| p1 ` |ûpx ` st ` σϕm

0 ptqq| ` |ûpx ` stq|q
|Bxũm0 pt, xq|

ď η7

∥

∥

∥

dû
dξ

∥

∥

∥

2

L8pRq
σ |ϕm

0 ptq| |ũm0 pt, xq| `
∥

∥f2 pûq
∥

∥

L8pRq

∥

∥

∥

d2û
dξ2

∥

∥

∥

L8pRq
σ |ϕm

0 ptq| |ũm0 pt, xq|

`η6

∥

∥

∥

dû
dξ

∥

∥

∥

L8pRq

´

1 ` 2 ‖û‖L8pRq

¯

σ |ϕm
0 ptq| |Bxũm0 pt, xq|

This gives
∥

∥Bx
“`

f 1 pûp¨ ` st ` σϕm
0 ptqqq ´ f 1 pûp¨ ` stqq

˘

ũm0 pt, ¨q
‰∥

∥

H
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(2.6a)
ď

?
εZ η7

∥

∥

∥

dû
dξ

∥

∥

∥

2

L8pRq
σ |ϕm

0 ptq| ‖ũm0 pt, ¨q‖L2pRq

`
?
εZ

∥

∥f2 pûq
∥

∥

L8pRq

∥

∥

∥

d2û
dξ2

∥

∥

∥

L8pRq
σ |ϕm

0 ptq| ‖ũm0 pt, ¨q‖L2pRq

`
?
εZ η6

∥

∥

∥

dû
dξ

∥

∥

∥

L8pRq

´

1 ` 2 ‖û‖L8pRq

¯

σ |ϕm
0 ptq| ‖Bxũm0 pt, ¨q‖L2pRq

and the combination with (4.6) yields

‖Sm
2 pt, ¨q‖V

(2.10b)
ď C2 |ϕ

m
0 ptq| ‖ũm0 pt, ¨q‖H1pRq , (4.7)

where C2 ă 8 is independent of σ.

For estimating
∥

∥

∥

´ t

0
Pst,st1Sm

3 pt1, ¨qdt1
∥

∥

∥

V
, observe that

pBt ´ sBxq
´

X̂ px ` st ` σϕm
0 ptqq ´ X̂px ` stq ´ dX̂

dξ
px ` stqσϕm

0 ptq
¯

“ σ 9ϕm
0 ptq

´

dX̂
dξ

px ` st ` σϕm
0 ptqq ´ dX̂

dξ
px ` stq

¯

(4.2c)“ ´σSm
3 pt, ¨q.

Using integration by parts, this gives

σ

ˆ t

0

Pst,st1Sm
3 pt1, ¨qdt1

“ ´
ˆ t

0

Pst,st1pBt1 ´ sBxq
´

X̂
`

¨ ` st1 ` σϕm
0 pt1q

˘

´ X̂p¨ ` st1q ´ dX̂
dξ

p¨ ` st1qσϕm
0 pt1q

¯

dt1

“ ´X̂ p¨ ` st ` σϕm
0 ptqq ` X̂p¨ ` stq ` dX̂

dξ
p¨ ` stqσϕm

0 ptq

`
ˆ t

0

`

pBt1Pst,st1q ` Pst,st1sBx
˘

´

X̂
`

¨ ` st1 ` σϕm
0 pt1q

˘

´ X̂p¨ ` st1q ´ dX̂
dξ

p¨ ` st1qσϕm
0 pt1q

¯

dt1

“ ´X̂ p¨ ` st ` σϕm
0 ptqq ` X̂p¨ ` stq ` dX̂

dξ
p¨ ` stqσϕm

0 ptq

´
ˆ t

0

Pst,st1 pLst1 ´ sBxq
´

X̂
`

¨ ` st1 ` σϕm
0 pt1q

˘

´ X̂p¨ ` st1q ´ dX̂
dξ

p¨ ` st1qσϕm
0 pt1q

¯

dt1,

P-almost surely, and therefore by boundedness of

pLst ´ sBxq|H3pRq?
εkH2pRq : U :“ H3pRq?

εkH2pRq Ñ V

(cf. (2.14)) and employing Proposition 2.6, we have

σ

∥

∥

∥

∥

ˆ t

0

Pst,st1Sm
3 pt1, ¨qdt1

∥

∥

∥

∥

V

(2.16a)
ď

∥

∥

∥
X̂ p¨ ` st ` σϕm

0 ptqq ´ X̂p¨ ` stq ´ dX̂
dξ

p¨ ` stqσϕm
0 ptq

∥

∥

∥

V

`C

ˆ t

0

eβpt´t1q
∥

∥

∥
X̂

`

¨ ` st1 ` σϕm
0 pt1q

˘

´ X̂p¨ ` st1q ´ dX̂
dξ

p¨ ` st1qσϕm
0 pt1q

∥

∥

∥

U
dt1,

P-almost surely, where C ă 8 and β
(2.16b)“ ‖f 1pûq ´ f 1p0q‖W 1,8pRq ´ min tν,´f 1p0q, εγu. Now,

we note that
∥

∥

∥
Bj
x

´

û p¨ ` st ` σϕm
0 ptqq ´ ûp¨ ` stq ´ dû

dξ
p¨ ` stqσϕm

0 ptq
¯∥

∥

∥

L2pRq
ď 1

2

∥

∥

∥

dj`2û
dξj`2

∥

∥

∥

L2pRq
pσϕm

0 ptqq2

for j P t0, 1, 2, 3u and in the same way
∥

∥

∥
Bj
x

´

v̂ p¨ ` st ` σϕm
0 ptqq ´ v̂p¨ ` stq ´ dv̂

dξ
p¨ ` stqσϕm

0 ptq
¯∥

∥

∥

L2pRq
ď 1

2

∥

∥

∥

dj`2v̂
dξj`2

∥

∥

∥

L2pRq
pσϕm

0 ptqq2

for j P t0, 1, 2u. As a result, we obtain
∥

∥

∥

∥

ˆ t

0

Pst,st1Sm
3 pt1, ¨qdt1

∥

∥

∥

∥

V

ď σ´1C3

ˆ

pσϕm
0 ptqq2 `

ˆ t

0

eβpt´t1q `σϕm
0 pt1q

˘2
dt1

˙
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ď σ´1C3

eβt ` β ´ 1

β
max
t1Pr0,ts

`

σϕm
0 pt1q

˘2
, (4.8)

P-almost surely, where C3 ă 8 is independent of σ.

We collect (4.5), (4.7), and (4.8), and obtain because of (2.16) of Proposition 2.6 and (4.3),

‖Smpt, ¨q‖V

ď σ´1C1

ˆ t

0

eβpt´t1q
´

∥

∥ũm0 pt1, ¨q
∥

∥

2

H1pRq `
∥

∥ũm0 pt1, ¨q
∥

∥

3

H1pRq

¯

dt1

`σ´1C2

ˆ t

0

eβpt´t1qσ
∣

∣ϕm
0 pt1q

∣

∣

∥

∥ũm0 pt1, ¨q
∥

∥

H1pRq dt
1

`σ´1C3

eβt ` β ´ 1

β
max
t1Pr0,ts

`

σϕm
0 pt1q

˘2

ď σ´1C4 max
t1Pr0,ts

ˆ

´

∥

∥ũm0 pt1, ¨q
∥

∥

H1pRq ` σ
∣

∣ϕm
0 pt1q

∣

∣

¯2

`
∥

∥ũm0 pt1, ¨q
∥

∥

3

H1pRq

˙

, (4.9)

P-almost surely, where C4 ă 8 is independent of σ. Now, because of (4.1) we have

‖ũm0 pt, ¨q‖H1pRq ď ‖upt, ¨q‖H1pRq ` ‖ûp¨ ` stq ´ û p¨ ` st ` σϕm
0 ptqq‖H1pRq

ď ‖upt, ¨q‖H1pRq `
∥

∥

∥

dû
dξ

∥

∥

∥

L8pRq
σ |ϕm

0 ptq| ,

which in combination with (3.7) and (4.9) gives (3.9). �

Proof of Theorem 3.3 (c). We fix an element ω P Ω. If for σ P p0, 1s we have t :“ τq,σpωq ă T ,
then

σ1´q (3.7a)“ ‖Xpt, ¨q‖V
(2.11)“

∥

∥

∥
X̃pt, ¨q ´ X̂p¨ ` stq

∥

∥

∥

V

(3.8)
ď σ ‖Smpt, ¨q‖V `

∥

∥

∥
X̂ p¨ ` st ` σϕm

0 ptqq ´ X̂p¨ ` stq ` σXm
0 pt, ¨q

∥

∥

∥

V

(3.9)
ď Cσ2´2q `

∥

∥

∥
X̂ p¨ ` st ` σϕm

0 ptqq ´ X̂p¨ ` stq ` σXm
0 pt, ¨q

∥

∥

∥

V
,

where C ă 8 is independent of σ P p0, 1s. This gives with help of Markov’s inequality

P rτq,σ ă T s

ď P

„

max
tPr0,T s

‖Xpt, ¨q‖V ě σ1´q



ď P

„

max
tPr0,T s

∥

∥

∥
X̂ p¨ ` st ` σϕm

0 ptqq ´ X̂p¨ ` stq ` σXm
0 pt0, ¨q

∥

∥

∥

V
ě σ1´q

`

1 ´ Cσ1´q
˘



ď 2σ2q´2

p1 ´ Cσ1´qq2
E

„

max
tPr0,T s

∥

∥

∥
X̂ p¨ ` st ` σϕm

0 ptqq ´ X̂p¨ ` stq
∥

∥

∥

2

V



` 2σ2q

p1 ´ Cσ1´qq2
E

„

max
tPr0,T s

‖Xm
0 pt, ¨q‖2V



ď C̃σ2q

p1 ´ Cσ1´qq2
ˆ

E

„

max
tPr0,T s

|ϕm
0 ptq|2



` E

„

max
tPr0,T s

‖Xm
0 pt, ¨q‖2V

˙

,

where C̃ ă 8 is independent of σ P p0, 1s X
´

0, C
´ 1

1´q

¯

. Hence, in order to conclude that

P rτq,σ ă T s ď Cσ2q Ñ 0 as σ Œ 0 for some C ă 8, it suffices to prove that

E

„

max
tPr0,T s

|ϕm
0 ptq|2



ă 8 and E

„

max
tPr0,T s

‖Xm
0 pt, ¨q‖2V



ă 8.
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This follows from the representations (3.6) and the Burkholder-Davis-Gundy inequality [53,
Theorem 3.28] or [23, Lemma 7.7] to estimate the martingale. Indeed, we have

E

„

max
tPr0,T s

|ϕm
0 ptq|2



ď 2

∣

∣

∣

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

∣

∣

∣

2

`2E max
tPr0,T s

∣

∣

∣

∣

ˆ t

0

´

1 ´ e´mpt´t1q
¯´

Π0
st1 p1, 0qt dW pt1, ¨q, dX̂

dξ
p¨ ` st1q

¯

H

∣

∣

∣

∣

2

(3.1)
ď 2

∥

∥

∥
Π#,0

∥

∥

∥

2

LpHq

∥

∥

∥
X

p0q
0

∥

∥

∥

2

H

∥

∥

∥

dX̂
dξ

∥

∥

∥

2

H
` 2C1TεZ

∥

∥

∥
Π#,0

∥

∥

∥

2

LpHq

∥

∥

∥

dX̂
dξ

∥

∥

∥

2

H

∥

∥

∥

a

Q
∥

∥

∥

2

L2pL2pRqq
ă 8,

as well as

E

„

max
tPr0,T s

‖Xm
0 pt, ¨q‖2V



ď 3 max
tPr0,T s

∥

∥

∥
Pst,0X

p0q
0

∥

∥

∥

2

V
` 3

∥

∥

∥

dX̂
dξ

∥

∥

∥

2

V
E max

tPr0,T s
|ϕm

0 ptq|2

`3E max
tPr0,T s

∥

∥

∥

∥

ˆ t

0

Pst,st1p1, 0qtdW pt1, ¨q
∥

∥

∥

∥

2

V

(2.16)
ď 3e2βT

∥

∥

∥
X

p0q
0

∥

∥

∥

2

V
` 3

∥

∥

∥

dX̂
dξ

∥

∥

∥

2

V
E max

tPr0,T s
|ϕm

0 ptq|2 ` 3C2

e2βT ´ 1

2β
εZ

∥

∥

∥

a

Q
∥

∥

∥

2

L2pL2pRqq
ă 8,

where C1, C2 ă 8 are independent of σ and Proposition 2.6 has been employed.

In the same way, we obtain

P
“

τmq,σ ă T
‰

(3.7b)
ď P

„

max
tPr0,T s

|ϕm
0 ptq| ě σ´q



ď σ2q
E

„

max
tPr0,T s

|ϕm
0 ptq|2



Ñ 0 as σ Œ 0. �

4.3. Immediate relaxation. Here, we give the proofs of Theorem 3.4 and Proposition 3.5.

Proof of Theorem 3.4 (a). Utilizing Proposition 2.8 (b) and (d) yields

Π0
stX

8
0 pt, ¨q (3.10b)“ Π0

stPst,0Π
#X

p0q
0 `

ˆ t

0

Π0
stPst,st1Πst1 p1, 0qt dW pt1, ¨q

(3.1)“ TstΠ
#,0P

#
stΠ

#X
p0q
0 `

ˆ t

0

TstΠ
#,0P

#

spt´t1qΠ
#T´st1 p1, 0qt dW pt1, ¨q

(2.23)“ TstP
#
st Π

#,0Π#
looomooon

(2.23)“ 0

X
p0q
0 `

ˆ t

0

TstP
#

spt´t1q Π
#,0Π#

looomooon

(2.23)“ 0

T´st1 p1, 0qt dW pt1, ¨q “ 0,

P-almost surely, so that because of (2.23) and (3.1) the claim follows. �

Proof of Theorem 3.4 (b). Using Theorem 3.3 (a), we obtain for the difference of ϕm
0 and ϕ8

0

the following form

pϕ8
0 ´ ϕm

0 q ptq (3.6a),(3.10a)“ e´mt
´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

`
ˆ t

0

e´mpt´t1q
´

Π0
st1 p1, 0qt dW pt1, ¨q, dX̂

dξ
p¨ ` st1q

¯

H
, (4.10)

P-almost surely. On the other hand, we obtain with (2.23), (3.1), (3.6b), and (3.10b)

pX8
0 ´ Xm

0 q pt, ¨q “ ´Pst,0Π
#,0X

p0q
0 ´

ˆ t

0

Pst,st1Π0
st1 p1, 0qt dW pt1, ¨q ` ϕm

0 ptqdX̂
dξ

p¨ ` stq

and with help of Proposition 2.8 (b), (cii), and (d) we conclude that

Pst,0Π
#,0X

p0q
0

(2.20),(2.23)“
´

Π#,0X
p0q
0 , dX̂

dξ

¯

H
TstP

#
st

dX̂
dξ
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(2.18),(2.20)“
´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

dX̂
dξ

p¨ ` stq,

Pst,st1Π0
st1 p1, 0qt dW pt1, ¨q (2.20),(2.23),(3.1)“

´

Π0
st1 p1, 0qt dW pt1, ¨ ´ st1q, dX̂

dξ

¯

H
TstP

#

spt´t1q
dX̂
dξ

(2.18),(2.20)“
´

Π0
st1 p1, 0qt dW pt1, ¨q, dX̂

dξ
p¨ ` st1q

¯

H

dX̂
dξ

p¨ ` stq,

and thus

pX8
0 ´ Xm

0 q pt, ¨q

“
ˆ

´
´

Π#,0X
p0q
0 , dX̂

dξ

¯

H
´
ˆ t

0

´

Π0
st1 p1, 0qt dW pt1, ¨q, dX̂

dξ
p¨ ` st1q

¯

H
` ϕm

0 ptq
˙

dX̂
dξ

p¨ ` stq

(3.10a)“ ´ pϕ8
0 ptq ´ ϕm

0 ptqq dX̂
dξ

p¨ ` stq, P-almost surely. (4.11)

Hence, once (3.11a) is established, (3.11b) is immediate from (4.11).

In order to prove (3.11a), notice that obviously

lim
mÑ8

sup
tPrδ,T s

e´mt
∣

∣

∣

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

∣

∣

∣
“ 0

for any δ ą 0. For the remaining term we apply the simplification
ˆ t

0

e´mpt´t1q
´

Π0
st1 p1, 0qt dW pt1, ¨q, dX̂

dξ
p¨ ` st1q

¯

H

(2.18),(3.1)“
ˆ t

0

e´mpt´t1q
´

Π#,0T´st1 p1, 0qt dW pt1, ¨q, dX̂
dξ

¯

H

(2.18)“
´

Π#,0 p1, 0qtW pt, ¨ ´ stq, dX̂
dξ

¯

H

´m

ˆ t

0

e´mpt´t1q
´

Π#,0 p1, 0qtW pt1, ¨ ´ st1q, dX̂
dξ

¯

H
dt1

`s

ˆ t

0

e´mpt´t1q
´

Π#,0 p1, 0qt pBxW qpt1, ¨ ´ st1q, dX̂
dξ

¯

H
dt1 (4.12)

“ e´mt
´

Π#,0 p1, 0qtW pt, ¨ ´ stq, dX̂
dξ

¯

H

`m

ˆ t

0

e´mpt´t1q
´

Π#,0 p1, 0qt
`

W pt, ¨ ´ stq ´ W pt1, ¨ ´ st1q
˘

, dX̂
dξ

¯

H
dt1

`s

ˆ t

0

e´mpt´t1q
´

Π#,0 p1, 0qt pBxW qpt1, ¨ ´ st1q, dX̂
dξ

¯

H
dt1, P-almost surely.

Now, note that r0, T s Q t ÞÑ W pt, ¨q P H1pRq is, P-almost surely, Hölder continuous with
exponent α ă 1

2
, so that in particular

sup
t,t1Pr0,T s

∣

∣

∣

´

Π#,0 p1, 0qt pW pt, ¨ ´ stq ´ W pt1, ¨ ´ stqq , dX̂
dξ

¯

H

∣

∣

∣

|t ´ t1|α

(2.6a)
ď

∥

∥

∥
Π#,0

∥

∥

∥

LpHq

∥

∥

∥

dX̂
dξ

∥

∥

∥

H

?
εZ sup

t,t1Pr0,T s

‖W pt, ¨q ´ W pt1, ¨q‖L2pRq
|t ´ t1|α

ă 8, P-almost surely.

Furthermore,
∣

∣

∣

´

Π#,0 p1, 0qt
`

W pt, ¨ ´ stq ´ W pt, ¨ ´ st1q
˘

, dX̂
dξ

¯

H

∣

∣

∣

“
∣

∣

∣

∣

s

ˆ t

t1

´

Π#,0 p1, 0qt pBxW qpt, ¨ ´ st2q, dX̂
dξ

¯

H
dt2

∣

∣

∣

∣

(2.6a)
ď |s|

∥

∥

∥
Π#,0

∥

∥

∥

LpHq

?
εZ ‖pBxW qpt, ¨q‖L2pRq

∥

∥

∥

dX̂
dξ

∥

∥

∥

H

∣

∣t ´ t1∣
∣ ,
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so that we may conclude

M :“ sup
t,t1Pr0,T s

∣

∣

∣

´

Π#,0 p1, 0qt pW pt, ¨ ´ stq ´ W pt1, ¨ ´ st1qq , dX̂
dξ

¯

H

∣

∣

∣

|t ´ t1|α
ă 8,

P-almost surely, i.e.,
∣

∣

∣

∣

m

ˆ t

0

e´mpt´t1q
´

Π#,0 p1, 0qt
`

W pt, ¨ ´ stq ´ W pt1, ¨ ´ st1q
˘

, dX̂
dξ

¯

H
dt1

∣

∣

∣

∣

ď m´αM

ˆ mT

0

e´ττα dτ ď m´αMΓp1 ` αq Ñ 0 as m Ñ 8, P-almost surely.

By continuity, furthermore

sup
tPrδ,T s

e´mt
∣

∣

∣

´

Π0
st p1, 0qtW pt, ¨q, dX̂

dξ
p¨ ` stq

¯

H

∣

∣

∣

(3.1)
ď e´mδ

∥

∥

∥
Π#,0

∥

∥

∥

LpHq

?
εZ sup

tPrδ,T s
‖W pt, ¨q‖L2pRq

∥

∥

∥

dX̂
dξ

∥

∥

∥

H
Ñ 0 as m Ñ 8, P-almost surely,

and

sup
tPrδ,T s

∣

∣

∣

∣

s

ˆ t

0

e´mpt´t1q
´

Π#,0 p1, 0qt pBxW qpt1, ¨ ´ st1q, dX̂
dξ

¯

H
dt1

∣

∣

∣

∣

ď m´1 |s|
∥

∥

∥
Π#,0

∥

∥

∥

LpHq

?
εZ sup

tPr0,T s
‖pBxW qpt, ¨q‖L2pRq

∥

∥

∥

dX̂
dξ

∥

∥

∥

H
Ñ 0 as m Ñ 8, P-almost surely.

As a result, we infer that

sup
tPrδ,T s

|pϕ8
0 ´ ϕm

0 q ptq| Ñ 0 as m Ñ 8, P-almost surely. (4.13)

From (4.10) and (4.12) we further deduce that suptPr0,T s |pϕ8
0 ´ ϕm

0 q ptq| ď g, where

g :“
∥

∥

∥
Π#,0

∥

∥

∥

LpHq

∥

∥

∥
X

p0q
0

∥

∥

∥

H

∥

∥

∥

dX̂
dξ

∥

∥

∥

H
`
∥

∥

∥
Π#,0

∥

∥

∥

LpHq

?
εZ sup

tPr0,T s
‖W pt, ¨q‖L2pRq

∥

∥

∥

dX̂
dξ

∥

∥

∥

H

` |s|T
∥

∥

∥
Π#,0

∥

∥

∥

LpHq

?
εZ sup

tPr0,T s
‖pBxW qpt, ¨q‖L2pRq

∥

∥

∥

dX̂
dξ

∥

∥

∥

H
.

With help of the Burkholder-Davis-Gundy inequality [23, Lemma 7.7], we infer that

E sup
tPr0,T s

‖W pt, ¨q‖H1pRq ď C
?
T
∥

∥

∥

a

Q
∥

∥

∥

L2pL2pRq;H1pRqq
ă 8,

i.e., E rgs ă 8. Hence, with (4.13) and dominated convergence, we conclude that (3.11a) holds
true. �

Proof of Theorem 3.4 (c). We introduce the auxiliary stopping time

τ8
q,σ,c :“ inf

` 

t P r0, T s : |ϕ8
0 ptq| ě σ´q ´ c

(

Y tT u
˘

,

where c P p0, σ´qs, and start by proving that we can use the multiscale decomposition (3.8) of
Theorem 3.3 (b) on

 

min
 

τq,σ, τ
8
q,σ,c

(

“ T
(

X Ep, P-almost surely, where Ep P F is an event

with P rEps ě 1 ´ p, and where p P p0, 1s is arbitrary. On
 

min
 

τq,σ, τ
8
q,σ,c

(

“ T
(

we have

ϕ8
0 p0q ` c

2

(3.10a)“
∣

∣

∣

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

∣

∣

∣
` c

2
ă σ´q

Now, note that for any m ą 0 we have

ϕm
0 ptq (3.6a)“

`

1 ´ e´mt
˘

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

`
ˆ t

0

´

1 ´ e´mpt´t1q
¯´

Π0
st1 p1, 0qt dW pt1, ¨q, dX̂

dξ
p¨ ` st1q

¯

H
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(2.18),(3.1)“
`

1 ´ e´mt
˘

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

`
ˆ t

0

´

1 ´ e´mpt´t1q
¯´

Π#,0T´st1 p1, 0qt dW pt1, ¨q, dX̂
dξ

¯

H

(2.18)“
`

1 ´ e´mt
˘

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

´m

ˆ t

0

e´mpt´t1q
´

Π#,0 p1, 0qtW pt1, ¨ ´ st1q, dX̂
dξ

¯

H
dt1

`s

ˆ t

0

´

1 ´ e´mpt´t1q
¯´

Π#,0 p1, 0qt pBxW qpt1, ¨ ´ st1q, dX̂
dξ

¯

H
dt1,

P-almost surely, where we have integrated by parts in the last step. Hence, for δ ą 0 it holds
suptPr0,δs |ϕ

m
0 ptq| ď gpδq, P-almost surely, where

gptq :“
∣

∣

∣

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

∣

∣

∣
`
∥

∥

∥
Π#,0

∥

∥

∥

LpHq
sup

t1Pr0,ts

∥

∥W pt1, ¨q
∥

∥

H

∥

∥

∥

dX̂
dξ

∥

∥

∥

H

` |s| t
∥

∥

∥
Π#,0

∥

∥

∥

LpHq

?
εZ sup

t1Pr0,ts

∥

∥pBxW qpt1, ¨q
∥

∥

L2pRq

∥

∥

∥

dX̂
dξ

∥

∥

∥

H

is m-independent. It is obvious that g is, P-almost surely, non-decreasing and by the Burkholder-
Davis-Gundy inequality [23, Lemma 7.7], as in the proof of Theorem 3.4 (b), we see that

E

«

sup
tPr0,δs

|ϕm
0 ptq|

ff

ď E rgpδqs Ñ
∣

∣

∣

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

∣

∣

∣
as δ Œ 0.

Since
gpδq ě gp0q “

∣

∣

∣

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

∣

∣

∣
,

we conclude that

P

«

sup
tPr0,δs

|ϕm
0 ptq| ě

∣

∣

∣

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

∣

∣

∣
` c

2

ff

Ñ 0 as δ Œ 0

and hence, for any p P p0, 1s there exists δ P r0, T s small enough such that

sup
tPr0,δs

|ϕm
0 ptq| ď

∣

∣

∣

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

∣

∣

∣
` c

2
ă σ´q

on an event E
p
1 P F with P rEp

1 s ě 1 ´ p
2
. Using the convergence (3.11a), we infer that for any

p P p0, 1s we find m P p0,8q sufficiently large with

sup
tPrδ,T s

|ϕm
0 ptq| ď sup

tPrδ,T s
|ϕ8

0 ptq| ` c ď σ´q

on an event E
p
2 P F with P rEp

2 s ě 1 ´ p
2
. Define Ep :“ E

p
1 X E

p
2 , then

P rEps “ 1 ´ P rΩzEps ě 1 ´ P rΩzEp
1 s ´ P rΩzEp

2 s “ ´1 ` P rEp
1 s ` P rEp

2 s ě 1 ´ p.

In total, on
 

min
 

τq,σ, τ
8
q,σ,c

(

“ T
(

X Ep we can apply the multiscale decomposition (3.8) of
Theorem 3.3 (b) in order to obtain

σ ‖S8pt, ¨q‖V
(3.13)“

∥

∥

∥
X̃pt, ¨q ´ X̂p¨ ` st ` σϕ0ptqq ´ σX8

0 pt, ¨q
∥

∥

∥

V

(3.8)
ď σ ‖Smpt, ¨q‖V ` σ ‖X8

0 pt, ¨q ´ Xm
0 pt, ¨q‖V

`
∥

∥

∥
X̂ p¨ ` st ` σϕ8

0 ptqq ´ X̂ p¨ ` st ` σϕm
0 ptqq

∥

∥

∥

V

(3.9)
ď Cσ2´2q

`

1 ` σ1´q
˘

` σ ‖X8
0 pt, ¨q ´ Xm

0 ptq‖V

`
b

σ |ϕ8
0 ptq ´ ϕm

0 ptq|
?
Z

c

2ε
∥

∥

∥

dû
dξ

∥

∥

∥

W 1,8pRq
‖û‖W 1,1pRq ` 2

∥

∥

∥

dv̂
dξ

∥

∥

∥

W 1,8pRq
‖v̂‖W 1,1pRq
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Ñ Cσ2´2q
`

1 ` σ1´q
˘

as m Ñ 8, P-almost surely,

i.e., (3.14) holds true on
 

min
 

τq,σ, τ
8
q,σ,c

(

“ T
(

XEp, where C ă 8 is independent of σ, p, and
c. Setting E :“ Ť

pPp0,1s E
p, it follows P rEs “ 1 and we infer that the point-wise estimate (3.14)

holds true on
 

min
 

τq,σ, τ
8
q,σ,c

(

“ T
(

, too. Since
 

min
 

τq,σ, τ
8
q,σ

(

“ T
(

“
ď

cPp0,σ´qs

 

min
 

τq,σ, τ
8
q,σ,c

(

“ T
(

,

we infer that (3.14) is also valid on
 

min
 

τq,σ, τ
8
q,σ

(

“ T
(

. �

Proof of Theorem 3.4 (d). Because of Theorem 3.3 (c), it suffices to prove P
“

τ8
q,σ ă T

‰

ď Cσ2q Ñ
0 as σ Œ 0 for some C ă 8. Indeed, by Markov’s inequality, we obtain

P
“

τ8
q,σ ă T

‰
(3.12)

ď P

„

max
tPr0,T s

|ϕ8
0 ptq| ě σ´q



ď σ2q
E

„

max
tPr0,T s

|ϕ8
0 ptq|2



.

Now note that E

”

maxtPr0,T s |ϕ
8
0 ptq|2

ı

ă 8 because of the representation (3.10a), where the

martingale can be estimated using the Burkholder-Davis-Gundy inequality [53, Theorem 3.28]
or [23, Lemma 7.7]. �

Proof of Theorem 3.4 (e). We use

Bϕ
∥

∥

∥
Π0

st

´

X̃pt, ¨q ´ X̂p¨ ` st ` σϕq
¯∥

∥

∥

2

H

ˇ

ˇ

ˇ

ˇ

ϕ“ϕ8
0 ptq

“ ´2σ
´

Π0
st

´

X̃pt, ¨q ´ X̂ p¨ ` st ` σϕ8
0 ptqq

¯

, dX̂
dξ

p¨ ` st ` σϕ8
0 ptqq

¯

H

(3.13)“ ´2σ2
´

Π0
st pX8

0 pt, ¨q ` S8pt, ¨qq , dX̂
dξ

p¨ ` st ` σϕ8
0 ptqq

¯

H

“ ´2σ2
´

Π0
stS

8pt, ¨q, dX̂
dξ

p¨ ` st ` σϕ8
0 ptqq

¯

H
, P-almost surely,

where we have used Theorem 3.4 (a) in the last step. Hence,
∣

∣

∣

∣

∣

Bϕ
∥

∥

∥
Π0

st`ϕ

´

X̃pt, ¨q ´ X̂p¨ ` st ` σϕq
¯∥

∥

∥

2

H

ˇ

ˇ

ˇ

ˇ

ϕ“ϕ8
0 ptq

∣

∣

∣

∣

∣

(3.1)
ď 2σ2

∥

∥

∥
Π#,0

∥

∥

∥

LpHq

∥

∥

∥

dX̂
dξ

∥

∥

∥

H
‖S8pt, ¨q‖H

(3.14)
ď C σ3´2q

`

1 ` σ1´q
˘

,

P-almost surely, where C ă 8 is independent of σ. This proves (3.15a).

For the second derivative, we obtain

B2
ϕ

∥

∥

∥
Π0

st

´

X̃pt, ¨q ´ X̂p¨ ` st ` σϕq
¯∥

∥

∥

2

H

ˇ

ˇ

ˇ

ˇ

ϕ“ϕ8
0 ptq

“ ´2σ Bϕ
´

Π0
st

´

X̃pt, ¨q ´ X̂ p¨ ` st ` σϕq
¯

, dX̂
dξ

p¨ ` st ` σϕq
¯

H

ˇ

ˇ

ˇ

ϕ“ϕ8
0 ptq

“ 2σ2
´

Π0
st

dX̂
dξ

p¨ ` st ` σϕ8
0 ptqq , dX̂

dξ
p¨ ` st ` σϕ8

0 ptqq
¯

H

´2σ2
´

Π0
st

´

X̃pt, ¨q ´ X̂ p¨ ` st ` σϕ8
0 ptqq

¯

, d
2X̂
dξ2

p¨ ` st ` σϕ8
0 ptqq

¯

H

(3.13)“ 2σ2
´

Π0
st

dX̂
dξ

p¨ ` st ` σϕ8
0 ptqq , dX̂

dξ
p¨ ` st ` σϕ8

0 ptqq
¯

H

´2σ2
´

Π0
st pX8

0 pt, ¨q ` S8pt, ¨qq , d2X̂
dξ2

p¨ ` st ` σϕ8
0 ptqq

¯

H

(3.1)“ 2σ2
´

Π#,0 dX̂
dξ

p¨ ` σϕ8
0 ptqq , dX̂

dξ
p¨ ` σϕ8

0 ptqq
¯

H

´2σ2
´

Π0
stS

8pt, ¨q, d2X̂
dξ2

p¨ ` st ` σϕ8
0 ptqq

¯

H
, P-almost surely,
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where Theorem 3.4 (a) was used in the last step once more. Further utilizing

2σ2
´

Π#,0 dX̂
dξ

p¨ ` σϕ8
0 ptqq , dX̂

dξ
p¨ ` σϕ8

0 ptqq
¯

H

“ 2σ2
∥

∥

∥

dX̂
dξ

∥

∥

∥

2

H
` 2σ3

ˆ ϕ8
0 ptq

0

´

Π#,0 d2X̂
dξ2

p¨ ` σϕq , dX̂
dξ

¯

H
dϕ

`2σ3

ˆ ϕ8
0 ptq

0

´

dX̂
dξ

, d
2X̂
dξ2

p¨ ` σϕq
¯

H
dϕ

`2σ4

ˆ ϕ8
0 ptq

0

ˆ ϕ8
0 ptq

0

´

Π#,0 d2X̂
d2ξ

p¨ ` σϕq , d2X̂
dξ2

`

¨ ` σϕ1˘
¯

H
dϕ dϕ1,

we can estimate
∣

∣

∣

∣

∣

ˆ ϕ8
0 ptq

0

´

Π#,0 d2X̂
dξ2

p¨ ` σϕq , dX̂
dξ

¯

H
dϕ

∣

∣

∣

∣

∣

ď σ´q
∥

∥

∥
Π#,0

∥

∥

∥

LpHq

∥

∥

∥

d2X̂
dξ2

∥

∥

∥

H

∥

∥

∥

dX̂
dξ

∥

∥

∥

H
,

∣

∣

∣

∣

∣

ˆ ϕ8
0 ptq

0

´

dX̂
dξ

, d
2X̂
dξ2

p¨ ` σϕq
¯

H
dϕ

∣

∣

∣

∣

∣

ď σ´q
∥

∥

∥

dX̂
dξ

∥

∥

∥

H

∥

∥

∥

d2X̂
dξ2

∥

∥

∥

H
,

and
∣

∣

∣

∣

∣

ˆ ϕ8
0 ptq

0

ˆ ϕ8
0 ptq

0

´

Π#,0 d2X̂
d2ξ

p¨ ` σϕq , d2X̂
dξ2

`

¨ ` σϕ1˘
¯

H
dϕ dϕ1

∣

∣

∣

∣

∣

ď σ´2q
∥

∥

∥
Π#,0

∥

∥

∥

LpHq

∥

∥

∥

d2X̂
dξ2

∥

∥

∥

2

H
,

as well as
∣

∣

∣

´

Π0
stS

8pt, ¨q, dX̂
dξ

p¨ ` st ` σϕ8
0 ptqq

¯

H

∣

∣

∣

(3.1)
ď

∥

∥

∥
Π#,0

∥

∥

∥

LpHq

∥

∥

∥

d2X̂
dξ2

∥

∥

∥

H
‖S8pt, ¨q‖H

(3.14)
ď C σ1´2q

`

1 ` σ1´q
˘

,

P-almost surely, where C ă 8 is independent of σ, we conclude that (3.15b) holds true, too. �

Proof of Proposition 3.5. From (3.10b) we obtain with help of (2.18), Proposition 2.8 (b) and
(d), and (3.1)

‖X8
0 pt, ¨q‖H ď

∥

∥

∥
P

#
stΠ

#X
p0q
0

∥

∥

∥

H
`
∥

∥

∥

∥

ˆ t

0

P
#

spt´t1qΠ
#T´st1 p1, 0qt dW pt1, ¨q

∥

∥

∥

∥

H

(2.24)
ď Cϑe

´ϑt
∥

∥

∥
X

p0q
0

∥

∥

∥

H
`
∥

∥

∥

∥

ˆ t

0

P
#

spt´t1qΠ
#T´st1 p1, 0qt dW pt1, ¨q

∥

∥

∥

∥

H

,

P-almost surely, where ϑ has been introduced in (2.22). Therefore, using Itô’s isometry, the
second moment can be bounded as follows

E

”

‖X8
0 pt, ¨q‖2H

ı

ď 2C2
ϑe

´2ϑt
∥

∥

∥
X

p0q
0

∥

∥

∥

2

H
` 2

ˆ t

0

∥

∥

∥
P

#

spt´t1qΠ
#T´st1 p1, 0qt

a

Q
∥

∥

∥

2

L2pL2pRq;Hq
dt1.

For an orthonormal basis pekqkPN of L2pRq we can write

∥

∥

∥
P

#

spt´t1qΠ
#T´st1 p1, 0qt

a

Q
∥

∥

∥

2

L2pL2pRq;Hq
“

8
ÿ

k“1

∥

∥

∥
P

#

spt´t1qΠ
#T´st1 p1, 0qt

a

Qek

∥

∥

∥

2

H

ď C2
ϑe

´2ϑpt´t1q
∥

∥

∥
Π#

∥

∥

∥

2

LpHq
εZ

8
ÿ

k“1

∥

∥

∥

a

Qek

∥

∥

∥

2

L2pRq

ď C2
ϑe

´2ϑpt´t1q
∥

∥

∥
Π#

∥

∥

∥

2

LpHq
εZ

∥

∥

∥

a

Q
∥

∥

∥

2

L2pL2pRqq
,

so that eventually we arrive at (3.16). �
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Proof of Proposition 3.6. Suppose Q “ QN P L2pL2pRq;H1pRqq to be specified further below.
With (2.12)–(2.15), the deviations around the traveling wave without stochastic velocity adap-
tion (ϕ “ 0) satisfy the following mild-solution formula

Xpt, ¨q “ σPst,0X
p0q
0 `

ˆ t

0

Pst,st1R0pt1, Xpt1, ¨q, ¨qdt1 ` σ

ˆ t

0

Pst,st1p1, 0qtdW pt1, ¨q,

which can be justified with arguments analogous to those given at the beginning of the proof of
Proposition 2.5. Thanks to Proposition 2.8 (b) and (2.18), in the moving frame this corresponds
to

Xpt, ¨´stq “ σP
#
stX

p0q
0 `
ˆ t

0

P
#

spt´t1qR0pt1, Xpt1, ¨´st1q, ¨´st1qdt1`σ

ˆ t

0

P
#

spt´t1qp1, 0qtdW pt1, ¨´st1q.

We are interested in the deviations in direction of the derivative of the traveling wave which

is given by the projection Π#,0 defined in (2.23). Note that by (2.20) we have Π#,0P
#
st “

P
#
stΠ

#,0 “ Π#,0, so that

Π#,0Xpt, ¨´stq “ σΠ#,0X
p0q
0 `
ˆ t

0

Π#,0R0pt1, Xpt1, ¨´st1q, ¨´st1qdt1`σ

ˆ t

0

Π#,0p1, 0qtdW pt1, ¨´st1q.

Hence,
´

Π#,0Xpt, ¨ ´ stq, dX̂
dξ

¯

H
“σ

´

Π#,0X
p0q
0 , dX̂

dξ

¯

H

`
ˆ t

0

´

Π#,0R0pt1, Xpt1, ¨ ´ st1q, ¨ ´ st1q, dX̂
dξ

¯

H
dt1

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

“:I1

` σ

ˆ t

0

´

Π#,0p1, 0qtdW pt1, ¨ ´ st1q, dX̂
dξ

¯

H
looooooooooooooooooooooooomooooooooooooooooooooooooon

“:I2

.

In order to compute E

„

´

Π#,0Xpt, ¨ ´ stq, dX̂
dξ

¯2

H
1tmintτq,σ ,τ8

q,σu“Tu


we develop the square and

consider the terms separately. For the first term note that

E

„

σ2
´

Π#,0X
p0q
0 , dX̂

dξ

¯2

H
1tmintτq,σ ,τ8

q,σu“Tu


“ σ2
´

Π#,0X
p0q
0 , dX̂

dξ

¯2

H
´ P

`

min
 

τq,σ, τ
8
q,σ

(

ă T
˘

σ2
´

Π#,0X
p0q
0 , dX̂

dξ

¯2

H

“ σ2
´

Π#,0X
p0q
0 , dX̂

dξ

¯2

H
` opσ2q,

since by Theorem 3.4 (d) we have P
`

min
 

τq,σ, τ
8
q,σ

(

ă T
˘

ď Cσ2q for some C ă 8 depending
on t and N but independent of σ.

Now note that using (2.15), with the same argumentation as in the estimate of Sm
1 (cf. (4.2a))

in the proof of Theorem 3.3 (b) it holds

E

”

I211tmintτq,σ ,τ8
q,σu“Tu

ı

ď C2σ2σ2´4qp1 ` σ1´qq2

for a constant C ă 8 depending on t and N but independent of σ. For the third term we write
again

E

”

I221tmintτq,σ ,τ8
q,σu“Tu

ı

“ E
“

I22
‰

´ E

”

I221tmintτq,σ ,τ8
q,σuăTu

ı

,

and we will recognize that E
”

I221tmintτq,σ ,τ8
q,σuăTu

ı

“ opσ2q depending on t and N by dominated

convergence together with Theorem 3.4 (d) and the fact that σ´2I221tmintτq,σ ,τ8
q,σuăTu ď σ´2I22 ,

where the latter is a random variable independent of σ whose expectation is finite by the com-
putations that follow.
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Take an orthonormal basis pekqkPN of L2pRq with ek P C8
c pRq for each k P N (existence of such

a basis follows by applying the Gram-Schmidt algorithm to a countable dense subset of L2pRq
in C8

c pRq). With Itô’s isometry we obtain

E
“

I22
‰

“ σ2

ˆ t

0

8
ÿ

k“1

´

Π#,0T´st1p1, 0qt
a

QNek,
dX̂
dξ

¯2

H
dt1.

Now take the sequence of Hilbert Schmidt operators pQN qNPN with

a

QNek “
"

ek : k ď N,

0 : k ą N,

and compute the with N increasing second moment of I2 for each N P N

E
“

I22
‰

“ σ2

ˆ t

0

N
ÿ

k“1

´

Π#,0p1, 0qtekp¨ ´ st1q, dX̂
dξ

¯2

H
dt1

(2.6a)“ σ2ε2Z2

ˆ t

0

N
ÿ

k“1

´

ekp¨ ´ st1q,
´´

Π#,0
¯˚

dX̂
dξ

¯

1

¯2

L2pRq
dt1,

where
´

`

Π#,0
˘˚ dX̂

dξ

¯

1
denotes the first component of

`

Π#,0
˘˚ dX̂

dξ
. Taking the limit N Ñ 8, we

obtain with Parseval’s identity

E
“

I22
‰

Ñ σ2ε2Z2

ˆ t

0

›

›

›

´´

Π#,0
¯˚

dX̂
dξ

¯

1

›

›

›

2

L2pRq
dt1 “ σ2εZt

›

›

›
p1, 0qt

´

Π#,0
¯˚

dX̂
dξ

›

›

›

2

H
.

By the previous estimates, the mixed terms E

”

2σ
´

Π#,0X
p0q
0 , dX̂

dξ

¯

H
I11tmintτq,σ ,τ8

q,σu“Tu
ı

and

Er2I1I21tmintτq,σ ,τ8
q,σu“Tus are of order opσ2q depending on t and N by the Cauchy-Schwarz

inequality. For the third mixed term, we write again

E

”

2σ
´

Π#,0X
p0q
0 , dX̂

dξ

¯

H
I21tmintτq,σ ,τ8

q,σu“Tu
ı

“ E

”

2σ
´

Π#,0X
p0q
0 , dX̂

dξ

¯

H
I2

ı

´ E

”

2σ
´

Π#,0X
p0q
0 , dX̂

dξ

¯

H
I21tmintτq,σ ,τ8

q,σuăTu
ı

“ opσ2q
depending on t and N since the first term in the second line is equal to 0 because I2 is a
martingale (and equal to 0 for t “ 0) and the second term in the second line is of order opσ2q
by the Cauchy-Schwarz inequality in conjunction with dominated convergence as σ Œ 0.

In order to ensure linear growth in time, we prove that p1, 0qt
`

Π#,0
˘˚ dX̂

dξ
‰ 0 by contradiction.

Assume that p1, 0qt
`

Π#,0
˘˚ dX̂

dξ
“ 0. Then for φ P L2pRq we have

0 “ εZ
´´´

Π#,0
¯˚

dX̂
dξ

¯

1
, φ
¯

L2pRq
“
´

dX̂
dξ

,Π#,0p1, 0qtφ
¯

H
.

Since Π#,0 is a projection on the linear subspace generated by dX̂
dξ

(see (2.23)), we obtain

Π#,0p1, 0qtφ “ 0. Hence, for any Y P H it holds

0 “
´

Y,Π#,0p1, 0qtφ
¯

H
“ εZ

´´´

Π#,0
¯˚

Y
¯

1
, φ
¯

L2pRq
.

The above equality is in particular valid for a non-trivial eigenfunction Y “ pw, qqt ‰ 0 of
`

L#
˘˚

with eigenvalue 0, that is,
´

`

Π#,0
˘˚

Y
¯

1
“ 0. Note that such an eigenfunction exists because

of (2.20) or Proposition 2.8 (cii), respectively. Indeed, we have indpL#q “ ind
´

`

L#
˘˚¯ “ 0 by

Definition 2.7 (c) and because for any Ỹ P HC we have

0 “
´

Ỹ ,L#dX̂
dξ

¯

HC

“
´´

L#
¯˚

Ỹ , dX̂
dξ

¯

HC

,
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the range of
`

L#
˘˚

is orthogonal to dX̂
dξ

, so that the dimension of the kernel of
`

L#
˘˚

is at least

1. Interchanging the roles of L# and
`

L#
˘˚

shows that the range of L# is orthogonal to the

kernel of
`

L#
˘˚

. Since the range of L# has codimension 1 we conclude that the dimension of

the kernel of
`

L#
˘˚

is 1.

For such Y we additionally have

´

Π#,0
¯˚

Y
(2.23)“

˜

´ 1

2πi

‰

|λ|“r

´

λ idHC
´
´

L#
¯˚¯´1

dλ

¸

Y

“
˜

1

2πi

‰

|λ|“r

´

λ idHC
´
´

L#
¯˚¯´1

dλ

¸

Y “ Y.

With
´

`

Π#,0
˘˚

Y
¯

1
“ 0 this implies immediately that w “ 0. In order to determine the second

component, we compute
`

L#
˘˚

Y explicitly. Let Yj “ pwj , qjqt P C8
c pR;Cq2 for j “ 1, 2, then

by (2.17) we obtain through integration by parts and regrouping terms
´

L#Y1, Y2

¯

HC

“ εZν

ˆ

R

pB2
ξw1qw2dξ ` εZ

ˆ

R

f 1pûqw1w2dξ ´ εZ

ˆ

R

q1w2dξ

´εZs

ˆ

R

pBξw1qw2dξ ` εZ

ˆ

R

w1q2dξ ´ εZγ

ˆ

R

q1q2dξ ´ Zs

ˆ

R

pBξq1qq2dξ

“
ˆ

Y1,

ˆ

νB2
ξ ` f 1 pûq ` sBξ 1

´ε ´εγ ` sBξ

˙

Y2

˙

HC

“
´

Y1,
´

L#
¯˚

Y2

¯

HC

.

Now
´

`

Π#,0
˘˚

Y
¯

1
“ 0 is equivalent to

νB2
ξw ` f 1pûqw ` sBξw ` εq “ 0.

With w “ 0 this implies q “ 0, a contradiction to Y being non-trivial. �

5. Conclusions & Outlook

In this work, we have shown how to derive a multiscale decomposition near a deterministically
stable traveling wave for the FitzHugh-Nagumo SPDE-ODE system. This decomposition into a
component along the translation invariant family and into its complement exploits the small noise
and small time scale separation parameters to derive leading-order dynamics. More precisely, the
stochastically adjusted wave speed is given by an SODE to account for stochastic phase dynamics
along the deterministically neutral translation mode. The fluctuations in the infinitely many
remaining modes are captured by an SPDE system. Locally, near the wave, these two equations
can be linearized to provide a relatively explicit solution representation which approximates well
the deviations in the corresponding modes. In particular, our approach does not require an
analytic semigroup generated by the linearization and it applies to much wider classes of SPDE
systems as well as other patterns.

Natural generalizations of our work could be to treat the case of a cylindrical Wiener process
allowing for translation-invariant (white) noise or to allow for multiplicative noise. Furthermore,
it would be a desirable goal to obtain optimal estimates on the relevant stopping times, where
the approach breaks down which has been addressed for the FitzHugh-Nagumo system with a
regularizing Laplacian in the second component in [43] and for stochastic neural field equations in
[69]. These could then be compared with high-accuracy numerical simulations; cf. the references
in numerics in the introduction. Of course, other classes of traveling wave patterns and effects
could also be tackled via multiscale decomposition, e.g., periodic wave trains, deterministically
chaotic waves, stochastic pulse splitting effects induced by large deviations or propagation failure,
just to name a few. Many of these effects are somewhat understood for special examples of scalar
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SPDEs (see [60] and the references therein) but it is clear that the dynamics can be far more
complicated for SPDE systems. From a technical viewpoint, we have already pointed out that
applying stochastic slow manifold methods and related fast-slow sample path estimates would
be natural directions for future research. Furthermore, a generalization from the Hilbert-space
setting to Banach spaces appears possible as the variational approach also works if V and V ˚ are
Banach spaces (cf. Assumptions A.1), we do not require any orthogonality, and Riesz spectral
projections are available in Banach spaces, too. Notably, related techniques in the deterministic
setting, such as Lyapunov-Schmidt or center-manifold reductions work in Banach spaces as well.
In summary, it seems evident that rigorous multiscale methods for pattern formation in SPDEs
have already been very successful but still need additional development.

Appendix A. Proofs of auxiliary results

A.1. Existence and uniqueness of solutions using the variational approach. In this
section, we prove Proposition 2.4 and Proposition 2.5. Note that the formulation (2.4) for
general operators A : r0, T s ˆ V ˆ Ω Ñ V ˚ and B : r0, T s ˆ V ˆ Ω Ñ L2pU ;Hq can be found
in [65] and existence of variational solutions has been established under the following conditions:

Assumptions A.1. The Hilbert space H is separable, V is a reflexive Banach space which is
continuously and densly embedded into H, and pWU ptq, t ě 0q is a cylindrical Wiener process on
a separable Hilbert space U with respect to a complete filtered probability space

´

Ω,F , pFtqtPr0,T s ,P
¯

with a complete and right-continuous filtration pFtqtPr0,T s. Furthermore, there exist α ą 1,

β ě 0, θ ą 0, C1, C2 ă 8, a positive pFtqtPr0,T s-adapted process F P L
p

2 pr0, T s ˆ Ω; dt ˆ Pq with

p ě β`2, and g : V Ñ r0,8q measurable and locally bounded, such that the following conditions
(LR1)–(LR6) hold for all Y, Y1, Y2 P V and pt, ωq P r0, T s ˆ Ω:

(LR1) Hemicontinuity: the map R Q τ ÞÑ V ˚ xApt, Y1 ` τY2q, Y yV P R is continuous.
(LR2) Local monotonicity:

2 V ˚ xApt, Y1q ´ Apt, Y2q, Y1 ´ Y2yV ` ‖Bpt, Y1q ´ Bpt, Y2q‖2L2pU ;Hq

ď pC1 ` gpY2qq ‖Y1 ´ Y2‖
2
H .

(LR3) Coercivity: 2 V ˚ xApt, Y q, Y yV ` ‖Bpt, Y q‖2L2pU ;Hq ` θ ‖Y ‖αV ď F ptq ` C1 ‖Y ‖2H .

(LR4) Growth: ‖Apt, Y q‖
α

α´1

V ˚ ď pF ptq ` C1 ‖Y ‖αV q
´

1 ` ‖Y ‖βH

¯

.

(LR5) ‖Bpt, Y q‖2L2pU ;Hq ď C2

´

F ptq ` ‖Y ‖2H

¯

.

(LR6) gpY q ď C2 p1 ` ‖Y ‖αV q
´

1 ` ‖Y ‖βH

¯

.

Note that conditions (LR1) and (LR3) are the same as the classical ones from [57], while con-
ditions (LR2) and (LR4) are weaker. A main theorem presented in [65] reads as follows:

Theorem A.2 (Liu and Röckner [65]). Under Assumptions A.1, for any initial datum

Xp0q “ Xp0q P Lp pΩ,F0,P;Hq ,

equation (2.4) has a unique variational solution pXpt, ¨qqtPr0,T s (cf. Definition 2.3), which addi-

tionally satisfies

E

«

sup
tPr0,T s

‖Xpt, ¨q‖pH `
ˆ T

0

‖Xpt, ¨q‖αV dt

ff

ă 8.

We will use Theorem A.2 to prove Proposition 2.4 by verifying Assumptions A.1.
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Proof of Proposition 2.4. The Hilbert spaces U “ L2pRq and H
(2.5)“ L2pRq?

εkL2pRq are obvi-

ously separable, V
(2.5)“ H1pRq?

εkL2pRq is reflexive, and as the test functions are dense in H

and V , also V is dense in H. Next, we concentrate on verifying (LR1)–(LR6) with the choices

α :“ 2, (A.1a)

β :“ 4, (A.1b)

θ :“ ν, (A.1c)

C1 :“ max

"

2η1, 1, η1 ` ν, 4ν2,
64η24
ε2Z2

*

, (A.1d)

C2 :“ 1, (A.1e)

g :“ 0, (A.1f)

F ptq :“ max

"

1 `
´

2
?
ε ` εγ ` η4

´

1 ` 3 ‖û‖2L8pRq

¯¯4

, εZσ
∥

∥

∥

a

Q
∥

∥

∥

2

L2pUq

*

, (A.1g)

p ě 6. (A.1h)

Proof of (LR1). We have for Y “ pw, qqt , Y1 “ pw1, q1qt , Y2 “ pw2, q2qt P V ,

V ˚ xApt, Y1 ` τY2q, Y yV
(2.8b)“ εZ H´1pRq

@

νB2
x pw1 ` τw2q , w

D

H1pRq
`εZ H´1pRq xf pw1 ` τw2 ` ûp¨ ` stqq ´ f pûp¨ ` stqq , wyH1pRq
´εZ H´1pRq xq1 ` τq2, wyH1pRq
`εZ L2pRq xw1 ` τw2 ´ γ pq1 ` τq2q , qyL2pRq

“ τεZ
´

´ν pBxw2, BxwqL2pRq ´ pq2, wqL2pRq ` pw2 ´ γq2, qqL2pRq

¯

`εZ pf pw1 ` τw2 ` ûp¨ ` stqq ´ f pûp¨ ` stqq , wqL2pRq
´εZν pBxw1, BxwqL2pRq ´ εZ pq1, wqL2pRq ` εZ pw1 ´ γq1, qqL2pRq .

Hence, hemicontinuity follows if

h : R Ñ R, τ ÞÑ hpτq :“ εZ pf pw1 ` τw2 ` ûp¨ ` stqq ´ f pûp¨ ` stqq , wqL2pRq

is continuous. This is true because for τ1, τ2 P R we have

|hpτ1q ´ hpτ2q| “ εZ
∣

∣

∣
pf pw1 ` τ1w2 ` ûp¨ ` stqq ´ f pw1 ` τ2w2 ` ûp¨ ` stqq , wqL2pRq

∣

∣

∣

(2.1j)
ď εZη4

´

1 ` 6 ‖û‖2L8pRq ` 6 ‖w1‖
2
L8pRq ` 3

`

τ21 ` τ22
˘

‖w2‖
2
L8pRq

¯

‖w2‖L2pRq |τ1 ´ τ2| ‖w‖L2pRq
(2.6b)

ď η4

ˆ

1 ` 6 ‖û‖2L8pRq ` 6

εZ
‖Y1‖

2
V ` 3pτ21 ` τ22 q

εZ
‖Y2‖

2
V

˙

‖Y2‖H ‖Y ‖H |τ1 ´ τ2| ,

where the Sobolev embedding theorem in form of ‖wj‖L8pRq ď ‖wj‖H1pRq has been applied.

Proof of (LR2). For proving local monotonicity, observe that for Y1 “ pw1, q1qt, Y2 “ pw2, q2qt P
V ,

2 V ˚ xApt, Y1q ´ Apt, Y2q, Y1 ´ Y2yV
(2.8b)“ ´2εZν ‖Bx pw1 ´ w2q‖2L2pRq

`2εZ pf pw1 ` û p¨ ` stqq ´ f pw2 ` û p¨ ` stqq , w1 ´ w2qL2pRq

´2εZγ ‖q1 ´ q2‖
2
L2pRq .
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On noting that

2εZ pf pw1 ` û p¨ ` stqq ´ f pw2 ` û p¨ ` stqq , w1 ´ w2qL2pRq
(2.1g)

ď 2εZη1 ‖w1 ´ w2‖
2
L2pRq

(2.6b)
ď 2η1 ‖Y1 ´ Y2‖

2
H ,

and B pt, Y1q ´ B pt, Y2q (2.8c)“ 0, this results in

2 V ˚ xApt, Y1q ´ Apt, Y2q, Y1 ´ Y2yV ` ‖B pt, Y1q ´ B pt, Y2q‖2L2pU ;Hq ď 2η1 ‖Y1 ´ Y2‖
2
H

(A.1d)
ď C1 ‖Y1 ´ Y2‖

2
H .

Note that we have verified the classical monotonicity assumption in [57], i.e., local monotonicity
is not needed here.

Proof of (LR3). For proving coercivity, we note that for Y “ pw, qqt P V ,

V ˚ xApt, Y q, Y yV
(2.8b)“ ´εZν ‖Bxw‖2L2pRq ` εZ pf pw ` û p¨ ` stqq ´ f pû p¨ ` stqq , wqL2pRq

´εZγ ‖q‖2L2pRq .

Using

εZ pf pw ` û p¨ ` stqq ´ f pû p¨ ` stqq , wqL2pRq
(2.1g)

ď εZη1 ‖w‖
2
L2pRq

(2.6a)
ď η1 ‖Y ‖2H

and ‖Bpt, Y q‖2L2pU ;Hq
(2.6a),(2.8c)“ εZσ

∥

∥

?
Q
∥

∥

2

L2pUq, we obtain the estimate

V ˚ xApt, Y q, Y yV ` ‖Bpt, Y q‖2L2pU ;Hq ď εZσ
∥

∥

∥

a

Q
∥

∥

∥

2

L2pUq
´ εZν ‖Bxw‖2L2pRq ` η1 ‖Y ‖2H

(2.6)“ εZσ
∥

∥

∥

a

Q
∥

∥

∥

2

L2pUq
` pη1 ` νq ‖Y ‖2H ´ ν ‖Y ‖2V

(A.1)
ď F ptq ` C1 ‖Y ‖2H ´ θ ‖Y ‖2V ,

which yields (LR3).

Proof of (LR4). We have for Y “ pw, qqt, Ỹ “ pw̃, q̃qt P V ,

V ˚

A

Apt, Y q, Ỹ
E

V

(2.8b)“ ´εZν pBxw, Bxw̃qL2pRq ` εZ pf pw ` ûp¨ ` stqq ´ f pûp¨ ` stqq , w̃qL2pRq ´ εZ pq, w̃qL2pRq
`εZ pw, q̃qL2pRq ´ εZγ pq, q̃qL2pRq

(2.1j)
ď εZν ‖Bxw‖L2pRq ‖Bxw̃‖L2pRq ` εZη4

´

1 ` 3 ‖û‖2L8pRq ` 2 ‖w‖2L8pRq

¯

‖w‖L2pRq ‖w̃‖L2pRq

`εZ ‖q‖L2pRq ‖w̃‖L2pRq ` εZ ‖w‖L2pRq ‖q̃‖L2pRq ` εZγ ‖q‖L2pRq ‖q̃‖L2pRq
(2.6)
ď

ˆ

‖Y ‖V

ˆ

ν ` 4η4

εZ
‖Y ‖2H

˙

` ‖Y ‖H

´

2
?
ε ` εγ ` η4

´

1 ` 3 ‖û‖2L8pRq

¯¯

˙

∥

∥

∥
Ỹ
∥

∥

∥

V
,

where we have used that

‖w‖2L8pRq ď 2 ‖w‖L2pRq
∥

∥

dw
dx

∥

∥

L2pRq
(2.6)
ď 2

εZ
‖Y ‖H ‖Y ‖V .

This implies

‖Apt, Y q‖
α

α´1

V ˚

(A.1a)“ ‖Apt, Y q‖2V ˚

ď 2 ‖Y ‖2V

ˆ

ν ` 4η4

εZ
‖Y ‖2H

˙2

` 2
´

2
?
ε ` εγ ` η4

´

1 ` 3 ‖û‖2L8pRq

¯¯2

‖Y ‖2H
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ď
ˆ

1 `
´

2
?
ε ` εγ ` η4

´

1 ` 3 ‖û‖2L8pRq

¯¯4

` 4max

"

ν2,
16η24
ε2Z2

*

‖Y ‖2V

˙

´

1 ` ‖Y ‖4H

¯

(A.1)
ď pF ptq ` C1 ‖Y ‖αV q

´

1 ` ‖Y ‖βH

¯

,

i.e., (LR4). Note that here we have not obtained the classical growth condition in [57].

Proof of (LR5). We have ‖Bpt, Y q‖2L2pU ;Hq
(2.6a),(2.8c)“ εZσ

∥

∥

?
Q
∥

∥

2

L2pUq ď C2

´

F ptq ` ‖Y ‖2H

¯

.

Proof of (LR6). This trivially holds because g “ 0. �

Proof of Proposition 2.5. Denote by X “ pu, vqt the solution from Proposition 2.4. We first
apply [66, Proposition G.0.5 (i)] and verify the conditions there to conclude that X meets a
mild-solution representation. Notably, Bpt,Xpt, ¨qq (cf. (2.8c)) does for t P r0, T s neither depend
on t nor on X and takes values in L2pU ;Hq. Hence, Bpt,Xpt, ¨qq is deterministic and in particular

P

„
ˆ T

0

‖Bpt,Xpt, ¨qq‖L2pU ;Hq dt ă 8


“ 1

trivially holds true. Furthermore, by the regularity of the variational solution stated in Defini-
tion 2.3, we have

E

„
ˆ T

0

‖Xpt, ¨q‖V dt



ď
?
T

ˆ

E

„
ˆ T

0

‖Xpt, ¨q‖2V dt

˙

1
2

ă 8,

which is why obviously also

P

„
ˆ T

0

‖Xpt, ¨q‖H dt ă 8


“ 1

is valid. In view of the above estimate, the mixing of u and v in the two components of Apt,Xptqq
(cf. (2.8b)) is immaterial, so that it remains show that

P

„
ˆ T

0

‖f pupt, ¨q ` ûp¨ ` stqq ´ f pûp¨ ` stqq‖L2pRq dt ă 8


“ 1 (A.2)

holds true. Indeed, we can estimate

E

„
ˆ T

0

‖f pupt, ¨q ` ûp¨ ` stqq ´ f pûp¨ ` stqq‖L2pRq dt



1
2

(2.1j)
ď η4E

«

sup
tPr0,T s

‖upt, ¨q‖L2pRq

ˆ T

0

´

1 ` 2 ‖û‖2L8pRq ` 3 ‖upt, ¨q‖2H1pRq

¯

dt

ff
1
2

ď η4

2
E

«

sup
tPr0,T s

‖upt, ¨q‖L2pRq

ff

` η4T

2

´

1 ` 2 ‖û‖2L8pRq

¯

` 3η4

2
E

„
ˆ T

0

‖upt, ¨q‖2H1pRq dt



where the Sobolev embedding in form of ‖upt, ¨q‖L8pRq ď ‖upt, ¨q‖H1pRq has been used and

finiteness of the terms in the last line follows from the regularity of the variational solution
stated in Definition 2.3 and Proposition 2.4. Hence, also (A.2) is satisfied.

Next, we prove additional regularity provided
?
Q P L2pU ;H1pRqq, up0q P L2pRq, and vp0q P

H1pRq. From the first component of (2.4) or (2.9) we derive the mild-solution formula

tupt, ¨q “
ˆ t

0

Kt´t1 ˚
`

f
`

upt1, ¨q ` ûp¨ ` st1q
˘

´ f
`

ûp¨ ` st1q
˘

´ vpt1, ¨q
˘

t1dt1

`
ˆ t

0

Kt´t1 ˚ upt1, ¨qdt1 `
ˆ t

0

Kt´t1 ˚ t1dW pt1, ¨q, P-almost surely,
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where Ktpxq “ e´ x2

4νt?
4πνt

denotes the heat kernel generated by νB2
x and ˚ the convolution on the

real line. For the second component of (2.4) or (2.9) we get analogously

vpt, ¨q “ e´εγtvp0q ` ε

ˆ t

0

e´εγpt´t1qupt1, ¨qdt1, P-almost surely.

Differentiation in space yields

tpBxuqpt, ¨q “
ˆ t

0

Kt´t1 ˚
´

f 1pupt1, ¨q ` ûp¨ ` st1qq
´

Bxupt1, ¨q ` dû
dξ

p¨ ` st1q
¯¯

t1dt1

´
ˆ t

0

Kt´t1 ˚
´

f 1 `ûp¨ ` st1q
˘

dû
dξ

p¨ ` st1q ` Bxvpt1, ¨q
¯

t1dt1

`
ˆ t

0

Kt´t1 ˚ Bxupt1, ¨qdt1 `
ˆ t

0

Kt´t1 ˚
`

t1dpBxW qpt1, ¨q
˘

, (A.3)

P-almost surely, and

Bxvpt, ¨q “ e´εγt
´

Bxvp0q
¯

` ε

ˆ t

0

e´εγpt´t1qpBxuqpt1, ¨qdt1, P-almost surely. (A.4)

We estimate the three lines on the right-hand side of (A.3) separately:

Using ‖Kt´t1‖L1pRq “ 1, we obtain for the first term on the right-hand side of (A.3) with Young’s

convolution inequality
∥

∥

∥

∥

ˆ t

0

Kt´t1 ˚
´

f 1pupt1, ¨q ` ûp¨ ` st1qq
´

Bxupt1, ¨q ` dû
dξ

p¨ ` st1q
¯¯

t1dt1
∥

∥

∥

∥

L2pRq
(2.1i)

ď η3

ˆ t

0

´

1 ` 2 ‖û‖2L8pRq ` 2
∥

∥upt1, ¨q
∥

∥

2

H1pRq

¯

ˆ

∥

∥Bxupt1, ¨q
∥

∥

L2pRq `
∥

∥

∥

dû
dξ

∥

∥

∥

L2pRq

˙

t1dt1

ď η3T

2

´

1 ` 2 ‖û‖2L8pRq

¯

˜

T
∥

∥

∥

dû
dξ

∥

∥

∥

L2pRq
` 2T

1
2?
3

‖Bxu‖L2pr0,T sˆRq

¸

`2η3T
∥

∥

∥

dû
dξ

∥

∥

∥

L2pRq
‖u‖2L2pr0,T s;H1pRqq ` 2η3T

3
2?

3
‖u‖2C0pr0,T s;L2pRqq ‖Bxu‖L2pr0,T sˆRq

`2η3

ˆ t

0

∥

∥Bxupt1, ¨q
∥

∥

2

L2pRq t
1 ∥
∥Bxupt1, ¨q

∥

∥

L2pRq dt
1,

where the Sobolev embedding on the real line in form of ‖upt1, ¨q‖L8pRq ď ‖upt1, ¨q‖H1pRq has

been applied.

For the second line of (A.3), we obtain similarly
∥

∥

∥

∥

ˆ t

0

Kt´t1 ˚
´

f 1 `ûp¨ ` st1q
˘

dû
dξ

p¨ ` st1q ` Bxvpt1, ¨q
¯

t1dt1
∥

∥

∥

∥

L2pRq

(2.1i)
ď η3T

2

2

ˆ

1 `
∥

∥

∥

dû
dξ

∥

∥

∥

2

L8pRq

˙

∥

∥

∥

dû
dξ

∥

∥

∥

L2pRq
` T

3
2?
3
‖Bxv‖L2pr0,T sˆRq ,

where we may use

‖Bxv‖L2pr0,T sˆRq
(A.4)

ď 1?
2εγ

∥

∥

∥
Bxvp0q

∥

∥

∥

L2pRq
` 1

γ
‖Bxu‖L2pr0,T sˆRq , P-almost surely. (A.5)

Finally, the first integral on third line of (A.3) yields
∥

∥

∥

∥

ˆ t

0

Kt´t1 ˚ Bxupt1, ¨qdt1
∥

∥

∥

∥

L2pRq
ď

?
T ‖Bxu‖L2pr0,T sˆRq ,
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while the second integral gives with help of Itô’s isometry

E

«

∥

∥

∥

∥

ˆ t

0

Kt´t1 ˚
`

t1dpBxW qpt1, ¨q
˘

∥

∥

∥

∥

2

L2pRq

ff

ď
ˆ t

0

pt1q2
∥

∥

∥
pKt´t1˚q Bx

a

Q
∥

∥

∥

2

L2pUq
dt1

ď T 3

3

∥

∥

∥

a

Q
∥

∥

∥

2

L2pU ;H1pRqq
.

Using X “ pu, vqt P L2 pr0, T s;V q X C0 pr0, T s;Hq, P-almost surely, and therefore

u P L2
`

r0, T s;H1pRq
˘

X C0
`

r0, T s;L2pRq
˘

, P-almost surely,

we conclude that there exists a constant C ă 8, P-almost surely, with C Ñ 0 as T Œ 0,
P-almost surely, such that

‖tpBxuqpt, ¨q‖L2pRq ď C ` 2η3

ˆ t

0

∥

∥Bxupt1, ¨q
∥

∥

2

L2pRq t
1 ∥
∥Bxupt1, ¨q

∥

∥

L2pRq dt, P-almost surely.

Grönwall’s inequality implies

‖tpBxuqpt, ¨q‖L2pRq ď C exp

ˆ

2η3

ˆ t

0

∥

∥Bxupt1, ¨q
∥

∥

2

L2pRq dt
1
˙

ă 8, P-almost surely,

whence tpBxuq P L8 `

r0, T s;L2pRq
˘

, P-almost surely. Furthermore, since C Ñ 0 as T Œ 0,

P-almost surely, r0, T s Q t ÞÑ tBxupt, ¨q P L2pRq is, P-almost surely, continuous in t “ 0.

For proving continuity, observe that for T ě t2 ě t1 ą 0 we have

t2Bxupt2, ¨q ´ t1Bxupt1, ¨q “ pt2 ´ t1q Bxupt2, ¨q ` t1 pBxupt2, ¨q ´ Bxupt1, ¨qq .
Then, it follows pt2 ´ t1q Bxupt2, ¨q Ñ 0 as t2 Ñ t1 in L2pRq by the reasoning before if one
translates in time and uses uniqueness. For the remaining term, we derive once more from the
first component of (2.4) or (2.9)

Bxupt2, ¨q ´ Bxupt1, ¨q “ Kt2´t1 ˚ pBxuqpt1, ¨q ´ Bxupt1, ¨q

`
ˆ t2

t1

Kt2´t1 ˚
´

f 1 `upt1, ¨q ` ûp¨ ` st1q
˘

´

Bxupt1, ¨q ` dû
dξ

p¨ ` st1q
¯¯

dt1

´
ˆ t2

t1

Kt2´t1 ˚
´

f 1 `ûp¨ ` st1q
˘

dû
dξ

p¨ ` st1q ´ Bxvpt1, ¨q
¯

dt1

`
ˆ t2

t1

Kt2´t1 ˚ dpBxW qpt1, ¨q, P-almost surely. (A.6)

For the first line of (A.6) observe that

‖Kt2´t1 ˚ pBxuqpt1, ¨q ´ Bxupt1, ¨q‖L2pRq Ñ 0 as t2 Ñ t1, P-almost surely,

follows from tu P L8pr0, T s;L2pRqq, P-almost surely, and the fact that pKt˚qtě0 Ă L
`

L2pRq
˘

is
strongly continuous in t “ 0. The other lines of (A.6) can be estimated as before. Altogether,
we obtain

‖t2Bxupt2, ¨q ´ t1Bxupt1, ¨q‖L2pRq Ñ 0 as t2 Ñ t1, P-almost surely,

which implies tu P C0
`

r0, T s;H1pRq
˘

, P-almost surely. Finally, by (A.4) and (A.5) it follows

that v P C0
`

r0, T s;H1pRq
˘

, P-almost surely.

If up0q P H1pRq, an analogous reasoning without time weight yields that u P C0
`

r0, T s;H1pRq
˘

,
P-almost surely, too. �

A.2. Linearization around the traveling wave. In this section, we give the proofs of Propo-
sition 2.6 and Proposition 2.8.
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A.2.1. Fixed frame. We focus on investigating the linearized evolution generated by the family
of operators pLstqtě0 defined in (2.14).

Proof of Proposition 2.6. Note that in view of (2.14) we may write

Lst “ L˘8 ` Rst with

$

’

’

&

’

’

%

L˘8 :“
ˆ

νB2
x ` f 1p0q ´1

ε ´εγ

˙

,

Rst :“
ˆ

f 1 pûp¨ ` stqq ´ f 1p0q 0

0 0

˙

.

(A.7)

For Y “ pw, qqt P pC8
c pRqq2 we have

pL˘8Y, Y qV “ εZ
´

ν d2w
dx2 ` f 1p0qw ´ q, w

¯

H1pRq
` εZ pw ´ γq, qqH1pRq

“ εZ

ˆ

´ν
∥

∥

∥

d2w
dx2

∥

∥

∥

2

L2pRq
´
`

ν ´ f 1p0q
˘ ∥

∥

dw
dx

∥

∥

2

L2pRq ` f 1p0q ‖w‖2L2pRq

˙

´εZγ ‖q‖2H1pRq

ď ´min
 

´f 1p0q, εγ
(

‖Y ‖2V ´ εZν
∥

∥

∥

d2w
dx2

∥

∥

∥

2

L2pRq
.

By density of pC8
c pRqq2 in DpL˘8q “ H3pRq?

εkH1pRq, we infer that L˘8 ` κ idV with

κ :“ min
 

´f 1p0q, εγ
(

(2.1d)
ě 0

is dissipative.

In order to prove that L˘8 ` pκ ´ 1q idV : D pL˘8q Ñ V is a bijection, we define

M pY1, Y2q :“ ´εZν
´

dw1

dx
, dw2

dx

¯

H1pRq
` εZ

``

f 1p0q ` κ ´ 1
˘

w1 ´ q1, w2

˘

H1pRq

`εZ pw1 ` pκ ´ 1 ´ γqq1, q2qH1pRq for Yj :“ pwj , wjqt P H2pRq?
εkH1pRq

and we recognize that M :
`

H2pRq?
εkH1pRq

˘2 Ñ V is bilinear, continuous, and ´M is coercive,

so that by the Lax-Milgram theorem for any Y2 P V there exists Y1 P H2pRq?
εkH1pRq such

that M
´

Y1, Ỹ
¯

“
´

Y2, Ỹ
¯

V
for all Ỹ P H2pRq?

εkH1pRq. This implies L˘8Y1 ` pκ´1qY1 “ Y2

distributionally and hence in particular

ν
d2w1

dx2
“ w2 `

`

1 ´ κ ´ f 1p0q
˘

w1 ` q1 P H1pRq,

giving w1 P H3pRq and thus Y1 P D pL˘8q. The arguments have shown that L˘8 ` pκ ´
1q idV : D pL˘8q Ñ V is a bijection.

The Lumer-Philips theorem [74, Chapter 1, Theorem 4.3] yields that L˘8 ` κ idV generates a
C0-semigroup of contractions in V . Hence, L˘8 generates a C0-semigroup

`

etL˘8
˘

tě0
in V with

bound
∥

∥etL˘8
∥

∥

LpVq ď e´κt.

Now, since û and dû
dξ

are bounded and f P C1pRq, the family pRstqtě0 is uniformly bounded

V Ñ V with ‖Rst‖LpVq ď ‖f 1pûq ´ f 1p0q‖W 1,8pRq ă 8. By [74, Chapter 5, Theorem 2.3] the

family pLstqtě0 of linear operators generates an evolution family
`

Pst,st1
˘

tět1ě0
of bounded linear

operators V Ñ V meeting estimate (2.16), i.e.,

∥

∥Pst,st1
∥

∥

LpVq ď eβpt´t1q with β :“
∥

∥f 1pûq ´ f 1p0q
∥

∥

W 1,8pRq ´ min
 

´f 1p0q, εγ
(

. �
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A.2.2. Moving frame. In this section, we prove spectral properties of the frozen-wave operator
L# (cf. (2.17)), as stated in Proposition 2.8.

We view L# as a perturbation of the limiting operator L#
˘8 (cf. (2.17))

L# “ L#
˘8 ` R#, (A.8a)

where

L#
˘8 :“

ˆ

νB2
ξ ` f 1p0q ´ sBξ ´1

ε ´εγ ´ sBξ

˙

and R# :“
ˆ

f 1 pûq ´ f 1p0q 0

0 0

˙

. (A.8b)

Lemma A.3. For Y P D
`

L#
˘

“ H2pR;Cq?
εkH1pR;Cq we have

´

L#
˘8Y, Y

¯

HC

ď ´κ ‖Y ‖2HC
´ εZν

∥

∥

∥

dw
dξ

∥

∥

∥

2

L2pRq
with κ

(2.22)“ min
 

´f 1p0q, εγ
(

. (A.9)

In particular, L#
˘8 generates a C0-semigroup

`

P˘8
st

˘

tě0
of contractions in HC satisfying

∥

∥P˘8
st

∥

∥

LpHCq ď e´κt. (A.10)

Proof. By density, we may assume Y “ pw, qqt P pC8
c pR;Cqq2 and obtain

´

L#
˘8Y, Y

¯

HC

“ εZ
´

ν d2w
dξ2

` f 1p0qw ´ sdw
dξ

´ q, w
¯

L2pR;Cq
` Z

´

εpw ´ γqq ´ sdq
dξ
, q
¯

L2pR;Cq

“ εZ

ˆ

´ν
∥

∥

∥

dw
dξ

∥

∥

∥

2

L2pR;Cq
` f 1p0q ‖w‖2L2pR;Cq

˙

´ εZγ ‖q‖2L2pR;Cq

`2iεZ Im
´

pw, qqL2pR;Cq

¯

´ εZs

ˆ

R

´

dw
dξ

¯

w dξ ´ Zs

ˆ

R

´

dq
dξ

¯

q dξ.

This implies

Re

ˆ

´

L#
˘8Y, Y

¯

HC

˙

(2.21b)
ď ´min

 

´f 1p0q, εγ
(

‖Y ‖2HC
´ Zs

2

ˆ

R

d
dξ

´

ε |w|2 ` |q|2
¯

dξ

´εZν
∥

∥

∥

dw
dξ

∥

∥

∥

2

L2pRq

“ ´κ ‖Y ‖2HC
´ εZν

∥

∥

∥

dw
dξ

∥

∥

∥

2

L2pRq
,

which is (A.9). From (A.9), we recognize that

L#
˘8 ` κ idHC

: D
´

L#
¯

“ H2pR;Cq?
εkH1pR;Cq Ñ HC

(2.21a)“ L2pR;Cq?
εkL2pR;Cq

is dissipative, so that, as in the proof of Proposition 2.6, we deduce with the Lax-Milgram and

the Lumer-Philips theorem [74, Chapter 1, Theorem 4.3] that L#
˘8 generates a C0-semigroup of

contractions pP˘8
st qtě0 in HC meeting (A.10). �

Proof of Proposition 2.8 (a). Since R# is a bounded operator in HC with
∥

∥

∥
R#

∥

∥

∥

LpHCq
ď

∥

∥f 1 pûq ´ f 1p0q
∥

∥

L8pRq ,

we conclude with Lemma A.3 and [74, Chapter 5, Theorem 2.3] that L# generates a C0-

semigroup
´

P
#
st

¯

tě0
in HC meeting the bound

∥

∥

∥
P

#
st

∥

∥

∥

LpHCq
ď e´ρt with ρ :“ κ ´

∥

∥f 1 pûq ´ f 1p0q
∥

∥

L8pRq . (A.11)

Since L# has real coefficients (cf. (2.17)), the statement for H instead of HC is immediate. �
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Proof of Proposition 2.8 (b). We have
´

Bt ´ L#
¯

T´stPst,st1Tst1
(2.19)“ T´st pBt ´ LstqPst,st1Tst1 “ 0,

so that with

T´stPst,st1Tst1
ˇ

ˇ

t“t1 “ T´st1 idV Tst1 “ T´st1Tst1 |V “ idV

the claim follows by uniqueness of the evolution family. �

Note that (A.11) just provides a rough estimate on the action of the semigroup
´

P
#
st

¯

tě0
.

In what follows, we provide a more detailed spectral analysis of L#, leading to the proofs of
Proposition 2.8 (c) and (d).

Lemma A.4. We have

σesspL#
˘8q Ď tλ P C : Reλ ď ´κu , where κ

(2.22)“ min
 

´f 1p0q, εγ
(

.

In particular, σesspL#
˘8q lies to the left of the imaginary axis.

Proof. We first use that σess

´

L#
˘8

¯

Ď RHC

´

L#
˘8

¯

(cf. Definition 2.7 (d) and (e), and [52,

Lemma 4.1.9]). Then the result is immediate from (2.1d), Definition 2.7 (e), and Lemma A.3. �

Lemma A.4 can be lifted to obtain the essential spectrum of L# using the following compactness
argument:

Lemma A.5 (compactness). The operator (cf. (A.8b))

R# : HC Ą H1pR;Cq?
εkL2pR;Cq Ñ HC

is compact. In particular,

L# (A.8)“ L#
˘8 ` R# : HC Ą DpL#q “ H2pR;Cq?

εkH1pR;Cq Ñ HC

is a relatively compact perturbation of L#
˘8 : HC Ą DpL#q Ñ HC.

Proof. Though the proof is standard, for the sake of a self-contained presentations we provide

all necessary details. Suppose that pYnqn P
`

H1pR;Cq?
εkL2pR;Cq

˘N
with Yn “ pwn, qnqt and

supnPN ‖wn‖H1pR;Cq ă 8. Because of

R#Yn
(A.8b)“

ˆ

pf 1pûq ´ f 1p0qqwn

0

˙

,

we first prove that ppf 1pûq ´ f 1p0qqwnqn has a convergent subsequence in L2pR;Cq. Therefore,

note that f2pûpξqqdû
dξ

and |f 1pûpξqq ´ f 1p0q| ď supwPr0,ûpξqsYrûpξq,0s |f
2pwq| |ûpξq| decay exponen-

tially as |ξ| Ñ ˘8. Now, setting y :“ arctan ξ and φnpyq :“
a

1 ` ξ2 pf 1pûpξqq ´ f 1p0qqwnpξq,
we may compute that dy “ 1

1`ξ2
dξ, d

dy
“
`

1 ` ξ2
˘

d
dξ

,

dφn

dy
“ ξ

a

1 ` ξ2
`

f 1pûpξqq ´ f 1p0q
˘

wnpξq `
`

1 ` ξ2
˘

3
2 f2pûpξqqdû

dξ
pξqwnpξq

`
`

1 ` ξ2
˘

3
2
`

f 1pûpξqq ´ f 1p0q
˘

dwn

dξ
pξq,

and therefore

‖φn‖
2

H1pp´π
2
,π
2 q;Cq “

ˆ π
2

´π
2

ˆ

|φn|
2 `

∣

∣

∣

dφn

dy

∣

∣

∣

2
˙

dy ď C

ˆ

R

ˆ

|wn|
2 `

∣

∣

∣

dwn

dξ

∣

∣

∣

2
˙

dξ “ C ‖wn‖
2
H1pR;Cq

for an n-independent constant C ă 8. By the Rellich-Kondrachov theorem, pφnqn has a con-
vergent subsequence in L2

``

´π
2
, π
2

˘

;C
˘

and because

‖φn ´ φm‖
L2pp´π

2
,
π
2 q;Cq “

∥

∥

`

f 1pûpξqq ´ f 1p0q
˘

pwn ´ wmq
∥

∥

L2pR;Cq ,

we infer that ppf 1pûpξqq ´ f 1p0qqwnqn has a convergent subsequence in L2pR;Cq.
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Suppose that pYnqn P
`

DpL#q
˘N

meets supnPN

ˆ

‖Yn‖HC
`
∥

∥

∥
L#

˘8Yn

∥

∥

∥

HC

˙

ă 8. Then, it suffices

to show that supnPN ‖wn‖H1pR;Cq ă 8. Observe that by interpolation, we have for Y “ pw, qqt P
pC8

c pR;Cqq2
∥

∥

∥
L#

˘8Y
∥

∥

∥

2

HC

“ ε
∥

∥

∥
ν d2w

dξ2
` f 1p0qw ´ sdw

dξ
´ q

∥

∥

∥

2

L2pR;Cq
`
∥

∥

∥
εw ´ εγq ´ sdq

dξ

∥

∥

∥

2

L2pR;Cq

ě C1

∥

∥

∥

dw
dξ

∥

∥

∥

2

L2pR;Cq
´ C2

´

‖w‖2L2pR;Cq ` ‖q‖2L2pR;Cq

¯

,

with C1 ą 0 and C2 ă 8 independent of n. Since ‖Yn‖
2
HC

(2.21b)“ εZ ‖wn‖
2
L2pR;Cq `Z ‖qn‖

2
L2pR;Cq,

we may conclude with (2.1d) that indeed supnPN ‖wn‖H1pR;Cq ă 8 holds true. �

Proof of Proposition 2.8 (ci). If

σesspL#q “ σesspL#
˘8q (A.12)

holds true, it follows in particular that

σesspL#q Ď tλ P C : Reλ ď ´κu , where κ
(2.22)“ min

 

´f 1p0q, εγ
(

by Lemma A.4. The equality (A.12), on the other hand, follows by Weyl’s essential spectrum
theorem [52, Theorem 2.2.6] because the operators

L#,L#
˘8 : D

´

L#
¯

“ H2pR;Cq?
εkH1pR;Cq Ñ HC

(2.21a)“ L2pR;Cq?
εkL2pR;Cq

are closed (which follows by an interpolation argument as in the proof of Lemma A.5) and L#

is a compact pertubation of L# by Lemma A.5. �

Proof of Proposition 2.8 (cii). It suffices to prove that for λ P σppL#q any corresponding eigen-

vector Y “ pw, qqt P DpL#q is bounded and has infinitely many bounded derivatives to conclude
that in HC there are no additional eigenvalues compared to the ones obtained by Yanagida [91,
§5.1] (cf. [48, §1, Theorem] in the case of the cubic polynomial without cut off).

Indeed, for Y as above satisfying L#Y “ λY , we have

ν d2w
dξ2

(2.17)“ λw ´ f 1pûqw ` sdw
dξ

` q
loooooooooooooomoooooooooooooon

PH1pR;Cq

,

sdq
dξ

(2.17)“ ´λq ` εw ´ εγq
looooooooomooooooooon

PH1pR;Cq

,

which immediately yields w P H3pR;Cq and q P H2pR;Cq. Inductively, we obtain that w, q P
HkpR;Cq for any k P N, giving smoothness and boundedness of w, q, and all derivatives.

With the stability analysis in [91, §5.1] we conclude that, except for the simple eigenvalue 0, all
eigenvalues are to the left of the imaginary axis with real part bounded by λ˚pεq. We further

remark that in (2.20) it has already been noted that dX̂
dξ

is an eigenvector to the eigenvalue

0. �

In what follows, we need a regularizing effect of the semigroup
`

P˘8
st

˘

tě0
of Lemma A.3 in the

first component.

Lemma A.6. For Y p0q “
`

wp0q, qp0q˘t P HC we write Y˘8pt, ¨q :“ pw˘8pt, ¨q, q˘8pt, ¨qqt :“
P˘8
st Y p0q. Then, it holds w˘8, q˘8,

?
tBξw˘8
1`

?
t

P L8 `

r0,8q;L2pR;Cq
˘

with

‖w˘8‖L8pr0,8q;L2pR;Cqq ` ‖q˘8‖L8pr0,8q;L2pR;Cqq `
∥

∥

∥

∥

?
tBξw˘8
1 `

?
t

∥

∥

∥

∥

L8pr0,8q;L2pR;Cqq
ď C

∥

∥

∥
Y p0q

∥

∥

∥

HC

,

where C ă 8 is independent of Y p0q.
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Proof. First, assume Y p0q “
`

wp0q, qp0q˘t P pC8
c pR;Cqq2. Then, by construction

BtY˘8 ´ L#
˘8Y˘8 “ 0, (A.13)

which implies

Bj
t

´

L#
˘8

¯k

Y˘8 “
´

L#
˘8

¯j`k

Y˘8 “ P˘8
st

´

L#
˘8

¯j`k

Y p0q for all j, k P N0

and hence
´

L#
˘8

¯k

Y˘8 P C8 pr0,8q;HCq for any k P N0. The coercivity/dissipativity estimate

(A.9) of Lemma A.3 then yields w˘8 P C8 `

r0,8q;HkpRq
˘

for any k P N0.

Having established qualitative regularity for regular initial data, we next prove a-priori estimates.
Indeed, by testing (A.13) it follows

1

2

d

dt
‖Y˘8‖2HC

´
´

L#
0 Y˘8, Y˘8

¯

HC

“ 0,

so that with (A.9) of Lemma A.3 we deduce that

1

2

d

dt
‖Y pt, ¨q‖2HC

` κ ‖Y pt, ¨q‖2HC
` εZν ‖Bξwpt, ¨q‖2

L2pR;Cq ď 0.

Integrating in time yields

1

2
‖Y˘8pt, ¨q‖2HC

`
ˆ t

0

´

κ
∥

∥Y˘8pt1, ¨q
∥

∥

2

HC

` εZν
∥

∥Bξw˘8pt1, ¨q
∥

∥

2

L2pR;Cq

¯

dt1 ď 1

2

∥

∥

∥
Y p0q

∥

∥

∥

2

HC

. (A.14)

To obtain a point-wise bound in time on ‖Bξw˘8pt, ¨q‖2
L2pRq, observe that from (A.8b) and (A.13)

it follows

BtBξw˘8 ´ νB3
ξw˘8 ´ f 1p0qBξw˘8 ` sB2

ξw˘8 ` Bξq˘8 “ 0.

Testing with tBξw˘8 gives with

Re
`

B2
ξw˘8pt, ¨q, Bξw˘8pt, ¨q

˘

L2pR;Cq “ 1

2
Re

ˆ

R

Bξ |Bξw˘8pt, ξq|2 dξ “ 0

and

Re pBξq˘8pt, ¨q, Bξw˘8pt, ¨qq
L2pRq ď ν

2

∥

∥B2
ξw˘8pt, ¨q

∥

∥

2

L2pR;Cq ` 1

2ν
‖q˘8pt, ¨q‖2L2pR;Cq

that

t

2
‖Bξw˘8pt, ¨q‖2

L2pR;Cq `
ˆ t

0

t1
´ν

2

∥

∥B2
ξw˘8pt1, ¨q

∥

∥

2

L2pRq ´ f 1p0q
∥

∥Bξw˘8pt1, ¨q
∥

∥

2

L2pRq

¯

dt1

ď t

2ν

ˆ t

0

∥

∥q˘8pt1, ¨q
∥

∥

2

L2pR;Cq dt
1 ` 1

2

ˆ t

0

∥

∥Bξw˘8pt1, ¨q
∥

∥

2

L2pR;Cq dt
1.

The combination with (2.21b) and (A.14) yields that there exists a constant C ă 8 such that

ess-suptě0

?
t

1 `
?
t
‖Bξw˘8pt, ¨q‖

L2pR;Cq ď C
∥

∥

∥
Y p0q

∥

∥

∥

2

HC

.

The statement of the lemma now follows by density of pC8
c pR;Cqq2 in HC. �

Proof of Proposition 2.8 (d). We loosely follow the approach in [2, Section 3.2, Proposition 3.5].
First observe that by Lemma A.5 and Lemma A.6 the operator R#P˘8

st Π# P LpHCq is compact
for any t ą 0. This compactness implies thanks to [2, Proposition 3.4] that for every t ě 0

the operator P
#
stΠ

# ´ P˘8
st Π# is compact as well. By estimate (A.10) of Lemma A.3 and

the Neumann series, we recognize that the operator P˘8
st Π# has no spectrum outside the disc

!

µ P C : |µ| ď e´κt
∥

∥Π#
∥

∥

LpHCq

)

. Now, since P
#
stΠ

# is a compact perturbation of P˘8
st Π#, the

spectrum of P#
stΠ

# in
"

µ P C : |µ| ą e´κt
∥

∥

∥
Π#

∥

∥

∥

LpHCq

*



42 KATHARINA EICHINGER, MANUEL V. GNANN, AND CHRISTIAN KUEHN

only contains point spectrum σp

´

P
#
stΠ

#
¯

(cf. Definition 2.7 and [52, Theorem 2.2.6]). Using [74,

Chapter 2, Theorem 2.4], we infer that

σp

´

P
#
stΠ

#
¯

Ď t0u Y
!

eλt : λ P σp

´

L#Π#
¯)

Ď
!

µ P C : |µ| ď emaxt´κ,λ˚pεqut
)

,

where we have used Proposition 2.8 (cii) in the last inclusion and that σp
`

L#Π#
˘

“ σp
`

L#
˘

zt0u
since 0 is not an eigenvalue of L#Π#. Altogether, we have

σ
´

P
#
stΠ

#
¯

Ď
"

µ P C : |µ| ď emaxt´κ,λ˚pεqut
∥

∥

∥
Π#

∥

∥

∥

LpHCq

*

because
∥

∥Π#
∥

∥

LpHCq ě 1.

Now, let maxt´κ, λ˚pεqu ă ´ϑ ă 0. Since the spectral radius limnÑ8
∥

∥

∥

´

P
#
stΠ

#
¯n∥

∥

∥

1
n

LpHCq
of

P
#
stΠ

# meets

lim
nÑ8

∥

∥

∥

´

P
#
stΠ

#
¯n∥

∥

∥

1
n

LpHCq
“ lim

nÑ8

∥

∥

∥
P

#
stnΠ

#
∥

∥

∥

1
n

LpHCq
and

lim
nÑ8

∥

∥

∥

´

P
#
stΠ

#
¯n∥

∥

∥

1
n

LpHCq
“ lim

nÑ8
max

!

|µ| : µ P σ
´

P
#
stΠ

#
¯)

ď emaxt´κ,λ˚pεqut
∥

∥

∥
Π#

∥

∥

∥

LpHCq
,

we have
∥

∥

∥
P

#
stnΠ

#
∥

∥

∥

1
n

LpHCq
ď e´ϑt for t and n large enough. Thus there exists Cϑ ă 8 such that

(2.24) holds true. �

Proof of Proposition 2.8 (e). Suppose that Y P H is real-valued. Then

Π#,0Y
(2.23)“ 1

2πi

‰

|λ|“r

Xλ dλ “ r

2π

ˆ 2π

0

Xreiτ e
iτ dτ, where Xλ :“

´

λ idH ´L#
¯´1

Y.

From the equation
λXλ ´ L#Xλ “ Y, where |λ| “ r,

and because the coefficients of L# are real (cf. (2.17)), it follows that

λXλ ´ L#Xλ “ Y.

Because r ą 0 us chosen sufficiently small we have λ P ρpL#q (cf. Definition 2.7 (a)) and it
follows due to uniqueness Xλ “ Xλ. Hence,

Π#,0Y “ r

2π

ˆ 2π

0

Xreiτ e
´iτ dτ “ r

2π

ˆ 2π

0

Xre´iτ e´iτ dτ “ r

2π

ˆ 0

´2π

Xreiτ e
iτ dτ

“ r

2π

ˆ 2π

0

Xreiτ e
iτ dτ “ Π#,0Y.

By (2.23) also Π#Y “ Π#Y , i.e., Π#,0,Π# : H Ñ H are well-defined and the estimates of the
operator norms are trivial, too. �
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