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Abstract

By measuring the scattered electromagnetic field
produced by a plane wave on a smooth object at
various frequencies, and then performing ratio-
nal or meromorphic approximation of the trans-
fer function, we consider the issue of identify-
ing the shape of the object from the recovery
of some characteristic singularities (which are
poles because the object is smooth, but typically
infinite in number). This technique can also be
used to identify certain physical characteristics
of the object for nondestructive testing. In this
paper, we study the high-frequency behaviour
of the scattered wave and more precisely the
contribution of the ’optic’ and ’creeping waves’
parts of the field outside of the measured fre-
quency band and thus in the reconstruction of
the poles of the transfer function. These two
parts are identified by their high-frequency be-
haviour.
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Approximation

1 Introduction

We are studying the scattering of a plane wave
on an object as described in Figure 1. In this
situation we measure the total electric field on
a finite band of frequency at Xy which is the
point of emission of the sent plane wave (back-
scattering configuration). The goal of this study
is to be able to discriminate the object based on
the poles of the transfer function:

ESC(XO) . EO
Einc(XO) : EO7
where k is the spatial pulsation (proportional
to the frequency) and the incident electric field,
which has a direction of propagation v, and the
scattered electric field are respectively:
Eine(X) = Ege™¥,
Es(X) = E(X) — Epne(X),

F(k) =

When the object is convex and smooth, this
function is meromorphic with poles lying in the

upper half-plane. The scattered electric field is
solution to Helmholtz equation:

AE + k*Eq. = 0, (1)

V.-E, =0, (2)

limy o0 (r(X - V — ik)Eye) = 0, (3)
(Ese + Eine) xn=00n09. (4)

In order to do the rational approximation
of F', we need to describe the behaviour of the
field Fy. at high frequency (outside the band
of measured frequencies). In this text, we will
mainly consider the case in which the object is a
spherical PEC (Perfectly Electric Conductor) of
radius a and in the back-scattering configuration
(X = —rv) as in this case, we have an exact
formula (Mie series) giving the solution [2]:

Bt =B (1) [fnwa)ff?’(kr)

kri S 2 a2 (ka)
@'jn,(ka)Hr(?)/(M)]
1 (ka)

where the Hq(f) are the spherical Hankel func-
tions of the second kind and the jn are the
spherical Bessel functions of the first kind.

As the partial sums of these series converge
slowly when k increases, it is not a good formula
to study its high-frequency behaviour.
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Figure 1: Setting of the scattering by a sphere.
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2 Optical part

To study the high frequency behaviour of F,
we choose a well-behaved ansatz as a Luneberg-
Kline series [1]:

N
An (X) 1kS(X 1
Eﬂmmzz(m“z(uozﬁ.
n=0

By substituting this form into (1) to (4) ,
we get an eikonal equation (5) and an infinite
list of transport equations (6) that allow us to
compute S and the (A4;,)nen:

VS|? =1, ()
(AS+2VS-V)A, = -AA,_1. (6)
using the boundary conditions that for all Y €
o
Ao(Y) XY = —EO X K

Vn e N*, A, (V) xY =0,

VneN, VS -A,(Y)=-V-A,1(Y),
SY)=v-Y.
Using these equation, we compute the first

terms of this series for a PEC and found that in
the back-scattering case:

S =(r—2a),
a

A = — E

0 o —a

B (r —a)?

A= 2(2r—a)3E0’
A _2(r—a)(2r2—47“a+3a2)
T (2r —a)® 0

As shown in 4, this characterisation at high
frequency is not enough for our purpose and we
thus describe a method to get a more precise
description of the field at high but finite fre-
quencies.

3 Creeping wave

To simplify the use of the Mie series, we apply
Watson transformation [3,4] to it. It is a way
to transform the sum into an integral using the
residue theorem. We show that, far from the
spherical object:

Bual—rv) = P(p) S2)

P(p) = Pc(p) + Po(p),

EO)

where the optical part P, has the same high-
frequency behaviour as computed before with
the Luneberg-Kline ansatz and the creeping wave
part P, has the following behaviour:

7_4ez

~ m exp (iﬂ'p — e_i%TTl‘ﬁ1> ,

where p = ka, 7 = 7(p) = (5)1/3 and (7 is the
first zero of the Airy function derivative Ai’

(HE]

Pe(p)

4 Numerical comparison

As P. decreases exponentially when &k goes to
infinity, it is negligible in front of P,. Never-
theless, let us study the importance of each of
this terms when dealing with finite frequencies.
We choose a frequency of 5 GHz for a sphere
of radius @ = 0.15/2 at a distance r = 1. We
find that the three computed optics terms rep-
resent respectively 86.11%, 4.87% and 0.01% of
the field while the creeping wave term represents
7.55% of the field. This shows that to recon-
struct the poles of the transfer function, we will
need to use the creeping wave part even if it is
negligible at high-frequency.
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