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Abstract

Scalar mixing and evaporation processes are analyzed in a compressible two-

phase homogeneous and isotropic turbulence con�guration. To this end, the

fully compressible Navier-Stokes equations are solved using a pressure-based

method and a mass-conservative interface capturing method (CLSVOF). Tem-

perature and vapor mass fraction transport equations are coupled with the mo-

mentum equation via the evaporation rate: i.e. heat and mass transfer has

an e�ect on the �ow dynamic through the generation of a Stefan �ow at the

interface. In this formalism, a pressure equation is developed to include the

acoustic, thermal dilatation and compressibility e�ects. Moreover, the method

can consider several gas structures in the same domain, each with independent

temperature, density, and thermodynamic pressure. The latter is important to

simulate atomization, where interaction among the liquid structures (such as

breakup or coalescence) can generate multiple gas inclusions. This work is one

of the �rst to describe with high �delity the vaporization and turbulent mixing

occurring in dense two-phase �ows.

A statistical analysis of the vapor mass fraction �eld is performed. The ob-

tained results reveal the in�uence of the non-homogeneous scalar source at the

interface, which depend directly on the local interface temperature, on the PDF

shape. Under these conditions, the vapor mass fraction PDF deviates from the

Gaussian and beta PDF shapes, frequently used for turbulent combustion mod-

eling. Furthermore, access to the local surface averaged vapor mass fraction and
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evaporation rate at the interface allows a statistical analysis of these variables.

Results show a large dispersion of both quantities, especially at the early times

of the simulations, which contradict the usual assumption of a constant vapor

mass fraction (or vaporization rate) at the interface used in the literature in

standard vaporization models. Finally, the in�uence of the mean interface cur-

vature on the evaporation rate is quanti�ed and discussed. Large evaporation

rate are present when the interface is convex (positive mean curvature). On

the contrary, local saturation zones are present near concave interface (negative

mean curvature), reducing the evaporation rate magnitude.

Keywords: DNS, Compressible, Turbulent mixing, Two-phase �ows,

Evaporation, CLSVOF
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1. Introduction

Mixing and evaporation have a signi�cant role in many natural and engi-

neering processes. For instance, the performance and pollutant emissions of

internal combustion engines depend highly on these two processes. Generally,

mixing is enhanced by a turbulent �ow, when compared with a process driven

mainly by di�usion. The ability of these �ows to increase the surface between

the �uids intensi�es the molecular di�usion (Dimotakis, 2005). An example of

the importance of turbulent mixing in nature is the release of pollutants (such

as chemicals, solid particles, or heat) into the atmosphere or aqueous environ-

ments.

Furthermore, in industry, turbulent mixing is the driving mechanism for heat

and mass transfer in a chemical reactor, especially in cases where the turbulent

and reaction time scales are comparable. During the mixing process, three dis-

tinct stages can be identi�ed (Eckart, 1948). First is the initial state, in which
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the entrainment of one �uid into another occurs. This is characterized by large

concentration gradients at the interface and a near-zero gradient elsewhere. In

the intermediate state, the motion created by the larger eddies distorts the inter-

face and increases molecular transport between the �uids. As the �uids become

more homogeneous at the �nal state, the concentration gradients decrease until

there is no more heat or mass transfer.

Normally, scalar mixing in turbulent �ows is studied with di�erent strategies

depending on how the scalar is released into the carrier phase (Hunt, 1985). For

instance, in experiments the scalar is released as a single point source in the

�ow by adding a relatively small amount of dye to a liquid. Such scenarios have

been studied in an experimental framework using the evolution of single-point

and two-point statistics of the scalar �elds.

Experimental measurements of the probability density function (PDF) of a

passive scalar in a homogeneous turbulent shear �ow performed by Tavoularis

and Corrsin (1981) indicated a quasi-normal distribution for the scalar signal.

Subsequently, several experimental and theoretical works show that, under cer-

tain conditions, the scalar PDF, with a mean scalar gradient, exhibits an ex-

ponential tail due to anomalous mixing (Shraiman and Siggia (1994); Chertkov

et al. (1998); Pumir et al. (1991)). Moreover, Jayesh and Warhaft (1992) studied

the evolution of the scalar PDF and the dissipation rate for passive temperature

�uctuations in decaying grid-generated turbulence; concluding that the scalar

PDF has a pronounced exponential tail for turbulence Reynolds number (Reλ)

above 70 but below this value the PDFs can be modeled by a normal distribu-

tion.

Several authors have also resorted to direct numerical simulations (DNS) to

investigate passive scalar mixing in turbulent �ows. For example, Eswaran and

Pope (1988) used DNS to study the mixing of a passive scalar in an isotropic

turbulent �ow. Here, the authors observed the e�ect of the initial conditions on

the temporal evolution of the scalar rms and the scalar dissipation rate. Ad-

ditionally, they analyzed the evolution of the scalar PDF shape from a double-

Dirac function distribution to a Gaussian distribution. Similar simulations were
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carry out by Overholt and Pope (1996); Juneja and Pope (1996); Yeung (2001).

Furthermore, Yeung et al. (2002) used DNS of isotropic and homogeneous tur-

bulence to investigate the e�ects of the Schmidt number on the inertia and

dissipation length scales of the scalar energy spectrum. More recently, Yeung

et al. (2005) studied a 20483 DNS of passive scalar mixing in a turbulent �ow,

observing a deviation from small-scale isotropy. Yeung and Sreenivasan (2013,

2014) used DNS to study the mixing of passive scalars with a very low Schmidt

number; the goal was to con�rm the existence of the −17/3 power law of the

scalar spectral density in the inertial-di�usive range.

In turbulent combustion modeling, one way for approximating the local av-

eraged chemical production rate is the use of a presumed scalar PDF. In this

method, the scalar pdf shape is assumed a priori, and the parameters of such

PDF are determined by solving the transport equation of the �rst couple of

moments (Girimaji (1991)). The PDFs commonly used for this purpose are the

Gaussian (Lockwood and Naguib (1975)) and the beta-pdf (Gerlinger (2003);

Lempke et al. (2015)). An example is the work of Gerlinger (2003), which

performs simulations of a supersonic hydrogen-air di�usion �ame assuming the

multivariable beta-pdf proposed by Girimaji (1991). A major drawback of this

approach is that the PDF shape is chosen from a mathematical perspective in-

stead of a physical one. To improve this method, Bray et al. (2006) investigated

the accuracy of predicting the mean reaction rate in turbulent premixed �ames

using three presumed pdf: beta-pdf, twin delta function, and a pdf based on

unstrained �ame properties. They found a large deviation with the �rst two

assumed PDFs compared with DNS calculations. Similar results were found by

Salehi and Bushe (2010) when simulating a premixed �ame with an assumed

beta-pdf approximation and a modi�ed laminar �amelet PDF.

More recently, a new approach was proposed by de Frahan et al. (2019).

Machine learning techniques were used to develop assumed PDF models for

reacting �ows. When comparing the proposed method with a standard beta

pdf model, signi�cant improvements were found. Furthermore, Lipatnikov et al.

(2021) used the PDF directly extracted from DNS and presumed beta-function
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using the �rst two moments yielded by DNS data for modeling the combustion

process variable and the mean source term in a premixed turbulent �ame.

The studies mentioned above on passive scalar mixing in a turbulent �ow

use a single-phase con�guration. In most cases, the scalar source is de�ned

during the simulation initialization as one or several vapor patches arbitrarily

distributed in the domain. However, scalar mixing has been studied using a La-

grangian approach to account for the two-phase �ows. An example is the work

of Reveillon and Demoulin (2007), where the e�ect of the droplet's spatial dis-

tribution on evaporation and scalar mixing is investigated. They use a spectral

DNS solver for the evolution of the turbulent carrier phase and a Lagrangian

model for the dispersed phase, which acts as scalar point sources. Several pub-

lications focus on the study of turbulent mixing in similar scenarios (Reveillon

et al. (1998); Demoulin and Borghi (2002); Colin and Benkenida (2003)). The

main interest of this type of work is to understand the e�ect of the vaporization

source term in the scalar transport equation on the evolution of the mean vapor

mass fraction, �uctuations and dissipation rate.

A limitation when using the point-particle Lagrangian approximation is that

the simulations are restricted to particles smaller than the Kolmogorov scale.

A fully resolved DNS coupled with an interface capturing method must be per-

formed to simulate larger particles. This type of con�guration was adopted

by Duret et al. (2012). They studied the mixing process in a two-phase HIT

con�guration with a vaporizing liquid. Statistical and spectral analysis were

presented to demonstrate the e�ects of liquid volume fraction on the velocity

and scalar �elds. Nevertheless, this work does not consider the coupling be-

tween vaporization rate and �ow dynamics through the velocity jump condition

at the interface. Consequently, the study is limited to low vaporization rates,

where the phase change process hardly a�ects the interface and �ow dynamics.

Bouali et al. (2016) used a similar setup to study the in�uence of the liquid/gas

interfaces on the scalar dissipation rate statistics.

In the literature, several numerical strategies include the relation between

temperature, vapor mass fraction and �uid dynamics in their formalism (Es-
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maeeli and Tryggvason, 2004; Tanguy et al., 2007; Malan, 2018; Palmore Jr

and Desjardins, 2019; Scapin et al., 2020). Since the conservation equations are

coupled through the interface jump conditions, the above methods can be subdi-

vided according to the interface representation used. To implement one of these

methods to study the scalar mixing and vaporization processes in a turbulent

and con�ned environment, the e�ect of compressibility must be considered in

order to conserve the initial total mass. A step toward this kind of simulation

was taken by Scapin et al. (2021) and Dodd et al. (2021), who used a low-mach

formulation of the Navier-stokes equations. Consequently, the gas density is a

function of pressure and temperature in their simulations. However, this formal-

ism considers a spatially constant thermodynamic pressure, which could a�ect

the result if more than one gas structure is present in the domain. To overcome

this limitation, a fully compressible formulation of the Navier-Stokes equations,

where the acoustic and compressibility e�ect are resolved, could be used. For

instance, the method proposed by Urbano et al. (2022) is a good candidate for

this type of simulation. They use a semi-implicit projection method to solve

the compressible Navier-Stokes equations coupled with cubic equations of state,

which allows them to consider real �uid interactions. However, mass transfer is

not yet implemented in their formalism.

In this work, the all-Mach formalism proposed by Martinez et al. (2021) is

used to study the scalar mixing and evaporation process. To this end, a two-

phase HIT con�guration with phase change is considered. In this formalism, the

interface velocity jump is handled explicitly during the resolution of the com-

pressible Navier-Stokes equations, and the interface regression induced by the

liquid evaporation is taken into account using a sink term in the VOF transport

equation. Consequently, the Stefan �ow and its e�ect on the system dynam-

ics are captured. Moreover, the momentum, energy, and species conservation

equations are coupled by the evaporation rate present in the jump conditions,

resulting in a non-homogeneous temperature and vapor mass fraction at the in-

terface. Another consequence of the coupling among the conservation equations

is that the scalar is not passive since its eventual variation will directly a�ect
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the turbulent velocity �eld. For the reasons mentioned above, the description

of the physical phenomena in our work could be considered a major step for-

ward compared with the available publications in the literature. Moreover, this

study is considered as an important evolution of our previous study which used

a passive scalar to model vaporization (Duret et al., 2012). Such improvement

of the description of phase change has been achieved with the development of

numerical methods pursued in the last decade in our team.

In the following, the governing equations, jump conditions, and numerical

methods are �rst described. The numerical con�guration is then explained

alongside the initial simulation parameters. Then, a statistical analysis of the

vapor mass fraction and evaporation rate is performed based on the temporal

evolution of the mean, variance and PDFs of both variables. Ultimately, the

role of the interface curvature on the vaporization rate magnitude is discussed

by analyzing their joint PDF.

2. Governing equations

This work considers a two-phase �ow composed of a monocomponent liquid

and a mixture of ideal gases. Both phases are fully compressible and are sepa-

rated by an in�nitely thin interface, where heat and mass transfer occurs. The

gas phase is initially described as dry air. When evaporation starts, the inert air

mixes with the vapor generated around the interface. The system of equations

solved for both phases is the following:





∂ρ

∂t
+ ∇ · (ρu) = 0

∂ρu

∂t
+ ∇ · (ρu⊗ u) = ∇ · ¯̄Ω + σHδΓn + ρfvol

ρcp

(
∂T

∂t
+ u ·∇T

)
= ∇ · (λ∇T ) + αTT

DP

Dt

∂Yv
∂t

+ u ·∇Yv =
∇ · (ρgDm∇Yv)

ρg

(1a)

(1b)

(1c)

(1d)
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where D[·]
Dt = ∂[·]

∂t + u · ∇[·] is the material derivative operator. ρ, u, and P

are the density, velocity, and pressure, respectively. ¯̄Ω = −P ¯̄I + ¯̄τ is the total

stress tensor and ¯̄I the identity matrix. The viscous stress tensor is de�ned as:

¯̄τ = 2µ ¯̄Ξ− 2

3
µ (∇ · u) ¯̄I

where ¯̄Ξ = 1
2

(
∇u + ∇uT

)
and µ the dynamic viscosity. σ is the surface tension,

H is the mean curvature, and the surface tension forces are considered based on

the Dirac function (δΓ). The mean turbulent kinetic energy is maintained near

a prescribed value by a forcing method similar to Duret et al. (2012). It consist

in employing the volume forces (fvol) as a source term de�ned as

fvol = Au′

where A is a forcing coe�cient and u′ represent the velocity �uctuations.

T is the temperature, and Yv is the vapor mass fraction, only de�ned in

the gas phase because the liquid is considered a monocomponent �uid. Ther-

mophysical properties, such as the thermal conductivity (λ), thermal dilatation

coe�cient (αT ), liquid heat capacities (cpl), and mass di�usivity (Dm) are con-

sidered constants. However, the gas heat capacity (cpg) is an averaged weighted

by the vapor and air mass fractions:

cpg =
∑

k=a,v

Ykcpk

Since both phases are considered compressible, equations of state for each

phase are needed to close the system 1. For the liquid, a modi�ed version of

Tait's equation is chosen:

ρl = ρ0

(
P − P0

B
+ 1

) 1
γl

(2)

where ρ0 is a density at a reference state, P0 is a reference pressure, B is a

constant, which depends on the isothermal compressibility of the �uid, and γl

is a parameter inherent to the �uid. In the gas phase, the ideal gas equation is

used:

ρg =
PMg

RT
(3)
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where R is the ideal gas constant and the gas molar mass (Mg) de�ned as:

Mg =


 ∑

k=a,v

Yk
Mk



−1

.

Similar to Caltagirone et al. (2011); Fuster and Popinet (2018); Duret et al.

(2018), the following equation is implemented for the spatial and temporal evo-

lution of the pressure:

DP

Dt
= −ρc2∇ · u +

αT c
2

cp
(∇ · (λ∇T )) (4)

where c is the speed of sound. More detail about de development of eq. 4 can be

found in Germes Martinez (2022). To consider the phase change in our system,

proper jump conditions at the interface are included, ensuring the conservation

of mass, momentum, and species in the whole domain. The additional jump

conditions due to phase change are (Ishii and Hibiki, 2010; Martinez et al.,

2021):

[u] = ω̇

[
1

ρ

]

Γ[
P − n ·

(
2µ ¯̄Ξ

)
· n
]

Γ
= σH − ω̇2

[
1

ρ

]

Γ

[λ∇T ]Γ = −ω̇ hlv

ρgDm∇Yv · n|Γg = ω̇(1− Yvs)

(5)

(6)

(7)

(8)

where [A]Γ = Al −Ag for a given variable A, ω̇ is the vaporization rate and

hlv the latent heat.

3. Numerical methods

In this work, an interface capturing method is coupled with a projection

method to solve the system 1. A detailed explanation of the numerical method-

ology can be found in Martinez et al. (2021). This section presents a general

overview of the main numerical methods used for our simulations.
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3.1. Interface representation and projection method

The coupled level-set/volume of the �uid (CLSVOF) method for the inter-

face representation proposed by Ménard et al. (2007) was modi�ed to handle

compressible �uids and phase change in the ARCHER code. To this end, two

additional terms are added to the RHS of the liquid volume fraction (αl) trans-

port equation (see Duret et al. (2018) or Martinez et al. (2021) for more details

about the derivation) :

∂αl
∂t

+ ∇ · (αlul) = −αl
ρl

Dρl
Dt
− ṁ

ρl
(9)

where ul is the liquid velocity and ṁ = ρlΣ‖sd‖ is the volumetric evaporation

rate. ṁ is estimated using the local surface density
(

Σ = SΓ

Vcell

)
where SΓ is

the local surface area computed after the PLIC reconstruction and Vcell is the

volume of the grid cell. Additionally, the level set function (φ) is used to compute

the geometrical properties of the interface, such as, the normals
(
n = ∇φ

|∇φ|

)
and

the curvature (κ = −∇ · n).

This work uses the projection method based on two velocities presented in

Martinez et al. (2021) to consider compressibility e�ects and phase change. An

Eulerian staggered grid is considered, where the velocities are de�ned on the

faces and the scalars (e.g., P, αl, T, Yv) are located in the center of the cell. The

two velocity �elds obtained with this method are the liquid velocity �eld and

its extension in the gas phase and the gas velocity �eld and its extension in

the liquid phase, which are continuous at the interface. Then, a Ghost Fluid

method (Fedkiw et al., 1999) is applied to consider the velocity jump at the

interface and couple the two velocity �elds.

3.2. Temperature and vapor mass fraction transport

The temporal evolution of the temperature �eld is obtained by solving eq.

1c. Here, a 5th-order WENO scheme is implemented to discretize the convective

term, and a 2nd-order central di�erence scheme is used for the di�usion term.

Moreover, the energy jump condition at the interface is handled using a Ghost

Fluid method. To avoid numerical heating/cooling during the solution of the
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convective term of eq. 1c or the interface transport, the temperature at each

phase is extrapolated linearly using Aslam's extension method (Aslam (2004)).

Concerning the vapor mass fraction, eq. 1d is solved in the gas phase. The

di�usive and convective term of eq. 1d are discretized using the same numerical

schemes used for the temperature. At the interface, a Dirichlet boundary condi-

tion is implemented using the Aslam-Chiu extension method described in Bouali

et al. (2016). To compute the vapor mass fraction at the interface (Yvs), ther-

modynamic equilibrium is assumed. The saturation pressure (Psat) is computed

using the Clausius-Clapeyron relation:

Psat = Pref exp

[
−hlvMv

R

(
1

TΓ
− 1

Tref

)]
(10)

where Pref is the saturation pressure at Tref ,Mv is the molar mass of the vapor

and TΓ is the interface temperature. Then, Yvs is estimated with the following

relation:

Yvs =
XMv

XMv + (1−X)Ma
(11)

where X = Psat
P

is the vapor molar fraction and P is the mean pressure of the

system.

Finally, the evaporation rate is computed from eq. 8, using the normal

gradient of the vapor mass fraction at the interface:

ω̇ =
ρgDm∇Yv · n|Γg

(1− Yvs)
(12)

3.3. Surface averaged quantities

The following sections investigate surface averaged variables to describe the

vaporization process. The numerical methodology used to obtain such quantities

is detailed in this section.

First, the interface is reconstructed by discretizing the zero level-set surface

with a triangulated mesh using a Marching Cube algorithm. Then, its geomet-

rical properties, such as surface area and mean curvature, are extracted. To

this end, we use the ”surface_operators” routines of the in-house PyArcher
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code for post-processing. These routines are based on earlier versions of the rou-

tines described by Mohamed et al. (2019) and Di Battista et al. (2019) available

through the project Mercur(v)e 1.

Then, interpolation schemes of order 0 and 1 are implemented to estimate

the evaporation rate and vapor mass fraction at the zero level-set surface, re-

spectively. Finally, the surface averaged quantities are calculated as follows:

ψ
Γ

=
1

Sr

∫
ψdSr (13)

where ψ is a scalar (here ω̇ or Yv), dSr is the local surface in a given cell and

Sr is the total surface area reconstructed from the zero level-set surface.

4. Numerical con�guration

The well-known two-phase homogeneous isotropic turbulence (Duret et al.

(2012); Duret (2013); Duret et al. (2018)) is retained to study mixing and va-

porization. However, heat and mass transfer was not considered in previous

works. Here, the �uid thermophysical properties, initial temperature of each

phase, and vapor concentration in the box must be speci�ed carefully: they will

dictate the vaporization regime observed until a saturation state is reached.

Consequently, the following section aims to estimate the equilibrium state

that should be reached with a given set of physical parameters and initial tem-

peratures. Based on this equilibrium, two di�erent regimes of vaporization and

mixing are chosen and investigated. The equilibrium is deduced from an itera-

tive algorithm based on the �rst law of thermodynamics.

4.1. Equilibrium Conditions

Phase equilibrium is achieved when there is no mass transfer between the

phases (Cengel et al., 2011). In other terms, the system has reached phase

equilibrium when there is no vapor mass fraction gradient, which is the driving

1http://docs.mercurve.rdb.is/
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force for mass transfer. Since the vapor mass fraction at the interface is a

function of the temperature, thermal equilibrium is implied when the system

reaches phase equilibrium. Therefore, in this work, the word equilibrium refers

to phase equilibrium.

An energy balance is performed to estimate the system's conditions at the

equilibrium state. By considering a closed system where three components (air,

vapor, and liquid) coexist at the same time, we can write:

∆Ul + ∆Ua + ∆Uv = 0 (14)

where

∆Ul = ml,eqcvlTeq −m0
l cvlT

0
l −

(
ml,eq −m0

l

)
hlv

∆Ua = ma,eqcvaTeq −m0
acvaT

0
a

∆Uv = mv,eqcvvTeq −m0
vcvvT

0
v

represent the internal energy change between the initial and the �nal state of the

liquid, air, and vapor phase, respectively. Here, m0
i , mi,eq and T

0
i are the initial

mass, the mass at the equilibrium and the initial temperature of the component

i = l, a, v. An expression for the equilibrium temperature (Teq) is determined

from eq. 14, considering the following assumptions:

� Heat capacities of each component are constant.

� Air is not soluble in the liquid.

� Initial temperature of the air and vapor are the same.

� There is no chemical reaction.

Teq =
m0
l cplT

0
l +m0

acpaT
0
a +m0

vcp,vT
0
g −mevaphlv

ml,eqcpl +m0
acpa +mv,eqcpv

(15)

The amount of evaporated mass can be determined by mevap = mv,eq −m0
v.

An iterative algorithm is used to solve eq. 15 with the condition that the vapor

mass fraction calculated with the equilibrium temperature is the same as the

vapor mass fraction calculated with the equilibrium vapor mass.
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4.2. Parameters choice

Similar to previous works (Duret et al. (2018); Martinez et al. (2021)), a

compressible two-phase HIT con�guration with phase change is considered to

study the scalar turbulent mixing and evaporation. Simulations are carried out

in a 3D periodic box with a length size lx = 1.5 × 10−4m, a liquid volume

fraction αl = 10% and a mesh of 2563. The mean turbulent kinetic energy

is k = 3.6 m2 · s−2, the liquid has the physical properties of n-decane, and

the gas is initially considered dry air. Additionally, once evaporation starts,

the gas phase is considered an ideal mixture of air and n-decane vapor. The

physical properties at the initial state of the simulation are summarized in the

table 1. The parameters for the Tait's equation are B = 109 Pa, P0 = 105 Pa,

ρ0 = 750 kg ·m−3 and γl = 1.215. Moreover, the initial values of the simulation's

dimensionless numbers are listed in table 2.

Fluid ρ
(

kg
m3

)
µ
(

kg
ms

)
λ
(

W
mK

)
Cp

(
J

kgK

)
M

(
kg
mol

)
hlv

(
J
kg

)
Air 25 1.88× 10−5 0.045 1060 0.029 -

Vapor - - - 2098 0.142 -

N-decane 750 5.65× 10−4 0.14 2207 0.142 3.25× 105

Table 1: Physical properties for the air, vapor, and n-decane at the initial state of the simu-

lation.

Fluid Sc Pr Le

Air 1.96 0.44 4.44

N-decane - 8.90 -

Table 2: Dimensionless numbers at the initial state of the simulations.

Two simulations are performed to investigate the in�uence of the evaporation

regime on scalar turbulent mixing, where only the initial liquid temperature is

varied. The initial liquid temperatures of the simulations are T 0
l = 540K, 460K

and the initial gas temperature in both cases is T 0
g = 573K. The �rst simulation

is expected to present a larger evaporation rate than the second since the liquid
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temperature is closer to the boiling point. Hence, the equilibrium state and the

temporal evolution of the temperature and vapor mass fraction are expected to

di�er in both simulations.

Cases T 0
l (K) T 0

g (K) Teq(K) Yv,eq
ml,eq
m0
l

Peq
P0

1 540 573 522 0.44 0.76 1.03

2 460 573 464 0.19 0.93 0.83

Table 3: Di�erent variables at the equilibrium state for the two cases studied.

Using the method presented in section 4.1, the variables at the equilibrium

are estimated for each case, and the results are summarized in the table 3.

In the hypothetical case where evaporation is not considered in the system

(only heating), the equilibrium temperature is between the initial liquid and

gas temperatures. The table 3 shows that the equilibrium temperature for case

1 is lower than the initial liquid temperature. This is explained by the large

evaporation rate, where the liquid's latent heat consumes an important part

of the initial energy of the system. In contrast, di�erent results are observed

for case 2, where the equilibrium temperature is higher than the initial liquid

temperature. Since case 2 has a lower evaporation rate, the system's energy in

the initial state is su�cient to evaporate the liquid and increase its temperature.

However, the increase in liquid temperature is lower than in the hypothetical

case without evaporation because some energy is still consumed. In both cases,

the equilibrium temperature is smaller than the gas temperature.

Moreover, the impact of the evaporation regime can be seen in the amount

of liquid evaporated. In case 1, the equilibrium vapor mass fraction is 2.3 times

larger compared to case 2. This indicates a more signi�cant amount of evapo-

rated liquid in case 1, caused by the increased evaporation rate. Another pa-

rameter is the liquid mass at equilibrium normalized by its initial value. Again,

a lower liquid mass is observed for case 1, which agrees with the aforementioned

discussion.

The variables at the equilibrium are used to normalize the temperature
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(T ∗ = T
Teq

) and the vapor mass fraction (Y ∗v = Yv
Yv,eq

). In addition, to ana-

lyze di�erent stages of the turbulent mixing, four times are de�ned (t1, t2, t3

and t4), each corresponding to a time where a speci�c value of the normalized

mean vapor mass fraction is reached (Yv
∗

= 0.18, 0.32, 0.54 and 0.72). It is im-

portant to note that the physical time represented by each de�ned time varies

depending on the simulation. For example, since the vapor production rate is

higher in case 1, t1 represents a shorter time compared to case 2. Furthermore,

the values of Yv
∗
were chosen considering the time required to reach the equi-

librium state and the computational cost involved. Nevertheless, at least 20

eddy turnover times are considered for each simulation to have a well-developed

mixture of the vapor mass fraction.

4.3. Initialization procedure

The simulation initialization is similar to Duret et al. (2012); Bouali et al.

(2016) for the velocity �elds. Regarding heat and mass transfer, the temperature

is constant in each phase during the initialization procedure, meaning that no

di�usion of species or heat occurs during this stage. Then, sub-iterations of

pure di�usion are performed, where the following equations are solved:

T k+1 = T k +
∆tdiff
ρkckp

∇ ·
(
λ∇T k

)

Y k+1
v = Y kv + ∆tdiff

∇ ·
(
ρkgDm∇Y kv

)

ρkg

(16a)

(16b)

where k is the current sub-iteration. The number of di�usive sub-iterations

(kend) is computed by:

kend =
tBL

∆tdiff
(17)

where tBL = δY v
sdiff

is the time to generate a vapor boundary layer close to the

interface. More precisely, this procedure move a vapor mass fraction iso-contour

to an imposed distance δY v = 6dx with an estimated speed of sdiff = Dm
dx .

∆tdiff = 0.2
Vcfl

is the time step computed with the thermal and mass di�usion

restrictions:

Dcfl =
6Diff

dx2
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where Diff = max
(

λg
ρgcpg

, λl
ρlcpl

, Dm

)
.

This procedure avoids numerical instabilities in the vaporization rate com-

putation created by high temperature and vapor mass fraction gradients in the

initial �elds. Finally, the energy and vapor mass fraction transport equations

are activated, and the simulation statistics are taken from this point.

5. Results

5.1. Heat and mass transfer

The instantaneous temperature �elds at the domain boundaries with inter-

face visualization (zero level set isocontour) at t3 for each case are presented

in Figure 1 (top). At this point in the simulations, the e�ects of the turbulent

velocity �eld are easily appreciated in the temperature transport. The interface

visualization opacity is reduced to show the bubbles enclosed within the larger

liquid structures. Due to the reduced gas volume, these bubbles are charac-

terized by a higher saturation level than the gas far from the interface. The

in�uence of the gas volume on time required to reach equilibrium is investigated

in more detail by Duret et al. (2012).

Additionally, a wide range of vapor mass fraction gradients is observed near

the interface. These variations depend mainly on the interface's deformation

and the surrounding gas's temperature. For example, a liquid structure moving

toward a high-temperature gas will exhibit a smaller thermal boundary layer

thickness at the front due to the larger temperature gradients.

Similar phenomena are observed in Figure 1 (bottom) for the instantaneous

vapor mass fraction �elds at the domain boundaries at t3. Compared to the

temperature �elds, larger gradients are present in the gas phase: convection

e�ects are more dominant for this scalar because the mass di�usivity (Dm =

3.82 × 10−7m2 · s−1) is smaller than the initial thermal di�usivity (Dth =

1.70 × 10−6m2 · s−1).

Figure 2 shows the volume rendering of the vapor mass fraction at the same

time as Figure 1. Here, we can observe the interactions of the vapor mass
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Figure 1: Instantaneous temperature (top) and vapor mass fraction (bottom) �elds at the

domain boundaries with interface visualization (zero level set isocontour) at t3 for case 1

(left) and case 2 (right).
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Figure 2: Volume rendering of the vapor mass fraction �eld with interface visualization (Level

Set 0 isocontour) at t3 for the two cases studied.

fraction and the turbulent velocity �eld within the domain. There is vapor

accumulation near the interface region, and the vapor begins to saturate the

entire gas volume until the system reaches equilibrium. Another interesting

phenomenon is the vapor wake behind the smaller liquid structures as they

are convected through the domain. There are several possible outcomes for the

lifetime of these smaller liquid structures, e.g., they may remain convected by the

velocity �eld until their complete evaporation, or they could merge with another

liquid structure. These possible scenarios are considering that the system is not

at equilibrium. Furthermore, it is noted that the size and shape of vapor wakes

depend on the size of the structure, its average velocity, and the distance from

another interface.

Recently, similar observations have been made for a single evaporating droplet

in a homogeneous and isotropic turbulent environment (Dodd et al. (2021)) and

for dispersed evaporating droplets in a homogeneous turbulent shear environ-

ment (Scapin et al. (2021)). In Scapin et al. (2021), the authors show variations

in the evaporation rate due to small deformations caused by the turbulent ve-

locity �eld. In addition, their results also reveal an increase in the evaporation

rate due to the interaction of the vapor mass fraction with the turbulent veloc-
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ity �eld. These results highlight the limitation of classical vaporization models

based on spherical droplets with a constant evaporation rate.

The temporal evolution of the liquid and interface temperature normalized

by the equilibrium temperature for both cases are presented in Figures 3. t∗ = t
τ

is the time normalized by the eddy turnover time de�ned as:

τ =
k

ε

where (·) is the volume averaging operator, and ε is the mean turbulent dissi-

pation rate. As predicted, the temperature of the liquid for case 1 decreases as

it approaches the equilibrium state (see Figure 3a). In addition, the liquid tem-

perature follows the temperature at the interface, decreasing despite the higher

gas temperature because of the heat jump caused by the latent heat. This result

shows the accuracy of the Ghost Fluid Method implemented to account for the

energy jump condition and the coupling between the liquid and gas temperature.

At the �rst instants of the simulation, a sudden drop in temperature is observed

before it starts to stabilize after two eddy turnover times. It can be explained

by the maximum value of the evaporation rate during the early moments of

the simulation. Subsequently, the vapor generated accumulates at the interface,

decreasing the evaporation rate and slowing the temperature decrease. At the

end of the simulation, there is a negative slope in the evolution of the liquid

temperature, which means that heat is still exchanged with the gas phase, i. e.,

equilibrium has not yet been reached.

An opposite behavior is observed for the liquid temperature in case 2. Figure

3b shows an increase in the liquid temperature caused by the initial temperature

gradient between the liquid and gas. Then, the temperature rise slows down

as the heat �ux from the gas to the liquid and the evaporation rate decrease.

Consequently, the behavior of both cases is the same as the one predicted by

the iterative algorithm described in section 4.1.

The temporal evolution of liquid and interface temperature is strongly linked

to the evaporation rate due to the energy jump condition at the interface. Thus,

the temporal evolution of the surface-averaged evaporation rate
(
ω̇

Γ
)
for both
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Figure 3: Normalized liquid (solid line) and interface (dashed line) temperatures temporal

evolution for case 1 (a) and case 2 (b).
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Figure 4: Evaporation rate temporal evolution for case 1 (dashed line) and case 2 (solid line).

cases is shown in Figure 4. By comparing each case, a signi�cant di�erence

between the initial magnitudes of ω̇
Γ
is observed, which is explained by the

initial liquid temperatures chosen for each case. Nevertheless, both curves have

the same general behavior; a maximum value at the beginning of the simulation

followed by a decrease as the system approaches equilibrium.

The temporal evolution of the normalized volume-averaged gas temperature

(T
∗
g =

T g
Teq

) is shown in Figure 5. Here, a more pronounced temperature decrease

is observed in case 2 compared to case 1. The e�ect of the energy jump and the

Stefan �ow on the heat transfer across the interface could explain this behavior.

In case 1, the temperature decrease near the interface caused by latent heat re-

sults in an important local decrease in the temperature gradient. In other words,

the increased evaporation rate slows down the heat transfer. The decrease in

the heat transfer due to the Stefan �ow has also been observed in the literature

by Jayawickrama et al. (2019, 2021) in vaporizing droplet con�gurations.

Another way to investigate the in�uence of the evaporation rate on the

evolution of a system from the initial condition to the equilibrium state is to

study the temporal evolution of Y
∗
v shown in Figure 6 for the two cases studied.
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Figure 5: Normalized gas temperature temporal evolution for case 1 (dashed line) and case 2

(solid line).

0 5 10 15 20
t∗

0.0

0.2

0.4

0.6

0.8

1.0

Y
∗ v

Figure 6: Normalized vapor mass fraction temporal evolution for case 1 (dashed line) and case

2 (solid line).
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Figure 7: Gas Lewis number temporal evolution for case 1 (dashed line) and case 2 (solid

line).

Here, we can observe a more rapid increase of Y
∗
v in case 1. These results are

consistent with our previous analysis of the temporal evolution of the mean

liquid and gas temperatures and evaporation rate: higher evaporation rates

indicate faster vapor generation at the interface, contributing to the increase of

Y
∗
v in case 1. In addition, the increased Stefan �ow pushes the vapor away from

the interface, contributing to vapor mixing. However, the time evolution of Y
∗
v

depends not only on the conditions near the interface (TΓ, ω̇
Γ
, etc.), but it also

depends on the turbulent velocity �eld and the interaction between the liquid

and gas structures. This last part is investigated in the following sections by

analyzing the evolution of the second moment and the PDFs of Y
∗
v.

From Figures 5 and 6, we can notice di�erent characteristic times needed

to reach the thermal equilibrium (T
∗
l = T

∗
g = 1) and the phase equilibrium

(Y
∗
v = 1) in both cases. This can be explained by looking the evolution of

the gaseous Lewis number
(
Leg = Dth

Dm

)
shown in Figure 7. Both cases have an

initial Le = 4.44, indicating a stronger thermal di�usion in�uence, resulting in a

reduction of the characteristic time to reach the thermal equilibrium. However,

the Lewis number is not constant in our simulations due to the decrease of the
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Figure 8: Normalized pressure temporal evolution for case 1 (dashed line) and case 2 (solid

line).

gaseous thermal di�usion coe�cient
(
Dth
g =

λg
ρgcg

)
induced by the increase of the

gas density and heat capacity. Consequently, the evaporation regime in�uences

the di�erence between the thermal and mass characteristic times. For example,

these times will tend to approach each other more rapidly in case 1 due to the

faster increase of the mean vapor mass fraction. These results show that large

evaporation rates induce a relatively high Lewis number variation, limiting the

assumption that the Lewis number is constant and equal to one, normally used

in turbulent combustion mixing models.

The temporal evolution of the normalized mean pressure
(
P
∗

= P
Peq

)
for

each case is shown in Figure 8. The pressure variations in both cases can

be explained by analyzing the time evolution of temperature and vapor mass

fraction. In our simulations, the vapor molecular mass is greater than the air

molecular mass, increasing the mean molecular mass of the gas phase, which

will tend to increase the system pressure as the liquid evaporates. In contrast,

the decrease in gas temperature in both cases will tend to decrease the system

pressure. In case 1, a slight increase in initial pressure is observed, resulting

from the amount of vapor produced, which compensates for the pressure drop
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due to the decrease in temperature. However, as less liquid evaporates in case 2,

the pressure experiences a signi�cant decrease. These results agree well with the

behavior predicted by the algorithm presented in the section 4.1, summarized

in the table 3.

5.2. Scalar turbulent mixing analysis

5.2.1. Evolution of the scalar variance

This section studies scalar mixing using the normalized vapor mass fraction

second moment. This has been previously done for single-phase (Eswaran and

Pope (1988); Juneja and Pope (1996)), dispersed (Reveillon et al. (1998); Reveil-

lon and Vervisch (2000); Reveillon and Demoulin (2007)) and dense (Duret et al.

(2012)) two-phase �ows. In the �rst scenario, several power laws for the scalar

variance decay can be found in the literature, depending on whether an im-

posed mean scalar gradient feeds the scalar. This behavior is explained by the

dissipation rate term in the variance transport equation. In the DNS of dis-

persed two-phase �ows, Lagrangian techniques are implemented to track the

temporal evolution of droplet diameter, velocity, and position. These droplets

create vapor pockets as the turbulent velocity �eld convects them. This kind of

simulation provides good insight into the e�ects of a non-homogeneous scalar

source on the temporal evolution of the scalar variance. However, some limita-

tions arise, for instance, the interactions between the scalar and the liquid/gas

interface are not solved, and an idealized model for liquid vaporization is used.

In this work, the interface and internal �ows of liquid structures are solved,

similar to Duret et al. (2012). Moreover, our formalism coupled temperature,

vapor mass fraction, and �uid dynamics through the evaporation rate. Conse-

quently, the vapor mass fraction is not a passive scalar, and the mixing and the

�uid dynamics of the system depend on the mass and thermal boundary layers

simultaneously.

Figure 9 shows the temporal evolution of the RMS (Root Mean Square) of
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Figure 9: Temporal evolution of Y ∗′v for case 1 (dash line) and case 2 (solid line).

the normalized vapor mass fraction, computed as follows:

(
Y ∗′v =

√
(Y ∗v − Y ∗v )2

)

for the two cases studied. The curves in Figure 9 have similar behavior. An

increase in the RMS is observed at the beginning of the simulation. Then, it

reaches a maximum value after approximately an eddy turnover time, before

its decay towards zero. This behavior di�ers from the results obtained with

the single-phase �ow but is similar to those obtained with the two-phase dis-

persed �ow simulations. As discussed by Reveillon and Vervisch (2000), the

initial increase in scalar RMS is caused by the source terms appearing in its

transport equation when an evaporating liquid generates vapor. The maximum

value of the RMS is reached when the scalar dissipation rate balances the dis-

persion generation. After reaching the maximum, turbulent mixing becomes

more in�uential in the system than vaporization, resulting in a decay of the

scalar variance.

Moreover, Duret et al. (2012) observed similar behavior in dense two-phase

�ow simulations. In this case, the initial increase in dispersion is in�uenced by

vapor generation at the interface and the diversity of boundary layer thickness
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formed around the liquid structures. Furthermore, the initial liquid volume

fraction on the time evolution of the scalar variance is investigated. It is observed

that a decrease in the available gas volume causes an increase in the maximum

value of the scalar RMS and a sharper subsequent decay, resulting in a shorter

saturation characteristic time.

In a more detailed analysis of the curves presented in Figure 9, we observe

the evaporation regime's in�uence on the scalar variance's temporal evolution.

For a higher evaporation rate, the maximum value of the variance increases and

is reached in a slightly shorter time than in case 2. Moreover, the subsequent

decay of the scalar dispersion is also more pronounced for the case with a large

evaporation rate. A similar observation was made by Reveillon and Vervisch

(2000) for dispersed two-phase �ows. This is explained by the faster generation

of vapor in the dry air environment and the subsequent mixing of this vapor. In

this work, the scalar variance depends not only on the magnitude of the evapora-

tion rate but also on the temporal evolution of the surface density, the in�uence

of the Stefan �ow on the system dynamics, and the curvature of the interface,

resulting in a more realistic model of the atomization, mixing, and evaporation

processes. For example, the Stefan �ow pushes the vapor away from the inter-

face, contributing to the decay of the scalar RMS and consequently enhancing

the mixing process. In addition, the non-homogeneity of the evaporation rate

considered in the present work dramatically a�ects the temporal and spatial

evolution of the scalar dissipation rate and, consequently, the scalar variance.

The following sections perform a more detailed analysis of scalar generation

and mixing by computing scalar PDFs and joint PDFs.

5.2.2. Evolution of the scalar PDFs

The asymptotic behavior of scalar mixing has been extensively studied and

is well known in the literature. For a con�ned two-phase environment with

a vaporizing liquid surrounded by dry air, the scalar PDF starts as a shape

similar to a Dirac function where Y
∗
v = 0 if evaporation has not started yet.

Then, vaporization occurs and when the equilibrium state is �nally reached, the

28



scalar PDF has a similar shape at Y
∗
v = 1, where vapor generation is no longer

possible due to the absence of a vapor gradient.

In this work, we are interested in studying the temporal evolution of scalar

PDF shapes. For this purpose, the PDF of the normalized vapor mass fraction

for four successive instants for case 1 is plotted in Figure 10. The general

tendency described above is easily seen. An interesting behavior that is observed

for the curves presented in Figure 10a is the presence of values of Y
∗
v > 1.

Hence, the vapor mass fraction is not upper-bounded to 1 when normalized

by its saturation state value, even though it is its �nal value. This behavior

has at least two explanations; �rst, from the table 3, we can observe that the

temperature at equilibrium is lower than the liquid temperature. Consequently,

the equilibrium interface vapor mass fraction is smaller than the initial vapor

mass fraction.

Secondly, there is a wide range of liquid structures with di�erent character-

istic lengths, resulting in di�erent temporal evolution of temperature pro�les in

each liquid structure. This means that some smaller liquid structures do not

have the same behavior as the overall system. For example, a small convected

droplet in contact with high-temperature gas will evaporate and increase in tem-

perature simultaneously, even though the system's average temperature tends

to decrease. This is also a consequence of solving the temperature and internal

�ow of the liquid structure. Furthermore, these results demonstrate the strong

coupling between the energy and species conservation equations and the variety

of phenomena captured by our compressible formalism.

In the analysis of passive scalar mixing in single-phase �ows, values of the

normalized vapor mass fraction greater than unity are generally not observed.

In the literature, the total amount of vapor is usually imposed at the initial con-

dition of the simulation. In the simulation performed by Duret et al. (2012), the

vapor mass fraction at the interface is constant and imposed during simulation

initialization. Consequently, the temporal evolution of the temperature and its

relation with the vapor mass fraction is not solved. As a result, the equilibrium

vapor mass fraction equals the imposed vapor mass fraction at the interface.
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Figure 10: (a) Instantaneous PDFs of Y ∗v at t∗1 (solid line), t∗2 (dashed line), t∗3 (dashed-dotted

line) and t∗4 (dotted line), and (b) Zoom of the higher values of Y ∗v at the same times for case

1.

30



The �rst PDF presented in Figure 10a correspond to a normalized time of

t∗1 = 0.94. At this time, the RMS is almost at its maximum (Y ∗′v = 0.26). The

PDF has a pronounced peak at Y ∗′v = 0 corresponding to dry air and a long tail

containing all the possible values of the normalized vapor mass fraction. This

corresponds to the �rst instants after the development of the mass boundary

layer, where the mixing is mostly governed by di�usion of the vapor layers

around the interface. This stage of the scalar mixing is characterized by large

temperature and vapor mass fraction gradients at the interface, explaining the

rate of change observed in the temporal evolution of the T
∗
l , ω̇

Γ
, T
∗
g, and Y

∗
v

(see Figures 3, 4, 5 and 6).

The following PDF corresponds to t∗2 = 2.88 and an RMS of Y ∗′v = 0.22,

which means that the decay has already started; thus, the contribution of the

scalar dissipation rate is more signi�cant than the contribution of the vaporiza-

tion source term in the variance transport equation. In this state, the e�ects of

the turbulent velocity �eld on the scalar mixture are more critical. As a result,

the vapor is transported into the gas �eld away from the interface, resulting in

a rightward shift and a decrease in the PDF peak. In addition, the tail of the

PDF has decreased, indicating a reduction in the vapor mass fraction at the

interface.

Subsequently, at the third PDF, which corresponds to a time of t∗3 = 6.21,

regrowth of the peak and a shrinking of the PDF are observed, showing a homog-

enization of the vapor mass fraction in the gas phase away from the interface,

which is also characterized by a decay of the RMS (Y ∗′v = 0.14). In addition,

the probability of values smaller than Y
∗
v = 0.25 is close to zero, which means

that the vapor is spread over the entire gas volume. A tail is also present on the

right side of the PDF, corresponding to the larger values close to the interface.

Finally, the shrinking continues in the fourth PDF: Y ∗′v = 0.077 at t∗4 = 12.0,

which is consistent with the asymptotic behavior described above. The PDF

peak is larger, and its shape has fewer irregularities, indicating a higher level of

homogenization of the vapor mass fraction.

An interesting behavior is observed at the end of the right tails of the PDFs.
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A zoom of the highest values of the Y ∗v is presented in Figure 10b. This way,

the temporal evolution of the PDF tails is easily seen. Here, we see that the

PDFs tails move to the left, towards unity. In addition, there is an abrupt

behavior change in the last values of the PDFs. This could be interpreted as the

result of the temporal evolution of the vapor mass fraction gradient near the

interface. It is worth mentioning that these results describe a general behavior

of the system and that the mass boundary layer thickness varies depending on

the local thermodynamic conditions in each structure and each cell close to the

interface.

The PDFs of the vapor mass fraction for the case 2 at the same level of mixing

are presented in Figure 11. In this case, values of Y
∗
v > 1 can also be found but

with a smaller probability than in case 1. Here, the equilibrium temperature

is higher than the initial liquid temperature (see table 3). Consequently, a

probable reason for having values of Y
∗
v > 1 is that the smallest liquid structures

are heated at temperatures higher than the equilibrium temperature, which

generates a high vapor mass fraction at the interface. This occurs especially in

the �rst moments of the simulation. The probabilities for the values of Y
∗
v > 1

decrease with time until they become nonexistent in the last PDF.

Comparing the two studied cases, the in�uence of the evaporation rate in

the PDF shapes can be observed. In case 2, the physical time needed to arrive

at the same value of Y
∗
v (t
∗
1 = 1.79) is almost 13 times higher than in case 1 due

to the lower evaporation rate. As a consequence, the turbulent velocity �eld

has more time to advect the vapor mass fraction �eld, resulting in a reduction

of the PDF peak. Similar behavior is observed in the other PDFs. The second

PDF correspond to a time of t∗2 = 4.73 and a Y ∗′v = 0.137. At this time, the

peak of the PDF continues to decrease. In the third and fourth PDFs (t∗3 = 8.99

and t∗4 = 15.26), the width has been reduced considerably. This indicates that

a more e�cient turbulent mixing is achieved compared to case 1, but their

behavior over time remains similar.
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Figure 11: (a) Instantaneous PDFs of Y ∗v at t∗1 (solid line), t∗2 (dashed line), t∗3 (dashed-dotted

line) and t∗4 (dotted line), and (b) Zoom of the higher values of Y ∗v at the same times for case

2.
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5.2.3. Self-similarity

Figure 12 shows the normalized PDF of Y
∗
v (P (Y

∗
v)Y

∗′
v with respect to

Y ∗v −Y
∗
v

Y ∗′v
). Similar to the results obtained by Duret et al. (2012), a signi�cant

asymmetry is observed in all the PDFs. The peaks are on the negative side of

the x-axis, indicating that the smaller values far from the interface are domi-

nant. In Figure 12a, the shape of the PDF is a�ected by the initial conditions

in the early stages of the simulation. However, the PDF adopts similar shapes

once the scalar mixing is more developed.

Nonetheless, around the peak, we can notice a di�erence in the shapes of

the PDFs, especially in the low evaporation case. Compared with the results of

the single-phase simulations, it is evident that the interface acting as a vapor

source strongly in�uences the PDF shape. For example, the tail present on the

right of all PDFs is the primary indicator of these di�erences.

The shape observed in Figure 12 is similar to the results obtained by Duret

et al. (2012). However, there is a noticeable di�erence on the right-hand side

of the PDFs. In the work of Duret et al. (2012), a secondary peak is formed

at the maximum value of the scalar due to the interface boundary condition of

the vapor mass fraction. In this work, the tail shape of the PDFs varies as a

function of the vapor mass fraction at the interface, which is non-homogeneous

and dependent of the interface temperature. Consequently, the vapor mass

fraction at the interface possesses its own PDF, which will be investigated in the

next section. In both cases, the shapes of the PDFs are similar to a log-normal

distribution, con�rming that the PDF shape is not adequately represented by a

beta distribution when the interface acts as a scalar source.

5.2.4. Surface conditional PDFs

This section analyzes the temporal evolution of the evaporation rate and the

vapor mass fraction at the interface. For this purpose, the PDFs for the same

instants presented in the previous section are used.

Figure 13 shows the PDFs of the surface-averaged normalized vapor mass

fraction
(
Y ∗vs = Yvs

Yv,eq

)
at t∗1, t

∗
2, t
∗
3 and t∗4 for both cases. For the interface vari-
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Figure 12: Instantaneous normalized PDFs of Y ∗v at t∗1 (solid line), t∗2 (dashed line), t∗3 (dashed-

dotted line) and t∗4 (dotted line) for case 1 (a) and case 2 (b).
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Figure 13: Instantaneous PDFs of Y ∗vs at t∗1 (solid line), t∗2 (dashed line), t∗3 (dashed-dotted

line) and t∗4 (dotted line) for case 1 (a) and case 2 (b).
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ables, the asymptotic behavior of the PDF is similar to the gas phase variables.

At �rst, the PDF is spread around the value corresponding to the initial condi-

tions. Then, the PDF tends to a Dirac function when the system is close to the

equilibrium state.

Large dispersion of the vapor mass fraction is observed in the �rst PDFs due

to a wide range of interface temperatures. Moreover, the mean vapor mass frac-

tion moves toward its value at equilibrium (Y ∗vs = 1) in the successive instants.

In contrast, the dispersion decreases due to the homogenization of the interface

temperature, resulting in the increase of the PDF peak with time.

Comparing Figures 13a and 13b, while the general trend is similar as the

system approaches equilibrium, a di�erence in PDF behavior is observed early

in the simulation. In case 2 there is an initial increase in the mean value of Y ∗vs

followed by a successive decrease. On the contrary, in case 1, the mean value

of Y ∗vs decreases from the beginning of the simulation to the end. This initial

increase of Y ∗vs in the second case could be attributed to the pressure drop of

the system, which has the tendency to increase the vapor molar fraction (see

equation 11).

The PDFs of the evaporation rate for the four studied times are presented

in Figure 14 for both cases. In this context, the PDF is expected to evolve

to a Dirac function shape at ω̇ = 0 when the system reaches equilibrium. An

important dispersion of the evaporation rate is observed at the earlier moments

due to the high temperature and vapor mass fraction gradients. In addition, a

signi�cant asymmetry is observed in all PDFs with a peak on the left side and

a long tail to the right, showing the low probability of the highest values of the

evaporation rate. For successive instants, the decrease of the mean evaporation

rate and the tail width is observed, causing an increase of the PDF peak. The

main di�erence between both cases is that the magnitude of ω̇ is more signi�cant

in case 1.

Compared to the interface vapor mass fraction, the evaporation rate also

depends on the interface temperature, but it also depends on the vapor concen-

tration around the interface, and the interface geometry, such as the curvature
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Figure 14: Instantaneous PDFs of ω̇ at t∗1 (solid line), t∗2 (dashed line), t∗3 (dashed-dotted line)

and t∗4 (dotted line) for case 1 (a) and case 2 (b).
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and characteristic lengths of the liquid and gas structure.

5.3. In�uence of mean curvature on the evaporation rate

To better understand the simulation state at the studied times, the interface

visualization colored by the evaporation rate magnitude for the same instants as

the PDFs are presented in Figure 15. As for Figure 1, the e�ect of the turbulent

velocity �eld on the interface deformations is observed. Moreover, the overall

decrease of the evaporation rate as time passes is shown.

Figure 15 aims to understand the in�uence of the curvature on the evap-

oration rate. In this work, the convention represented in Figure 16 is used:

red represents negative values of the mean curvature corresponding to a convex

interface, and blue represents positive values of the mean curvature correspond-

ing to a concave interface. In Figures 15, a decrease in the evaporation rate is

observed when the interface is concave. Also, we can see some gas structures

enclosed in the liquid and the low evaporation rate in these areas.

Figure 17 shows the joint PDF evolution of the evaporation rate ω̇ as a

function of the normalized mean curvature H∗. Here, the mean curvature is

normalized with the radius of the droplets used in the initialization of the HIT

con�guration for φ = 0.1 (see Luret et al. (2010); Canu et al. (2020) for more

details). The joint PDFs are computed at the time instants corresponding to

Y
∗
v = 0.18, 0.32, 0.54 and 0.72, and are presented in Figure 17 from left to right

and from top to bottom. The �rst joint PDF (top left of Figure 17) represents

the initial stages of the mixing process, and a wide dispersion of ω̇ over a large

range of mean curvatures is observed. Additionally, ω̇ dispersion is related to

the variations of local vapor concentration close to the interface, the interface

deformations, and the diversity of liquid and gas structure characteristic lengths.

Similar observations were made by Scapin et al. (2021) for dispersed two-

phase �ow simulations in homogeneous shear turbulence. In their simulations,

the liquid/gas interface and internal �ow of the liquid droplets are resolved, and

the evaporation rate depends on the vapor mass fraction and the temperature

�elds. Scapin et al. (2021) observed dispersion of ω̇ due to the interface deforma-
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Figure 15: Instantaneous interface visualization (zero level set iso-contour) colored by the

magnitude of the evaporation rate at t∗1, t
∗
2, t
∗
3 and t∗4 (from left to right, and top to bottom)

for case 1.
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Figure 16: Graphical representation of the curvature sign of a deformed liquid structure.
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tions and the non-homogeneity vapor concentration induced by the turbulent

velocity �eld. Although, only values corresponding to a convex interface are

presented because the interface deformation is relatively small, and there is no

encapsulation of gas structures.

Furthermore, the larger values of the evaporation rate are found in the neg-

ative values of the mean curvatures. Hence, the probability of having a large

evaporation rate is higher in small liquid structures than in the concave parts

of the interface, usually present in gas structures. This could be explained by

the formation of local saturation zones in concave interfaces. Indeed, the vapor

generation is limited by the magnitude of the scalar gradient at the interface: in

small gas structure the scalar generation is rapidly stopped when the gas struc-

ture is completely at saturation, which happens quickly if the gas structure is

closed or quasi-closed. Consequently, the scalar gradient tends to zero, reducing

the magnitude of the vaporization rate. Even if the gas structure is large and

not saturated, local saturation can occurs in strongly curved concave interface

region : the vapor is "trapped" and scalar gradients are greatly reduced as well

as the vaporization rate. In the second joint PDF (top right of Figure 17),

there is an increase in the probability of ω̇ in the negative values of the mean

curvature (convex interface) whereas the probability is reduced in the positive

curvature (concave interfaces), which indicates an increased saturation state

close to concave interface as time evolve. Then, in the third joint PDF (bottom

left of Figure 17), the decrease of ω̇ is more noticeable: the simulation is closer

to the equilibrium state. Moreover, the values ω̇ are less dispersed because of

the homogenization of the vapor mass fraction and temperature �elds. Finally,

in the last joint PDF (bottom right of Figure 17), the probability of both convex

and concave interfaces start to become comparable, and the tendency of ω̇ to

tend to zero is more evident.

In Figure 18, the temporal evolution of the joint PDF of the evaporation

rate for case 2 is presented. Similar behavior to that shown in the Figure 17

is observed. However, the e�ects of the evaporation regime are easily seen.

For example, the magnitude of the evaporation rate is considerably smaller, as
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noted in the previous section (see Figure 4). In the earlier times, the shape of

the joint PDFs for both cases is similar despite the di�erence in the magnitude

of the evaporation rate. Once the turbulent mixing begins homogenizing the

scalars, the di�erences in the joint PDFs become more apparent. For the same

value of the mean vapor mass fraction, we can observe the �attened shape of

the joint PDFs, which indicates a higher saturation level for the same value of

the mean vapor mass fraction.

6. Conclusion

In this work, a fully compressible DNS formalism is applied to analyze the

evaporation process and scalar turbulent mixing in an atomization regime. The

method is able to capture the coupling between temperature, vapor mass frac-

tion, and momentum conservation equations; resulting in a non-passive scalar

mixing and a realistic representation of the vaporization process. Hence, our

work is one of the few available in the literature that considers all these phe-

nomena simultaneously.

The scalar turbulent mixing and the evaporation process are analyzed. To

this end, the temporal evolution of the vapor mass fraction RMS for both cases

is studied. An initial increase in the vapor mass fraction RMS results from the

vapor production at the interface in a primarily dry air environment. After-

ward, the scalar RMS decays as the equilibrium state is reached. Moreover,

it was observed that the evaporation regime a�ects this behavior by increas-

ing the maximum value when large evaporation rates are considered, and it is

accompanied by a faster decay.

Furthermore, the temporal evolution of the PDFs of the vapor mass fraction

is studied. It is shown that the PDFs shape strongly depends on the mixing

stage, but remains close to a log normal distribution. An interesting behavior is

observed in the right tail of the PDFs. Here, the shape of the PDFs tails depends

on the vapor accumulation and generation near the interface. In addition, it is

shown that the evaporation rate a�ects the temporal evolution of scalar PDFs;

44



resulting in an increased physical time to reach the equilibrium value of the

vapor mass fraction when the evaporation rate decrease.

Finally, a statistical analysis of the surface averaged vapor mass fraction

and evaporation rate is performed. The temporal evolution of their PDFs is

analyzed. Both variables have shown a more signi�cant dispersion in the �rst

instants of the simulation. In the second case, the important pressure vari-

ation a�ects the vapor mass fraction generated at the interface: initially the

PDFs means increase due to the pressure drop that enhances the scalar source,

then a decrease is observed due to the lower scalar generation induced by lower

temperatures in the system.

In addition, the behavior of the evaporation rate is studied from the curva-

ture point of view, observing that the probability of the highest values of the

evaporation rate is found in the convex interface curvatures. These results il-

lustrate the impact of the assumptions typically made in the literature, where

constant variables such as vapor mass fraction and evaporation rate are assumed

at the interface. These assumptions appears to be not adequate in turbulent

two-phase environments with high evaporation rates. Further work will be focus

on improving vaporization modelling for dense two-phase �ows, based on our

DNS data.
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