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We present a new asymptotic formula for the Stieltjes constants which is both simpler and more accurate than several others published in the literature (see e.g. [3], [6], [13]). More importantly, it is also a good starting point for a detailed analysis of some surprising regularities in these important constants.

Introduction

The Stieltjes constants n are essentially coe¢ cients of the Laurent series expansion of the Riemann zeta function around its only simple pole at s = 1:

(s) = 1 s 1 + 1 X n=0 ( 1) 
n n! n (s 1) n (1) 
It is commonly believed that they are irrational numbers, and even transcendental, however no rigorous proof of this has been given [START_REF] Ma´slanka | Are the Stieltjes constants irrational? Some computer experiments[END_REF]. High precision numerical computations of them are quite a challenge (see [START_REF] Ma´slanka | The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm[END_REF] and references therein). A common and frequently cited view is that "for large n, the Stieltjes constants grow rapidly in absolute value, and change signs in a complex pattern" [14]. The …rst view is beyond any doubt, as illustrated in the Figure 1 below. In this paper, however, we will show that the second view is incorrect: not only the signs of the Stieltjes constants, but their values also show amazing regularities.

There are three asymptotic formulas for these constants in the literature ( [START_REF] Knessl | An E¤ ective Asymptotic Formula for the Stieltjes Constants[END_REF], [START_REF] Fekih-Ahmed | A New E¤ ective Asymptotic Formula for the Stieltjes Constants[END_REF], [START_REF] Bruce | An Asymptotic Expansion for the Stieltjes Constants[END_REF]). We believe that the one presented in this paper is de…nitely simpler than the others. It is also more accurate. In particular, it recreates correctly the sign of n for the particular value of n = 137 which is usually troublesome for asymptotic formulas. Most importantly, this formula can be a starting point for the analysis of the above-mentioned surprising regularities of Stieltjes constants:

n r 2 n! Re (s n ) e csn (s n ) n q n + s n + 3 2 (2)
where s n is the saddle point (see below):

s n = n + 3 2 W n+ 3 2 2 i (3) 
In formula (2) c ln (2 i) is a complex constant and W is the Lambert function (sometimes called the omega function or product logarithm, see [16]). The basic tool is, as usual in such computations, the saddle point method whereas the starting point is a certain alternating sum, which, due to the still little known Nørlund-Rice formula, can be converted into an integral over the complex contour. As will be shown subsequently, global properties of this integral clearly suggest using the saddle point method.

Algorithm for calculating Stieltjes constants

This work is a natural continuation of the previous one [START_REF] Ma´slanka | The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm[END_REF]. In that work, certain numerically e¢ cient formula for Stieltjes constants was given. In the present work, we will use this formula to derive a new, e¤ective formula for asymptotics for these important constants. As it was done in [START_REF] Ma´slanka | The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm[END_REF], we will use polynomial interpolation for the (regularized) Riemann zeta function '(s):

'(s) := (s) 1 s 1 s 6 = 1 s = 1 (4) 
where is the Euler constants which stems from the appropriate limit. In the mentioned interpolation, certain coe¢ cients k appear naturally, de…ned as follows:

a k (") = k X j=0 ( 1) j k j '(1 + j") (5) 
where " is certain real, not necessarily small number. (In what follows we shall generally drop for simplicity this dependence in denotations: a k (") a k .) Then, after some elementary computations, we get:

n = n! " n 1 X k=n ( 1) k a k k! S (n) k = ( 1) n n! " n 1 X k=n a k k! S (n) k (6) 
where S

(n) k are signed Stirling numbers of the …rst kind (see [17]). Formula ( 6) is particularly well-suited for numerical computations provided one has precomputed equidistant, high precision values of '(s) in s = 1; 1 + "; 1 + 2"; ::: (See paragraph IV of [START_REF] Ma´slanka | The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm[END_REF] for all details.) 3 Behavior of coe¢ cients a k Formula (5) has special form of an alternating sum with binomial coe¢ cients. This form suggests using the Nørlund-Rice integral which is a powerful tool for dealing with such sums. (see e.g. [START_REF] Flajolet | Mellin transforms and asymptotics: Finite di¤ erences and Rice's integrals[END_REF]).

Lemma 1 Let '(s) be holomorphic in the half-plane <(s) n 0 1 2 . Then the …nite di¤ erences of the sequence f'(k)g admit the integral representation:

n X k=n0 ( 1) k n k '(k) = ( 1) n 2 i I C '(s) n! s(s 1):::(s n) (7) 
Figure 2: Rectangular contour C of integration for the right hand side of (7) for particular value k = 5 encircling points 0; 1; :::; 5. This shape is especially well suited for numerical investigations.

where the contour of integration encircles the integers fn 0 ; :::; ng in a positive direction and is contained in <(s) n 0 1 2 .

Proof. According to the Cauchy residue theorem the contour integral on the right is the sum of the residues of the integrand at s = n 0 ; :::; n which is just equal to sum on the left1 . However, before applying the above Lemma it is convenient to make several elementary transformations in [START_REF] Flajolet | On Di¤ erences of Zeta Values[END_REF].

a k = + k X j=1 ( 1) j k j '(1 + j") = = + k X j=1 ( 1) j k j (1 + j") 1 " k X j=1 ( 1) 
j j k j
The last sum is

k X j=1 ( 1) 
j j k j = (0) (k + 1) = H k
where (0) (s) is the polygamma function and H k P k i=1 1=i is the k th harmonic number. Finally we get:

a k = + H k " + k X j=1 ( 1) j k j (1 + j") (8) 
Now choosing the rectangular contour of integration (Figure 1) and applying the above Lemma ( 7) to (5) we get:

a k = ( 1) k k! 2 i 0 @ i Z +i f k ds + k+ i Z i f k ds + k+ +i Z k+ i f k ds + +i Z k+ +i f k ds 1 A (9) 
where the integrand is:

f k f k (s; ") = '(1 + s") k Y i=0 (s i)
and ' is the regularized zeta function ( 4) and is positive parameter. (Typically = 1 2 , see Fig. 2.) Deforming the rectangular contour of integration to a vertical line Re s = 1 2 and a large semicircle on the right and performing the integral along vertical line only, that is neglecting contribution from the large semicircle, which tends to zero, we get:

a k = ( 1) k k! 2 i + 1 2 i1 Z + 1 2 +i1 f k (s; ")ds
After applying functional equation for the Riemann zeta function (see e.g. [START_REF] Harold | Riemann's Zeta Function[END_REF], p. 12-16)2 :

(1 + s") = 1 2 +s" ( s" 2 ) ( 1+s" 2 ) ( s") (10) 
we get

a k = + H k " + ( 1) k k! 2 i + 1 2 i1 Z + 1 2 +i1 1 2 +s" ( s" 2 ) ( 1+s" 2 ) ( s") k Y i=0 (s i) ds
Performing change of variable s ! s yields:

a k = + H k " ( 1) k k! 2 i 1 2 +i1 Z 1 2 i1 1 2 s" ( s" 2 ) ( 1 s" 2 ) (s") k Y i=0 ( s i) ds
Using elementary identity valid for integer k:

k Y i=0 ( s i) = ( 1) k k Y i=0 (s + i)
and converting the product on the right into the Pochhammer symbol usually denoted (s) n :

k Y i=0 (s + i) = (s + k + 1) (s) (s) k+1
we get:

a k = + H k " + k! 2 i 1 2 +i1 Z 1 2 i1 1 2 s" ( s" 2 ) ( 1 s" 2 ) (s) (s + k + 1) (s")ds
Now de…ning the integrand as:

f k (s; ") = 1 2 s" ( s" 2 ) ( 1 s" 2 ) (s) (s + k + 1) (s") (11) 
we get

a k = + H k " + k! 2 i 1 2 +i1 Z 1 2 i1 f k (s; ")ds = (12) = + H k " + k! 2 i 0 B @ + 1 2 +i1 Z + 1 2 i1 f k (s; ")ds 2 i Res (f k (s; "); 0) 1 C A (13) 
We can …nally move the line of integration from Re s = 1 2 to Re s = + 1 2 and subtract the contribution from residue of the integrand in s = 0. It turns out that this residue is:

" + H k "k! (14) 
which miraculously cancels exactly the …rst and the second term in ( 12)

a k = k! 2 i + 1 2 +i1 Z + 1 2 i1 f k (s; ")ds (15) 
It is convenient to introduce the following notation: The integrand in (16) has several remarkable features. It is free of singularities in the right half-plane and decays there exponentially to zero. Hence, the vertical line of integration may be freely moved to the right without any change of the integral. Therefore the integral is well-suited for applying the saddle point method. Let us now remind the following important result (see [START_REF] Erdélyi | Asymptotic Expansions[END_REF] for a very accessible presentation of this method):

g k (s; ") 1 2 s" ( s" 2 ) ( 1 s" 2 ) (s) (s + k + 1) (16) 
f k (s; ") = g k (s; ") (s")
Theorem 2 The saddle-point method (or: Method of steepest descent). An integral depending of some real parameter may be approximated for large value of this parameter as

Z (x)e !(x) dx (x 0 )e !(x0) s 2 ! 00 (x 0 ) ; ! 0 (x 0 ) = 0 (17) 
(The solution x 0 of the equation ! 0 (x 0 ) = 0 is the saddle point.) 3 In our case the discrete index k plays the role of parameter although it is not just multiplying factor. It is evident that in order to apply the above theorem to integral (16) one has to choose 1 and ! = log (f k (s; ")). More precisely:

! k (s; ") log (f k (s; ")) (18) 
All the computations below are elementary but very tedious, so they were performed and checked with the help of Wolfram Mathematica [START_REF]Mathematica, Version[END_REF].

We shall also need the …rst and the second derivative of the integrand (16) with respect to complex variable s. Having these we can compute derivatives of ! k (s; ") as:

@ @s ! k (s; ") = @ @s f k (s; ") f k (s; ") f (1) k (s; ") f k (s; ") (19) 
@ 2 @s 2 ! k (s; ") = @ 2 @s 2 f k (s; ") f k (s; ") @ @s f k (s; ") f k (s; ") ! 2 f (2) k (s; ") f k (s; ") f (1) k (s; ") f k (s; ") ! 2 (20) 
Let (s) and (1) (s) denote digamma function and its …rst derivative, respectively. Introducing the following denotations:

p k (s; ") (s) (s + k + 1) + " 2 s" 2 + 1 s" 2 2 log( )
3 Historical digression. We owe the original idea of this method to Pierre Simon de Laplace (1774). Another contribution belongs to Augustin Louis Cauchy (1829). In Bernhard Riemann's unpublished notes from 1863, this method is applied to hypergeometric functions. The …nal version was published by Peter Debye (1909) who applied this method to Bessel functions. Russian historians of mathematics recently reminded contribution of Pavel Alexeevich Nekrasov, who (allegedly) discovered and used this method independently a quarter of a century before Debye. I have no opinion on this matter, since this Nekrasov was also a philosopher and used mathematics to demonstrate the necessity of the tsarist regime and the need to maintain secret services.

p

(1) k (s; ") (1) (s) (1) 

(s + k + 1) + " 2 2 (1) s" 2 (1)
1 s" 2 after some elementary but tedious computations we get:

f (1)
k (s; ") @ @s f k (s; ") = g k (s; ") p k (s; ") ("s) + " 0 ("s)

In a similar way we can obtain the second derivative of f k (s; "). Introducing denotations:

q k (s; ") p k (s; ") 2 + p (1) 
k (s; ") q

(1) k (s; ") 2"p k (s; ") we get:

f (2) k (s; ") @ 2 @s 2 f k (s; ") = g k (s; ") q k (s; ") ("s) + q (1)
k (s; ") 0 ("s) + " 2 00 ("s)

(22) Inserting ( 21) and ( 22) into ( 19) and (20) we get:

@ @s ! k (s; ") = p k (s; ") " 2 tan s" 2 + " 0 ("s) ("s) (23) 
@ 2 @s 2 ! k (s; ") = q k (s; ") " 2 tan s" 2 2 + " 2 0 @ 00 ("s) ("s) 0 ("s) ("s) ! 2 1 A (24) 
Having explicitly calculated derivatives of the integrand we are ready to apply the saddle point method (17). First we have to …nd the location of saddle points. Equating (21) or (23) to zero gives: p k (s; ") ("s) + " 0 ("s) = 0 (25)

Note that for variable s having large imaginary part we have (cf. e.g. [START_REF] Flajolet | On Di¤ erences of Zeta Values[END_REF], formula (20)):

(s) 1 (26) 0 (s) 0 00 (s) 0
The above approximations seem very radical and illegitimate, because the zeta function seems to disappear from the reasoning at this stage. Nevertheless, they are satis…ed with accuracy to many signi…cant digits along the integration path which, let us recall, can be shifted arbitrarily far to the right. After all, the zeta is present there, at least by its functional equation [START_REF] Ma´slanka | The High Precision Numerical Calculation of Stieltjes Constants. Simple and Fast Algorithm[END_REF], which has been used above.

Therefore, instead of (25), we simply get:

3 + 2k + s" 2 ln 2 s" i = 0 (27) 
(One has to be careful with logarithms of complex arguments so as not to ignore a case and therefore not miss a solution.) Equation ( 27) may be solved explicitly with respect to s giving the complex location of k th saddle point (for a given small parameter "):

s k = k + 3 2 "W k+ 3 2 2 i ( 28 
)
where W is the Lambert function satisfying transcendental functional equation:

s = W (s)e W (s)
Incidentally, formula (28) resembles approximate formula for the imaginary parts y n of complex zeta zeros found by André LeClair (see [START_REF] Leclair | An electrostatic depiction of the validity of the Riemann Hypothesis and a formula for the N-th zero at large N[END_REF], formula ( 22)):

y n = n 11 8 W n 11 8 e
From (28) it is evident that distribution of saddle points on the complex plane scales as the inverse of parameter ".

Completion of computations

Having calculated the second derivative of the integrand and the positions of the stationary points, we can …nally use the theorem (17) and provide an asymptotic expression for a k :

a k (") ' Re k! i s 2 @ 2 @s 2 ! k (s k ; ") f k (s k ; ") ! (29) 
To get the sought asymptotic formula for n coe¢ cients, all that remains is to insert (29) into the general expression [START_REF] Knessl | An E¤ ective Asymptotic Formula for the Stieltjes Constants[END_REF] and make some elementary approximations. (As always, Mathematica procedures such as Limit, Series, etc. save a lot of time and e¤ort while ensuring that the results are error free.) In particular:

@ 2 @s 2 ! k (s k ; ") ' 3 + 2k 2s 2 + " s 2 " 2 4 1 + tan s" 2 2 (30) 
Using (26) we can also put:

f k (s; ") ' g k (s; ") (31) 
Remembering that for large imaginary part of s we have:

(s) ' r 2 s e s s s cos(s) ' e is 2
g k (s; ") ' 1 2 1 2 s" s k 2 2s k k 2 ( s" 2 ) ( 1 s" 2 ) (32) 
It is clear that, since …nally " tends to zero, it is su¢ cient to take only the …rst term in ( 6)

n ' a k (") " n " ! 0 (33) 
Inserting to (33) expression for a k (") (29) together with (30), ( 31) and (32) we …nally get:

n r 2 n! Re (s n ) e csn (s n ) n q n + s n + 3 2 (
In fact, there is always a pair of mutually conjugate saddles but contributions due to their imaginary parts cancels.) It is probably quite astonishing that after making so many approximations the …nal formula for n works so well as computer experiments show convincingly. As expected, in this formula there is no longer the auxiliary parameter ", which ful…lled its important but temporary role in numerical computations (with the help of formula ( 6)), and …nally simply get shortened.

Summary of results

Let's collect the …nal results. Let c be a complex constant:

c = log(2 ) + 2 i = log(2 i)
Now asymptotics of Stieltjes constants when n ! 1 (in practice it su¢ ces that n 0) is:

n r 2 n! Re (s n ) e csn (s n ) n q n + s n + 3 2 (34) 
where complex saddle points are (note that now there is no " which get shortened):

s n = n + 3 2 W n+ 3 2 2 i (35) 
The 250 initial values of the complex saddles (35) are shown in the Figure 6. Very good agreement of approximated values calculated using (34) with actual values of n is shown in Figure 7. 6 Application: Signs of n As a by-product of these intricate computations, we can get a compact expression for the signs of the Stieltjes constants. Formula (34) hides the characteristic behavior of Stieltjes constants when n grows, that is large and growing oscillations with diminishing frequency superimposed on the strongly growing trend. This behavior may be demonstrated as follows. Recall higher order Stirling formula for (x):

(x) ' 1 6 r 2 e x x x 3 2 (12x + 1)
Applying it to (s n ) in (34) we get: transformations and in terms of its enormous purely numerical capabilities and …nally for its rich graphical presentations of the obtained results. Figure 9 is an example of how well Mathematica is doing to check that the contour integral ( 9) is indeed equal to the binomial alternating sum [START_REF] Leclair | An electrostatic depiction of the validity of the Riemann Hypothesis and a formula for the N-th zero at large N[END_REF]. I cannot imagine how to verify this fact with such high precision without computer support. Another example: Figure 10 shows how Mathematica solves the transcendental equations (27). 

n ' 2n! Re (s n ) sn n 3

Figure 1 :

 1 Figure 1: Absolute values of 150 initial Stieltjes coe¢ cients n . Global, fast growing trend is evident. Oscillations of increasing amplitude and decreasing frequency superimposed on this trend are visible. Red dots mean positive values, blue dots mean negative values. The scale on the vertical axis is logarithmic.

Figure 3 :

 3 Figure 3: Absolute value of the integrand (16) for k = 8 and " = 25 . Vertical scale is logarithmic for better visualisation. The right half-plane of complex variable s is free of singularities. Simple poles in s = 0; 1; 2; :::; k due to factor (s) in (16) are visible.

Figure 4 :

 4 Figure 4: The logarithm of the absolute value of the integrand (11) for k = 2 and " = 2 4 . Positions of saddle points is marked by vertical lines. The saddle nature of these points is practically invisible due to the scale of the …gure. Also, three singularities for s = 0; 1; 2 merged into single peak. Better visualisation is presented on the next Figure 5.

Figure 5 :

 5 Figure 5: Typical family of fragments of absolute values of the function ! k (s; ") (18) in the vicinity of saddle points for k = 100; 101 and 102. Blue vertical segments mark the position of the saddles. The red lines are the curves of the steepest descent.

Figure 6 :

 6 Figure 6: Distribution of 250 initial saddle points on the complex plane. There are two symmetrical branches, the lower one is the complex conjugate of the upper one.

Figure 7 :

 7 Figure 7: Comparison of absolute values of actual Stieltjes coe¢ cients (green dots) with those calculated from asymptotic formula (34) (red dots) shows good agreement (except 0 ), even for that "unruly" value n = 137.

Figure 8 :

 8 Figure8: Unfortunately, the good impression after looking at Figure7diminishes a bit when we look at the graph of the ratio of the exact n values to the asymptotic values (34) for example in the range of n = 3000 3300. Although this ratio is very close to one, with an accuracy generally better than 10 4 , there are distinct, periodic structures: points are arranged on certain curves resembling the family of cotangent functions. But it is in these structures that the essence of Riemann's zeta is contained, including the Riemann hypothesis, i.e. what was rejected when the approximations (26) were made. Also note, which is somewhat surprising, that the blue points lie slightly above the red straight line that represents the value of one. But, as the saying goes, when one door shuts, another one opens. And indeed: this result opens up a whole new …eld for very fruitful research on the Stieltjes constants, which will be the subject of the next publication.

Figure 9 :

 9 Figure 9: Distribution of complex values of phase ' n given by (38) for n = 1; 2; :::; 100. It is clear that thay lie along certain smooth curve. It is also obvious that the exponent of the real part of the phase (38) controls the rapid growth of n , while the cosine of the imaginary part of the phase is responsible for the oscillations of decreasing frequency.

Figure 10 :

 10 Figure 10: Checking the Nørlund-Rice formula (7) using Mathematica.

  

Donald Knuth popularized this formula and attributed it to American engineer Stephen O. Rice, pioneer in the applications of probability techniques to engineering problems(1907- 1986). Knuth did it in one of the problem tasks at the end of one of the chapters of his famous work[START_REF] Knuth | The Art of Computer Programming[END_REF]. However, much earlier this formula was known to Danish mathematicianNiels Erik Nørlund (1885-1981), who included it in his extensive classic treatise[START_REF] Erik | Vorlesungen über Di¤ erenzenrechnung[END_REF]. Incidentally, the mentioned Niels Erik Nørlund was the brother of Margrethe née Norlund, later wife of the famous physicist Niels Bohr.

Such a trick to use the functional equation for the Riemann zeta function and then perform change of variable s ! s was inspired by the work[START_REF] Flajolet | On Di¤ erences of Zeta Values[END_REF], cf. equations (17), (18) and the corresponding comment.

(s n + 1 12 )e (c+1)sn q n + s n +

2(36)

For n 1 fractions 1 12 and 3 2 under the square root may be neglected since s n grows fast with n:

Applying once again Stirling formula to n! we have:

(37) Introducing …nally complex "phase" as:

(38) we get a particularly simple form of the asymptotic formula for Stieltjes constants:

Formula (39) gives almost as good approximation as (34) but it shows in a manifest way mentioned above basic properties of n (trend and oscillations). It is then clear that the statement quoted at the beginning that "Stieltjes constants [...] change signs in a complex pattern" [14] is not true. In particular, one can quickly calculate sign of n , even for extremely high n, since it is obviously equal to the sign of cos (Im ' n ) and the phase (38) can be computed e¤ectively for n at least up to 10 1;000;000 . (See [START_REF] Jasiński | The On-Line Encyclopedia of Integer Sequences[END_REF] for extensive computations of signs of Stieltjes constants using the above formulas.) For example: n sign of n 10 10 +1 10 100 +1 10 1000 +1 10 10 000 1 10 100 000 1 10 1;000 000 +1 7 Appendix -samples of Mathematica notebooks As mentioned in the main text, Wolfram's Mathematica [START_REF]Mathematica, Version[END_REF] made very tedious and convoluted computations much easier and ensured that there were no mistakes in them. This program was used very intensively -for symbolic