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Deformation of Discrete Object Surfaces

We dene objects surface in a 3-dimensional (3D) lattice space using the theory of combinatorial topology, and present all possible deformation operations of the object surfaces, such that these operations do not violate the topology of the surfaces.

Introduction

In this paper, we dene the term \deformation" as the transformation of ndimensional (nD) objects to nD objects which preserves the topology of the objects. In particular, we focus on deformation of 2D closed surfaces of polyhedral objects. Deformation of object surfaces has been studied for volume segmentation of 3D objects as well as the snake which is a deformable curve around a 2D polygonal gure in a 2D plane [START_REF] Lachaud | Volumic Segmentation Using Hierarchical Representation and Triangulated Surface[END_REF]. From the viewpoint of other applications, deformation of object surfaces is also useful for describing motion between a sequence of images of 3D objects, for instance myocardial motion.

By comparison with deformation, skeletonization, thinning and localization of the medial axis are described as the transformation of nD objects to mD objects where m n [START_REF] Jonker | On Skeletonization in 4D Images[END_REF][START_REF] Abe | Thinning of Gray-Scale Images with Combined Sequential and Parallel Conditions for Pixel Removal, Visual Form Analysis and Recognition[END_REF][START_REF] Schlicher | Fast Analytical Medial-Axis Localization in Convex Polyhedra[END_REF]. Because these transformations only preserve the connectivity of points and sometimes do not consider topological structures caused by dimensionalities of objects, m can be less than n. According to our definition, deformation must be a transformation preserving not only connectivity but dimensionality of objects.

In order to describe topological structures of 3D polyhedral objects and their surfaces in a 3D lattice space, we use the theory of combinatorial topology. A similar approach was taken by Kovalevsky [START_REF] Kovalevsky | Finite topology as applied to image analysis[END_REF], but his approach is dierent from ours, since his approach is voxel based while our approach is lattice-point based. In combinatorial topology, 2D surfaces and 3D objects are represented by sets of triangles and tetrahedra which are regarded as 2D and 3D elements, respectively. If a set of 3D lattice points is given, we can uniquely obtain the representation of polyhedra from the set using the method presented in reference [START_REF] Kenmochi | Polyhedra Generation from Lattice Points[END_REF]. This combinatorial topology representation enables the classication of all points in 3D objects based on their topological structures [START_REF] Kenmochi | Discrete Combinatorial Geometry[END_REF]. In detail, topological property of every point can be obtained from the local conguration of neighboring points of objects. Using these topological properties of points, we can deform object surfaces without violating their 2D topological structures. In addition, a nite number of all possible operations for deformation are presented as the displacement of a part of an object surface.

Let Z be the set of all integers; Z 3 is dened as a 3D lattice space which consists of points whose three coordinates are all integers. In Z 3 , the following 6-, 18and 26-neighborhoods are dened. Denition 1. Let x = (i; j; k) be a point in Z 3 . Three neighborhoods of x are dened as N m (x) = f(p; q; r) j (i 0 p) 2 + (j 0 q) 2 + (k 0 r) 2 t; p; q; r 2 Zg; [START_REF] Lachaud | Volumic Segmentation Using Hierarchical Representation and Triangulated Surface[END_REF] where t is 1, 2, or 3 for m of 6, 18, or 26, respectively.

Depending on each neighborhood, we dene elements of 1D curves, 2D surfaces, and 3D objects in Z 3 . These elements are called, 1D, 2D and 3D discrete simplexes, respectively [START_REF] Kenmochi | Discrete Combinatorial Geometry[END_REF]. Suppose we dene 0D discrete simplexes as isolated points in Z 3 , then we can dene discrete simplexes whose dimensions are from 1 to 3 as follows.

Denition 2. An nD discrete simplex is dened as a set of points in Z 3 , such that the embedded simplex becomes one of nD minimum nonzero regions in R 3 which are bounded by (n 0 1)D embedded simplexes.

If an n-simplex consists of k points, the embedded simplex is dened as the convex hull of these k points in 3D Euclidean space, R 3 . An n-simplex of k points, x 0 , x 1 , . . ., x k is denoted by [x 0 ; x 1 ; . . . ; x k ]. Hereafter, we abbreviate nD discrete simplexes and simply call them n-simplexes. According to Denition 2, a nite set of n-simplexes where n can be from 0 to 3 is determined for each neighborhood, as shown in Fig. 1. Note that the congruent n-simplexes that dier from those in Fig. 1 by translation or rotation are omitted from Fig. 1.

Since 1-simplexes are regarded as elements of 1D curves in Z 3 , a line segment between two neighboring points can be a 1-simplex. The conguration of these two neighboring points depends on the neighborhood, and Fig. 1 shows that there are one, two and three dierent 1-simplexes for the 6-, 18-and 26-neighborhoods, respectively. According to Denition 2, a 2-simplex must be bounded by a set of 1-simplexes, so that these 1-simplexes hold a 2D minimum nonzero area inside of them. Similarly, 3-simplexes are created, so that every 3-simplex is bounded by a set of 2-simplexes and these 2-simplexes bound a 3D minimum nonzero region.

A function face of an n-simplex, [x 1 ; . . . ; x k ], denoted by face([x 1 ; . . . ; x k ]) is dened as a set of all discrete simplexes included in the n-simplex, whose dimensions are less than n. For instance, the faces of a 3-simplex are 0-, 1-and 2-simplexes in the 3-simplex. Faces of 0, 1 and 2 dimensions are called 0-, 1-and 2-faces, respectively. If C n is a set of n-simplexes, we can dene a set of faces of all n-simplexes in C n as

F ace(C n ) = [ [a]2C n face([a]): (2) 
Using the function F ace, we can dene 3D objects in Z 3 , which are called discrete objects. 

P = C 3 [ F ace(C 3 ): (3)
There are three types of connection between 3-simplexes; two connected 3simplexes share a 0-, 1-or 2-face in common. The surface of a discrete object is dened as follows.

Denition 4. Let P be a discrete object; the surface of P is dened as

@P = C 2 [ F ace(C 2 ); (4)
where C 2 is a set of 2-simplexes in P such that every 2-simplex in C 2 belongs to exactly one 3-simplex in P.

The next theorem on discrete object surfaces is derived from Denition 4. Theorem 5. Discrete object surfaces have no boundary, that is, they are always closed.

Proof. According to Denition 3, a discrete object is generated by a process of connecting 3-simplexes with each other. Since every 3-simplex is completely bounded by a set of 2-simplexes with no tear, a set of connected 3-simplexes does not include any tear in the boundary.
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Because of Theorem 5, discrete object surfaces are also called discrete closed surfaces. General discrete surfaces which may have the boundary are dened as well as discrete objects. Denition 6. Let C 2 be a set of connected 2-simplexes. A discrete surface is dened as

S = C 2 [ F ace(C 2 ): (5)
If two 2-simplexes are connected, they share a 0-or 1-face. If a discrete surface includes a 2-simplex whose 1-face is not shared with other 2-simplexes, the discrete surface has the boundary because that 1-face constitutes the boundary.

Using the following two set functions, which are a star and the outer boundary of a star [START_REF] Kenmochi | Discrete Combinatorial Geometry[END_REF], we classify all points in discrete objects. Denition 7. Let K be a discrete object (discrete closed surface) and x be a point in K; the star of x with respect to K is dened as

(x : K) = f[a]jx 2 [a]; [a] 2 Kg: (6)
Denition 8. Let K be a discrete object (discrete closed surface) and x be a point in K; the outer boundary of (x) with respect to K is dened as b(x : K)c = F ace((x : K)) n (x : K): [START_REF] Kenmochi | Discrete Combinatorial Geometry[END_REF] We dene two topological types for points of a discrete object as follows.

Denition 9. Let P be a discrete object and x be a point in P. If b(x : P)c constitutes a discrete closed surface, then x is spherical.

Denition 10. Let P be a discrete object and x be a point in P. If b(x : P)c constitutes a discrete surface and it is not closed, then x is semi-spherical.

These two topological types of points are depicted in Fig. 2. Spherical points indicate the interior points of discrete objects and semi-spherical points indicate points on the surfaces of discrete objects, except for intersections of the surfaces. Because points which are intersections of the surfaces are regarded as neither spherical nor semi-spherical, we call these points singular points. Several examples of singular points are also illustrated in Fig. 2. It is obvious that every point on the surface of a discrete object is either semi-spherical or singular, but not spherical. Using these topological properties of points, it is possible to distinguish points on the surface of a discrete object from all points in a discrete object. In addition, it is also possible to extract intersections from points on the surface.

If the surface of a discrete object is given instead of the discrete object, however, we cannot distinguish between intersections and other points on discrete object surfaces. This is because we cannot calculate the above topological types of points from the surface of a discrete object. In order to solve this problem, we dene the next topological type of points which we can determine from the surface of a discrete object. Denition 11. Let @P be a discrete object surface and x be a point in @P. If b(x : @P)c makes a circle, such as a path of adjacent 1-simplexes which does not intersect and whose beginning and end points are the same, then x is cyclic.

Cyclic points are equivalent to semi-spherical points, as shown in Fig. 2. All points on a discrete object surface, except for cyclic points, are called singular points of the surface as well as singular points of the discrete object. 

Deformation and Topology

Deformation of discrete object surfaces is dened as the process of expanding or shrinking discrete object surfaces while preserving their topology. If a discrete object surface, @P, does not include any singular points, the topology of @P is given by an Euler characteristic, E(@P) = V 0 E + F;

(8) where V, E and F are the numbers of 0-, 1-and 2-simplexes in @P. Let @P 0 be a deformation of @P. If the relation E(@P) 0 E(@P 0 ) = 0 (9) holds, it is said that the deformation process preserves the topology of @P. If @P includes singular points, we deform @P so as not to change the number of singular points, their locations and their topological structures, such as the conguration of connected 2-simplexes around the point.

Deformation Operations

Deformation operations are mainly classied into two classes: one class consists of operations for expanding discrete object surfaces and the other class consists of operations for shrinking discrete object surfaces. We call these two classes of deformations expanding and shrinking deformations, respectively. The process of expanding (shrinking) deformation is equivalent to the process of increasing (decreasing) the volume of a discrete object while preserving its topology. In order to increase (decrease) the volume of a discrete object, we attach (remove) a 3-simplex to (from) the discrete closed surface. This process means that 2faces in the 3-simplex which are not (are) at the joint become a new part of the discrete closed surface instead of the original part of the discrete closed surface which was (was not) at the joint in the attached (removed) 3-simplex.

Shrinking deformation is the inverse of expanding deformation. Therefore, it is possible to obtain a set of all operations for shrinking deformation if a set of all operations for expanding deformation is dened. Thus, it is sucient that operations for either expanding or shrinking deformation are provided. In this paper, we show all possible operations for expanding deformation. The following algorithm describes the operation of expanding a discrete object surface using a 3-simplex. 

Old New

Fig. 3. All elemental operations for expanding deformation of a discrete object surface, @P (a) using a cubic 3-simplex for the 6-neighborhood, (b) using a tetrahedral 3-simplex for the 18-and 26-neighborhoods, and (c) using a pentahedral 3-simplex for the 18-neighborhood. Note that @P is expanded to (@P n Old) [ New. Algorithm 1 input: A discrete object P and its surface @P. output: An expanded surface @P 0 . begin 1. Find a conguration of 2-simplexes, Old, which is illustrated in Fig. 3, where Old @P. Note that all points in Old must be cyclic with respect to @P.

2. A new conguration of 2-simplexes, New, is obtain from Fig. 3, corresponding to Old.

3. If (New n Old) \ P 6 = ;, set New = Old. 4. Set @P 0 = (@P n Old) [ New .

end According to Algorithm 1, a nonempty discrete surface Old in @P is displaced by a nonempty discrete surface New which is not in @P. These two discrete surfaces, Old and New, satisfy the following three conditions:

1. Old and New are included in a 3-simplex; 2. each 2-simplex in the 3-simplex is included in either Old or New; 3. each of Old and New must be a discrete surface whose 2-simplexes are connected to each other via their 1-faces.

All possible pairs of Old and New are illustrated in Fig. 3 for each 3-simplex shape of each neighborhood. For the 6-neighborhood, every 3-simplex forms a cube, and has six square 2-faces, as shown in Fig. 1. Thus, from one to ve 2-faces can be included in Old. In each case of the numbers of 2-faces in Old, there is only one conguration of 2-faces in Old and New, except for the case of three 2-faces included in Old. In this case, there exist two dierent 2-face congurations in Old. For the 18-neighborhood, 3-simplexes are either tetrahedral or pentahedral. In the case of expanding deformation using a tetrahedral 3-simplex, there are three congurations of 2-faces in Old and New, while there are eight congurations in the case of the expanding deformation using a pentahedral 3-simplex. Similarly, for the 26-neighborhood, there are three congurations of 2-faces in Old and New because all 3-simplexes are tetrahedral.

Because Algorithm 1 describes only the process of the operation of expanding @P using a 3-simplex, we must employ Algorithm 1 n times if n operations are necessary to suciently expand @P. Obviously, the result of a series of expanding operations depends on the choice of Old in step 1 of Algorithm 1 for each operation. Furthermore, according to step 3 of Algorithm 1, @P is not expanded if New, which is automatically obtained from Old in step 2, intersects with @P. Evidently, the choice of Old in step 1 also governs the possibility of expansion of @P for each operation.

Elemental Operations

Figure 3 indicates that an operation for expanding deformation using a cubic or pentahedral 3-simplex for the 6-or 18-neighborhood can be decomposed into a set of several operations using tetrahedral 3-simplexes for the 26-neighborhood. We show an example of the decomposition of an operation in Fig. 4. Consequently, if a set of all possible operations for expanding deformation using tetrahedral 3-simplexes for the 26-neighborhood is given, we can expand discrete object surfaces for any neighborhood by combining those given operations. In other words, a set of operations using tetrahedral 3-simplexes for the 26-neighborhood can be regarded as a set of elemental operations for expanding deformation. Fig. 4. An example of deformation operation decomposition; a deformation operation using a cubic 3-simplex is decomposed into six operations using tetrahedral 3-simplexes.

Topology Preservation by Deformation

Because every deformation operation for the 6-and 18-neighborhoods is decomposed into several deformation operations for the 26-neighborhood, we consider topology preservation by the deformation only in the case of the 26neighborhood. Let V, E, F, V 0 , E 0 , and F 0 be the numbers of 0-, 1-, and 2-simplexes of Old and New in Fig. 3, respectively. Table 1 shows these exact numbers for each operation for expanding deformation using a tetrahedral 3-simplex. Then, Eq. ( 9) is derived for every operation. Table 1. The numbers of discrete simplexes of 0, 1 and 2 dimensions in Old and New of deformation operations by tetrahedral 3-simplexes.

Conclusions

In this paper, we introduced combinatorial topology representations of 3D polyhedral objects and their surfaces, which contains not only connectivity between neighboring points but the 2D topological structures of the points. Using these topological structures, we can deform discrete object surfaces while preserving their topology. We also presented a nite set of all elemental operations for expanding deformation and demonstrated that three operations using tetrahedral 3-simplexes for the 26-neighborhood in Fig. 3 are sucient to compose all other operations for the 6-and 18-neighborhoods. For application of deformation, the amount of deformation of an object of interset must be measured. In other words, there are constraints on deformation, for instance, positions, geometrical shapes and lengths of objects. Since we only discussed the possible operations for deformation without violating topology in this paper, it is desirable to prepare some spatial metrics to measure the dierences between original objects and deformed objects as our future work.
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 1 Fig. 1. All possible 1D, 2D and 3D simplexes for the 6-, 18-and 26-neighborhoods.

Fig. 2 .

 2 Fig.2. Three topological types of points of discrete objects: spherical, semi-spherical (cyclic) and singular points. The example shown is for the case of the 26-neighborhood.