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Abstract

One of the factors that is hindering the adoption of nonmonotonic description
logics in applications is performance. Even when monotonic and nonmonotonic
inferences have the same asymptotic complexity, the implementation of nonmono-
tonic reasoning may be significantly slower. This happens also with the family of
nonmonotonic logics DLN.

In this work we address this issue by introducing two optimizations for rea-
soning in DLN. The first optimization, called optimistic evaluation, aims at ex-
ploiting incremental reasoning in a better way. The second is a module extractor
for DLN, that has the purpose of focusing reasoning on a relevant subset of the
knowledge base. The proposed optimization iterates the module extractor that,
unlike classical module extractors, is not idempotent, in general.

We prove that the proposed optimizations are correct and complete, and as-
sess them through extensive experiments. Our results prove that optimized DLN

reasoning is often compatible with interactive query answering, which brings non-
monotonic description logics closer to practical applications.

Keywords: Nonmonotonic Reasoning, Description Logics, Module extraction

1. Introduction

In many areas, knowledge is formulated by stating general properties and def-
initions that are progressively refined by specifying exceptions. For example, this
approach is extensively used in biology; here we report two representative exam-
ples. First, the human heart is usually located in the left-hand half of the thorax.
Still, there are exceptional individuals, with so-called situs inversus, whose heart
is located on the opposite side. Second, eukaryotic cells are those with a proper
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nucleus, by definition. Still, they comprise mammalian red blood cells, that in
their mature stage have no nucleus.1

Analogously, the formal languages designed to describe security and privacy
policies generally allow to formulate default conditions, such as open and closed
policies,2 conflict resolution methods such as denials take precedence, and autho-
rization inheritance with exceptions [3].

Nevertheless, description logics (DLs) – which underlie the Semantic Web
standard OWL2, and have been proposed as policy languages – do not support
defeasible knowledge and exceptions. Consequently, several authors advocated
nonmonotonic semantics as a useful means to address this limitation, and pro-
posed different formalisms based on circumscription [4, 5, 6], autoepistemic logic
[7, 8], typicality operators [9, 10, 11], or rational closure [12, 13, 14], just to name
a few.

In this context, DLN [15, 16, 17] is a recent family of nonmonotonic DLs that
results from a utilitarian approach to nonmonotonic reasoning. The main goal of
this approach is addressing the practical needs of ontology and policy designers,
that have been illustrated with several examples in the literature, including the
aforementioned papers on biomedical ontologies and semantic web policies. DLN

features normality concepts NC to denote the standard/prototypical instances of a
conceptC, and prioritized defeasible inclusions (DIs)C vn D that mean (roughly
speaking): “by default, all prototypical instances that satisfy C satisfy also D,
unless stated otherwise”, that is, unless some higher priority axioms contradict
this implication; in this case, C vn D is overridden. The standard/prototypical
instances of C must satisfy all the DIs that are not overridden in C.
DLN benefits from some distinguishing features such as: (i) DLN adopts the

simplest possible criterion for overriding, that is, inconsistency with higher prior-
ity axioms; (ii) all the normal instances of a concept C conform to the same set of
default properties, sometimes called prototype; (iii) the conflicts between DIs that
cannot be resolved with priorities can be easily detected and fixed by knowledge
engineers; (iv) priorities are not cast into the logic, they are part of the knowledge
base. Here is a summary of the main strenghts deriving from (i)–(iv).

No inheritance blocking. Most of the logics grounded on preferential seman-
tics and rational closure block the inheritance of all default properties in excep-

1All of these examples are introduced and discussed in [1, 2].
2If no explicit authorization has been specified for a given access request, then an open policy

permits the access while a closed policy denies it.
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tional subclasses (as opposed to overriding only the properties that are modified
in those subclasses). DLN’s simple overriding mechanism does not suffer from
this drawback.

No undesired CWA effects. Many nonmonotonic DLs extend default properties
to as many individuals as possible, thereby introducing CWA (i.e. closed-world
assumption) effects that clash with the intended behavior of ontologies. DLN

does not introduce any CWA effect because it does not force individuals to be
normal, unless explicitly stated otherwise.

Control on priorities. Since priorities are not fixed a priori inDLN, knowledge
engineers can adapt them to their needs. It is possible to override DIs based on
temporal criteria (which may be useful in legal ontologies and ontology version-
ing, where new assertions partially replace older assertions), or based on speci-
ficity (i.e. the properties of more specific classes override the conflicting proper-
ties of their superclasses), and other custom conflict resolution criteria. The logics
derived from inheritance networks, preferential semantics, and rational closure
can only support their fixed, specificity-based overriding criterion.

Default role fillers. DLN axioms can specify whether a role should range
only over normal individuals or not. Some logics are completely unable to apply
default properties to role values.3 Some others cannot switch this inference off
when it is not desired. Only DLN and ALC + Tmin make it possible to control
this kind of inference.

Inconsistent prototype detection. DLN facilitates the identification of all con-
flicts that cannot be resolved with priorities (via consistency checks over normal-
ity concepts), because their correct resolution is application dependent and should
require human intervention. Typically, unresolved conflicts correspond to knowl-
edge gaps or errors.

Unique deductive closure. As a result of the automated handling of unresolved
conflicts, several nonmonotonic logics yield multiple deductive closures, that cor-
respond to all the possible ways of solving each conflict. DLN is one of the logics
that has a unique closure.

Generality. DLN can be uniformly applied to all description logics up to the
standard OWL2-DL (i.e. the logic SROIQ(D)) and beyond. Typicality logics
and rational closure, instead, are limited to logics that satisfy the disjoint union

3This is the case for rational closure. Recently, in [18], a solution has been proposed for EL
with ⊥. It is unclear how to extend it to more expressive DLs, and it is not possible to “turn off”
the application of default rules to role fillers.
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model property. Recently, it has been shown that for expressive DLs that do not
enjoy this property, syntactic inference does not match semantics [14]. The same
paper introduces stable rational closure that solves the generality problem for
rational closure, but re-introduces the issue of multiple (or non existent) deductive
closures. It is currently not clear how to design a logic that satisfies the KLM
postulates, is fully general, and yields a unique closure for all knowledge bases.

Low complexity. DLN preserves the tractability of subsumption and instance
checking for all low-complexity DLs, including the rich tractable logics EL++

and DL-lite(HN )
Horn . Currently, no other nonmonotonic DL enjoys this property to

the same extent. Rational closure has been proved to be tractable for EL extended
with⊥ [19, 18]. Some logics, such as [13, 20, 21, 11, 10], preserve the asymptotic
complexity of ExpTime-complete DLs likeALC. More generally,DLN preserves
the asymptotic complexity of all the DLs that belong to a deterministic complexity
class that contains P. For nondeterministic complexity classes C, an upper bound
is P C .

In [15, 16] the semantic properties of DLN and the computational complex-
ity of the related reasoning tasks have been thoroughly studied, here we focus
on a concrete implementation of a DLN reasoner. As mentioned above, DLN

preserves the tractability of low-complexity DLs; this opens the way to process-
ing very large nonmonotonic KBs within these fragments. Asymptotic tractability
alone, however, does not suffice for practical purposes. DLN reasoning is based on
an iterative procedure that, given the signature of the queries of interest, discards
overridden inclusions and transforms the other defeasible inclusions into classi-
cal axioms. This reduction executes a number of concept consistency checks that
in the worst case is quadratic in the size of the knowledge base and of the in-
put signature. Such consistency checks are evaluated against different, generally
incomparable subsets of the knowledge base, and for this reason they cannot be
implemented simply by computing a single classification of the knowledge base.

A preliminary implementation of a DLN reasoner in [15] has distinctly shown
that such a quadratic dependence may slow down the computation significantly,
even if the engine leverages the incremental reasoning facilities natively supported
by state-ot-art reasoners such as ELK. Consequently, practical reasoning on large
knowledge bases – such as biomedical ontologies – requires ad hoc optimizations
to detect and prune unnecessary computations during the reduction to classical
DL. For this purpose, in this paper we introduce two optimization techniques,
prove their correctness, and assess their effectiveness experimentally.

The first optimization aims at discarding axioms that are irrelevant for a given
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query by adapting a classical module extraction algorithm to DLN. As a side
effect, this reduces also the number of iterations in the reduction to classical DL.
Adapting classical module extractors to DLN turns out to be a nontrivial task,
given the nonmonotonic nature of its inferences.

As mentioned above, the first reasoner forDLN exploited the incremental rea-
soning mechanisms of the underlying classical reasoner. The second optimization,
called optimistic method, aims at reducing the number of retractions (that are typ-
ically the most expensive operations in incremental reasoning).

We experimentally appraise the efficiency of each optimization and their com-
bination. In order to obtain realistic test cases, experiments have been conducted
on nonmonotonic versions of large biomedical ontologies such as Gene Ontol-
ogy, Fly Anatomy, and SNOMED. Not only these ontologies are being used in
concrete application scenarios, they are also commonly adopted in performance
benchmarking [22, 23, 24, 25, 26, 27, 28]. The experimental results show that
the two optimizations together reduce the computation time up to four orders of
magnitude. A detailed analysis of their effectiveness is reported in Section 5.

We start with preliminaries on DL, module extraction, and DLN. Then, in
Section 3, we introduce the two optimizations and prove their correctness and
completeness. The implementation of the testbed and the test sets are described in
Section 4. After the experimental evaluation (Section 5), two sections on related
work and final remarks conclude the paper. Software and data can be downloaded
from t.ly/Ct68.

2. Preliminaries

2.1. Description Logics
Description logics are a family of formal languages representing the logical

foundations of the W3C Ontology Web Language (OWL2). DL languages are
built from a set NC of concept names, a set NR of role names, and a set NI of
individual names (all countably infinite and pairwise disjoint). We use the term
predicate to refer to elements of NC∪NR. A signature Σ is a subset of NC∪NR∪NI.

An interpretation I of a signature Σ is a structure I = (∆I , ·I) where ∆I is
a nonempty set, and the interpretation function ·I , defined over Σ, is such that (i)
AI ⊆ ∆I if A ∈ NC; (ii) RI ⊆ ∆I × ∆I if R ∈ NR; (iii) aI ∈ ∆I if a ∈ NI.
In each DL, compound concepts and roles are inductively defined with the help
of a specific set of logical operators. Here, we focus on the DL SROIQ which
is the basis of the OWL2 standard. The constructors of SROIQ are described in
Table 1. We will use metavariables A,B for concept names, C,D for (possibly
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compound) concepts, R, S for (possibly inverse) roles, a, b for individual names.
The third column shows how to extend the valuation ·I of an interpretation I
to compound expressions. Table 1 also shows the terminological and assertional
axioms we deal with. An interpretation I satisfies an axiom α (in symbols, I |=
α) if it satisfies the corresponding semantic condition in Table 1. As usual, ⊥,
∃R, C tD, and ∀R.C are syntactic abbreviations for ¬>, ∃R.>, ¬(¬C u ¬D),
and ¬∃R.¬C, respectively. Similarly, C ≡ D is an abbreviation for the pair of
inclusions C v D and D v C.

A finite set of terminological axioms T is called a TBox, similarly a finite set
of assertional axioms A is called an ABox. Then, a (classical) knowledge base is
the union of a TBox and an ABox, S = T ∪ A.4

If X is a DL expression, an axiom, or a knowledge base, then sig(X) denotes
the signature consisting of all symbols occurring in X . An interpretation I of
a signature Σ ⊇ sig(S) is a model of S (in symbols, I |= S) if I satisfies all
the axioms in S. We say that S entails an axiom α (in symbols, S |= α) if
all the models of S satisfy α. Given a knowledge base S and general concept
inclusion (GCI) C v D, the subsumption problem consists in deciding whether
S |= C v D.

Hereafter, we denote by DL a generic fragment of SROIQ. We refer to
[30, 31] for a comprehensive overview over DL fragments and for DL naming
conventions.

2.2. Module extraction
Informally speaking, given a classical knowledge base S and a reference sig-

nature Σ, a module is a subsetM of S that preserves the consequences of S that
can be expressed with the symbols in Σ. Different notions of modules can be ob-
tained by varying the class of such consequences (e.g. first-order, second-order,
assertions, inclusions, etc.), see [32] for more details and possible applications.

Here, we use modules as an optimization technique for entailment checking
over large ontologies: queries are evaluated against a module M that is often
much smaller than the knowledge base S. Accordingly, we use the following
definition of modules.

4Note that, in order to preserve decidability of the main reasoning tasks, a SROIQ knowledge
base must satisfy some additional conditions (e.g. regularity of RIA axioms and simplicity of the
roles denoted in Table 1 by the symbol S). However, these conditions are not used in this paper,
therefore we refer the reader to [29] for further details.
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Name Syntax Semantics
Compound expressions
inverse R− {(y, x) | (x, y) ∈ RI} (R ∈ NR)
role
top > >I = ∆I

universal U UI = ∆I ×∆I

role
nominals {a} {a}I = {aI}
intersection C uD (C uD)I = CI ∩DI

complement ¬C (¬C)I = ∆I \ CI

existential ∃R.C {d ∈ ∆I | ∃(d, e) ∈ RI : e ∈ CI}
restriction
number (./ n S.C)

{
x ∈ ∆I | #{y | (x, y) ∈ SI ∧ y ∈ CI} ./ n

}
(./ .=≤,≥)

restrictions
self ∃S.Self {x ∈ ∆I | (x, x) ∈ SI}
Terminological axioms I satisfies the axiom if:
GCI C v D CI ⊆ DI

role disj(S1, S2) SI1 ∩ SI2 = ∅
disjointness
RIA R1 ◦...◦Rn v R RI1 ◦ . . . ◦RIn ⊆ RI

irreflexivity irr(S) RI is irrevlexive
Concept and role assertion axioms
conc. assrt. C(a) aI ∈ CI
role assrt. R(a, b) (a, b)I ∈ RI

Table 1: Syntax and semantics of SROIQ.

Definition 1. Let Σ be a signature and S a DL knowledge base. A subsetM of
S is a Σ-module of S iff, for all concept subsumptions α such that sig(α) ⊆ Σ, it
holds thatM |= α iff S |= α.

In general, deciding whetherM is a Σ-module of a knowledge base S is an ex-
pensive reasoning task, even if S does not contain assertions. For example, in the
low-complexity description logics EL and DL-litehorn the problem is EXPTIME-
complete and coNP-complete, respectively [33, 34]; for ALC, the asymptotic
complexity is 2EXPTIME-complete [35], while for ALCQIO the problem be-
comes even undecidable [36].

A more effective technique based on a notion of locality has been proposed to
extract a Σ-moduleM from S [32, 37, 38]. The underlying idea is the following.
A ⊥-module of S with respect to a given signature of interest Σ is a setM ⊆ S
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such that all axioms α ∈ S \M are ⊥-local with respect to Σ ∪ sig(M). This
means that if all concept names (resp. role names) that do not belong to Σ∪sig(M)
are replaced with ⊥ (resp. the empty role), then α becomes a tautology. The
definition of >-modules and >-locality are analogous, the only difference is that
the concepts and the roles that are not in Σ ∪ sig(M) are replaced with > and the
universal role, respectively.

In order to make locality checking tractable, syntactic approximations of lo-
cality have been introduced [38]. This approach is implemented in the OWL API5

that support three module extractors. Two of them are denoted by x-Mod(Σ,S),
where x ∈ {>,⊥} indicates which notion of locality is used. The third is denoted
by >⊥∗-Mod(Σ,S), and consists in an iterative alternation of the previous two,
that is, >⊥∗-Mod(Σ,S) is the limit of the sequence:

M0 = S ,
Mi+1 = >-Mod(Σ,⊥-Mod(Σ,Mi)) .

Clearly >⊥∗-Mod(Σ,S) in general returns the smallest module among the three
extractors.

Even if these techniques do not ensure that the extracted module is⊆-minimal,
they turn out to be effective enough to be used as an optimization technique in
many concrete cases.

We are going to use the three module extractors supported by the OWL API in
our optimizations of nonmonotonic reasoning. Our correctness and completeness
results, however, are slightly more general, as they apply to a class of module
extractors of which the three extractors of the OWL API are particular instances.
In the proofs contained in the following sections, it is convenient to reason with
a declarative characterization of such class, as opposed to specific algorithmic
characterizations. The declarative characterization is the following:

Definition 2. (>⊥-substitutions, locality, locality-based modules)
A>⊥-substitution for S and a signature Σ is a substitution σ over sig(S)\Σ that
maps each concept name on > or ⊥, and each role name on the universal role or
the empty role. An axiom α is σ-local iff σ(α) is a tautology. A set of axioms is
σ-local if all of its members are. A setM⊆ S is a locality-based Σ-module of S
iff there exists a >⊥-substitution σ for S and Σ ∪ sig(M) such that S \M is σ-
local. In this case we say that σ witnesses thatM is a (locality-based) Σ-module
of S.

5See https://github.com/owlcs/owlapi/wiki for further details.
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Let us remark again that each x-Mod(Σ,S) (x ∈ {⊥,>,>⊥∗}) returns a
locality-based Σ-module of S .

All locality-based Σ-modules of any classical knowledge base S are Σ-modules
of S (as per Definition 1). This result is implicit in [38, Prop. 42]; we include the
proof of our version, for completeness:

Theorem 1. For all classical knowledge bases S and all signatures Σ, ifM is a
locality-based Σ-module of S, thenM is a Σ-module of S in the sense of Defini-
tion 1.

PROOF. LetM be a locality-based Σ-module of S, and let q be any subsumption
query such that sig(q) ⊆ Σ. Let σ be a >⊥-substitution that witnesses thatM is
a locality-based Σ-module of S. We have to prove that S |= q iffM |= q. The
“if” part holds by the monotonicity of classical logic. We prove the “only if” part
by reductio ad absurdum. Assume that S |= q butM 6|= q. Then there exists a
model I ofM such that

I |=M and I 6|= q. (1)

Define another interpretation J as follows:

∆J = ∆I ;

aJ = aI for all a ∈ NI

XJ =

{
XI if X ∈ Σ ∪ sig(M)
σ(X)I otherwise for all X ∈ NC ∪ NR

We are going to prove that

J |= S and J 6|= q, (2)

which implies S 6|= q, hence a contradiction (which completes the proof). It
is easy to verify by structural induction that Y J = σ(Y )I , for any compound
concept or role Y . Consequently, for all axioms γ we have that

a) J |= γ iff I |= σ(γ) ;
b) if sig(γ) ⊆ Σ ∪ sig(M), then J |= γ iff I |= γ .

By b) and (1), it follows that

J |=M and J 6|= q. (3)

Moreover, for all α ∈ S\M, α is σ-local, therefore σ(α) is a tautology. It follows
by a) that J |= S \M. From this fact and (3) we conclude that (2) holds. �
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In general, module extractors are not correct under nonmonotonic semantics,
because they are insensitive to the dependencies between predicates introduced
by nonmonotonic inference. In Section 3.1, this issue will be illustrated in the
context of DLN, see Example 3 and Example 4. An example for Circumscription
can be found in [17, Example 6].

2.3. The logic DLN

Let DL be any classical description logic language, and let DLN be the ex-
tension of DL with a new concept name NC for each DL concept C. The new
concepts are called normality concepts.

A (canonical) DLN knowledge base is a disjoint union KB = S ∪ D where S
is a finite set of DL axioms (called strong or classical axioms) and D is a finite
set of defeasible inclusions (DIs, for short) that are expressions C vn D where C
is a DL concept and D a DLN concept. If δ = (C vn D), then pre(δ) and con(δ)
denote C and D, respectively. Informally speaking, the set of DIs satisfied by all
the instances of a normality concept NC constitute the prototype associated to C.

DIs are prioritized by a strict partial order ≺. If δ1 ≺ δ2, then δ1 has higher
priority than δ2. DLN solves automatically only the conflicts that can be settled
using ≺; any other conflict shall be resolved by the knowledge engineer (typi-
cally by adding suitable DIs). The expression KB |≈ α means that α is a DLN

consequence of KB. We do not report the model-theoretic definition of |≈ and
present only its reduction to classical reasoning [15], on which implementations
are based. The classical reduction of |≈ requires some preliminary definitions:

• For all DIs δ ∈ D and all normality concepts NC, let

δNC =
(
NC u pre(δ) v con(δ)

)
; (4)

the informal meaning of δNC is: NC’s instances satisfy δ;

• for all sets of DL axioms S ′ and all DIs δ, let S ′ ↓≺δ denote the result of
removing from S ′ all the axioms δNC0 such that δ0’s priority is not higher
than δ’s:

S ′ ↓≺δ= S ′ \ {δNC0 | δ0 6≺ δ} ;

in other words, S ′ ↓≺δ is the subset of S ′ that may override δ;

• finally, let δ1, . . . , δ|D| be an arbitrary linearization of (D,≺), which means
that {δ1, . . . , δ|D|} = D and for all i, j = 1, . . . , |D|, if δi ≺ δj then i < j.
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The members of D are processed in the order specified by the chosen lin-
earization (it can be proved that the outcome is the same for all lineariza-
tions).

The classical translation of KB, denoted by KBΣ, is a function of both KB and
a signature Σ that specifies which normality concepts occur in the queries of in-
terest. In order to simplify notation in the proofs of Section 3, we allow Σ to
contain also symbols that are not normality concepts, although the definition be-
low is insensitive to such concepts. The classical translationKBΣ is defined by the
following inductive construction, where Γ = Σ ∪ sig(KB) and i = 1, 2, . . . , |D|:

KBΣ
0 = S ∪

{
NC v C | NC ∈ Γ

}
(5)

KBΣ
i = KBΣ

i−1 ∪
{
δNCi | NC ∈ Γ and KBΣ

i−1 ↓≺δi ∪{δNCi } 6|= NC v ⊥
}
. (6)

In informal terms, the first step extends S with axioms that state that the normal
instances of a concept C are a fortiori instances of C. The construction proceeds
by processing the DIs δi ∈ D in decreasing priority order. If adding δi to the
(higher priority) δj ≺ δi that have been previously selected for NC does not make
NC inconsistent, as stated by (6), then δNCi is included in KBΣ, otherwise δNCi is
discarded (i.e. overridden). The faithfulness of the above translation can be stated
as follows:

Theorem 2 ([15]). LetKB be aDLN knowledge base, and let α be a subsumption
or an assertion in DLN such that {NC | NC ∈ sig(α)} ⊆ Σ. Then

KB |≈ α holds iff KBΣ |= α.

Note that DLN is entirely parametric w.r.t. the priority relation ≺. In [15, 17],
for instance, the authors consider several priority relations, including the priority
relation of rational closure:

δ ≺ δ′ iff rank(δ′) > rank(δ), (7)

where rank(·) is the ranking function of rational closure [13, 21]. In this paper,
for simplicity, we use in the examples a priority relation, called specificity, where
the specific default properties of a concept C have higher priority than the more
generic properties of the concepts that subsume C. The formal definition is the
following (where S denotes the strong axioms of the knowledge base andC vS D
means S |= C v D):

δ ≺ δ′ iff pre(δ) vS pre(δ′) and pre(δ′) 6vS pre(δ) . (8)

11



Our results, however, hold for all priority relations.
Concerning the computational complexity of DLN entailment, the following

characterization holds.

Theorem 3 ([15]). Let DL be a DL fragment such that subsumption (resp. in-
stance) checking in DL belongs to a complexity class C, and deciding the prefer-
ence relation ≺ belongs to PC .6 If DL supports u in the left-hand side of inclu-
sions, then subsumption (resp. instance) checking in DLN is in PC .

It is well-known that, if C = TIME(f(n)) and f grows at least as fast as a poly-
nomial, then PC = C. Then, as a corollary of Theorem 3, deciding whether an
entailment KB |≈ α holds is tractable in low complexity description logics such
as DL-lite(HN )

horn [39] and EL++ [40]. Similarly, the logics with an EXP-complete
classical subsumption problem, such as ALC, preserve their complexity in DLN,
while reasoning in SROIQN is in PN2ExpTime.

We end this section with two examples. The first example is borrowed from
[2] and shows a typical use of overriding in a biomedical taxonomy.

Example 1. Mammalian red blood cells are an exceptional class of eukariotic
cells: the latter have a nucleus, while the former, in their mature stage, do not
have a nucleus. By default, prototypical eukariotic cells have a nucleus, while
prototypical mammalian red blood cells should not. This introduces two conflict-
ing DIs with different priority. The encoding in ALCN is:

EukCell vn ∃has nucleus (9)

MamRedBldCel v EukCell (10)

MamRedBldCel vn ¬∃has nucleus . (11)

By (10), specifity yields (11) ≺ (9), that is, (11) has higher priority than (9).
Accordingly, the enumeration of D must be δ1 = (11), δ2 = (9). Let

Γ = Σ = {NEukCell,NMamRedBldCel} .

6PC is the class of all problems that can be solved by a deterministic Turing machine in poly-
nomial time using an oracle for C.
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The translation KBΣ consists of (10) (the only axiom in S) plus:

NEukCell v EukCell (12)

NMamRedBldCel v MamRedBldCel (13)

NEukCell u MamRedBldCel v ¬∃has nucleus (14)

NMamRedBldCel u MamRedBldCel v ¬∃has nucleus (15)

NEukCell u EukCell v ∃has nucleus . (16)

where (12) and (13) are the axioms of the form NC v C with NC ∈ Γ, and
(14) = δNEukCell1 , (15) = δNMamRedBldCel1 , and (16) = δNEukCell2 . Note that KBΣ does
not contain δNMamRedBldCel2 because, in NMamRedBldCel, δ2 is overridden by δ1. By
(12) and (13), inclusions (15) and (16) can be simplified to

NMamRedBldCel v ¬∃has nucleus (17)

NEukCell v ∃has nucleus (18)

therefore normal eukariotic cells have a nucleus while normal mammalian red
blood cells do not have a nucleus, as required. Moreover, by (17) and (18), we
have KB |≈ NMamRedBldCel v ¬NEukCell which means that normal mam-
malian red blood cells are abnormal eukariotic cells. �

The second example shows how, differently from other non-monotonic approaches
as Circumscription,DLN does not silently neutralize unresolved conflicts between
DIs, and hence it allows the ontology engineer to detect and fix them.

Example 2. (Semantic policy) Suppose that project coordinators are both ad-
ministrative staff and research staff. By default, administrative staff are allowed
to sign payments, while research staff are not. A conflict arises since both of these
default policies apply to project coordinators. Formally, KB can be formalized
with:

Admin vn ∃has right.Sign (19)

Research vn ¬∃has right.Sign (20)

PrjCrd v Admin u Research (21)

Leaving the conflict unresolved may cause a variety of security problems. If
project coordinators should not sign payments, and the default policy is open (i.e.
authorizations are granted by default), then failing to infer ¬∃has right.Sign
would improperly authorize the signing operation. Conversely, if the authoriza-
tion is to be granted, then failing to prove ∃has right.Sign causes a denial of
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service (that is,the user is unable to complete a legal operation). To prevent these
problems, DLN makes the conflict visible by inferring KB |≈ N PrjCrd v ⊥
(showing that PrjCrd’s prototype is inconsistent). This can be proved by check-
ing that KBΣ |= N PrjCrd v ⊥, where Σ = {N PrjCrd}. Then KBΣ consists
of (21), N PrjCrd v PrjCrd, and the translation of (19) and (20) (none overrides
the other because none is more specific under any of the two priorities); such
translation is:

N PrjCrd u Admin v ∃has right.Sign, (22)

N PrjCrd u Research v ¬∃has right.Sign (23)

From the above axioms, the desired consequence N PrjCrd v ⊥ easily follows.
�

Further examples regarding biomedical and access-control domains can be found
in [15]. A set of artificial examples, initially introduced in [41], is used in [17] to
compare DLN with other non-monotonic approaches [41, 21, 6].

3. Optimizing the Computation of Overriding

This section introduces the two optimization techniques for the nonmonotonic
description logic DLN, namely, module extraction and the optimistic evaluation
strategy.

3.1. Module Extraction for DLN

In order to speed up reasoning, one might simply apply a module extractor for
monotonic DLs to the classical translationKBΣ ofKB. However, the computation
of KBΣ requires to solve one entailment problem for each inclusion δNCi such that
NC ∈ Σ ∪ sig(KB) and δi ∈ KB, as specified in (6). The set of all such δNCi may
grow quadratically with the size ofKB. Here we show how to avoid the processing
of many of the above entailments by adapting module extraction so that it can be
applied before translating KB into a classical knowledge base. In this way, both
the number of normality concepts NC and the number of DIs δi that are considered
during the translation can be reduced. The following definition extends the notion
of >⊥∗-module and locality to DIs.

Definition 3. (locality for DIs, pre-modules) Let σ range over>⊥-substitutions,
and let KB be a DLN knowledge base. A DI C vn D is σ-local iff C v D is
σ-local. A set M ⊆ KB is a pre-module of KB with respect to Σ iff M is a
locality-based Σ module of KB (as per Definition 2, using the extended notion of
locality to handle DIs, and replacing S with KB).
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Remark 1. Pre-modules can be computed by adapting any of the available mod-
ule extraction algorithms so as to parse DIs. A simple approach consists in encod-
ing DIs as classical OWL2 inclusions and marking them with suitable annotations
to distinguish them from strong inclusions. In this way, the existing module ex-
tractors can be applied as they are.

Note that the pre-modules of any classical KB w.r.t. Σ are Σ-modules of KB
according to Theorem 1. When KB contains some DIs, instead, the pre-modules
ofKB are not modules, in general, because they do not preserve the consequences
of KB.

Example 3. Let Σ = {NA,B} and KB = {A v B}. The >⊥-substitution σ
for KB and Σ such that σ(A) = ⊥ witnesses that the empty set is a pre-module
of KB w.r.t. Σ. Let α = (NA v B). Clearly ∅ 6|≈ α while KB |≈ α, so the
empty pre-module does not preserve the consequences of KB whose symbols are
in Σ. Obviously, the problem is that the valid axioms of the form NC v C are
not explicitly included in KB, therefore pre-module extraction does not detect the
dependencies between NC and C. This particular problem could be solved by
extracting the pre-module from the extension of KB with these valid axioms, for
a suitable set of relevant concepts NC. �

Example 4. Let Σ = {NA,A,A1, A2, P}, and let KB = {δ1, δ2}, where

δ1 = A vn ∀P.NB ;

δ2 = A1 vn A2 .

The setM = {δ2} is a pre-module of KB w.r.t. Σ. This is witnessed by a >⊥-
substitution σ such that σ(NB) = >. Let

α = NA v ∀P.(¬A1 t A2).

It is not hard to see thatM 6|≈ α. On the contrary, KB |≈ α holds, thereforeM
does not preserve the consequences of KB. The DLN entailment KB |≈ α can be
verified through the classical translation KBΣ, that contains the inclusions:

δNA1 = NA u A v ∀P.NB, that due to (NA v A) ∈ KBΣ is equivalent to:
NA v ∀P.NB

δNB2 = NB u A1 v A2 ≡ NB v ¬A1 t A2 .
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Thus, the inclusion α is a consequence of δNA1 and δNB2 . Let us analyze the source
of the problem. Since δ1 is not included in the module, NB 6∈ sig(M). Then
neither δNA1 nor δNB2 are considered in the translationMΣ. This time, the problem
cannot be solved by extending KB with NA v A and NB v B. The substitution
σ′ such that σ′(NB) = σ′(B) = > witnesses that M′ = {δ2,NA v A} is a
pre-module of KB ∪ {NA v A,NB v B} w.r.t. Σ, stillM′ 6|≈ α. The normality
concepts occurring in KB (like NB) should rather be protected by including them
in the initial signature Σ. �

The definition of N-modules below shows the correct way of extracting (an
analogue of) a locality-based module from a DLN knowledge base KB, under
the reasonable assumption that the normality concepts of interest refer only to
predicates that occur in KB. More formally, hereafter we assume that:

Assumption 1. For all NC ∈ Σ ∪ sig(KB), sig(C) ⊆ sig(KB) .7

Definition 4. (N-modules) LetKB be aDLN knowledge base,M is an N-module
of KB with respect to a signature Σ iffM is a pre-module of KB+ w.r.t. Γ where

1. Γ = Σ ∪ {NC | NC ∈ sig(KB)};
2. KB+ = KB ∪ {NC v C | NC ∈ Γ}.

Note thatM is contained in KB+ and not in KB, as the classical notion of mod-
ules would prescribe. M is a subset of KB extended with some DLN tautologies
of the form NC v C that in general do not belong toKB. However, we will verify
experimentally that M is nonetheless much smaller than KB in many cases, so
that the computation ofMΣ is much faster than the computation of KBΣ, which
is our final objective. Our next goal is proving that the additional elements in
Γ \ Σ and KB+ \ KB provide enough dependencies to ensure that M |≈ α iff
KB |≈ α, for all α such that sig(α) ⊆ Σ. First, we need two technical lemmas on
the properties of pre-modules. In particular, given a pre-moduleM of KB w.r.t.
Σ, we show how to obtain fromM pre-modules for smaller KB and Σ.

Lemma 4. LetM be a pre-module of KB w.r.t. a signature Σ and KB′ ⊆ KB.
ThenM∩KB′ is a pre-module of KB′ w.r.t. Σ.

7This assumption can always be satisfied by adding suitable tautologies to KB.
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PROOF. IfM is a pre-module of KB w.r.t. Σ, then KB \M is σ-local for some
>⊥-substitution σ for KB and Σ ∪ sig(M). Let σ′ be the restriction of σ to the
symbols in

sig(KB′) \ (Σ ∪ sig(M)) = sig(KB′) \ (Σ ∪ sig(KB′ ∩M)).

Clearly, σ′ is a >⊥-substitution for KB′ and Σ ∪ sig(M∩ KB′). Moreover, for
all β ∈ KB′ \M, we have by construction that σ(β) = σ′(β). Since KB′ \M =
KB′\(M∩KB′), this implies thatKB′\(M∩KB′) is σ′-local and henceM∩KB′
is a pre-module of KB′ w.r.t. Σ. �

Lemma 5. Let M be a pre-module of KB w.r.t. a signature Σ and let Σ′ ⊆ Σ.
Then,M is a pre-module of KB w.r.t. Σ′, too. Moreover, this can be witnessed by
a function σ′ such that if X is in the domain of σ′ and X ∈ Σ, then σ′(X) = ⊥.8

PROOF. By hypothesis, there exists a >⊥-substitution σ for KB and Σ, such that
KB \M is σ-local w.r.t. Σ ∪ sig(M). Let σ′ be the >⊥-substitution that extends
σ from its domain dom = sig(KB) \ (Σ ∪ sig(M)) to dom′ = sig(KB) \ (Σ′ ∪
sig(M)) as follows:

σ′(X) =

{
σ(X) if X ∈ dom ;
⊥ otherwise.

Note that dom′ \ dom ⊆ Σ \ Σ′. Clearly, σ′ is a >⊥-substitution for KB and
Σ′ ∪ sig(M). Now, consider an arbitrary α ∈ KB \M, and recall that all such
α must be σ-local. By definition of locality, σ(α) is a tautology for all possible
interpretations of the symbols in Σ. Consequently, α is still a tautology if the
symbols in Σ ∩ dom′ are replaced with ⊥, as specified by σ′. This means that α
is σ′-local. Then KB \ M is σ′-local, and M is a pre-module of KB w.r.t. Σ′.
Finally, by construction, we have that σ′(X) = ⊥ for all X ∈ dom′ ∩ Σ. �

Next we focus on N-modules. The proof that each N-moduleM preserves all
DLN-consequences is rather long; then, in order to improve readability, we outline
the proof strategy before delving into the details. We rely on the faithfulness of
the classical translations KBΣ andMΣ of KB andM (respectively); by proving
thatMΣ is a (classical) module of KBΣ, i.e.

if sig(α) ⊆ Σ, thenMΣ |= α iff KBΣ |= α, (24)

8We replace all such X with ⊥ because we need this in the following lemmas. However the
same proof holds for all the possible replacements of those X with any combination of > and ⊥.
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KB The given knowledge base
Σ The signature of the queries of interest
Γ Σ ∪ {NC | NC ∈ sig(KB)}
KB+ KB ∪ {NC v C | NC ∈ Γ}
M An N-module of KB w.r.t. Σ, that is, a pre-module of KB+ w.r.t. Γ.
ΓM Σ ∪ {NC | NC ∈ sig(M)}
Mall str(M) ∪ { δNC | δ ∈M, NC ∈ ΓM }
KBall str(KB+) ∪ {δNC | δ ∈ KB, NC ∈ Γ}

Table 2: Summary of the symbols used in Section 3.1

we also show that if sig(α) ⊆ Σ, thenM |≈ α iff KB |≈ α. Proving thatMΣ is
a module of KBΣ is not easy since the iterative construction ofMΣ and KBΣ is
nonmonotonic: any DI δi ∈ KB \M might in principle override another DI δj ,
that is not overridden inM. We obtain (24) by proving that

N ⊆MΣ ⊆ KBΣ

where N is a suitable pre-module of KBΣ. This forces the three sets to have
the same logical consequences α such that sig(α) ⊆ Σ, which proves (24). The
module N is obtained by means of two upper approximations Mall and KBall

of MΣ and KBΣ, respectively. Mall contains the strong part of M plus all the
inclusions δNCi that are processed during the translation (including those that are
eventually not included inMΣ). KBall has a similar relationship with KB+. We
first prove thatMall is a pre-module of KBall . Then, by Lemma 4,Mall ∩ KBΣ

is a pre-module of KBΣ, and we set N =Mall ∩ KBΣ.
The above proof steps will be formalized in reverse order. In the following, we

need several auxiliary definitions and lemmas, where KB+, Γ andM are defined
as in Definition 4 and str(X ) denotes the set of strong axioms in X . Let:

1. ΓM = Σ ∪ {NC | NC ∈ sig(M)};
2. Mall = str(M) ∪ {δNC | δ ∈M, NC ∈ ΓM};
3. KBall = str(KB+) ∪ {δNC | δ ∈ KB, NC ∈ Γ} .

Table 2 summarizes the list of all symbols needed in the following.

Lemma 6. M is a pre-module of KB+ w.r.t. ΓM. This is witnessed by a >⊥-
substitution σ′ such that for all X in its domain, if X ∈ Γ then σ′(X) = ⊥.
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PROOF. We start by proving that ΓM ⊆ Γ. By definition ΓM = Σ∪{NC | NC ∈
sig(M)} and Γ = Σ ∪ {NC | NC ∈ sig(KB)}, hence it suffices to show that
{NC | NC ∈ sig(M)} ⊆ Γ.

Now recall that M is a pre-module of KB+ w.r.t. Γ, by Definition 4. Then,
M consists by construction of two parts, M1 ⊆ KB and M2 ⊆

{
NC v C |

NC ∈ Γ
}

. Let X be an arbitrary normality concept in sig(M). If X occurs in
M1, we directly have that X ∈ Γ. Conversely, assume that X occurs in some
inclusion NC v C inM2; if X = NC, then X ∈ Γ, otherwise X ∈ sig(C) and,
by Assumption 1, sig(C) ⊆ sig(KB), therefore X ∈ Γ holds also in this case.

Then, since ΓM ⊆ Γ and M is a pre-module of KB+ w.r.t. Γ, the Lemma
follows directly from Lemma 5. �

Lemma 7. Mall is a pre-module of KBall w.r.t. ΓM.

PROOF. We have to show that there exists a >⊥-substitution σ for KBall and
ΓM ∪ sig(Mall) such that KBall \Mall is σ-local.

First, by Lemma 6 we know that there exists a >⊥-substitution σ′ for KB+

and ΓM ∪ sig(M) such that KB+ \M is σ′-local and such that for all X in the
domain of σ′, if X ∈ Γ then σ′(X) = ⊥. By definition of >⊥-substitution, the
domains of σ and σ′ should be the following sets dom and dom′, respectively:

dom = sig(KBall) \ (ΓM ∪ sig(Mall)) ; (25)
dom′ = sig(KB+) \ (ΓM ∪ sig(M)) . (26)

Claim 1. dom′ ⊆ dom.

To prove the claim, consider an arbitrary X ∈ dom′. The definition of KBall

implies that sig(KB+) ⊆ sig(KBall); then, by (26), X ∈ sig(KBall). Moreover,
(26) implies X 6∈ ΓM. Therefore, in order to prove that X ∈ dom, we only have
to show that X 6∈ sig(Mall). Suppose not. Then, by (26), X must occur in one of
the axioms α ∈Mall \M. By definition ofMall, α must equal some δNC , where
δ ∈ M and NC ∈ ΓM . Note that sig(δNC) = sig(NC u pre(δ) v con(δ)) =
sig(δ) ∪ {NC}. If X = NC, then X ∈ ΓM, hence X 6∈ dom′ (a contradiction).
Then X ∈ sig(δ) ⊆ sig(M). But then X 6∈ dom′, and we reach a contradiction
again. This completes the proof of Claim 1.

By Claim 1, we can define σ as an extension of σ′ to dom. For all X ∈ dom,
define:

σ(X) =

{
σ′(X) if X ∈ dom′ ;
⊥ otherwise.
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As argued in the proof of Lemma 5, σ′-locality implies σ-locality, because σ ex-
tends σ′. With this property, we are going to prove that KBall \ Mall is σ-local
(which completes the proof of this lemma).

Let α be an arbitrary member of KBall \Mall. By looking into the definitions
of KBall andMall, it is easy to see that there are three possible cases:

a) α is a strong inclusion in KB+ \M;
b) α = δNC and δ ∈ KB \M;
c) α = δNC , δ ∈M and NC ∈ Γ \ ΓM.

In case a), α is σ′-local because KB+ \M is σ′-local; then α is σ-local, too.
In case b), first note that δ ∈ KB+ \ M (because KB ⊆ KB+). Then, by

analogy with case a), we derive that α is σ-local.
In case c), there are two possibilities. If NC ∈ dom \ dom′ then, by definition

of σ, σ(NC) = ⊥, so σ(δNC) = (⊥ u σ(pre(δ)) v σ(con(δ))). This is clearly a
tautology, therefore α is σ-local. Similarly, if NC ∈ dom′, σ(NC) = σ′(NC) = ⊥
(because σ′ maps all X ∈ Γ on ⊥), therefore σ(δNC) is a tautology.

We conclude that in all cases α is σ-local, which completes the proof. �

The next lemma makes use of the translation ofM into the classical knowl-
edge baseMΣ. In order to facilitate the comparison with KBΣ, the construction
ofMΣ is modified by inserting dummy steps for the DIs δi that are not included
inM. The modified translation ofM is the following (where D is the set of DIs
in KB and i > 0):

HΣ
0 = str(M) ∪

{
NC v C | NC ∈ ΓM

}
(27)

HΣ
i =

 HΣ
i−1 if δi 6∈ M; otherwise:

HΣ
i−1 ∪

{
δNCi | NC ∈ ΓM andHΣ

i−1 ↓≺δi ∪{δNCi } 6|= NC v ⊥
}
.

(28)

By comparing the above translation with the translationMΣ defined by (5)–(6),
it is easy to see that the only difference is that 〈HΣ

i 〉i has an additional element
HΣ
i = HΣ

i−1 for each δi ∈ KB \M, therefore the following proposition holds:

Proposition 8. HΣ =MΣ.

Lemma 9. The following set containments hold:

N ⊆MΣ ⊆ KBΣ ,

where N = KBΣ ∩Mall.
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PROOF. By Proposition 8,MΣ can be equivalent replaced with HΣ in the above
chain of inclusions. Then, by definition of KBΣ and HΣ, it suffices to prove by
induction that for all i = 0, 1, . . . , |D|,

KBΣ
i ∩Mall ⊆ HΣ

i ⊆ KBΣ
i .

Base case (i = 0): By definition of KBΣ
0 andMall, KBΣ

0 ∩Mall is equal to
str(M) which, in turn, is contained in HΣ

0 . Moreover, by construction, HΣ
0 ⊆

KBΣ
0 .
Induction step (i > 0): The induction hypothesis (IH) is:

KBΣ
i−1 ∩Mall ⊆ HΣ

i−1 ⊆ KBΣ
i−1 .

First, suppose that δi 6∈ M (and hence for all NC, δNCi 6∈ Mall). Then KBΣ
i ∩

Mall = KBΣ
i−1 ∩Mall, HΣ

i = HΣ
i−1 (by construction), and KBΣ

i−1 ⊆ KBΣ
i . The

Lemma follows by IH.
Next assume that δi ∈ M and let Fi = {δNDi | ND ∈ ΓM} and Gi = {δNDi |

ND ∈ Γ \ ΓM}. By construction,

KBΣ
i = KBΣ

i−1 ∪ (KBΣ
i ∩ Fi) ∪ (KBΣ

i ∩ Gi) . (29)

Note that Gi ∩Mall = ∅ and Fi ⊆Mall, by def. ofMall. Consequently, we have
that

KBΣ
i ∩Mall = (KBΣ

i−1 ∩Mall) ∪ (KBΣ
i ∩ Fi) . (30)

Moreover, sinceHΣ is constructed from ΓM, we also have that

HΣ
i = HΣ

i−1 ∪ (HΣ
i ∩ Fi) . (31)

By IH for each δNDi ∈ Fi it holds that

(KBΣ
i−1 ∩Mall) ↓≺δi ∪{δNDi } ⊆ HΣ

i−1 ↓≺δi ∪{δNDi } ⊆ KBΣ
i−1 ↓≺δi ∪{δNDi } .

The leftmost term equals (KBΣ
i−1 ↓≺δi ∪{δNDi }) ∩ Mall. Since (KBΣ

i−1 ↓≺δi
∪{δNDi }) ⊆ KBall , by Lemmas 7 and 4, (KBΣ

i−1 ↓≺δi ∪{δNDi }) ∩ Mall is a
pre-module of KBΣ

i−1 ↓≺δi ∪{δNDi } w.r.t. ΓM. Then, the leftmost term entails
ND v ⊥ iff the rightmost does. It follows that the middle termHΣ

i−1 ↓≺δi ∪{δNDi }
entails ND v ⊥ iff the other two terms do. Then,

HΣ
i ∩ Fi = KBΣ

i ∩ Fi .

The Lemma follows from the above equation and (29)–(31) using the IH. �
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We are finally ready to prove that N-modules preserve DLN-reasoning (under As-
sumption 1):

Theorem 10. Let M be a N-module of KB w.r.t. Σ. Then, for all α such that
sig(α) ⊆ Σ, KB |≈ α iffM |≈ α.

PROOF. By Lemma 7, Mall is a pre-module of KBall w.r.t. ΓM = Σ ∪ {NC |
NC ∈ sig(M)}. Moreover, by definition,KBΣ ⊆ KBall . It follows, by Lemma 4,
that N = KBΣ ∩Mall is a pre-module of KBΣ w.r.t. ΓM.

Then, by Theorem 1, N is also a classical ΓM-module of KBΣ. Since ΓM ⊇
Σ, it follows that for all subsumptions α such that sig(α) ⊆ Σ,

N |= α iff KBΣ |= α. (32)

Then, by Lemma 9 we derive:

N ⊆MΣ ⊆ KBΣ .

From these inclusions, (32), and the monotonicity of |=, it follows that for all
subsumptions α such that sig(α) ⊆ Σ,

MΣ |= α iff KBΣ |= α .

Equivalently, since the translation into classical DLs preservesDLN’s consequences,
M |≈ α iff KB |≈ α . �

In our experiments we compute N-modules using the locality-based module
>⊥∗-Mod of the OWL APIs, that is, we compute

>⊥∗-Mod(Γ,KB+) . (33)

The extraction of N-modules can be profitably iterated. To see why, first note
that (by Theorem 10) modules enjoy an obvious transitivity property:

Proposition 11. IfM is a N-module ofKB w.r.t. Σ, andM′ is a N-module ofM
w.r.t. Σ, then for all α such that sig(α) ⊆ Σ, KB |≈ α iffM′ |≈ α.

Classical module extractors are typically idempotent, i.e. the moduleM′ extracted
fromM equalsM. On the contrary, N-module extraction implicitly includes in
the initial signature Γ also the concepts NC that occur in KB, some of which may
not occur inM; thus, sinceM′ is constructed with the generally smaller initial
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signature ΓM, it may consequently be a strict subset ofM. Thus, in Section 5, we
analyze also the performance of a module extractor that iterates (33). In particular,
the iterated module extractor computes the limit of the (monotonically decreasing)
sequence:

M0 = KB+

Mi+1 = >⊥∗-Mod(Γi,KB+
i ) ,

where Γi = Σ∪{NC | NC ∈ sig(Mi)} andKB+
i =Mi∪{NC v C | NC ∈ Γi}.

It can be seen that the translation’s size reduction can be quadratic, in the best case.
The experiments in Section 5 confirm the effectiveness of the iterated N-module
extractor.

3.2. Optimistic Computation
The construction ofKBΣ repeats the concept consistency check (6) over knowl-

edge bases of the form KBΣ
i−1 ↓≺δi ∪ {δNCi } that share a (possibly large) common

part KBΣ
0 , so incremental reasoning mechanisms tend to improve efficiency by

avoiding multiple computations of the consequences ofKBΣ
0 . On the contrary, the

set of inclusions of the form δNCj that belong to KBΣ
i−1 ↓≺δi may change signifi-

cantly at each step due to the filtering ↓≺δi . This operation requires many axiom
deletions, which are less efficient than monotonically increasing changes. The
optimistic algorithm introduced here (Algorithm 1) computes a knowledge base
KB∗ equivalent to KBΣ in a way that tends to reduce the number of deletions.

Phase 1 of Algorithm 1 optimistically assumes that the DIs incomparable with
δNCi do not contribute to entailing NC v ⊥ in (6), so they are not filtered with
↓≺δi in line 7. In this way, the knowledge base used in line 7 increases monoton-
ically during the for-do loop (incremental reasoning techniques are particularly
efficient in this case). Phase 2 checks whether the DIs discarded during Phase 1
should actually be overridden; it does so by applying ↓≺δj in line 17. If the test
in line 17 is true then it means that δNDj is not overridden. However, since the
corresponding test in line 7 (with δNCi = δNDj ) was false, then there must be an
unresolved conflict between δNDj and some other DI with equal or incomparable
priority, that makes ND inconsistent. Instead of including in the translation ofKB
the translated DIs that entail the inconsistency of ND, Algorithm 1 directly asserts
ND v ⊥ (line 18), which is logically equivalent.

Rather than carrying out Phase 2 by scanning the list of discarded DIs from
beginning to the end, Algorithm 1 visits the list along chains in decreasing priority
order (cf. the condition in the while-statement at line 15, and the assignment at
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Algorithm 1: Optimistic-Method
Input: KB = S ∪ D, Σ
Output: a knowledge base KB∗ such that KB∗ ≡ KBΣ

// Phase 1
compute a linearization δ1, . . . , δ|D| of D1

Π := ∅ // Π collects the prototypes2

∆ := ∅ // ordered list of all discarded δNCi3

for i = 1, 2, . . . , |D| do4

for NC ∈ Σ do5

Π′ := Π ∪ {δNCi }6

if KBΣ
0 ∪Π′ 6|= NC v ⊥ then7

Π := Π′8

else9

append δNCi to ∆10

// Phase 2

KB∗ = KBΣ
0 ∪Π11

while ∆ 6= ∅ do12

read from ∆ its first element δNCi without removing it13

let δ := δi14

while ∆ contains some δNDj such that δ = δj or δ ≺ δj do15

remove from ∆ the first such δNDj // (in decreasing priority16

order)

if (KBΣ
0 ∪Π) ↓≺δj ∪{δNDj } 6|= ND v ⊥ then17

KB∗ := KB∗ ∪ {ND v ⊥}18

extract all δNEk with E = D from ∆19

let δ := δj20
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line 20), because in this way the knowledge bases used in line 17 often increase
monotonically at each iteration despite the filtering operation ↓≺δj (so that incre-
mental reasoning techniques are used efficiently also in Phase 2).

Example 5. In this first example we show how the optimistic algorithm may re-
duce the number of assertions and retractions. Let the knowledge baseKB contain
the following axioms:

A1 v A2

B1 v B2

δ1 : A1 vn A
δ2 : B1 vn B
δ3 : A2 vn B
δ4 : B2 vn ¬B

The important properties here are that, by specificity,

δ1 ≺ δ3

δ2 ≺ δ4

and that δ2 overrides δ4, while δ1 and δ3 are not in conflict with each other.
Suppose that the reasoning algorithms use the following linearization of the

priority order:
δ1, δ2, δ3, δ4,

and suppose for a start that the queries of interest concern NB1, therefore Σ =
{NB1} .

The naive construction defined by (5) and (6) makes inferences with the fol-
lowing sequence of knowledge bases:

KBΣ
0 ↓≺δ1 ∪{δ

NB1
1 } = KBΣ

0 ∪ {δ
NB1
1 } (34)

KBΣ
1 ↓≺δ2 ∪{δ

NB1
2 } = KBΣ

0 ∪ {δ
NB1
2 } (35)

KBΣ
2 ↓≺δ3 ∪{δ

NB1
3 } = KBΣ

0 ∪ {δ
NB1
1 } ∪ {δNB1

3 } (36)
KBΣ

3 ↓≺δ4 ∪{δ
NB1
4 } = KBΣ

0 ∪ {δ
NB1
2 } ∪ {δNB1

4 } . (37)

Thus, in order to compute (34), δNB1
1 must be added (asserted) to KBΣ

0 ; then in
order to compute (35), δNB1

1 must be retracted and replaced with δNB1
2 ; (36) is
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obtained by retracting δNB1
2 and asserting δNB1

1 and δNB1
3 ; (37) is obtained by re-

tracting δNB1
1 and δNB1

3 , and asserting δNB1
2 and δNB1

4 . The totals are: 6 assertions
and 4 retractions.

The optimistic algorithm, in the four iterations of the for-loop at line 4, pro-
gressively asserts δNB1

1 , δNB1
2 , δNB1

3 , and δNB1
4 . The first three inclusions are in-

serted in Π, while δNB1
4 is inserted in ∆. Then the algorithm proceeds to the

second phase. It extracts δNB1
4 from ∆ and retracts δNB1

1 and δNB1
3 to compute the

knowledge base at line 17, that is:

(KBΣ
0 ∪ Π) ↓≺δ4 ∪{δNB1

4 } = KBΣ
0 ∪ {δ

NB1
2 , δNB1

4 } .

The totals are: 4 assertions and 2 retractions. In this case, the optimistic method
saves 33% assertions and 50% retractions. The benefits of this processing strategy
become more evident as the number of parallel chains of DIs grows. �

Example 6. In this example we illustrate the benefits of processing ∆ along chains
of DIs with non-increasing priority (cf. the condition in the while-statement at line
15, and the assignment at line 20). We compare the number of assertions and re-
tractions performed by phase 2 with those that would be executed if the list ∆
were processed sequentially.

Suppose that the knowledge base contains five DIs δ1, . . . , δ5 such that

δ1 ≺ δ3 ≺ δ5 and δ2 ≺ δ4 ,

and that δ1 overrides δ3 and δ5 while δ2 overrides δ4. Here is a knowledge base
with these properties:

A0 v A1 uB1

A1 v A2

A2 v A3

B1 v B2

δ1 : A1 v A′ u A′′

δ3 : A2 v ¬A′

δ5 : A3 v ¬A′′

δ2 : B1 v B′

δ4 : B2 v ¬B′
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Let Σ = {NA0} and the linearization of the priority order be δ1, δ2, δ3, δ4, δ5.
At the end of the first phase of the optimistic algorithm, Π = {δNA0

1 , δNA0
2 }

and ∆ = 〈δNA0
3 , δNA0

4 , δNA0
5 〉. If ∆ were processed left-to-right, then the sequence

of knowledge bases used in the test at line 17 would be:

(KBΣ
0 ∪ Π) ↓≺δ3 ∪{δNA0

3 } = KBΣ
0 ∪ {δ

NA0
1 , δNA0

3 } (38)
(KBΣ

0 ∪ Π) ↓≺δ4 ∪{δNA0
4 } = KBΣ

0 ∪ {δ
NA0
2 , δNA0

4 } (39)
(KBΣ

0 ∪ Π) ↓≺δ5 ∪{δNA0
5 } = KBΣ

0 ∪ {δ
NA0
1 , δNA0

5 } . (40)

The knowledge base (38) is obtained from KBΣ
0 ∪ Π by retracting δNA0

2 and as-
serting δNA0

3 ; then (39) is obtained from (38) by retracting δNA0
1 and δNA0

3 , and
by asserting δNA0

2 and δNA0
4 ; finally, (40) is obtained by retracting δNA0

2 and δNA0
4

and asserting δNA0
1 and δNA0

5 . With this approach, before processing δ5, δNA0
1 is

re-asserted and δNA0
2 is retracted again.

The second phase of the optimistic algorithm, instead, processes ∆ in the fol-
lowing order: δNA0

3 , δNA0
5 , δNA0

4 . The sequence of knowledge bases used at line 17
is the following:

(KBΣ
0 ∪ Π) ↓≺δ3 ∪{δNA0

3 } = KBΣ
0 ∪ {δ

NA0
1 , δNA0

3 } (41)
(KBΣ

0 ∪ Π) ↓≺δ5 ∪{δNA0
5 } = KBΣ

0 ∪ {δ
NA0
1 , δNA0

5 } (42)
(KBΣ

0 ∪ Π) ↓≺δ4 ∪{δNA0
4 } = KBΣ

0 ∪ {δ
NA0
2 , δNA0

4 } . (43)

In this way, when δNA0
5 is processed, δNA0

1 needs not be re-asserted, and δNA0
2 needs

not be retracted. The benefits of this processing strategy become more evident as
the number of parallel chains of DIs grows. �

In the above examples, all the overridings hypothesized in the first phase are
confirmed in the second phase. The next example, instead, illustrates a case in
which an unresolved conflict is detected in the second phase.

Example 7. Consider a slight modification of the previous example, where δ1

and δ3 have the same priority (e.g. replace δ3 with A1 v ¬A′). At the end of
the first phase, Π and ∆ are the same as in Example 6. The first time line 17 is
executed (with j = 3 and D = A0), the test succeeds, so NA0 v ⊥ is included
in the translation, ∆ is emptied, and the optimistic algorithm terminates. As a
consequence, δNA0

4 and δNA0
5 need not be processed. In terms of assertions and

retractions, it is easy to see that the second phase only needs to retract δNA0
2 from

KBΣ
0 ∪ Π and assert δNA0

3 . �
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The following theorem shows the correctness of Algorithm 1 under the as-
sumption that normality concepts do not occur in KB (they may occur in the
queries, though). We call such knowledge bases N-free.9

Theorem 12. If KB is N-free, then Algorithm 1’s output is equivalent to KBΣ.

PROOF. First assume that Σ is a singleton (|Σ| = 1) and let NC be its unique
member. We start by proving some invariants of lines 6-10.

Claim 1: KBΣ |= Π.
Claim 2: If, for some j < i, δNCj ∈ KBΣ \ Π, then KBΣ |= NC v ⊥.
We prove these two claims simultaneously by induction on the iteration i. Both

claims hold vacuously at the first execution of line 6. Next, assume by induction
hypothesis that they hold at line 6 in some iteration; we have to prove that they
still hold at the next iteration. There are two possibilities: First suppose that for
some j < i, δNCj ∈ KBΣ \ Π. By Claim 2, KBΣ |= NC v ⊥. This immediately
implies that Claim 2 holds also at the next iteration. Moreover, it implies Claim 1
because all members of Π have an occurrence of NC in the left-hand side.

We are left the case in which

for all j < i, if δNCj ∈ KBΣ then δNCj ∈ Π. (44)

If the condition in line 7 is false, then Π is not changed, so Claim 1 must hold at
the next iteration. Otherwise, by (44),

KBΣ
0 ∪ Π′ ⊇ KBΣ

i−1 ↓≺δi ∪{δNCi } , (45)

and hence NC v ⊥ is not provable in (6), either. It follows that δNCi belongs to
both Π (by line 8) and KBΣ (by (6)). This proves Claim 1 for iteration i.

Concerning Claim 2, first suppose that the condition in line 7 is false; then
either Claim 2 remains vacuously satisfied, or δNCi ∈ KBΣ \ Π. The latter (plus
the definition of KBΣ and the IH of Claim 1) implies that KBΣ

0 ∪ Π′ is entailed
by KBΣ. It follows that KBΣ |= NC v ⊥ as well, which proves Claim 2 in this
case. Finally, if the condition in line 7 is true, then at line 8 δNCi ∈ Π. Together
with (44), this implies that Claim 2 holds vacuously.

Claim 3: If KBΣ |= NC v ⊥ then KB∗ |= NC v ⊥.
Suppose not (we shall derive a contradiction). The assumption and Claim 1

imply that there must be some δNCk ∈ KBΣ \ KB∗. Let δNCi be the one with

9Note that the examples in Section 2.3 are all N-free.
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minimal k. Using minimality, it can be proved that KBΣ
0 ∪ Π ↓≺δi= KBΣ

i−1 ↓≺δi ,
so the concept consistency test in line 17 (the latter instantiated with j = i and
D = C) is equivalent to the one in (6). But then δNCi ∈ KBΣ iff δNCi ∈ KB∗,
which contradicts the assumption, so Claim 3 is proved.

Claim 4: If KBΣ |= NC v ⊥ then KB∗ ≡ KBΣ.
Note that KB∗ ⊆ KBΣ

0 ∪ Π ∪ {NC v ⊥} (cf. lines 11, and 18). Clearly,
KBΣ |= KBΣ

0 ∪ Π ∪ {NC v ⊥} (by def., Claim 1 and the assumption), so
KBΣ |= KB∗. We are left to prove KB∗ |= KBΣ. By Claim 3, KB∗ |= NC v ⊥,
and this inclusion in turn entails all δNCi ∈ KBΣ (cf. (4)). The other members of
KBΣ are those in KBΣ

0 , by definition, and KB∗ ⊇ KBΣ
0 (line 11). It follows that

KB∗ |= KBΣ, which completes the proof of Claim 4.
Claim 5: If KBΣ 6|= NC v ⊥ then KB∗ ≡ KBΣ.
Suppose that KBΣ 6|= NC v ⊥. Then, by the contrapositive of Claim 2 all

δNC are in Π. Hence, it follows by Claim 1 that KBΣ
0 ∪ Π ≡ KBΣ which further

implies that the concept consistency in line 17 is equivalent to the corresponding
test in (6). Then it can be proved that if any of these tests were true, then also
KBΣ |= NC v ⊥ because, by Π’s construction, in that case δi must be in conflict
with some other DI with the same priority. However,KBΣ |= NC v ⊥ contradicts
the assumption. It follows that all tests in line 17 are false, so KB∗ = KBΣ

0 ∪ Π,
and we have already argued that this knowledge base is equivalent to KBΣ. This
completes the proof for |Σ| = 1.

For |Σ| > 1, note that the tests in lines 7 and 17 do not depend on any δNEk
such that E 6= C (resp. E 6= D). Indeed, by ⊥-locality, all such δNEk are local
w.r.t. the signature ofKB∪{NC v ⊥}, so they can be removed without changing
the result of the concept consistency test [32]. However, after their removal, the
concept consistency tests correspond to the ones for the singleton case Σ = {NC},
which we have already proved correct. �

We conclude this section by showing that when KB is not N-free, the output
of Algorithm 1 is not always correct:

Example 8. Let KB consists of the following axioms (where δ3 is not N-free):

A v B
δ1 : A vn C
δ2 : A vn ¬C
δ3 : B vn ∃R.NA .

Specificity gives δ1 and δ2 the same priority, and, by the first axiom above, δ3 has
lower priority that the other two DIs. In order to answer queries about NA and
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NB, let Σ = {NA,NB}. It is not hard to see that the two conflicting DIs with the
same priority (i.e. δ1 and δ2) make NA inconsistent; in particular, KBΣ contains
both

δNA1 = NA u A v C and
δNA2 = NA u A v ¬C

that together with the axiom (NA v A) ∈ KBΣ imply NA v ⊥. As a conse-
quence of this fact, δ3 is overridden in NB; in particular, the inclusion

δNB3 = NB uB v ∃R.NA

is not included in KBΣ, because (together with (NB v B) ∈ KBΣ and NA v ⊥,
that is implied by higher priority axioms) it implies NB v ⊥. Since δ3 is overrid-
den, NB is consistent (KBΣ 6|= NB v ⊥). On the contrary, Algorithm 1 returns a
knowledge base KB∗ that erroneously entails NB v ⊥. This happens as follows,
assuming that the linearization is δ1, δ2, δ3:10 During Phase 1, the translations of
the above DIs are processed in the following order:

• first δNA1 and δNB1 , in some order; none of them makes the respective nor-
mality concept inconsistent, so they are both inserted in Π;

• then δNA2 and δNB2 ; the former, together with δNA1 and KBΣ
0 , implies NA v

⊥, so it is inserted in ∆;

• finally δNA3 and δNB3 are processed. In the absence of δNA2 (that has been tem-
porarily discarded), NA is consistent, therefore δNA3 and δNB3 do not cause
their respective normality concepts to be inconsistent, either; consequently,
both translations are included in Π.

In Phase 2, the algorithm realizes at line 17 that δNA2 has been erroneously dis-
carded and inserts NA v ⊥ in KB∗. However, KB∗ contains also Π (line 11),
hence δNB3 . It follows that KB∗ |= NB v ⊥.

Summarizing, when KB is not N-free, Algorithm 1 may erroneously insert in
Π ⊆ KB∗ the translation of some DIs that should be overridden due to DIs that
are temporarily discarded in Phase 1. �

10The reader may easily verify that the final result is the same for the other possible linearization,
i.e. δ2, δ1, δ3.
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Despite this limitation, we expect the optimistic evaluation method to be use-
ful in a non-negligible amount of cases. So far, the only known application of
normality concepts in knowledge base axioms is for asserting that some attributes
of normal individuals are normal, too, as in the next example.

Example 9 ([15]). The heart of most humans is on the left-hand side of the body,
but there are exceptions (so-called situs inversus). Thus, the standard position of
the human heart should be axiomatized as a defeasible property. For this purpose,
one can first describe normal human hearts, and then assert that typical humans
have normal human organs:

HumanHeart ≡ HumanOrgan u Heart ,
Human v ∃has organ.Heart ,

HumanHeart vn ∃has position.Left ,

Human vn ∀has organ.N HumanOrgan . (46)

Note the explicit use of NHumanOrgan in (46) to state that the organs of normal
humans are normal themselves. These axioms entail that the heart of typical hu-
mans is placed on the left-hand side of the body, that is:

KB |≈ NHuman v ∃has organ.(Heart u ∃has position.Left) .

�

It is not always required to state that role values are normal, though; see the ex-
amples in Section 2.3, and also Example 11 in [15], that illustrates a case where
stating that role values are normal is not even correct. Moreover, N-module ex-
traction may eliminate all occurrences of normality concepts, and return an N-free
module. Thus, N-free knowledge bases are likely to occur in practice, for different
reasons. In the section devoted to performance analysis we will see that the op-
timistic evaluation method (when applicable) brings tangible benefits, especially
when combined with module extraction.

4. System Implementation

We introduce NMReasoner, a DLN implementation based on existing classi-
cal reasoners. Since mainstream DL technology does not support nonmonotonic
inferences and the available implementations of nonmonotonic DLs can only han-
dle knowledge bases with moderate size, currently, no “real” nonmonotonic DL
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knowledge bases exist. Thus, in order to analyze the reasoner’s performance ex-
perimentally, in Section 4.2 we propose a systematic approach to the automatic
generation of synthetic test cases with realistic size and structure.

4.1. Reasoner Implementation
NMReasoner is implemented in Java 8 and distributed as a .jar file.
According to the theoretical framework, the engine consists of two modules.

The first one, hereafter called translation module, constructs the classical knowl-
edge base KBΣ corresponding to the given DLN knowledge base KB = S ∪ D
(where S and D are the sets of strong and defeasible axioms, respectively). The
second module computes nonmonotonic subsumptions, sometimes called queries
in the following. BesidesKB, NMReasoner takes as input the set Σ of all normal-
ity concepts that occur either inKB or in a given set of queries Q. Moreover, if no
priority relation over DIs is provided as part of the input (encoded in an appropri-
ate file), then specificity (8) is applied by default. Both modules call an external
classical reasoner for classification. In particular, we use the specialized engine
ELK [42, 43, 44] with knowledge bases that belong to EL, and the general engine
HermiT [45] otherwise.

NMReasoner implements the optimizations described in Section 3. By default,
all optimisations are turned off and the reasoner relies only on the optimization
techniques supported by the underlying, classical reasoning engine. The usage of
appropriate input parameters enables selectively one or more ad hoc optimisations.

4.2. Test Suites Generator
The test suite generator takes as input a classical knowledge base S, which

serves as basic pattern, and returns a DLN knowledge base according to the fol-
lowing steps.

Step 1: DI generation. DIs are generated by either injecting fully synthetic
DIs in S, or transforming a random set of CIs occurring in S into DIs. A fully
synthetic DI takes the form A vn B or A vn ∃R.B where the atomic concepts
A and B, and the role R are randomly chosen from the signature of S. The
generator makes sure that no duplicates are generated, and that for each new DI δ,
pre(δ) v con(δ) is not classically entailed by S.The number of fully synthetic and
transformed DIs are respectively tuned by the Synthetic-DI-rate and CI-to-DI-rate
parameters (see Figure 1).

Step 2: Disjontness axiom injection. In order to increase the probability of
overriding (and hence nonmonotonic behavior), some additional inconsistencies
between DI conclusions are injected. To do that, DI pairs (δ1, δ2) are randomly
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Parameter Meaning
Synthetic-DI-rate % of fully synthetic DIs w.r.t. the number of CIs
CI-to-DI-rate % of CIs to be transformed DIs
DA-rate % of disjointness axioms w.r.t. the number of CIs
I-rate % of new distinct individuals w.r.t. the number of concept names
ABox-rate % of assertions w.r.t. the number of concept names
R-rate % of role assertions w.r.t. the number of all assertions
NC-size # of DIs with normality concept within the scope of quantifiers

Figure 1: The main parameters of the test-case generator. All parameters, except NC-size, are
represented as a rate of the number of CIs occurring in S.

selected and, for each of them, two arbitrary concepts C1 and C2 are picked from
the superclasses of con(δ1) and con(δ2). Then, new disjointness axioms C1 u
C2 v ⊥ are added to S. The test case generator makes sure that none of C1,
C2, and S are made inconsistent, by checking that the following conditions are
satisfied in the extended knowledge base: (i) con(δ2) 6v C1; (ii) con(δ1) 6v C2;
(iii) C2 6v C1 and (iv) C1 6v C2. Note that we intentionally refrain from asserting
con(δ1)ucon(δ2) v ⊥ directly, so that the reasoning involved in checking whether
a DI is overridden is generally nontrivial. The generation of disjointness axioms
is controlled by the DA-rate parameter.

Step 3: N-transformation. Normality concepts are introduced by randomly
choosing a DI A vn ∃R.B and replacing it with A vn ∃R.NB.11 The amount of
normality concept occurrences is controlled by parameter NC-size specifying the
number of modified DIs.

The appropriateness of the test suites generated with the above procedure is
assessed by inspecting the structure of the generated knowledge bases. For the
sake of readability, this ancillary assessment is reported in the appendix.

Queries have the form NA v B where A and B are randomly selected among
the concepts defined in the knowledge base. Such queries check whether the nor-
mal instances of A have property B.

11 So far, all the application examples that are not N-free satisfy this restriction, as apparently the
only purpose of explicit normality concepts is restricting default role ranges to normal individuals.
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5. Experimental Evaluation

In this section we present a performance analysis of NMReasoner. All test
cases result from our test suites generator, taking as input one of the following on-
tologies: a version of the Gene Ontology12 (GO for short) published in 2006, Fly
Anatomy (FLY)13 and SNOMED CT (Systematized Nomenclature of Medicine
Clinical Terms)14. These ontologies have been extensively used in many per-
formance experiments [22, 23, 24, 25, 26, 27, 28]. They are particularly well-
suited to our purposes because they fit well our application scenarios, being large
biomedical ontologies. In particular, GO features 20465 atomic concepts and
28896 concept inclusions; FLY has 7797 atomic concepts and 19137 concept in-
clusions; and SNOMED CT has 291151 atomic concepts, 227704 concept inclu-
sions and 63452 concept equivalences. They can be encoded in EL++, whose
nonmonotonic version EL++ N enjoys tractable inference problems.

Hereafter, we refer to the optimization techniques introduced in Section 3 with
the following labels:

Naive: A naive reasoner which realizes the classical reduction in Section 2.3 as
such, without any optimization technique besides those natively supported
by the underlying classical reasoner. We use this reasoner as a baseline in
our performance analysis.

Opt: The optimistic method introduced in Sec. 3.2.

Mod: The N-module extraction method of Sec. 3.1, that uses the module ex-
traction facility of the OWL API.

MO: The sequential execution of Mod and Opt. This combined method is
correct for N-free knowledge bases by Theorem 12 and Theorem 10.

Mod*: The iterated N-module extraction of Sec. 3.1

In order to analyze the contribution of each optimization technique on perfor-
mance, we designed specific test suites corresponding to different settings of the

12http://www.geneontology.org
13One of the largest ontologies listed at the OBO Foundry websites http://www.

obofoundry.org/.
14The largest biomedical ontology obtained from the official July 2015 international release by

converting from the native syntax (RF2) to FSS using the supplied converter.
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parameters in Figure 1. First, we consider a test suite where only N-free defeasi-
ble inclusions are added to the input ontologies (recall that the optimistic method
is applicable only to N-free knowledge bases). Note that, since this test suite is
N-free, Mod is idempotent and Mod* is equivalent to Mod. Consequently, we use
this test suite to evaluate only Opt, Mod, and their combination MO. Mod* will be
assessed with a second test suite, by gradually injecting normality concepts.

Every single value that is reported in the following sections is obtained as the
average execution time over five randomly generated nonmonotonic ontologies
and fifty different queries on each ontology. Execution time includes the transla-
tion into classical DL ofKB or – if module extraction is applied – of an N-module
M of KB. The experiments were performed on a server with an 8-cores pro-
cessor Intel Xeon Silver 4110, 11M cache, 198GB RAM, running Ubuntu 18.04.
NMReasoner was run on Java 1.8, configured with 12GB heap memory and 4GB
stack memory space. We have not exploited parallelism.

label CI-to-DI-rate Synthetic-DI-rate DA-rate
PS1 5%, 10%, 15%, 20%, 25% 0% 15%
PS2 0% 5%, 10%, 15%, 20%, 25% 15%
PS3 15% 0% 5%, 10%, 15%, 20%, 25%
PS4 0% 15% 5%, 10%, 15%, 20%, 25%

Figure 2: Parameter settings used to evaluate Opt, Mod, and MO.

5.1. Module extraction vs. optimistic computation
In this section we compare the effectiveness of optimization techniques Opt, Mod,
and their combination MO. To this end, we consider a test suite where the input
ontologies are augmented by N-free DIs only (as the optimistic method is correct
only for such knowledge bases). More specifically, the suite is composed by 4
parameter settings where only one of CI-to-DI-rate, Synthetic-DI-rate, and DA-
rate is allowed to vary (see Figure 2). The parameters not mentioned in Figure 2
are set to 0, consequently Σ contains only the normality concept occurring in the
current query. Settings PS1 and PS2 show the impact of |D| (the number of DIs)
on performance, while PS3 and PS4 evaluate the cost of processing disjointness
axioms. In PS1 and PS3, DIs are generated by converting strong CIs, whereas
PS2 and PS4 inject fully synthetic DIs.

Note that PS1 and PS3 preserve the overall number of (strong and defeasible)
inclusions, while PS2 and PS4 increase the size of the knowledge base up to 25%;
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therefore the experiments based on fully synthetic DIs are expected to take longer
computation time.

Figure 3 reports the execution times for the test cases PS1 and PS2. In both
cases, the methods Naive and Opt grow linearly with |D|. However, Opt is about
two times faster in GO, FLY and SNOMED CT. Note that response times are
slower in PS2, since the generated knowledge bases are up to 25% larger in this
setting, as explained above.

Mod turns out to be far more effective than Opt. On average, in PS1, it is
approximately 85 times faster than Naive for GO and FLY (max. speedup is 146),
and 3500 times faster for SNOMED CT. In PS2, Mod is 15 times faster for GO
and FLY (max. speedup 33), and 70 times faster for SNOMED CT.

On average, the combination of module extraction and optimistic computation
(MO) yields in PS2 a further 45% improvement over Mod alone; the maximum
reduction (63%) is obtained in SNOMED with Synthetic-DI-rate=25%, and DA-
rate=15% (Figure 3, last line in the rightmost table). On the other hand, in PS1,
the improvement of MO over Mod alone is barely perceptible. This is due to the
fact that the optimistic method is particularly effective on large modules, while
on small modules (< 102 axioms) it brings little benefits, and its overhead may
occasionally slow down the computation. In particular, the modules produced
with PS2 are larger because synthetic DIs connect unrelated parts of the ontology.
Most modules have 105 − 106 axioms; in this range, the benefits of the optimistic
computation prevail and MO notably outperforms Mod. In PS1, instead, Mod
returns middle-sized modules with approximately 102 − 103 axioms. This is a
gray area where the benefits of the optimistic algorithm are more sensitive to the
structure of the ontology and the query.

The additional conflicts induced by injected disjointness axioms have moder-
ate effects on execution time (cf. Figure 4, dedicated to settings PS3 and PS4).
This should be expected since the number of classical entailments needed to trans-
late the knowledge base in classical DL depends on the number of inclusions δNCi
that must be processed, which is not affected by disjointness axioms. Such axioms
increase the size of the knowledge base, but are processed efficiently by modern
classical reasoners (and ELK in particular). Mod’s average response time across
both PS3 and PS4 is 0.89 sec. for Gene Ontology, 1.41 sec. for Fly Anatomy and
111.28 for SNOMED CT, while the longest Mod response times have been 1.6
sec., 2.82 sec. and 116 sec. respectively. In all cases, the speedups of Mod and
MO over Naive remain well above one order of magnitude.
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CI-to-DI Naive Opt Mod MO
GO
05% 12.3 4.99 0.26 0.24
10% 24.1 9.49 0.28 0.26
15% 34.5 14.3 0.29 0.29
20% 42.0 19.7 0.32 0.31
25% 49.9 24.9 0.34 0.33
FLY
05% 4.22 1.90 0.13 0.12
10% 7.97 3.78 0.15 0.14
15% 11.9 5.60 0.17 0.16
20% 14.4 7.34 0.19 0.18
25% 17.5 9.18 0.21 0.20

SNOMED
05% 2630 1191 1.52 1.49
10% 4389 2384 1.73 1.68
15% 6844 3782 1.91 1.85
20% 9925 5260 2.24 2.18
25% 13638 6158 2.61 2.43

Synth-DI Naive Opt Mod MO
GO
05% 13.1 05.17 0.48 0.42
10% 27.8 09.85 0.83 0.64
15% 37.5 15.5 1.47 0.98
20% 46.1 21.2 2.76 1.54
25% 57.1 27.6 4.66 2.46
FLY
05% 4.86 02.01 0.40 0.35
10% 9.86 03.97 1.19 0.67
15% 14.7 06.01 2.51 1.18
20% 19.9 08.59 4.61 2.15
25% 24.3 10.8 7.25 3.34

SNOMED
05% 2843 1113 27.1 11.0
10% 4808 2117 51.3 22.5
15% 8139 3828 112 51.7
20% 11776 5732 248 96.8
25% 15094 6637 521 195

Figure 3: Impact of |D| on performance (sec). Parameter settings PS1 (left) and PS2 (right).

DA Naive Opt Mod MO
GO
05% 27.4 13.3 0.28 0.27
10% 27.5 13.8 0.29 0.28
15% 34.5 14.3 0.29 0.29
20% 38.6 15.0 0.30 0.29
25% 36.2 15.6 0.31 0.30
FLY
05% 10.3 5.02 0.16 0.15
10% 11.5 5.38 0.17 0.16
15% 11.9 5.60 0.17 0.17
20% 12.1 5.85 0.18 0.17
25% 12.6 6.20 0.19 0.18

SNOMED
05% 6617 3689 1.87 1.82
10% 6872 3795 1.90 1.85
15% 6844 3782 1.91 1.85
20% 7344 3881 2.01 1.90
25% 7924 3901 2.02 1.91

DA Naive Opt Mod MO
GO
05% 33.3 13.7 1.26 0.86
10% 35.6 14.7 1.35 0.92
15% 37.5 15.5 1.47 0.98
20% 42.0 16.7 1.51 1.00
25% 43.0 16.9 1.60 1.06
FLY
05% 12.9 5.55 2.23 1.07
10% 14.0 5.84 2.50 1.14
15% 14.8 6.01 2.52 1.18
20% 15.9 6.30 2.61 1.22
25% 16.6 6.59 2.82 1.30

SNOMED
05% 7721 3517 104 47.5
10% 7895 3749 107 49.2
15% 8139 3828 112 51.7
20% 8243 3899 114 56.0
25% 8665 4065 116 62.9

Figure 4: Impact of DAs on performance (sec). Parameter settings PS3 (left) and PS4 (right).
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5.2. Effectiveness of Iterated Module Extraction

In the following we analyse the performance of the iterated module extractor Mod*
by comparing it with the non-iterated version Mod. Here we use knowledge bases
that contain occurrences of normality concepts, because – as explained above – on
N-free inputs Mod* and Mod return the same results. Since the input knowledge
bases are not N-free, Opt is not applicable to this test set.

Mod* shows its benefits as soon as the number of normality concepts in the
knowledge base (and in the relevant signature Σ) increases. Figure 5 illustrates
a test suite where normality concepts are injected in KB by tuning the parameter
NC-size (see Step 3 in Section 4.2). This parameter sets the size of Σ from 50 to
250 normality concepts, while DA-rate is set to the intermediate value 15%, and
both CI-to-DI-rate (Figure 5, left) and Synthetic-DI-rate (Figure 5, right) are set
to 25%.

With the Naive method, the translation of each DI δ must process an inclusion
δNC , for all NC ∈ Σ. Thus, the computational cost of Naive rapidly increases with
|Σ|. The execution time always exceeds the timeout (30 min), and is not reported
in Figure 5.

With Mod all the injected normality concepts are included in the relevant sig-
nature Γ (cf. Table 2), so the extracted modules are quite large and the compu-
tation time is considerably slower, compared to the N-free tests in Section 5.1.
The iterated module extraction Mod* makes DLN reasoning more than one order
of magnitude faster than Mod. This remarkable result can be explained by the
twofold benefits of iteratively reducing the size of the relevant signature Γ: First,
if at some iteration a normality concept NC is removed from the current module,
then the next iteration of Mod* starts with a smaller Γ and has the opportunity of
further reducing the module’s size. Moreover, translating a smaller final module
means – in the best case – processing a quadratically smaller number of inclusions
δNC , since both the set of DIs δ and the set of NC occurring in the final module
decrease.

5.3. Some Remarks on Modules not Based on Locality
We conclude this section with a remark on module extractors based on prin-

ciples different from locality, such as PrisM for example [46]. In our algorithms,
locality-based module extractors cannot be simply replaced with arbitrary module
extractors, because the proof of Theorem 10 (on which the correctness of our ap-
proach is based) relies on locality in many points. For example, it is not hard to
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|Σ| Mod Mod*
GO
50 2.70 0.45

100 8.59 0.45
150 16.9 0.46
200 28.2 0.46
250 42.0 0.46
FLY
50 10.4 0.47

100 23.4 0.58
150 42.8 0.66
200 64.6 0.73
250 88.0 0.99

SNOMED
50 8.79 4.82

100 26.7 4.77
150 44.9 5.32
200 83.8 5.37
250 118 4.64

|Σ| Mod Mod*
GO
50 186 8.18

100 414 10.4
150 697 15.3
200 1012 20.4
250 1412 28.3
FLY
50 288 22.4

100 620 34.0
150 1020 47.8
200 1478 63.5
250 2103 83.5

SNOMED
50 16098 1004

100 34628 2604
150 40996 3565
200 63696 5398
250 83782 6362

Figure 5: Non N-free tests. Impact of normality concepts (sec). DA rate = 15%. CI-to-DI-rate =
25% (left), Synthetic-DI = 25% (right).
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see that Lemma 4 cannot be extended to arbitrary modulesM, even ifKB is clas-
sic. Consequently, it is not yet clear if and how different notions of modules can
be used to optimize reasoning in DLN. The answer to this question lies beyond
the scope of this paper and is an interesting subject for future work.

6. Related Work on Optimizations for Nonmonotonic DL

Module extraction is used for speeding up reasoning in several works on non-
monotonic DLs based on rational closure [20, 47]. To see the details, let us sketch
the computation of the rational closure of a knowledge base KB. In a preliminary
phase, a finite sequence 〈Ei〉i of subsets of KB is computed, such that:

KB ⊇ E1 ⊇ E2 ⊇ . . . ⊇ En .

A concept C has rank i iff

Ei |= > vn ¬C and Ei+1 6|= > vn ¬C; (47)

if no such i exists, then the rank of C is ∞. Then, for each query C vn D, the
answer is “yes” iff the rank of C is either∞ or smaller than the rank of C u ¬D.
The computation of the rank of C and C u ¬D can be accelerated by extracting
a moduleM of KB w.r.t. the signature of C u ¬D, and modifying (47) by inter-
secting Ei and Ei+1 withM. The experiments reported in [20, 47] have been run
on small, randomly generated knowledge bases inALC, with a number of axioms
that ranges uniformly from 150 to 5150. On these ontologies, the computation
of the ranking takes between a few milliseconds and approximately 24 seconds,
depending on the ontology size and number of ranks, while the average query
answering time is less than 2 ms.

Another nonmonotonic extension of DLs based on rational closure, featuring
an explicit typicality operator, has been implemented and compared with the naive
implementation of DLN [48]. The comparison is carried out using the N-free test
sets obtained from GO with the CI-to-DI transformation method. No optimiza-
tion is applied. The computation of the ranking ranges approximately between 3.5
minutes and 2.5 hours, while query time ranges between 8.87 sec and 81.15 sec.
More precisely, query response times lie between those of our naive implementa-
tion and those of Opt (optimistic computation alone), so Mod and the combined
method are significantly faster.

Nonmonotonic description logics are related to Datalog± with nonmonotonic
negation. Datalog± admits existential quantification in rule heads, and in this way
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can encode concept inclusions that have existential restrictions in the right-hand
side. In general, the algorithms for reasoning in Datalog± are not guaranteed to
terminate, so several restrictions on rule bases have been introduced to enforce
termination and upper complexity bounds. Semantics, decidability and complex-
ity of Datalog± with nonmonotonic negation have been extensively studied, see
for example [49, 50, 51, 52, 53, 54, 55]. As far as we know, implementations
are not currently available. The implementations of Datalog± and its extensions
sometimes adopt optimization techniques developed for deductive databases, such
as magic sets, that – like module extraction – have the purpose of focussing rea-
soning on the symbols relevant to the query. Magic sets have been applied both to
the implementation of (monotonic) Datalog± [56], and to the implementation of
Datalog with nonmonotonic negation and aggregates [57]. Therefore, magic sets
constitute an appealing candidate for optimized implementations of nonmono-
tonic Datalog±.

7. Conclusions

In this paper we have introduced optimization techniques for nonmonotonic
reasoning in DLN. Our experimental results (summarized below) show that, with
such optimizations, nonmonotonic reasoning becomes feasible for large and very
large real-world knowledge bases. To the best of our knowledge this is the first
work – in the area of description logics – where nonmonotonic reasoning is ap-
plied to knowledge bases with a number of axioms ranging between ∼ 20, 000
and ∼ 300, 000.

First consider the nonmonotonic versions of FLY (>19K axioms) and GO
(>28K axioms) obtained by transforming classical inclusions into defeasible in-
clusions (CI-to-DI method). In all of these experiments the average query re-
sponse time is below one second, and mostly below 0.5 seconds. Similar experi-
ments based on SNOMED (>290K axioms) yield response times between 1.5 and
4.6 seconds, that are compatible with a wide range of use cases.

In another set of experiments, we have injected random DIs in FLY, GO, and
SNOMED, thereby increasing their size up to 25%, and introducing random de-
pendencies between different parts of the knowledge base. For the smaller on-
tologies FLY and GO, response times are always below 1.5 minutes, and less than
4 seconds in most test cases. For SNOMED, the hardest test cases (∼ 72K addi-
tional axioms, 250 normality concepts in the knowledge base) took approximately
1 hour and 45 minutes, while the simplest test cases (N-free) are completed within
approximately 1 minute.
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Summarizing, the results forDLN ontologies up to approximately 35K axioms
show that the available technology can process subsumption queries with response
times that are compatible with many practical applications, including interactive
query answering. For the knowledge bases derived from SNOMED, that are one
order of magnitude larger, response times may vary depending on the factors that
most significantly affect performance, such as the number of normality concepts
occurring in the knowledge bases and the amount of logical dependencies between
different concepts. In the test cases where the size and the structure of SNOMED
are preserved, response times are compatible with interactive query answering,
while response times in fully random test cases range from 11 seconds to almost
two hours.

The above results have been obtained with the following optimizations. The
most general and effective optimizations consists of a module extractor for DLN

(Mod for short), that can be effectively used to focus reasoning on a subset of
the knowledge base that is relevant to the given query. Compared with the naive
reasoner published in [15], the optimized version is at least one order of magnitude
faster, and up to ∼ 103 times faster in some test cases.

Typically, when no role fillers are restricted to normal individuals, the knowl-
edge base is N-free (i.e. it does not contain any occurrence of normality con-
cepts). For N-free knowledge bases, we developed a second optimization tech-
nique, called optimistic computation (Opt), that is a heuristics aimed at reduc-
ing the number of retractions in the reasoning algorithm. The combination of
optimistic computation with module extraction (MO), on average, brings a 23%
speedup over module extraction alone.

When the knowledge base is not N-free, the optimistic method is not applica-
ble. However, in this case, the extractor for DLN is not idempotent and can be
profitably iterated (Mod*). The resulting response times are well over one order
of magnitude faster than the non-iterated version, and this makes it possible to
process large, non-N-free knowledge bases in practice.

The problem of defining correct module extraction techniques for nonmono-
tonic logics is still open, in general. Even within the scope of DLN, our proofs do
not cover module extraction techniques based on principles different from locality.
Moreover, the possible applications of module extraction span beyond optimiza-
tion. A general study of module extraction for nonmonotonic reasoning is an
interesting subject for further research.
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Appendix

Test case Structure
The randomly generated test cases have been analyzed as follows, to make sure
that they are not trivial. For each normality concept in Σ we measure the height of
the priority hierarchy of applicable DIs, and how many applicable DIs are overrid-
den; the former quantity is related to the potential levels of overriding, while the
latter is more directly related to the nonmonotonic behavior that actually occurs.

A structural analysis of the test cases coming from Gene Ontology, Fly and
SNOMED CT is shown in Figures 6, 7, and 8, respectively. As the DA rate
grows, the figures report the percentage of overridden applicable DIs, plus the
average and maximum height of the priority hierarchy of applicable DIs (hDIs,
for brevity). The tables on the left are devoted to DIs obtained from strong in-
clusions (CI-to-DI-rate=15%) whereas the ones on the right refers to fully syn-
thetic DIs (Synthetic-DI-rate=15%). For all figures, every single reported value
is obtained as the average over ten different non monotonic ontologies and fifty
different queries on each ontology, each of which involved the construction of a
different translation KBΣ (as Σ depends on the query).

As expected, each increment of the DA-rate (hence of disjointness axioms)
causes an increment of the percentage of overridden DIs. This relation is rela-
tively less evident for synthetic DIs, probably due to the further randomness intro-
duced by fully random DI generation. The amount of overriding is reasonable: the
percentage of overridden DIs ranges from 61.9% to 87.6% for GO, from 34.4%
to 66.0% for FLY, and from 29.3% to 66.9% for SNOMED, depending on the
amount of disjointness axioms (hence DI conflicts) contained in the KB.

Furthermore, the reported results fit well the structure of GO, FLY and SNOMED.
The length of the longest path in GO’s classification (i.e. the maximum possible
hierarchy depth) is 15, and the average length 3.66. In the experiments concerning
DIs obtained from CIs (see Figure 6, left) the average (resp. maximal) depth of
the applicable DIs hierarchy range between 41% and 55% of the average (resp.
26,6% and 40% of the maximal) path length in the original ontology, coherently
with the random placement of normality concepts in the hierarchy. For fully syn-
thetic DIs (Figure 6, right) these values are lower and vary between 34% and 42%
of the average length, and between 20% and 33,3% of the maximum length.

Analogously, the length of the longest path in FLY’s classification is 16 (resp.
27 in SNOMED’s classification), and the average length 6.78 (resp. 9.02). The
depth of the DI priority hierarchy (which is related to the interference between
different DIs and, indirectly, the number of exception levels) ranges between 19%
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DA-rate Overr./Appl. DIs Avg. (Max) hDIs

5% 61,86% 2,03 (6)
10% 70,71% 1,96 (6)
15% 68,45% 2,01 (5)
20% 75,63% 1,71 (5)
25% 80,28% 1,54 (4)

DA-rate Overr./Appl. DIs Avg. (Max) hDIs

5% 83,55% 1,34 (4)
10% 84,13% 1,40 (4)
15% 91,17% 1,25 (3)
20% 91,47% 1,30 (4)
25% 87,64% 1,50 (4)

Figure 6: Values characterizing the experiments with variable DA-rate in GO. CI-to-Di-rate=15%
(left), Synthetic-DI-rate=15% (right).

DA-rate Overr./Appl. DIs Avg. (Max) hDIs

5% 34,44% 2,26 (8)
10% 42,6% 2,6 (7)
15% 39,1% 2,55 (6)
20% 46,4% 2,44 (7)
25% 37,53% 2,49 (7)

DA-rate Overr./Appl. DIs Avg. (Max) hDIs

5% 37,95% 2,17 (5)
10% 55,56% 1,74 (3)
15% 57,03% 1,81 (4)
20% 57,32% 1,95 (5)
25% 65,98% 1,83 (3)

Figure 7: Values characterizing the experiments with variable DA-rate in FLY. CI-to-Di-rate=15%
(left), Synthetic-DI-rate=15% (right).

and 50% of the depth of FLY’s taxonomy and 15% and 44% of the depth of
SNOMED’s taxonomy.
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