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Introduction

We are studying the scattering of a plane wave on an object as described in Figure 1. In this situation we measure the total electric field on a finite band of frequency at X 0 which is the point of emission of the sent plane wave (backscattering configuration). The goal of this study is to be able to discriminate the object based on the poles of the transfer function:

F (k) = E sc (X 0 ) • E 0 E inc (X 0 ) • E 0 ,
where k is the spatial pulsation (proportional to the frequency) and the incident electric field, which has a direction of propagation v, and the scattered electric field are respectively:

E inc (X) = E 0 e ikv•X , E sc (X) = E(X) -E inc (X),
When the object is convex and smooth, this function is meromorphic with poles lying in the upper half-plane. The scattered electric field is solution to Helmholtz equation:

∆E sc + k 2 E sc = 0, (1) 
∇ • E sc = 0, (2) 
lim r→∞ (r(X • ∇ -ik)E sc ) = 0, (3) 
(E sc + E inc ) × n = 0 on ∂Ω. (4) 
In order to do the rational approximation of F , we need to describe the behaviour of the field E sc at high frequency (outside the band of measured frequencies). In this text, we will mainly consider the case in which the object is a spherical PEC (Perfectly Electric Conductor) of radius a and in the back-scattering configuration (X = -rv) as in this case, we have an exact formula (Mie series) giving the solution [START_REF] Harrington | Time-Harmonic Electromagnetic Fields[END_REF]:

E sc (-rv) = E 0 kr ∞ n=1 i n n + 1 2
Ĵn (ka) Ĥ( 2)

n (kr) Ĥ(2) n (ka) -i Ĵn ′ (ka) Ĥ (2) ′ n (kr) Ĥ (2) ′ n (ka)
, where the Ĥ(2) n are the spherical Hankel functions of the second kind and the Ĵn are the spherical Bessel functions of the first kind.

As the partial sums of these series converge slowly when k increases, it is not a good formula to study its high-frequency behaviour. To study the high frequency behaviour of F , we choose a well-behaved ansatz as a Luneberg-Kline series [START_REF] Bouche | Asymptotic Methods in Electromagnetics[END_REF]:

E sc (k, X) = N n=0 A n (X) (ik) n e ikS(X) + o 1 k N .
By substituting this form into (1) to (4) , we get an eikonal equation ( 5) and an infinite list of transport equations (6) that allow us to compute S and the (A n ) n∈N :

|∇S| 2 = 1, (5) 
(∆S + 2∇S • ∇)A n = -∆A n-1 . (6) 
using the boundary conditions that for all Y ∈ ∂Ω:

A 0 (Y ) × Y = -E 0 × Y, ∀n ∈ N * , A n (Y ) × Y = 0, ∀n ∈ N, ∇S • A n (Y ) = -∇ • A n-1 (Y ), S(Y ) = v • Y.
Using these equation, we compute the first terms of this series for a PEC and found that in the back-scattering case:

S = (r -2a) , A 0 = - a 2r -a E 0 , A 1 = -2 (r -a) 2 (2r -a) 3 E 0 , A 2 = 2 (r -a)(2r 2 -4ra + 3a 2 ) (2r -a) 5 E 0 .
As shown in 4, this characterisation at high frequency is not enough for our purpose and we thus describe a method to get a more precise description of the field at high but finite frequencies.

Creeping wave

To simplify the use of the Mie series, we apply Watson transformation [START_REF] Senior | Analytical and Numerical Studies of the Back Scattering Behavior of Spheres[END_REF][START_REF] Valagiannopoulos | An overview of the Watson transformation presented through a simple example[END_REF] to it. It is a way to transform the sum into an integral using the residue theorem. We show that, far from the spherical object:

E sc (-rv) = P (ρ) exp(ikr) kr E 0 , P (ρ) = P c (ρ) + P o (ρ),
where the optical part P o has the same highfrequency behaviour as computed before with the Luneberg-Kline ansatz and the creeping wave part P c has the following behaviour:

P c (ρ) ∼ τ 4 e i π 3 β 1 Ai(-β 1 ) 2 exp iπρ -e -i π 6 τ πβ 1 ,
where ρ = ka, τ = τ (ρ) = ρ 

Numerical comparison

As P c decreases exponentially when k goes to infinity, it is negligible in front of P o . Nevertheless, let us study the importance of each of this terms when dealing with finite frequencies. We choose a frequency of 5 GHz for a sphere of radius a = 0.15/2 at a distance r = 1. We find that the three computed optics terms represent respectively 86.11%, 4.87% and 0.01% of the field while the creeping wave term represents 7.55% of the field. This shows that to reconstruct the poles of the transfer function, we will need to use the creeping wave part even if it is negligible at high-frequency.
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 1 Figure 1: Setting of the scattering by a sphere.
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 23 and β 1 is the first zero of the Airy function derivative Ai ′