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Abstract 
 

Network meta-analysis (NMA) allows the combination of direct and indirect evidence from a 
set of randomized clinical trials. Performing NMA using individual patient data (IPD) is 
considered as a “gold standard” approach as it provides several advantages over NMA based 
on aggregate data. For example, it allows to perform advanced modelling of covariates or 
covariate-treatment interactions. An important issue in IPD NMA is the selection of influential 
parameters among terms that account for inconsistency, covariates, covariate-by-treatment 
interactions or non-proportionality of treatments effect for time to event data. This issue has 
not been deeply studied in the literature yet and in particular not for time-to-event data. A 
major difficulty is to jointly account for between-trial heterogeneity which could have a major 
influence on the selection process. The use of penalized generalized mixed effect model is a 
solution, but existing implementations have several shortcomings and an important 
computational cost that precludes their use for complex IPD NMA. In this article, we propose 
a penalized Poisson regression model to perform IPD NMA of time-to-event data. It is based 
only on fixed effect parameters which improve its computational cost over the use of random 
effects. It could be easily implemented using existing penalized regression package. Computer 
code is shared for implementation.  The methods were applied on simulated data to illustrate 
the importance to take into account between trial heterogeneity during the selection 
procedure. Finally, it was applied to an IPD NMA of overall survival of chemotherapy and 
radiotherapy in nasopharyngeal carcinoma. 

 
 
 
 
Key words: network meta-analysis, individual patient data, time-to-event data, penalized 
likelihood, lasso, frequentist, model selection.
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Introduction 
 
Network meta-analyses (NMA) allow the combination of direct and indirect evidence from a 
set of randomized clinical trials to estimate all pairwise treatment comparisons. Performing 
NMA using individual patient data (IPD) is considered as a “gold standard” approach as it 
provides the most accurate estimates of treatments effect and the greatest power to identify 
relevant covariates or covariate-treatment interactions1-2. NMA can be performed directly on 
the whole individual patient dataset (one stage approach) or using summarized estimates of 
treatments effect obtained separately by applying a standardized statistical procedure to IPD 
of each study (two stages approach). 
 
IPD NMA has been well studied for continuous or binary outcomes3-4 but fewer works have 
been conducted for time-to-event data. Recently, a one-stage Bayesian approach based on 
the Royston-Parmar model have been proposed5, resulting in a very flexible model. From the 
frequentist point of view, any methods estimating treatment effect such as the Cox 
proportional hazard model or the Peto estimator could be used to perform a two-stage IPD 
NMA6. However, in the presence of between-trial heterogeneity and/or non-proportionality 
of treatment effect, the use of this approach may be suboptimal and one-stage approach are 
preferable3-4. For standard IPD meta-analysis, the use of a Poisson generalized mixed linear 
model have been proposed7 and allows to easily perform one stage meta-analysis while 
accounting for heterogeneity and non-proportionality. Furthermore, this approach relies on 
the framework of generalized linear models and then benefit from a low computational 
burden. To our knowledge, this approach has not been yet applied to non-trivial IPD NMA for 
time-to-event data with more than 3 treatments. 
 
Generally, realization of an IPD NMA faces two key issues. The first one is the quantification 
of between-trial heterogeneity in treatment effects as for standard MA. Accounting for 
between-trial heterogeneity becomes mandatory when heterogeneity is large and remain 
unexplained in order to avoid bias in treatment effect estimations. This can be done by using 
mixed effects models consisting on inclusion of random effects. Compared to fixed effect 
models, estimation of mixed effects models requires to solve a complex optimization problem 
as the likelihood corresponds to a multidimensional integral that is not known explicitly. This 
is particularly true for IPD NMA, where multiple random effects may be included in the 
statistical model, making inference particularly complex especially with time-to-event data. 
The use of Bayesian inference techniques may be a solution as it does not require the use of 
complex optimization procedure and may explain why NMA commonly use Bayesian 
modelling. 
 
The second issue is the selection of the network meta-analysis models. Indeed, in NMA several 
additional parameters could be included in the model. Inconsistency hypothesis violation 
could be taken into account by including parameters for treatment loops in which 
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inconsistency is present8. Covariates and covariate-by-treatment interactions could be 
included in the model to account for the association between baseline hazard or treatment 
effect with some patients’ characteristics9. With time-to-event data, non-proportionality of 
treatment effects could also be modelled by including interaction between treatment and 
follow-up time5. All these parameters could be included as fixed regression coefficients, but a 
selection step has to be performed to define which parameters has to be included. Even if the 
issue of variables selection is not a high dimensional one, the size of the set of all possible 
models grows rapidly with the number of parameters which depends on the geometry of the 
network defined by the number of treatments (nodes) and connection between treatments 
(edges). The model building process may then benefit from an automatic selection routine. 
Several methods such as stepwise procedures and penalized likelihood approaches are 
classically used in this context of variables selection and may be directly applied to IPD NMA. 
Recently, a simulation study10 suggested that penalized likelihood methods may be more 
suitable for parameter selection in IPD meta-analysis. 
 
In IPD NMA, the method used to analyze the data need then ideally to perform model 
selection and jointly take into account between-trials heterogeneity. This may be done by 
using penalized Generalized Linear Mixed Model (GLMM)11-12. However, such models are 
particularly difficult to estimate as their likelihood is both not known explicitly and non-
differentiable. Several algorithms have been proposed11-13, but existing implementations have 
multiple shortcomings. The main one is the impossibility to jointly estimate penalized and 
unpenalized parameters which is necessary in order not to bias treatments effect estimations. 
An alternative solution would be to develop a fixed effect model that accounts for between-
trial heterogeneity. This could be done by implementing a penalized model in which study 
specific random effects are treated as fixed effects but penalized in order to ensure 
identifiability. This would thus increase the number of parameters in the model. This approach 
has already been used to analyze stratified data with lasso penalty where each parameter is 
decomposed into a sum of a common effect plus a stratum-specific parameter14.  
 
In this work, we propose a Poisson regression model to perform IPD network meta-analysis of 
time-to-event data using a frequentist approach. Heterogeneity quantification and model 
selection effect are performed simultaneously by using a penalized fixed effect model allowing 
to overcome the optimization problem met when applying random effect models. The 
proposed method can be easily implemented using existing penalized regression package and 
R code is shared on https://github.com/EdOllier/PenalizedPoissonNMA. Section 2 introduces 
a NMA in head and neck; section 3 describes our statistical penalized method; section 4 
presents the simulation framework; section 5 presents the results of the simulations and the 
application of our approach to a real example. 
 
NMA of chemotherapy and radiotherapy in nasopharyngeal carcinoma 
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The IPD NMA of chemotherapy and radiotherapy in nasopharyngeal carcinoma aimed to 
investigate the benefit of different timing of chemotherapy in addition to a radiotherapy (RT) 
on overall survival6. The network includes 7 treatments (nodes): RT alone (reference 
treatment), induction chemotherapy (IC) followed by RT (IC-RT); RT followed by adjuvant 
chemotherapy (RT-AC); IC followed by RT followed by AC (IC-RT-AC); chemo-radiotherapy 
(CRT); IC followed by CRT (IC-CRT); and CRT followed by AC (CRT-AC). The network is composed 
of 4806 individual patient data from 19 trials split into 24 comparisons (edges).  The number 
of trials per comparison varied from 1 to 7. The structure of the network is represented in 
Figure 1. The original analysis of overall survival data was based on a two-stage fixed effect-
model. Treatment effects (hazard ratios) were estimated separately for each trial based on 
IPD in a first step using the Peto estimator and then combined using a NMA in a second step. 
Heterogeneity, inconsistency, and non-proportionality of treatments effect were investigated. 
No covariates effects or covariate-by-treatment interactions were investigated at the time. 
 
Poisson regression model for network meta-analysis 
 
The Poisson regression model has been previously proposed for standard meta-analysis of 
time-to-event IPD7 and may be directly extended to NMA of IPD. In this section, we present 
its fixed treatment effects extension in the context of NMA of individual patient time-to-event 
data studying Q different treatments (the first treatment (q=1) is set as reference): 
 

𝑑!"#~𝒫(𝜇!"#)

𝑙𝑜𝑔*𝜇!"#+ = 𝑙𝑜𝑔*𝜉!"#+ + 𝜋# × 1#$% 	+ 𝛾! +4𝛽& × 𝑡𝑟𝑡!"
&

'

&()

 

 
where 𝑑!"# corresponds to the event indicator of patient j (j=1,…,ni)  in trial i (i=1,…,N) during 
period k (k=1,…,K). It takes the value of 0 or 1. It is modeled by a Poisson process for each 
patient of each trial during each time period. The constant 𝑙𝑜𝑔*𝜉!"#+ is the time at risk of 
patient j in trial i during period k and is included as an offset in the model. The baseline hazard 
function is treated as a piecewise constant function over K time periods. Parameters 𝜋# 
(𝜋	𝜖	𝑅*+%) correspond to the adjustment for the k-th time period (k=2,…,K). Parameters 𝛾!   
(𝛾	𝜖	𝑅,) correspond to the study specific baseline hazard rate of study i during the first period 
(k=1). 
 
Variables 𝑡𝑟𝑡!"

&  are the treatment contrast comparing treatment q to a fixed reference 
treatment and can take the values 0, 1 or -1: 
 

𝑡𝑟𝑡!"
# = $

1				if	the	patient	is	randomized	to	treatment	q		as	experimental		treatment															
−1					if	patient	is	randomized	to	the	experimental		arm	with	treatment	q	as	reference	
0				otherwise																																																																																																																																				
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For example, in a trial i comparing the q-th treatment versus the p-th treatment, treatment 
contrast variables take the following values for a patient j in the experimental arm: 

𝑡𝑟𝑡!"
& = 1

𝑡𝑟𝑡!"
- = −1

𝑡𝑟𝑡!". = 0	(𝑙 ≠ 𝑝	𝑎𝑛𝑑	𝑙 ≠ 𝑞).
 

 
For patients in the reference arm, all treatment contrasts are set to 0. 
 
Finally, parameter 𝛽& corresponds to the log hazard ratio for the q-th treatment versus the 
reference treatment. Under the consistency hypothesis, the log hazard ratio can be 
reconstructed for every possible pairwise treatment comparison: 

log𝐻𝑅&	01	- =𝛽& − 𝛽- 
 
To decrease computation time of Poisson modelling for IPD NMA, it is possible to collapse 
individual data across treatments, periods and covariates patterns, with 𝑑!"# corresponding 
then to the number of events in the i-th study during the k-th period in subjects belonging the 
j-th pattern of covariates (for example : male of the experimental arm). The same Poisson 
regression model can be fitted to this collapsed dataset giving exactly the same parameter 
estimates as the Poisson regression model fitted to the non-collapsed dataset. This process is 
however limited to the case where all covariates are categorical. 
 
Penalized Poisson model and between-trial heterogeneity 
 
Between-trial heterogeneity of treatment effect for a particular comparison is usually taken 
into account by including a random effect into the statistical model for each treatment 
comparison. When multiple treatment comparisons (edges) are included in the network, the 
inference will quickly become very complex with multiple integrations. We propose a 
penalized fixed effects model as an alternative to this inference issue. 
 
For a NMA, random effects can be included in the Poisson regression previously described in 
the following manner: 

𝑙𝑜𝑔*𝜇!"#+ = 𝑙𝑜𝑔*𝜉!"#+ + 𝜋# × 1#$% + 𝛾! +4𝛽&! × 𝑡𝑟𝑡!"
&

'

&()

𝛾! =	 �̅� + 𝑢! 	𝑤𝑖𝑡ℎ	𝑢!~𝒩(0, 𝜎))
𝛽&! =	 �̅�& + 𝑣&! 	𝑤𝑖𝑡ℎ	𝑣&!~𝒩*0, 𝜏&)+

						(1) 

 
Where �̅�𝜖	𝑅 and	�̅�𝜖	𝑅'+%correspond to the average baseline hazard and relative treatment 
effects. Hidden variables (𝑢!)!(%,…,, and *𝑣&!+!(%,…,, correspond to study specific random 

effects. Parameters 𝜎) and *𝜏&)+&(),…,' correspond to the between-trial variance for baseline 

hazard and relative treatment effects, respectively. 
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The vector of fixed effect parameter 𝜃 = *𝜋	, �̅�	, �̅�	+ and 𝜎) and *𝜏&)+&(),…,' could be 
estimated by solving the following maximum likelihood problem: 
 

argmin
4,5!,6"!

V−𝑙𝑜𝑔W𝑃(𝑑, 𝑢, 𝑣)	𝑑𝑢𝑑𝑣Y									 

 
where 𝑃(𝑑, 𝑢, 𝑣) represents the complete data likelihood written as follows: 
 

− log𝑃(𝑑, 𝑢, 𝑣) ∝ − log𝑃(𝑑|𝜃, 𝑢, 𝑣) 	− log 𝑃(𝑢, 𝑣|𝜃)

∝ − log𝑃(𝑑|𝜃, 𝑢, 𝑣) +
𝑁
2 𝑙𝑜𝑔

(𝜎)) +
1
2𝜎) ∥ 𝑢 ∥)

)+4_
𝑁
2 𝑙𝑜𝑔

*𝜏&)+ +	
1
2𝜏&)

∥ 𝑣& ∥))`
&

 

 
with 𝑃(𝑑|𝜃, 𝑢, 𝑣) the Poisson likelihood of the observation given 𝜃, 𝑢 and 𝑣 

log 𝑃(𝑑|𝜃, 𝑢, 𝑣) =4a𝑑!"# × log*𝜇!"#+ + 𝜇!"# − log*𝑑!"#!+c
!,",#

 

and ∥∙∥)) is the Euclidian norm. 
 
This mixed Poisson model (equation 1) can be used to derive a penalized Poisson regression 
problem in which hidden variables 𝑢 and 𝑣 are treated as fixed effects. 

𝑙𝑜𝑔*𝜇!"#+ = 𝑙𝑜𝑔*𝜉!"#+ + 𝜋# × 1#$% + (�̅� + 𝑢!) +4*�̅�& + 𝑣&!+ × 𝑡𝑟𝑡!"
&

'

&()

			(2) 

 

argmin
4,7,0"

e− log𝑃(𝑑|𝜃, 𝑢, 𝑣) +
𝜆8
2 ∥ 𝑢 ∥))+4

𝜆&
2 ∥ 𝑣& ∥))

&

g		 				(3) 

 
where 𝜆8 and *𝜆&+&(),…,' are the penalization parameters. These penalization parameters 

are linked to between-trial variances of random effects: 
 

𝜆8 =
1
𝜎) 	𝑎𝑛𝑑	𝜆& =

1
𝜏&)
	(𝑞 = 2,… , 𝑄)					(4) 

 
Within this framework, estimation of 𝜃	, 𝑢 and 𝑣 can be obtained easily by estimating a fixed 
penalized Poisson regression problem which is computationally less intensive than solving 
equation 1. Additionally, it is possible to fit a model with a common between-trial variance for 
all the relative treatment effects by setting the corresponding penalization parameters to a 
common value (𝜆& = 	𝜆	𝜖	𝑅 for all q). 
 
Penalization parameters can be calibrated15 by solving iteratively equation (3) and updating 
values 𝜆8 and *𝜆&+&(),…,': 
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l
𝜃9:%
𝑢9:%

*𝑣&,9:%+&(),…,'
m = argmin

4,7,0"
e− log𝑃(𝑑|𝜃, 𝑢, 𝑣) +

𝜆89

2 ∥ 𝑢 ∥))+4
𝜆&9

2 ∥ 𝑣& ∥))
&

g		 

𝜆89 =
𝑑𝑓7#
𝑢9;𝑢9

𝜆&9 =
𝑑𝑓0",#

*𝑣&,9+
;𝑣&,9

 

 
with 𝑑𝑓7#  and 𝑑𝑓0",#the respective degrees of freedom of 𝑢9 and 𝑣&,9  
 

𝑑𝑓7# = 𝑇𝑟𝑎𝑐𝑒	(𝐻7#,7#)
𝑑𝑓0",# = 𝑇𝑟𝑎𝑐𝑒	(𝐻0",#,0",#)

 

 
The matrix H corresponds to the hat matrix and is defined as: 

𝐻 = r
𝜕) log 𝑃(𝑑|Θ)

𝜕Θ;𝜕Θ − 	𝑑𝑖𝑎𝑔(𝜆)u
+%

r
𝜕) log 𝑃(𝑑|Θ)

𝜕Θ;𝜕Θ u 

 
with Θ = (𝜃, 𝑢, 𝑣) and 𝜆 = (0,… ,0, 𝜆8, 𝜆&(	),…,') the vector of regularization parameter for 
each component of Θ. The Q+K first component of vector 𝜆 are 0 as parameters in 𝜃 (𝜃𝜖	𝑅':*) 
are not penalized. In the case of Poisson regression, the hessian matrix is: 
 

𝜕) log 𝑃(𝑑|Θ)
𝜕Θ;𝜕Θ = 𝑋;𝑑𝑖𝑎𝑔(𝜇)𝑋 

 
With 𝑑 and 𝜇 the vectors of events indicators and Poisson rates, respectively. The matrix 𝑋 
corresponds to the design matrix of the linear predictor: 
 

𝑑~𝒫(𝜇)
𝑙𝑜𝑔(𝜇) = 𝑙𝑜𝑔(𝜉) + 𝑋Θ 

 
Parameters selection with adaptive lasso penalty 
 
In IPD NMA, treatment effects do not have to undergo the selection process and are then 
always included in the model. But some parameters accounting for inconsistency, covariates 
or covariate-treatment interactions effects and non-proportionality of treatment effects do 
not have to be systematically included in the model. The goal of the modelling process is then 
to perform variable selection on these effects. 
 
The use of the penalized Poisson regression framework presented before allows to include L1 
norm penalty to perform variable selection16. Therefore, several terms can be added in the 
Poisson regression model respectively to take into account: 
 
i) Inconsistency 
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Inconsistency corresponds to a discrepancy between the treatment effect estimates based on 
direct and indirect comparisons. In a treatment loop between three treatments A, B, and C, 
an inconsistency is observed if  
 

𝑙𝑜𝑔*𝐻𝑅w <	01	=
>!?@A;+ ≠ 𝑙𝑜𝑔*𝐻𝑅w <	01	=

B9C!?@A;+ = 	𝛽= − 𝛽< 
 
Where 𝐻𝑅w <	01	=

>!?@A;is the estimate of the effect of treatment B compared to treatment C 
considering only trials that directly compared B and C. To take into account inconsistency8, we 
may introduce an inconsistency parameter 𝜔<=  such as  
 

𝑙𝑜𝑔*𝐻𝑅w <	01	=
>!?@A;+ = 𝑙𝑜𝑔*𝐻𝑅w <	01	=

B9C!?@A;+ +	𝜔<= =	𝛽= − 𝛽< + 𝜔<=  
 
To quantify this inconsistency, the following term is introduced in the Poisson regression 
model: 

4 𝜔&- × y𝑡𝑟𝑡!"
& × 𝑡𝑟𝑡!"

- y
1<&D-

 

The term y𝑡𝑟𝑡!"
& × 𝑡𝑟𝑡!"

- y being equal to 1 in patients randomized to the experimental arm of 
trials that directly compared the q-th and the p-th treatments and equal to 0 otherwise. 
Parameter 𝜔&- quantifies then the discrepancy between direct and indirect comparisons in 
the loop defined by the q-th, the p-th and the reference treatment. It is included in the model, 
if and only if a loop between the q-th, the p-th and the reference treatment is present within 
the treatments network.  
 
ii) Covariate effects 

4𝛿A × 𝑧!"A

=

A(%

 

With 𝑧!"A  the values of the c-th covariates for the j-th patient of the i-th trial and 𝛿A  the 
parameter that quantify the effect of the c-th covariates on baseline hazard. 
 
iii) Covariate-by-treatment interactions 

44𝛼A& × 𝑧!"A × 𝑡𝑟𝑡!"
&

=

A(%

'

&()

 

With 𝛼A& the parameter that quantify the effect of the interaction between the c-th 
covariates and the q-th treatment. 
 
iv) Non-proportionality of treatments effects  
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The non-proportionality of treatment effects is modelled as a time interval by treatment 
interaction with time divided into K intervals considering the first time interval (k=1) as the 
reference: 

44𝜁#& × 𝑡𝑟𝑡!"
& × 1;∈𝒫%

*

#()

'

&()

 

 
With 𝜁#& the parameter that quantify the effect of the interaction between the k-th follow-up 
period and the q-th treatment and 1;∈𝒫%the indicator variable of the k-th time period. 
 
When all these terms are added to the Poisson regression model (2), we obtain the following 
model:  

𝑙𝑜𝑔?𝜇!"&A = 𝑙𝑜𝑔?𝜉!"&A + 𝜋& × 1&'( + (�̅� + 𝑢!) +K?�̅�# + 𝑣#!A × 𝑡𝑟𝑡!"
#

)

#*+

+ K 𝜔#, × O𝑡𝑟𝑡!"
# × 𝑡𝑟𝑡!"

, O
(-#-,

+K𝛿. × 𝑧!".

/

.*(

+KK𝛼.# × 𝑧!". × 𝑡𝑟𝑡!"
#

/

.*(

)

#*+

+KK𝜁&# × 𝑡𝑟𝑡!"
# × 10∈𝒫!

3

&*+

)

#*+

 

 
As parameters 𝜔, 𝛿, 𝛼	and 𝜁 have to be selected, we penalize the likelihood (3) using an 
adaptive Lasso penalty17 (weighted L1 norm) on these parameters: 
 

argmin
4,7,0"

~
− log𝑃(𝑑|𝜃, 𝑢, 𝑣) +

𝜆8
2
∥ 𝑢 ∥))+4

𝜆&
2
∥ 𝑣& ∥))

&

+𝜆G&*∥ 	 𝜌HI ∘ 𝜔 ∥%+∥ 𝜌JK ∘ 𝛿 ∥%+∥ 𝜌LI ∘ 𝛼 ∥%+∥ 𝜌MN ∘ 𝜁 ∥%+
�	(5), 

 
with ∘ the Hadamard product and 𝜆G&the coefficient that tune the degree of sparsity in the 
final estimates of 𝜔, 𝛿, 𝛼 and 𝜁. The vector of fixed effects is now 𝜃 = *𝜋	, �̅�		, �̅�	, 𝜔, 𝛿, 𝛼, 𝜁+. 
Penalty weights 𝜌H, 𝜌J  , 𝜌L  and 𝜌M  of the adaptive lasso penalty can be computed using 
unpenalized estimates of 𝜔, 𝛿, 𝛼 and 𝜁 obtain with 𝜆G&equal or close to 0: 
 

𝜌H =
1

𝜔�O9P@9
	 , 𝜌J =

1
𝛿�O9P@9

, 𝜌L =
1

𝛼�O9P@9
	𝑎𝑛𝑑	𝜌M =

1
𝜁�O9P@9

. 

 
 
For a fixed value of 𝜆G&, penalization parameters 𝜆8 and *𝜆&+&(),…,' are calibrated by solving 

iteratively equation 5 with updated values 𝜆8 and *𝜆&+&(),…,': 
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T
𝜃45(
𝑢45(

?𝑣#,45(A#*+,…,)
V = argmin

8,9,:"
X

− log𝑃(𝑑|𝜃, 𝑢, 𝑣) +
𝜆;4

2 ∥ 𝑢 ∥+++K
𝜆#4

2 ∥ 𝑣# ∥++
#

+𝜆<#?∥ 	 𝜌=> ∘ 𝜔 ∥(+∥ 𝜌?@ ∘ 𝛿 ∥(+∥ 𝜌A> ∘ 𝛼 ∥(+∥ 𝜌BC ∘ 𝜁 ∥(A
b , 

𝜆89 =
𝑑𝑓7#
𝑢9;𝑢9

,

𝜆&9 =
𝑑𝑓0",#

*𝑣&,9+
;𝑣&,9

.
 

 
 
At each iteration, the solution of this penalized optimization problem could be solved using 
the R package penalized20. This package solves L1 and/or L2 penalized generalized regression 
models and allows to penalize each parameter with different types of penalties (L1, L2 or 
both).  
 
Shrinkage coefficient 𝜆G&  is selected using a two-step BIC approach18. The first step 
corresponds to the evaluation of the solution of equation (5) for a grid of user-defined 
𝜆G&values. In a second step, the models selected with each 𝜆G&value of the grid are re-
estimated without L1 penalty. The optimal 𝜆G&  value is the one that minimizes the BIC 
calculated with a degree of freedom set to: 
 
 

𝑑𝑓 = 𝑇𝑟𝑎𝑐𝑒	 a𝐻𝒮'( ,𝒮'(c, 
with 𝒮RK  the support of the estimated vector of parameters Θ�=*𝜃�, 𝑢�, 𝑣�+. The whole procedure 
was called HetAdLASSO in the rest of this work. 
 
Simulation framework  
 
We performed a simulation study to evaluate estimation accuracy and selection model 
performance of the penalized Poisson approach in the framework of IPD NMA for time-to-
event data. Simulations were based on a non-trivial network of 5 treatments (A, B, C, D and E) 
with several loops. The geometry of the network is represented in figure 2 (5 nodes and 9 
edges). This structure was chosen to avoid identifiability problem due to structure of the 
network and then avoid confusion between the performance of the proposed method and 
structural identifiability problems. Treatment A was considered as the reference treatment 
with direct comparison with treatments B, C, D, and E. IPD time-to-event data were simulated 
using the R package survsim19. Event and censoring times were both simulated using an 
exponential distribution with scale parameter set to -5.5 and -7 respectively (logarithmic 
scale). From these parameters, the average censoring rates was around 21%. For each 
pairwise comparison, different number of trials were considered (3, 5 and 10 trials). The 
sample size of each trial was drawn from a uniform distribution (U(50,500)). The coefficients 
associated to each treatment contrast variable were set to: �̅�<	01	S = log	(0.77) , �̅�=	01	S =
log	(0.65) , �̅�>	01	S = log	(0.96),	�̅�T	01	S = log	(0.87). These treatment effects correspond to 
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moderate effect size. Treatment effects for other comparisons were derived from basic 
parameters and consistency hypothesis. Standard deviation of between-trial heterogeneity 
for baseline hazard was set to 𝜎 = 0.2. Standard deviation of between-trial heterogeneity 
*𝜏&+&(<,…,T  were considered equal for each comparison with the reference treatment and 

different values were considered (0.1, 0.2, 0.3, 0.4 and 0.5). We considered two binary 
covariates (C=2) simulated from a Bernoulli distribution with a probability of 0.5. The follow-
up time was divided in K=6 periods. We simulated 5 scenarios with increasing complexity 
according to different model specifications (true model). These specifications represent 
different situations in terms of inconsistency, covariates, covariate-treatment interaction and 
non-proportionality parameters (Table 1). Scenario 1 represent a simple NMA with no 
inconsistency, covariate, covariate-treatment interaction and non-proportionality of 
treatment effects (𝜔 = 0, 𝛿 = 0, 𝛼 = 0	and 𝜁 = 0). Scenario 2 represents a NMA with 
inconsistency in two treatments loops but without covariate, covariate-treatment interaction 
and non-proportionality of treatment effects. Inconsistency is simulated in treatments loops 
ABC and ADE through a hazard ratio (log scale) for BC and DE comparison different to the 
difference between BA and CA for loop ABC and to the difference between DA and EA for loop 
ADE, respectively. Scenario 3 represents a NMA with a covariate and two covariate-treatment 
interactions effects without inconsistency and non-proportionality of treatment effects. 
Scenario 4 represents a NMA with inconsistency, covariate and covariate-treatment 
interaction effects without non-proportionality. Scenario 5 represent a NMA with both 
inconsistency, covariate, covariate-by-treatment interactions and non-proportionality of 
treatment effects. Inconsistency, covariates and covariate-treatment interactions were 
parametrized in the same way as in scenario 4. Treatment E was considered to have a non-
proportional treatment effect compared to reference treatment A. As the survsim package 
does not allow to implement directly non proportional treatment effects, we used a different 
baseline hazard for subject receiving treatment E compared to the other subjects. This trick 
allows to simulate the time-dependent of treatment effect for treatment E. In arms involving 
treatment E, a Weibull hazard with shape parameter set to 0.75 was used to simulate event 
times. The other arms were supposed to follow an exponential hazard as previously described. 
Hazard shapes used are shown in supplementary figure 1.  
 
 
For each scenario and each between-trial heterogeneity levels, we simulated 100 data sets. 
We applied the proposed penalized adaptive lasso procedure (equation 5, HetAdLASSO) on 
each simulated data set. Between-trial heterogeneity was evaluated on baseline hazard and 
each treatments contrast. To assess the impact of between-trial heterogeneity on model 
selection performances, we also applied an adaptive lasso procedure that does not account 
for between-trial variability (FxAdLASSO for Fixed Adaptive Lasso). It is equivalent to solve 
HetAdLASSO described by equation (5) but without random effects, which consists in 
excluding from HetAdLASSO the terms associated to u and v. 
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Several criteria were used to evaluate the selection performances of HetAdLASSO and 
FxAdLASSO. First, to evaluate selection performance at the parameter level, false positive rate 
(FPR, proportion of non-influent parameters that are selected), false negative rate (FNR, 
proportion of influent parameters that are not selected) and accuracy (ACC, proportion of the 
model’s parameters that were correctly identified within each data set) were calculated for 
each simulated data set: 
 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃 ,				𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃 ,			𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃. 

 
With i) TP the number of influent parameters that were selected, ii) TN the number of non-
influent parameters that were not selected, iii) FP the number of non-influent parameters that 
were selected and iv) FN the number of influent parameters that were not selected. 
 
We also evaluated the proportion of correctly selected model according to each specification 
of the true model (inconsistency, covariates, covariate-treatment interactions and non-
proportionality). Lastly, we estimated the absolute bias of (i) each treatment contrast for the 
2 approaches and (ii) the variance of the between-trial heterogeneity of treatment effects 
returned by HetAdLASSO. Both procedures (FxAdLASSO and HetAdLASSO) were implemented 
using the R package penalized20 and our R code is available on the repository 
https://github.com/EdOllier/PenalizedPoissonNMA. 
 
RESULTS  
 
Simulation study 
 
Figure 3 represents selection accuracy, FNR and FPR of both adaptive LASSO methods for the 
different simulated scenarios with increasing between-trial heterogeneity of treatment 
effects. Overall, selection accuracy of HetAdLASSO is close to 100% and does not seem to be 
influenced by the level of between-trial variance. When between-trial heterogeneity is not 
taken into account (FxAdLASSO), selection accuracy decreased for increasing between-trial 
variance. The decreasing selection accuracy of FxAdLASSO was mainly driven by an increased 
false positive rate. On the contrary, an increasing between-trial variance tends to increase the 
FNR of  HetAdLASSO mainly driven by the non-detection of inconsistency terms.  
 
Figure 4 represents the proportion of times both methods recovered the true model according 
to the parameter types (covariates, covariate-by-treatments interactions, inconsistency and 
non-proportionality) in the different simulated scenarios. Covariate parameters were 
correctly selected for both methods and do not seem to be affected by the level of between-
trial variance. Concerning covariate-treatment interactions parameters, FxAdLASSO 
performances decreased slightly with between-trial heterogeneity of treatment effects. Major 
differences between FxAdLASSO and HetAdLASSO methods were observed for the selection 
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of inconsistency and non-proportionality parameters. For scenario with moderate and high 
between-trial heterogeneity values, selection performance decreases mainly driven by the 
issue of inconsistency detection for both methods. FxAdLASSO selected falsely positive 
inconsistency terms whereas HetAdLASSO was more conservative and fails to detect 
significant inconsistency term (false negative). FxAdLASSO approach fails also to select the 
correct non-proportionality model with decreasing performance for increasing between-trial 
heterogeneity. This is not the case of HetAdLASSO approach. Overall, FxAdLASSO performed 
also well with low between-trial heterogeneity except for inconsistency characteristic, but 
selection accuracy decreases with increasing between-trial heterogeneity mainly driven by an 
increased false positive rate. Taking the between-trial heterogeneity into account with the 
HetAdLASSO significantly increased selection performance. 
   
Figure 5 represents the box plot of absolute bias for log-hazard ratio *�̅�&+&(),…,' parameters 

obtained with both methods. FxAdLASSO tends to return biased estimates when between-
trial heterogeneity increased. Using HetAdLASSO allows to reduce this bias problem and its 
variability. 
 
Finally, it is also possible to compare the true values of between-trial standard deviation ( 
*𝜏&+&(),…,') to the estimated values from the penalization parameters ( *𝜆&+&(),…,') obtained 

using the iterative procedure (equation 4). These results are presented in figure 6. In these 
simulations, although it was not directly design for, the HetAdLASSO method allows a good 
estimation of between-trial standard deviations with increasing precision for an increasing 
number of trials. 
 
 
Application to IPD network meta-analysis of chemotherapy and radiotherapy in 
nasopharyngeal carcinoma 
 
We applied HetAdLASSO and FxAdLASSO methods to overall survival data of the IPD NMA in 
nasopharyngeal carcinoma. Due to the network’s structure and the limited number of trials in 
some comparisons then: i) no between-trials heterogeneity was estimated for IC_RT_AC 
treatment contrast (only one trial evaluated IC_RT_AC) and ii) only one inconsistency 
parameter was estimated, in the loop defined by treatments CRT and CRT_AC. Adding 
inconsistency parameter in the other loops would lead to identifiability issues especially for 
HetAdLASSO.   Five covariates were included in the analysis: age (treated as a continuous 
covariate), sex (male (reference), female), Tumor size stage (T1 (reference), T2, T3 and T4), 
node invasion stage (N0 (reference), N1, N2 and N3) and radiotherapy technique (2D 
(reference), 2.5D, 3D and IMRT). Categorical covariates were converted to indicator variables. 
Follow-up time was divided in K=4 periods to guarantee a sufficient number of events in each 
time interval. Covariate-by-treatment interactions were investigated for each treatment 
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contrast and covariates. This makes a total number of 84 parameters subject to the selection 
process and penalized by the lasso penalty.  
 
Models respectively selected with HetAdLASSO and FxAdLASSO methods are summarized in 
Table 2. None of the methods selected covariate-by-treatment interactions and non-
proportionality parameters. Only FxAdLASSO selected the parameter of inconsistency for the 
loop defined by treatments RT, CRT and CRT_AC. Concerning covariates, HetAdLASSO selected 
age, sex, tumor size stage T4 and node invasion stage N3 as influent covariates. FxAdLASSO 
selected 3 additional covariates: IMRT radiotherapy technique, tumor size stage T3 and node 
invasion stage N2. These results are coherent with the previous simulation study, in which 
FxAdLASSO tended to select more complex model. Table 3 summarized parameters estimates 
obtained with both methods. Treatments effect estimates of HetAdLASSO are coherent with 
the ones obtained with the two-stage analysis previously published6 and the re-analyze of the  
available data (data from one of the two trials evaluating IC_RT_AC was not available because 
investigators did not allow the use of their data for this methodological research).  Estimates 
of between-trials heterogeneity of treatment effect, obtained using equation 4, seems 
negligeable in all treatment (tau≤0.05) contrast except for CRT with tau=0.34. Based on the 
results of this network meta-analysis, we can conclude that chemoradiotherapy followed by 
adjuvant chemotherapy (CRT_AC) is the treatment that achieved the highest overall survival 
benefit in nasopharyngeal carcinoma. 
 
 
Discussion 
 
Network of meta-analysis of individual patient time-to-event data represents the state-of-the-
art approach for evidence synthesis of time-to-event outcomes. However, conducting such an 
analysis necessitates to perform a model selection procedure to identify influent covariates, 
covariates-treatment interaction, inconsistency and non-proportionality parameters. The 
literature on the subject is relatively sparse. One of the major difficulties being taking into 
account the between-trials heterogeneity which could influence the selection process.  This 
work presented a penalized Poisson model in which between trials differences are treated as 
fixed effects which allows to take into account between trials heterogeneity. The simulation 
study shows the advantage to take into account the between-trial heterogeneity compared 
to a fixed approach. 
 
The proposed method faces some limitations. First, our method corresponds to a penalized 
regression approach and then does not return directly standard errors of parameters 
estimation and confidence intervals. In the application to nasopharyngeal carcinoma data, 
standard errors were computed for the selected model by performing a non-penalized re-
estimation of the selected parameters on bootstrapped data sets. However, even if it is a 
direct and easy way to obtain an estimation of uncertainty in parameters estimate, it does not 
consider the uncertainty due to the selection procedure. It can lead to an underestimation of 
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parameters estimation uncertainty. Several authors studied this post-selection inference 
problem and proposed different solutions21-22, but these solutions are not trivial and are 
beyond the scope of this work. 
 
Secondly, our method does not provide a direct estimation of between trial variances. Our 
approach corresponds to an empirical Bayesian method that rely on the empirical variance of 
the posterior mode of between trials differences (u and v). Based on estimated values of 
penalization parameters 𝜆8 and *𝜆&+&(),…,' , equation 4 could be used to return an 

approximation of between trial variances. For data sets with a large number of trials with large 
sample sizes, these values may be a good approximation as posterior distribution of between 
trials differences u and v are asymptotically normal23. This was the case in our simulation 
study. However, with fewer trials or more limited sample sizes posterior distributions of 
between trials differences may be skewed; the posterior mode and posterior mean of 
between trials differences may then differ significantly. In such a case, the empirical variance 
of posterior mode of u and v may provide a biased estimation of between trial variances. This 
phenomenon does not appear in the EM-algorithm as the calculation of between trial 
variances are based on conditional mean of u and v. 
 
Last, our simulation study did not explore the impact of network structure on parameters 
estimation. We purposely used a densely connected network to avoid the identifiability 
problem due to the network structure. The latter could have a non-negligible impact on the 
results and although the effect of network topology on NMA results has been very little 
studied, some pioneering work has highlighted the impact of network structure irregularity 
on the bias and standard deviation of treatment effect estimates24. 
 
The present work may be extended in several ways.  First, in this work no random effects were 
introduced on parameters 𝜋#, however it may be of interest to quantify between trial 
variability for the time evolution of baseline hazard rate. These random effects could directly 
be implemented and estimated using the same procedure as the one used for parameter 𝛾. 
Moreover, the evolution over time of the baseline hazard rate is defined as a piecewise 
constant function, with the number of time periods (K) being specified by the user. The 
selection of the appropriate value for K may be an issue. In the nasopharyngeal carcinoma 
example, K=4 time periods were chosen to guarantee a sufficient number of events in each 
time interval. In practice, 1-year interval are often used, as in the nasopharyngeal carcinoma 
meta-analysis26. A pragmatic alternative commonly used is to use the percentiles of the 
distribution of the events time. Murray proposed a formal calculation of the number of time 
interval K27. This calculation is based on the observed number of events and the percentiles 
of the events time. A possible extension of our work would be to consider a large number of 
time periods and penalized differences between successive parameters 𝜋& to regularize their 
estimation. This can be done by using ridge fusion penalty for example. This type of penalty 
may also be applied to treatment effects. Indeed, treatments effects were not penalized as it 
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would shrink coefficient toward zero and then bias treatments effect estimates. However, in 
a selection perspective, it may be interesting to detect treatments that have the same effect. 
This would be possible by penalizing treatments effects using a fusion penalty that penalize 
difference between treatments effects28,29 and then promote sparsity in the difference 
between parameters. The last extension concerning the baseline hazard rate would be to use 
continuous follow-up time; this can be achieved by replacing the proposed piecewise constant 
model by a spline basis5 to take into account the possible nonlinear relationship between 
follow-up time and baseline hazard rate. 
 
Finally, to explore the presence of ecological bias it has been proposed to decompose 
covariate-by-treatment interactions in a within and a between trial interactions9,25. We do not 
consider such a decomposition in our work, but this could be directly implemented in the 
proposed method. Moreover, specific parameters for between trial interactions interaction 
terms could also be penalized using a lasso penalty and then be included in the selection 
procedure. 
 
 
Conclusion 

To conclude, in this work we developed a penalized Poisson method to select network meta-
analysis model based on individual patient time-to-event data. Our approach takes into 
account between trials heterogeneity without using the framework of mixed effect models 
that are computationally more intensive especially for large datasets encountered in meta-
analysis of individual patient time-to-event data. 
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Figure 1 Treatments network of the data set for chemotherapy timing in nasopharyngeal 
carcinoma. The number of trials (t) and number patients (pts) is shown for each comparison. 
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Figure 2 Structure of the network used for the simulation study. 
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Figure 3 Selection accuracy, False Positive Rate (FPR) and False Negative Rate (FPR) obtained 
in the various designs for both adaptive LASSO methods : i) adaptive LASSO method that takes 
into account between study heterogeneity (HetAdLASSO) and ii) adaptive LASSO method that 
do not take into account between study heterogeneity (FxAdLASSO). Orange lines represent 
the results of HetAdLASSO. Grey lines represent the results of FxAdLASSO. Solid, dashed and 
dotted lines correspond to simulation with 3, 5 and 10 trials per comparison, respectively. 
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Figure 4 Proportion of times over the 100 simulated data sets that FxAdLASSO and 
HetAdLASSO selected the true model. Results are stratified on parameters type: covariates, 
covariates-treatments interactions, inconsistency and non-proportionality. Orange lines 
represent the results of HetAdLASSO. Grey lines represent the results of FxAdLASSO. Solid, 
dashed and dotted lines correspond to simulation with 3, 5 and 10 trials per comparison, 
respectively. 
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Figure 5 Absolute bias for log-hazard ratio *�̅�&+&(%,…,' parameter estimates obtained with 
FxAdLASSO and HetAdLASSO for simulations with 3, 5 and 10 trials per comparison. Orange 
boxplots represent the results of HetAdLASSO. Grey boxplots represent the results of 
FxAdLASSO. 
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Figure 6 Absolute bias for between-trial standard deviation ( *𝜏&+&(%,…,') estimations based 

on equation 4 using the optimal values of penalty parameters ( *𝜆&+&(%,…,')  for simulations 

with 3, 5 and 10 trials per comparison. 
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Table 1: Simulation parameters of the five scenarios 

   

Scenarios Inconsistency Covariate Covariate-treatment 
interaction 

Non-
proportionality of 

risks 

S1 𝜔 = 0 𝛿 = 0 𝛼 = 0 𝜁 = 0 
S2 Treatments loops ABC 

and ADE. 
𝜔<= = log(0.5), 
𝜔>T = 	log(2) and 0 
elsewhere 

𝛿 = 0 𝛼 = 0 𝜁 = 0 

S3 𝜔 = 0 𝛿
= (0, log(1.25)) 

𝛼)< = log(1.25), 
𝛼)> = 	log(1.25) 
and 0 elsewhere. 

𝜁 = 0 

S4 Treatments loops ABC 
and ADE. 
𝜔<= = log(0.5),  

𝜔>T = 	log(2) and 0 
elsewhere. 

𝛿
= (0, log(1.25)) 

𝛼)< = log(1.25), 
𝛼)> = 	log(1.25) 
and 0 elsewhere. 

𝜁 = 0 

S5 Treatments loops ABC 
and ADE. 
𝜔<= = log(0.5),  

𝜔>T = 	log(2) and 0 
elsewhere. 

𝛿
= (0, log(1.25)) 

𝛼)< = log(1.25), 
𝛼)> = 	log(1.25) 
and 0 elsewhere. 

𝜁T ≠ 0 



28 
 

Table 2: Model selected with fixed adaptive Lasso (FxAdLASSO) and random adaptive Lasso 
(HetAdLASSO) methods for the individual patient data network meta-analysis of 
chemotherapy and radiotherapy in nasopharyngeal carcinoma. 
 

 FxAdLASSO HetAdLASSO 

Covariates 𝛿SU@ , 𝛿V@W , 𝛿XY, 𝛿XZ, 𝛿,), 𝛿,Y, 𝛿B[\X  𝛿SU@ , 𝛿V@W , 𝛿XZ, 𝛿,Y 

Covariates-by-treatment 
interactions None None 

Inconsistency  𝜔=\X	=\X_S=  None 

Non proportionality None None 
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Table 3: Unpenalized re-estimations of the model selected using fixed adaptive lasso 
(FxAdLASSO) and random adaptive lasso (HetAdLASSO) methods. Confidence intervals were 
computed by bootstrapping estimates of the selected model. The column ‘Two step NMA’ 
reports the results from the two-step network meta-analysis (NMA) also used in Ribassin-
Majed et al. 
 

 

Two step NMA  FxAdLASSO HetAdLASSO 

Treatment effects   

𝐻𝑅B=_\X	^1	\X  0.92 [0.76 ; 1.13] 0.99 [0.84 ; 1.16] 0.94 [0.77 ; 1.16 ] 

𝐻𝑅B=_=\X	^1	\X  0.81 [0.63 ; 1.04] 0.89 [0.72 ; 1.11] 0.84 [0.63 ; 1.11 ] 

𝐻𝑅=\X	^1	\X  0.77 [0.65 ; 0.93] 0.75 [0.64 ; 0.87] 0.76 [0.55 ; 1.05 ] 

𝐻𝑅=\X_S=	^1	\X  0.63 [0.55 ; 0.73] 0.67 [0.59 ; 0.77] 0.63 [0.54 ; 0.73 ] 

𝐻𝑅\X_S=	^1	\X  0.99 [0.75 ; 1.32] 0.89 [0.70 ; 1.11] 0.93 [0.69 ; 1.25 ] 

𝐻𝑅B=_\X_S=	^1	\X  1.29 [0.62 ; 2.73] 1.46 [0.83 ; 2.34] 1.28 [0.68 ; 2.42 ] 

Between trial standard 
deviation 

  

𝜏B=_\X    0.05 

𝜏B=_=\X    0.05 

𝜏=\X  - - 0.34 

𝜏=\X_S=    0.04 

𝜏\X_S=    0.05 
Inconsistency (Hazard ratio)   

𝜔=\X	=\X_S=  - 0.44 [0.28 ; 0.68] - 

Covariates (Hazard ratio)   

Age (year) - 1.03 [1.03 ; 1.04] 1.03 [1.02 ; 1.03] 

Sex (Ref : Male) - 0.79 [0.71 ; 0.88] 0.79 [0.71 ; 0.88] 

T3 (Ref : T1) - 1.35 [1.21 ; 1.51] - 

T4 (Ref : T1) - 2.04 [1.83 ; 2.28] 1.47 [1.33 ; 1.62] 

N2 (Ref : N0) - 1.63 [1.46 ; 1.81] - 

N3 (Ref : N0) - 2.52 [2.23 ; 2.85] 1.62 [1.46 ; 1.80] 

IMRT (Ref : no IMRT) - 0.55 [0.38 ; 0.78] - 

 


